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Abstract. Misspellings, abbreviations and acronyms are very popular in clinical notes and 

can be an obstacle to high quality information extraction and classification. In addition, 

another important part of narrative reports is clinical scores and measurements as doctors 

infer a patient‟s status by analyzing them. We introduce a knowledge discovery process to 

resolve unknown tokens and convert scores and measures into a standard layout so as to 

improve the quality of semantic processing of the corpus. System performance is evaluated 

before and after an automatic proof reading process by comparing the computed SNOMED-

CT codes to the coding created originally by the clinical staff. The automatic coding of the 

texts increased the coded content by 15% after the automatic correction process and the 

number of unique codes increased by 4.7%. Accuracy of the automatic coding and 

annotations in the notes which have not been coded by the clinical staff is suggested by the 

system output. 
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1 Introduction 

Clinical notes contain valuable information about patients‟ status, however, retrieving 

information from them is challenging because they may comprise up to 30% non-word tokens, 

idiosyncratic spellings, abbreviations and acronyms, and poor grammatical structure. Besides 

resolving misspellings, knowing the correct expansions of abbreviations and acronyms is 

critical to the understanding of the document for both automatic natural language understanding 

and human comprehension and interpretation (Pakhomov et al., 2005). 

Proof reading is a process whereby a clinical text is validated to identify unknown 

tokens/words and their valid forms. Proof correcting is modifying the proofed text to make it 

notionally “correct” text and thereby more readily processible by automatic means. There are 

two principal tasks to be achieved, these are normalization and standardization. The 

normalization process changes the texts in a way so that a human reader would consider it as 

normal, such as correcting spelling, expanding abbreviations and acronyms. The 

standardization process converts the text into certain formats that an expert community has 

defined as standard; a good example is converting scores and measures into a standard layout. 

At first glance it would seem that standardization should be done initially before 

normalization, however it is more likely that both will need to be performed multiple times in a 

repeated cycle of processing as there is interaction between the two processes. Standardization 

converts various instances of the same scores and measures into standard forms so that the 

system does not need to be concerned about their details for later processing steps such as 

normalization. For example: “HR 70” and “HR 78” are standardized to the representation of 

heart rate. However, most measurements and scores contain acronyms or abbreviations which 

may need to be expanded during the normalization process. Normalization could improve the 

standardization process by correcting misspelling and other token error within standard forms. 

If normalization is executed first, a large amount of tokens within standard layouts will need to 

be processed while they could be excluded if they were ringfenced by a standardization process. 
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Once both these tasks are completed the result is a corpus that is annotated by all of these 

processes. The final act is proof correcting or transformation which is to change the 

raw corpus into a proofed corpus, that is, the text can be read as a fully corrected corpus. The 

important process is to use the annotation properties of each token to change its representation 

in the source file to the correct form. This produces two versions of the source file, the 

uncorrected form and the corrected form. The former form has a set of annotations with 

properties defining the changes that needed to be made in the proof correcting process, and the 

latter form has all the text corrected and a set of annotations that define the original form of the 

token(s) and structure(s). 

2 Related Work 

The normalization process contains misspelling corrections, abbreviation and acronym 

expansions. Spelling error detection and correction can be classified into two categories (Ruch 

et al., 2003). The first category is word-based or context-free spelling correction which resolves 

errors for words that cannot be found in the lexicon (such as „medicla‟ is a misspelling of 

medical). The second category is context-based or context sensitive spelling correction which 

concerns a valid word but misspelt within the context (for example, in „a peace of paper‟ where 

„piece‟ is misspelt). 

  The classical word-based spelling correction algorithm is minimum edit distance which 

ranks suggestion candidates by the minimal number of insertions, deletions, substitutions and 

transpositions needed to transform one string into the other (Levenshtein 1966). The 

Metaphone algorithm uses consonant symbols which represent their usual English 

pronunciations, the vowels „AEIOU‟ are also used, but only at the beginning of the word 

(Philips 1990). In more recent research, Kukick (1992) maps every string into a key such that 

similarly spelt strings will have identical keys; this method is called similarity key. Some 

spelling suggestion tools such as Aspell and Gspell which combine multiple algorithms are now 

available for use and research. Aspell is a combination of the Metaphone algorithm and near-

miss strategy by its predecessor Ispell (Atkinson 2006; Kuenning 2006). The mix of algorithms 

in Gspell includes the NGrams, metaphone, common misspellings, and homophone retrieval 

tools. Candidates are evaluated by the Levenshtein edit distance, and similar ranked candidates 

are re-ordered by use of word based corpus frequencies (Divita, 2003).  

