

Online Language Model Adaptation for Spoken Dialog Translation

Germán Sanchis-Trilles

Instituto Tecnológico de Informática, Universidad Politécnica de Valencia, Spain

Mauro Cettolo, Nicola Bertoldi, Marcello Federico

FBK - Ricerca Scientifica e Tecnologica, Trento, Italy

Tokyo, Dec 1-2, 2009

Outline

- Introduction
- Model adaptation
- Experiments
- Future work
- Conclusions

1

Introduction

- Spoken language translation
- Aimed towards introducing more context in the system
- Key idea: enhance target LM by introducing parameters that are adapted to the input text
- LM is implemented as mixture of sub LMs
- Experiments on IWSLT 2009 CT task, CRR conditions

Model adaptation

• Most usual translation rule:

$$\mathbf{e}^* = \arg\max_{\mathbf{e}} \max_{\mathbf{a}} \sum_{r=1}^R \lambda_r h_r(\mathbf{e}, \mathbf{f}, \mathbf{a})$$

• LM can be computed either as a single LM or as a mixture of LMs, i.e.:

$$p(\mathbf{e}) = \sum_{i=1}^{M} w_i p_i(\mathbf{e})$$

- \rightarrow Assume a partition of the parallel training data into M bilingual clusters
- \rightarrow Train specific source/target LMs for each partition
- $\rightarrow\,$ Before translation, estimate the optimal weights of the source LMs via EM
- $\rightarrow\,$ Transfer the resulting weights to the target LM mixture

4

IWSLT Data

- Experiments carried out on the CT task (both CE and EC)
- We considered the use of Agent, Customer and Interpreter annotations
- We also considered the use of the Dialog tags

		Training			Development		
	speaker	W	V	$ar{s}$	W	V	$ar{s}$
agent	native	46.7K	2240	14.8	2.5K	427	15.1
	interpreter	26.8K	1626	14.1	0.8K	218	13.2
customer	native	33.3K	2082	13.9	0.5K	152	11.8
	interpreter	33.8K	1878	12.9	1.7K	307	12.3

Speaker-based statistics of the CT data

Nespole! data

• NEgotiating through SPOken Language in E-commerce

Statistics of the Nespole! dialogs.

V

1344

W

15335

• Collected involving Italian speakers, translated into English

 \overline{S}

6.1

label	counter
give-information	963
affirm	408
descriptive	285
request-information	199
• • •	• • •
total	2522

Most frequent Nespole! dialog acts.

#turns

2522

Baseline system

- Built upon Moses SMT toolkit. Log-linear model with
 - $\rightarrow\,$ Phrase-based translation model
 - \rightarrow Language model
 - \rightarrow Word and phrase penalties
 - $\rightarrow\,$ Distortion model
- Weights of the log-linear combination optimized with MERT
- Language model: 5-gram with KN smoothing
- Distortion model: "orientation-bidirectional-fe"

Model adaptation

Clustering: IWSLT

- Dialog based
 - Consider each dialog as a bag of source and target words
 - Compute 2, 4, 6 and 8 clusters by means of CLUTO
 - * direct clustering algorithm
 - * cosine distance
 - Additional LM for BTEC+CT data
- Speaker based
 - Specific clusters for native agent/customer, and interpreter agent/customer
 - Additional LMs for BTEC and BTEC+CT data

Clustering: Nespole!

- Three LMs estimated on (English) Nespole! data:
 - give-information
 - request-information
 - other
- Such LMs are used to partition the IWSLT data on the basis of perplexity
- The clusters are mirrored on the Chinese side
- New LMs were trained on the IWSLT clusters
- Additional LM for all the BTEC+CT data

Model adaptation

- Set specific weights:
 - LM weights estimated on the source side of the complete test set
 - $+ \ {\sf Straightforward}$
 - Does not consider differences between sentences
 - \Rightarrow benefit of approach may fade

- Sentence specific weights:
 - One set of weights for each sentence in the test set
 - + EM procedure allowed complete freedom
 - Weights estimated on few data
 - $\Rightarrow\,$ possibly, less reliable weights

- Two-step weight estimation:
 - 1. Estimate sentence-specific weights
 - 2. Assign each source sentence to the cluster with the most weighted LM
 - 3. Re-estimate one single set of weights for each of such clusters
 - $+\,$ Mirror the clustering of the training data into the test set
 - + Avoid possible data sparseness issues

- Oracle weight estimation:
 - Estimate weights at sentence level on the reference texts (i.e. target side)
 - + Provides a sort of upper bound
 - Not fair

Results

Results for sentence-based weight estimation

Results

Results for two-step weight estimation

Analysis

- Significant improvements are achieved in terms of perplexity for every setup
- Improvements in perplexity are not always mirrored by BLEU
- Oracle curves are unimodal with peak at six clusters
- Oracle setup confirms that the approach is appealing, room for improvement
- Two-step: does not improve sentence-based, but curves are unimodal \rightarrow more predictable
- Dialog clustering improves or is as good as baseline:
 - + two-step: seems to guarantee stable improvements
- Nespole! guided clustering does not seem to be effective
- Clustering according to ACI labels works well for EC (not for CE)

Analysis

• Training/development and test conditions are quite different

Table 1: MERT effect on the BLEU score									
	test	mert	Δ BLEU						
	on	on	CE	EC					
-	DEV1	DEV2	-0.19	+3.39					
	DEV2	DEV1	-0.67	-1.12					

- Clustering according to ACI labels produces speaker-specific LMs.
 - \rightarrow According to training!
 - $\rightarrow\,$ This is bound to have an important effect

Future work

- Obtain data partitioning in an unsupervised manner
 - Surface form
 - PoS
 - . . .
- Perform development/test-driven partitioning of the training data
- Source-to-target weight mapping
- Assess these techniques on larger tasks such as Europarl or NIST

Questions? Comments? Suggestions?