
31st Pacific Asia Conference on Language, Information and Computation (PACLIC 31), pages 64–71
Cebu City, Philippines, November 16-18, 2017

Copyright c©2017 Arief Rahman, Kuncoro Adhiguna and Ayu Purwarianti

Ensemble Technique Utilization for Indonesian Dependency Parser

Arief Rahman Ayu Purwarianti
Institut Teknologi Bandung

Indonesia

Institut Teknologi Bandung

Indonesia

23516008@std.stei.itb.ac.id ayu@stei.itb.ac.id

Abstract

Two of the main problems in creating an

Indonesian parser with high accuracy are

the lack of sentence diversity in treebank

used for training and suboptimal uses of

parsing techniques. To resolve these

problems, we build an Indonesian

dependency treebank of 2098 sentences

(simple and complex sentences) and use

ensemble techniques to maximize the usage

of available dependency parsers. We

compare the combination of seven parsing

algorithms provided by MaltParser and

MSTParser, which provides both

transition-based and graph-based models.

From our experiments, we found that the

graph-based model performs better than the

transition-based model for Indonesian

sentences. We also found no significant

accuracy difference in models between

several simple ensemble models and

reparsing algorithms.

1 Introduction

Text parsing is one of the major tasks in natural

language text processing (NLP). Text parsing is the

process of determining the syntactic structure of a

sentence. The result of text parsing is a syntactical

tree, which is mostly used for higher-level NLP

tasks, like sentiment analysis (Di Caro and Grella,

2013) and semantic role labeling (Johansson and

Nugues. 2008).

There are two kinds of text parsing to date:

constituent parsing and dependency parsing.

Constituent parsing parses a sentence by

determining the constituent phrases of the sentence

hierarchically, usually by using a grammar (Aho,

2003). Dependency parsing, on the other hand,

parses a sentence by determining a dependency

relation for each word in a sentence. In this

research, we use dependency parsing, because it is

suited for analyzing languages with free word

order, such as Indonesian (Nivre, 2007). Figure 1

shows an example of a parsed Indonesian sentence

using dependency structure.

Figure 1. Example of a parsed Indonesian sentence

(TL: That allegation does not miss) with

dependency structure

Up until now, there have been only a few studies

regarding Indonesian dependency parsing

(Sulaeman, 2012; Green et.al, 2012). Most of the

previous researches focused on rule-based parsing

(Purwarianti et.al, 2013), which yielded quite a low

accuracy, compared to other languages. Based on

these researches, we use ensemble parsing

techniques (Surdeanu and Manning, 2010) in our

works. We also built a dependency Treebank

corpus used for the model training with 2098

sentences.

In the following sections, we describe the

relevant studies and some basic concepts about

64

dependency parsing and its models. We then

describe the corpus used in this research, our

experiment settings, and finally the results and

analysis.

2 Related Works

There are two studies that are related to ensemble

dependency parsing, which is Surdeanu &

Manning's work for English (Attardi and

Dell'Orletta, 2009), and Green et al.'s work for

Indonesian (Green et.al, 2012). Surdeanu &

Manning created an ensemble dependency parser

using parsing algorithms from both MaltParser and

MSTParser for English. This research used CoNLL

2008 shared task corpus as the treebank for

training and testing. There are two types of

ensemble models used in this research: ensemble

model at learning (using stacking) and ensemble

model at runtime (using voting mechanism). The

ensemble system at runtime used both weighted

and unweighted voting scheme. The system also

used a reparsing algorithm (Attardi and

Dell'Orletta, 2009) to ensure the resulting

dependency graphs always form a tree. The

employed reparsing algorithms are Eisner's

algorithm (Eisner, 1996) and Attardi's algorithm

(Attardi and Dell'Orletta, 2009).

There are three conclusions that can be inferred

from this research. First, an ensemble model that

combines several base parsers at runtime performs

significantly better than an ensemble model that

combines two parsers at learning time. Second,

well-formed dependency trees can be guaranteed

without significant performance loss by linear-time

approximate reparsing algorithms. Lastly,

unweighted voting performs as well as weighted

voting for the re-parsing of candidate

dependencies.

Green et al.'s (2012) research consists of making

treebank for Indonesian and analyzing ensemble

technique effectivity on Indonesian dependency

parser using self-training. This research used four

out of five parsing algorithms provided by

MaltParser (Nivre, Stack, Planar, and 2-Planar) as

its base parsers. This research used 100 Indonesian

sentences from IDENTIC (Larasati, 2012) as the

treebank. The treebank was split into three parts:

one for training, one for self-training tuning, and

one for testing. The ensemble techniques used was

Chu-Liu Edmonds reparsing algorithm with the

unweighted voting scheme.