  Much research on normalization has been developed in the medical domain due to a high 

frequency of misspellings, abbreviations and acronyms. A frequency-based technique 

combining a comprehensive and a medical dictionary configuration was developed to improve 

suggestion ranking of Aspell and Gspell (Crowell et al., 2004). Without a comprehensive 

dictionary, Turchin et al. (2007) identified misspelt words using prevalence analysis. Senger et 

al. (2010) used Aspell and user behavior to analyze drug misspelling characteristics in a drug 

query system.  

Spelling correction is more effective when the method takes into account the context in 

which the word occurs. To improve spelling correction in the electronic patient record, Ruch et 

al. (2003) uses lexical disambiguation and named-entity recognition, and shows how a set of 

natural language processing (NLP) tools can be combined to improve the processing of clinical 

records. Emphasis on first suggestion accuracy in Patrick et al. (2010) introduced a high 

accuracy spelling corrector for clinical notes which uses a combination of rule-based suggestion 

generation and a context-sensitive ranking algorithm. 

A comparative study of supervised acronym disambiguation in a corpus of clinical notes, 

using three machine learning algorithms: the naïve Bayes classifier, decision trees and Support 

Vector Machines (SMVs) has been conducted by Joshi et al. (2006). Instead of using three 

machine learners, Joshi el al. (2006) also developed three kernels for SVMs – one that makes 

use of knowledge derived from unlabeled text, the second using semantic knowledge from 
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ontologies, and finally a third, additive kernel consisting of the first two kernels – and studied 

their effect on the tasks of word sense disambiguation and automatic expansion of ambiguous 

acronyms. A method for collecting training data for supervised machine learning approaches to 

disambiguating acronyms has been introduced by Pakhomov S. (2002). The approach is based 

on the assumption that the expansion of an acronym and the acronym itself usually occur in 

similar contexts. The closest work to clinical document normalization is Wong et al. (2006), 

who integrated scores for spelling error correction, abbreviation expansion and case restoration. 

Measurements and scores are text patterns that need to be identified in the clinical notes. 

Finite State Automata (FSA) is a pattern matching approach that is used in our standardization 

process. FSA have many applications in NLP such as pattern matching, named-entity 

recognition and partial parsing. A language-independent method of finite-state surface syntactic 

parsing and word-disambiguation is introduced and discussed in (Koskenniemi, 1990). In this 

work, finite-state machines represented syntactic constraint rules where each constraint 

excludes certain types of ungrammatical readings. From the view of computational efficiency, 

the use of finite-state automata is motivated by taking into account optimal time and space 

(Mohri, 1997). Abney (1996) used cascaded FSAs to parse free text while Aït-Mokhtar and 

Chanod (1997) utilized incremental finite-state machines to build a shallow parser. Both of 

these researchers highlighted the efficiency of the FSA in that they can be extended at modest 

cost, maintain broad coverage and linguistic granularity and do not necessarily involve trading 

off accuracy against speed. This characteristic of an FSA is very useful in recognition of scores 

& measurements in the clinical domain where there is a large number of different patterns and 

new incoming examples which require rapid re-training of FSA. Furthermore, Finite-state 

transducers are used for deterministic part-of-speech tagging and semi-structured data 

extraction from the web (Roche and Schabes, 1995; Hsu and Dung, 1999). For probabilistic 

FSA, CSSR is an algorithm that generates weighted FSA from training data used to identify 

named-entities in text (Padro and Padro, 2007). In the CSSR algorithm, the model changes its 

structure to satisfy new training data. 

To our knowledge, our system is the first automated proof reading system for clinical data 

which combines normalization and standardization into the cycle of processing with evaluation 

of the result using a SNOMED-CT
1
 concept identifier versus clinical staff‟s assigned codes.  

3 Method 

The important system requirement is to create a process for the automated proof reading of a 

clinical corpus so that it can be used to improve the information retrieval accuracy of clinical 

knowledge in the text. 

The combination of normalization and standardization guarantees that standard expressions 

(scores and measures) are captured and each token contains its lexical verification information 

(abbreviation, acronym expansion and misspelling correction) whether the token is standing 

outside or within multi-token expression.  

