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Introduction

• Spoken language translation

• Aimed towards introducing more context in the system

• Key idea: enhance target LM by introducing parameters that are adapted to
the input text

• LM is implemented as mixture of sub LMs

• Experiments on IWSLT 2009 CT task, CRR conditions
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Model adaptation

• Most usual translation rule:

e∗ = arg max
e

max
a

R∑
r=1

λrhr(e, f ,a)

• LM can be computed either as a single LM or as a mixture of LMs, i.e.:

p(e) =
M∑
i=1

wipi(e)
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Model adaptation
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→ Assume a partition of the parallel training data into M bilingual clusters

→ Train specific source/target LMs for each partition

→ Before translation, estimate the optimal weights of the source LMs via EM

→ Transfer the resulting weights to the target LM mixture
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IWSLT Data

• Experiments carried out on the CT task (both CE and EC)

• We considered the use of Agent, Customer and Interpreter annotations

• We also considered the use of the Dialog tags

Speaker-based statistics of the CT data

Training Development

speaker |W| |V| s̄ |W| |V| s̄

agent
native 46.7K 2240 14.8 2.5K 427 15.1

interpreter 26.8K 1626 14.1 0.8K 218 13.2

customer
native 33.3K 2082 13.9 0.5K 152 11.8

interpreter 33.8K 1878 12.9 1.7K 307 12.3
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Nespole! data

• NEgotiating through SPOken Language in E-commerce

• Collected involving Italian speakers, translated into English

Statistics of the Nespole! dialogs.
#turns | W| |V| s̄
2522 15335 1344 6.1

Most frequent Nespole! dialog acts.
label counter

give-information 963
affirm 408

descriptive 285
request-information 199

· · · · · ·
total 2522
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Baseline system

• Built upon Moses SMT toolkit. Log-linear model with

→ Phrase-based translation model
→ Language model
→ Word and phrase penalties
→ Distortion model

• Weights of the log-linear combination optimized with MERT

• Language model: 5-gram with KN smoothing

• Distortion model: ”orientation-bidirectional-fe”
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Model adaptation

SRC

TEXT

LM
1

LM
2

LM
M

LM
M

LM
2

LM
1

CLUSTERING

ON−LINE

OFF−LINE

TRAINING

PARALLEL TEXTS

SRC TGT

of SRC LMs

OPTIMIZATION

INTERPOLATION

SMT

TRANSLATION

LM

SRC TGT
SRC TGT

INTERPOLATION

of TGT LMs

wi

CLSTR

CLSTR

CLSTR
1

2

M

ESTIMATION

Sanchis-Trilles et. al. Online LM adaptation Tokyo, Dec 1-2, 2009



9

Clustering: IWSLT

• Dialog based

– Consider each dialog as a bag of source and target words
– Compute 2, 4, 6 and 8 clusters by means of CLUTO
∗ direct clustering algorithm
∗ cosine distance

– Additional LM for BTEC+CT data

• Speaker based

– Specific clusters for native agent/customer, and interpreter agent/customer
– Additional LMs for BTEC and BTEC+CT data
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Clustering: Nespole!

• Three LMs estimated on (English) Nespole! data:

– give-information
– request-information
– other

• Such LMs are used to partition the IWSLT data on the basis of perplexity

• The clusters are mirrored on the Chinese side

• New LMs were trained on the IWSLT clusters

• Additional LM for all the BTEC+CT data
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Model adaptation
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On-line weight optimization

Four different approaches:

• Set specific weights:

– LM weights estimated on the source side of the complete test set
+ Straightforward
− Does not consider differences between sentences
⇒ benefit of approach may fade
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On-line weight optimization

Four different approaches:

• Sentence specific weights:

– One set of weights for each sentence in the test set
+ EM procedure allowed complete freedom
− Weights estimated on few data
⇒ possibly, less reliable weights
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On-line weight optimization

Four different approaches:

• Two-step weight estimation:

1. Estimate sentence-specific weights
2. Assign each source sentence to the cluster with the most weighted LM
3. Re-estimate one single set of weights for each of such clusters

+ Mirror the clustering of the training data into the test set
+ Avoid possible data sparseness issues
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On-line weight optimization

Four different approaches:

• Oracle weight estimation:

– Estimate weights at sentence level on the reference texts (i.e. target side)
+ Provides a sort of upper bound
− Not fair
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Results

Results for sentence-based weight estimation
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Results

Results for two-step weight estimation
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Analysis

• Significant improvements are achieved in terms of perplexity for every setup

• Improvements in perplexity are not always mirrored by BLEU

• Oracle curves are unimodal with peak at six clusters

• Oracle setup confirms that the approach is appealing, room for improvement

• Two-step: does not improve sentence-based, but curves are unimodal
→ more predictable

• Dialog clustering improves or is as good as baseline:

+ two-step: seems to guarantee stable improvements

• Nespole! guided clustering does not seem to be effective

• Clustering according to ACI labels works well for EC (not for CE)
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Analysis

• Training/development and test conditions are quite different

Table 1: MERT effect on the BLEU score.
test mert ∆ BLEU
on on CE EC

DEV1 DEV2 -0.19 +3.39
DEV2 DEV1 -0.67 -1.12

• Clustering according to ACI labels produces speaker-specific LMs.

→ According to training!
→ This is bound to have an important effect
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Future work

• Obtain data partitioning in an unsupervised manner

– Surface form
– PoS
– . . .

• Perform development/test-driven partitioning of the training data

• Source-to-target weight mapping

• Assess these techniques on larger tasks such as Europarl or NIST
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Questions? Comments? Suggestions?
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