From this research, Green et al. (2012)

concluded that self-training and ensemble parsing

can be used to increase overall accuracy for

Indonesian dependency parsing. Our work differs

from Green et al.'s work by using base parsers

from two different parsing models (transition-

based and graph-based model), where Green et al.'s

and only use one parsing model (transition-based

model); and also the treebank size which is 20

times larger than Green et al.'s. Our experiment

scheme is also different since we conducted a cross

validation scheme in calculating the accuracy.

3 MaltParser and MSTParser

Both MaltParser and MSTParser are data-driven

dependency parsers, which use treebank as training

data for making parsing models. Both of these

parsers are language-independent, which allows

any language to be used in the parser without any

compromise in accuracy. However, these parsers

have different ways to parse sentences. Both of

these parsers will be explained in the next sections.

3.1 MaltParser

MaltParser was introduced by Nivre et al. (2007).

It is a data-driven and language-independent

dependency parser. MaltParser uses transition-

based model during parsing. This model uses

transition machine, which contains four main

components: a set of parsing states, a set of parsing

transitions, the initial parsing state, and a set of

terminating parsing states. The parsing result of a

transition-based model is a transition sequence that

can be used to transform the initial parsing state

into a terminating parsing state. The learning

problem comes from determining the best action to

make at each state. This can be achieved learning

an “oracle” function.

There are five parsing algorithms available in

MaltParser, which can be seen in Table 1. Each of

these algorithms differs on the data structures used

to represent the parsing states and the set of

transitions available for every parsing state.

65

Algorithm Parsing Mode Data Structure Complexity Projective?

Nivre
Arc-eager Stack O(n) Yes

Arc-standard Stack O(n) Yes

Covington
Projective Two lists O(n2) Yes

Non-projective Two lists O(n2) No

Stack

Projective Stack O(n) Yes

Non-projective lazy Stack O(n) No

Non-projective eager Stack O(n) No

Planar Stack O(n) Yes

2-Planar Two stacks O(n) Yes

Table 1. Transition-based Algorithm Used by MaltParser

3.2 MSTParser

MSTParser is a data-driven and language-

independent dependency parser that uses graph-

based model. The graph-based model adds a

weight to each directed edge in a dependency

graph, which is determined by the dot product of

the feature weight vector and the score vector

based on the current dependency relation. The

overall graph is scored, which equals to the

product of all weights of all directed edges. The

graph-based model will be able to determine the

best dependency tree for a sentence by finding the

spanning tree of the dependency graph created

with maximum score.

There are two parsing algorithms available in

MSTParser: Eisner and Chu-Liu Edmonds

algorithm. The first one is Eisner algorithm, which

uses dynamic programming (memoization) to find

the maximum spanning trees. It has a complexity

of O(n3) and can only build projective trees. The

second one is Chu-Liu Edmonds algorithm, which

uses recursive greedy selection to find the

maximum spanning tree. It has a complexity of

O(n2) and can build both projective and non-

projective trees.

4 Ensemble Technique

In NLP, ensemble technique is a parsing technique

that uses a collaboration of several unique parsing

models to parse sentences better than individually.

Ensemble technique can be applied during learning

and during parsing. Ensemble technique can be

applied during learning by having a parsing model

parse a test data, and then uses another parsing

model to repair the mistakes made by the previous

parser. These steps are repeated until all parsers are

used. Several examples of ensemble during

learning are stacked parsing and guided model

(Fan et.al, 2008; Nivre and McDonald, 2008).

Ensemble technique can also be applied during

training by having several base parsers parse the

same test data. The base parsers are trained using

the same training data. After that, the result from

each base parser will be used to determine one

final dependency graph that considers all of the

base parsers' results. There are three kinds of

ensemble during parsing to date: meta-classifier,

voting system, and reparsing algorithm. We will

only discuss the voting system and the reparsing

algorithm in this paper.

In voting system, every token in a sentence will

have a dependency relation that was determined by

majority voting. Every dependency relation from

all of the base parsers will be tallied according to a

voting scheme (weighted or unweighted). After

that, the best dependency relation for each token

will be used for the final dependency graph. In

practice, voting scheme is simpler than meta-

classifier and performs at the same level as meta-

classifier.

There two types of voting that can be used for

voting system: weighted and unweighted.

Unweighted voting makes all base parsers give the

same score for all dependency relations. On the

other hand, weighted voting makes base parsers

with better accuracy give bigger score for

particular dependency relations. When using

voting system, the dependency relation with the

biggest score for a particular token will be used by

the ensemble parser to create the final dependency

graph. Voting is done until every token has a

dependency relation.