The result of normalization and standardization process will be stored as annotations in the 

notes. This approach enables different subsets of annotation type to be used in specific 

processing tasks or experiments (detailed in section 4). 

3.1 Corpus Description 

The corpus used in our experiment is the Concord hospital‟s clinical progress summary which 

contains 43712 anonymised records from 2003 to 2008. Each record contains information about 

Principle diagnosis, Additional diagnosis, SNOMED-CT Description Identifier (DID), 

                                                      
1
 Systematized Nomenclature of Medicine - Clinical Terms (SNOMED-CT). Available at 

http://www.ihtsdo.org/snomed-ct 
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Description and Progress working text. 22974 of the 43712 notes contain SNOMED-CT DID 

and description (one for each note) which are assigned manually by clinical staff. 

3.2 Tokenization 

Three kinds of tokenizing strategies for different levels of tokenization are utilized: the standard 

morphology tokenizer splits text into single tokens for lexical verification, while the ring-

fencing tokenizer recognizes multi token expressions as standard types of scores or 

measurements, and the combined tokenizer. For example, the standard tokenizer can split “HR 

72” into the word “HR” and number “72” so that HR can be further verified and classified into 

the acronym with expansion “Heart Rate”. Then the ring-fencing tokenizer recognizes the 

phrase “HR 72” as a standard measurement of type heart rate. The combined annotation will 

have two overlapping levels: “HR” is an acronym, “72” is a number and “HR 72” annotated as 

a measurement of type HR (heart rate).  

The standard tokenizer uses morphology defined by regular expressions (REs) for basic 

classification of word and non-word tokens. This tokenizer classifies non-word tokens into sub-

classes: date (e.g. 3/7/02), time (e.g. 11.30am), range (e.g. 0.01->0.49), complex digit (e.g 

0.52/0.44), digit (e.g 652), separator (e.g. ##, **), operator (e.g. +, -), punctuation (e.g. !, ?). 

Word tokens are divided into single word (e.g. patient) and compound words such as 

two_word_slash (e.g. d/c), two_word_hyphen (e.g beta-blockers), two_word_apostrophe (e.g. 

didn‟t) and more_than_two_words (e.g. behind-the-wheel). The lexical processing of each word 

component in compound words is similar to single word. 

The ring-fencing tokenizer is a Finite State Recognizer (FSR) which uses training example 

patterns to recognize token patterns constituting a score or measurement that requires 

standardization (Patrick and Sabbagh, 2011). There are a large number of different scores and 

measurements in clinical notes. When using REs to describe patterns as more rules are 

developed to capture missed items, the rules became so complicated that it makes them difficult 

to update as any change has the risk of losing previously recognized patterns or introducing 

new false positives. Another problem is that the rule updating task requires an exhaustive 

knowledge about REs and a considerable amount of time modifying the rules. Consequently, 

the automated learning process to capture patterns using REs is particularly difficult. On the 

other hand, a trainable FSR can be built directly from training examples of data with high 

accuracy and efficient computational time. Some other types of measurements and scores in the 

training patterns are illustrated in table 1. The FSR training file has a simple format and 

contains two columns, first is the type and second is the span of the text which expresses the 

pattern. Training examples are then generalized so that the FSR can capture all the similar 

forms of these patterns. 

 

Table 1: A subset of training Types. 

Type Pattern Type  Pattern 

BP BP 140/65(84) ABG ABG's: 0355 7.41/41/103/26/2 

SaO2 O2 sats 91% Measurement 7mg/hr 

Temp 37.6 O2-measurement 2L O2 

Lipids Lipids 10% at 20mls/hr DRNAME Dr. <:[A-Z][a-zA-Z]*<: [A-Z][a-zA-Z]*:> 

 

The combined tokenizer uses the standard and ring-fencing tokenizer. It uses both morphology 

defined by REs and FSRs to tokenize text where measurements and scores can be recognized as 

multi-word expressions with no separated tokens, other tokens are split and classified by REs 

method. 
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3.3 Proof Reading and Proof Correcting 

After standard tokenization, each token is passed through the lexical verification process and 

then inserted into the Lexicon Management System (LMS) which supports automated and 

manual resolution of unknown tokens. The LMS is a system developed to store the accumulated 

lexical knowledge and contains categorizations of spelling errors, abbreviations, acronyms and 

a variety of non-word tokens. It also has a web interface that supports rapid manual correction 

of unknown words with a high accuracy clinical spelling suggestor plus the addition of 

grammatical information and the categorization of such words into gazetteers (Patrick et al., 