66

Figure 2. Overall ensemble parsing process

Sometimes, the dependency graphs that are

created by the voting system does not make a

dependency tree. To resolve this, a reparsing

algorithm can be used to parse the dependency

graph by finding the maximum spanning tree of the

graph. The weight of each directed edge is

calculated by tallying the dependency relations

from all of the base parsers using a weighting

scheme (weighted or unweighted). Three of the

most used reparsing algorithms are Eisner

algorithm, Chu-Liu Edmonds algorithm, and

Attardi algorithm. Our work uses voting system

with unweighted voting scheme and all of the

reparsing algorithms (all with unweighted

weighting scheme).

There are three main steps on doing ensemble

parsing. The first step is training all of the base

parsers with parsing algorithms and learning

algorithm provided by MaltParser and MSTParser.

The base parsers are trained using the treebanks

that will be listed in the next section. The second

step is parsing the test sentences using a particular

base parsers combination. The parsing result is in

CoNLL. The last step is using a particular

ensemble technique to create an ensemble tree. The

whole process of ensemble parsing can be seen in

Figure 2.

5 Experiments

5.1 Experimental Settings

Our treebank statistic is shown in Table 2. We

performed the experiments using our treebank that

contains 2098 sentences. We used Kuncoro’s

treebank (2013), which contains 2018 sentences,

and added 80 sentences, which we manually parsed

from news sites like Kompas and Tempo to include

in our treebank.

There are three main scenarios in our research.

In the first scenario, we compared the

performances of the base parsers in parsing

Indonesian sentences. There were eleven single

parsers that were compared: Nivre eager, Nivre

standard, Covington projective, Covington non-

projective, Stack projective, Stack eager, Stack

lazy, Planar, 2-Planar, Eisner, and Chu-Liu

Edmonds. The parsers were tested using 10-fold

cross validation and used the same learning

algorithm (SVM).

In the second scenario, we compared the

performances of four ensemble techniques: voting

system with unweighted scheme, Eisner reparsing

algorithm, Chu-Liu Edmonds reparsing algorithm,

and Attardi reparsing algorithm. All of the

reparsing algorithms used unweighted weighting

scheme. The ensemble combination used is 2-

Planar, Eisner, and Chu-Liu Edmonds parsing

algorithms. The parsers were tested using 10-fold

cross validation and used the same learning

algorithm (SVM).

In the third scenario, we compared the

performances of ensemble parsers that use

different algorithm combination. There were six

ensemble combinations that were compared: all

parsing algorithms (both from MaltParser and

MSTParser), all algorithms from MaltParser, all

algorithms from MSTParser, all projective parsing

algorithms, all non-projective algorithms, and three

algorithms with the highest accuracy (according to

the first scenario). The parsers used Eisner

reparsing algorithm with unweighted weighting

scheme and were tested using 10-fold cross

validation and used the same learning algorithm

(SVM).

5.2 Results and Analysis

The results of the four experiments are shown in

Table 3, Table 4, and Table 5. The metric used in

this work is UAS (unlabeled attachment score). We

don’t use LAS (labeled attachment score) since we

have no dependency label in our treebank yet.

67

Sentence Type Number of Sentences (Percentage)

Number of clauses

Simple sentence 1067 (50.86%)

Compound sentences 349 (16.63%)

Complex sentence 527 (25.12%)

Complex-compound sentence 155 (7.39%)

Presence of gerund
Present 50 (2.38%)

Not present 2048 (97.62%)

POS tag of central

dependency

Transitive verb 1017 (48.47%)

Intransitive verb 989 (47.14%)

Adjective 69 (3.29%)

Noun 8 (0.38%)

Others 15 (0.71%)

Deletion type

None 1630 (77.69%)

Anaphoric 312 (14.87%)

Cataphoric 89 (4.24%)

Structural 67 (3.19%)

Table 2. Indonesian Treebank Statistic

The result from Table 4 shows that Chu-Liu

Edmonds algorithm is the best parsing algorithm to

be used for Indonesian sentences. One of the main

factors that contribute to Chu-Liu Edmonds' high

accuracy is the fact that graph-based model can

handle long distance dependency well, which most

Indonesian sentences have. We can see from the

results that Chu-Liu Edmonds dominated both the

accuracy on parsing the long sentences and the

short sentences. Theoretically, transition-based

models should have been able to parse short

sentences better than graph-based model.

However, the results showed the opposite. This

could be caused by Indonesian sentences tendency

to use long distance dependencies, even in short

sentences.

Another interesting thing that can be inferred

from these results is the fact that transition-based

models generally performed better when parsing

sentences with outlier predicates (like adjectives

and nouns). This is most likely because of the rich

feature representations that transition-based model

has, which depends on the data structures used to

represent the parsing state. Figure 3 and 4 shows

the example of this occurrence.

The result from Table 5 shows that there is no

significant accuracy difference on the ensemble

technique used. However, voting system with

unweighted scheme has a little higher accuracy

than others (0.01%), because the resulting graphs

are not reparsed, which make the individual

dependency accuracy better than those that use

reparsing algorithm. The accuracy indifference

may be caused by the fact that all of the reparsing

algorithms used unweighted voting scheme, which

would make the weight of many dependency

relations to be the same, regardless of the

algorithm.

The result from Table 6 shows that the parser

that uses the combination of the top three base

parsers (2-Planar, Eisner, and Chu-Liu Edmonds)

has the highest accuracy. This is because of the

ensemble property itself. Most of the correct

majority decisions (from the best parsers) were

able to repair the best parser's mistakes. We can

also see that parsers combining all algorithms have

lower accuracy than others. This is because of the

fact that most of the parsing algorithms created the

same dependency trees, especially for the same

variants (like Nivre's standard and eager mode).

This resulted in most majority decisions to come

from the algorithms with several variants.

68

Parsing Algorithm

Accuracy

Overall
Outlier

Predicates
Sentence with > 15 tokens Sentence with ≤ 15 tokens

Nivre-eager (Malt) 83.5% 60.00% 77.16% 85.81%

Nivre-standard (Malt) 82.9% 55.71% 75.51% 85.54%

Covington projective

(Malt)
82.4% 51.43% 75.25% 85.01%

Covington non-

projective (Malt)
82.6% 50.00% 75.40% 85.29%

Stack projective (Malt) 83.3% 55.71% 76.23% 85.81%

Stack eager (Malt) 83.7% 57.14% 77.58% 85.86%

Stack lazy (Malt) 83.9% 57.14% 78.17% 85.90%

Planar (Malt) 84.1% 57.14% 77.85% 86.30%

2-Planar (Malt) 84.7% 54.29% 78.79% 86.82%

Eisner (MST) 85.8% 54.29% 80.68% 87.51%

Chu-Liu-Edmonds

(MST)
86.1% 52.86% 80.89% 87.86%

Table 3. Accuracy of Single Dependency Parsers

Figure 3. Correct dependency tree for sentence Dia tidak malu bertanya di depan umum (He is not

ashamed of asking questions in public)

Figure 4. Parsing result for sentence Dia tidak malu bertanya di depan umum (He is not ashamed of

asking questions in public) using 2-Planar, Eisner, and Chu-Liu Edmonds parsing algorithm respectively

69

Ensemble Technique Accuracy

Unweighted majority 86.6%

Eisner 86.5%

Chu-Liu-Edmonds 86.5%

Attardi 86.5%

Table 4. Accuracy of Parsers with Different Ensemble Technique

Ensemble Technique Accuracy

All parsing algorithms (MaltParser + MSTParser) 85.5%

All parsing algorithms from MaltParser 85.1%

All parsing algorithms from MSTParser 86.0%

All projective parsing algorithms 85.6%

All non-projective parsing algorithms 85.3%

Top three parsers (2-Planar, Eisner, and Chu-Liu Edmonds) 86.5%

Table 5. Accuracy of Parsers with Different Ensemble Combination

6 Problems While Creating Indonesian

Treebank

During the making of our Indonesian Treebank, we

encountered several problems that should be

solved in the future works. Most of the problems

revolve around labeling standards. The first

problem is the POS-tags standards. Our current

treebank uses proprietary standards for both the

coarse-grained and fine-grained POS-tags. While

our standards are adequate to cover most word

types, the lack of standards for POS-tags makes it

difficult to merge several treebanks to create a

larger data set for future studies. INACL has issued

a POS-tags standard for Indonesian 1 , however,

there is still a matter of mapping the old POS-tags

standards to the new POS-tags standards.

The second problem is the lack of dependency

labels for Indonesian. At the time this research is

concluded, there were no dependency label

standards that can be used to label each

dependency relation in a treebank. This would

drastically reduce the usefulness of the parser

results for most semantic-related NLP tasks since

the dependency label is one of the main features in

1 http://inacl.id/inacl/wp-content/uploads/2017/06/INACL-

POS-Tagging-Convention-26-Mei.pdf

those tasks. One possible solution is to use the

dependency label standards from Universal

Dependencies (Nivre et al., 2016), which has a

universal dependency labeling scheme.

7 Conclusions and Future Works

From our experiments, we concluded that the

graph-based model is better than transition-based

models for the Indonesian language. We also

concluded that different simple ensemble

techniques and ensemble combinations do not give

significant accuracy difference between models.

Potential future works lie in using more intricate

ensemble techniques (e.g. weighting models by its

proficiency in creating dependencies for different

POS-tags) or better base parsers (using deep

learning or word embedding as features during

parsing). Other major future works lie in creating a

big and complete dependency treebank, which can

be done by merging several treebanks from several

studies using one labeling standards for both its

POS-tags and dependency labels.

References

Aho, A. V. (2003). Compilers: Principles, Techniques,

and Tools (for Anna University), 2nd Edition,

Pearson Addison Wesley.

70

Attardi, G., and Dell'Orletta, F. (2009). Reverse

Revision and Linear Tree Combination for

Dependency Parsing. Proceedings of Human

Language Technologies: The 2009 Annual

Conference of the North American Chapter of the

Association for Computational Linguistics,

Companion Volume: Short Papers, pp. 261-264.

Chang, C.-C., and Lin, C.-J. (2011). LIBSVM: A

Library for Support Vector Machines. ACM

Transactions on Intelligent Systems and Technology

(TIST), Volume 2 Issue 3, April 2011, Article

Number 27.

Di Caro, L., and Grella, M. (2013). Sentiment Analysis

via Dependency Parsing. Computer Standards &

Interfaces, Elsevier, Volume 35, Issue 5, September

2013, pp 442-453.

Eisner, J. M. (1996). Three New Probabilistic Models

for Dependency Parsing: An Exploration.

Proceedings of the 16th Conference on

Computational Linguistics - Volume 1, pp. 340-345.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., &

Lin, C.-J. (2008). LIBLINEAR: A Library for Large

Linear Classification. The Journal of Machine

Learning Research, pp. 1871-1874.

Green, N., Larasati, S. D., and Zabokrtsky, Z. (2012).

Indonesian Dependency Treebank: Annotation and

Parsing. 26th Pacific Asia Conference on Language,

Information, and Computation, pp. 137-145.

Johansson, R., and Nugues, P. (2008). Dependency-

Based Syntactic-Semantic Analysis with PropBank

and NomBank. Proceedings of the Twelfth

Conference on Computational Natural Language

Learning, CoNLL '08, (pp. 183-187).

Jurafsky, D., and Martin, J. (2009). Speech and

Language Processing: An Introduction to Natural

Language Processing, Computational Linguistics,

and Speech Recognition. Pearson Prentice Hall.

Jurafsky, Adhiguna. (2013). Pemanfaatan Pengurai

Ensemble dan Teknik Self-Learning untuk

Meningkatkan Akurasi Pengurai Bahasa Indonesia

[Ensemble Parsers and Self-Learning Technique

Utilization to Increase Indonesian Parser Accuracy].

Institut Teknologi Bandung.

Larasati, S. D. (2012). IDENTIC Corpus:

Morphologically Enriched Indonesian-English

Parallel Corpus. LREC, pp. 902-906.

Nivre et al. (2007). MaltParser: A Language-

Independent System for Data-Driven Dependency

Parsing. Natural Language Engineering. 13, pp. 95-

135.

Nivre, J., & McDonald, R. T. (2008). Integrating Graph-

Based and Transition-Based Dependency Parsers.

Proceedings of ACL-08: HLT, pp. 950–958,

Columbus, Ohio

Nivre, J., de Marneffe, M. C., Ginter, F., Goldberg, Y.,

Hajic, J., Manning, C. D., ... & Tsarfaty, R. (2016,

May). Universal Dependencies v1: A Multilingual

Treebank Collection. In LREC.

Purwarianti, A., Saelan, A., Afif, I., Ferdian, F.,

Wicaksono, A.F. (2013). Natural Language

Understanding Tools with Low Language Resource

in Building Automatic Indonesian Mind Map

Generator. International Journal on Electrical

Engineering and Informatics, Vol 5, No. 3,

September 2013.

Sulaeman, M. K., and Purwarianti, A. (2012).

“Dependency Parsing for Indonesian with GULP”.

Proceeding of ICEEI (International Conference of

Electrical Engineering and Informatics) 2011. July

2011. Bandung, Indonesia

Surdeanu, M., and Manning, C. D. (2010). Ensemble

Models for Dependency Parsing: Cheap and Good?

Human Language Technologies: The 2010 Annual

Conference of the North American Chapter of the

Association for Computational Linguistics, pp. 649-

652.

71