2010). The method of the clinical spelling suggestor is based on combining heuristic-based 

suggestion generation and ranking algorithms based on word frequencies and trigram 

probabilities. This approach achieved high accuracies on test data sets with over 93.5% for the 

Concord corpus. By using the LMS to resolve unknown words, the Concord lexicon database 

contains approximately 15000 tokens that have been manually corrected. Figure 1 illustrates the 

lexical verification process supported by our resources which includes 7 checking steps (1) 

Misspellings (2) Abbreviations (3) Acronym (4) Gazetteers (5) Moby lexical verifier for 

English
2
 (6) UMLS dictionary of medical terms

3
 (7) SNOMED-CT dictionary. 

 

 
 

Figure 1: Lexical verification process. 

 

The lexical verification process contains an additional step to resolve misplaced whitespace and 

punctuation. The LMS manages a developed process for manual spell correcting but it only 

considers single tokens hence errors of misplaced white space are not processed in it. The 

misplaced whitespace problem is dealt with in an external computational process. For example: 

“looka fter” should be “look after”, and the LMS will give suggestions for each word. However, 

these words should be resolved together. The rate of this kind of error is not high in a single 

                                                      
2
 The Institute for Language, Speech and Hearing. Available at http://icon.shef.ac.uk/Moby 

3
 Unified Medical Language System (UMLS). U.S National Library of Medicine, 

National Institutes of Health. Available at http://www.nlm.nih.gov/research/umls 
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document but for a large corpus, they are costly to manually resolve. Examples of incorrect 

punctuation problems are “natio;n” where it should be “nation” and “nation.The” has missing 

whitespace. Currently the LMS tokenizes each string on the left and right of the punctuation 

and so a correction has to be made in another process. 

At the end of the proof reading step, annotation files which contain lexical information from 

a corpus are generated. This means every token is annotated so any correction or expansion can 

be made when needed. The misspelt words will have correction information while 

abbreviations and acronyms come with expansion within their annotations. If a token is correct, 

it should contain information about the resource where the token was validated and mapped to 

the name of gazetteer or dictionary. Table 2 shows tag type statistics used in the proof reading 

process. 

 

Table 2: Frequencies of tag types used in the proof reading process. 

Tag type Frequency 

Abbreviation 47,564 

Acronym 149,372 

Misspelling 93,477 

Non-word 1,385,184 

Unknown 3,162 

Valid Words  4,608,664 

Total  6,287,423 

 

The proof correcting process generates the proof-corrected annotation files. They contain 

annotations that enable the user to see which tokens have been changed from the original 

corpus. In order to evaluate the effect of specific normalization types, proof correcting can 

generate corrected text files from annotation files with a selected set of annotation tags 

(misspellings, abbreviation, and acronym).  

3.4 SNOMED-CT Code Annotating and Comparison 

To evaluate the effect of the proof reading and correcting process, an algorithm for converting 

Text to SNOMED-CT (TTSCT) is used to annotate the corpus before and after the proof 

reading process to see the improvement and identify the distribution of SNOMED-CT concepts 

over the corpus (Patrick et al., 2007). TTSCT was developed so that SNOMED-CT concepts 

can be identified in free text narratives and to annotate them with the clinical reference terms. 

The accuracy of TTSCT is approximately 70% on a test corpus. Its improvement is ongoing 

research conducted by the authors. This evaluation is based on the assumption that if TTSCT 

can identify many more clinical terms in the proofed corpus than the original one, the proof 

reading process is considered effective because terms in the misspelt words, acronyms and 

abbreviations are now revealed. The measurements and scores patterns usually contain 

abbreviations and/or acronyms; so, we would expect there are more patterns after executing 

proof correcting using the misspelt tag only. 

Another purpose for computing SNOMED-CT codes for the corpus is to compare with 

assigned DIDs from clinical staff and generate suggestions codes for unassigned DID notes. In 

the SNOMED-CT resource, each Concept Identifier (CID) may contain several DIDs. This step 

checks whether the manually assigned DID belongs to a computed SNOMED-CT concept in 

each note and generates CID candidates for unassigned notes (20738 unassigned notes / 43712 

notes). When computing candidates for unassigned notes, we are especially interested in the 

two most popular assigned and computed classes: Clinical finding and Body structure. 
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4 Experiment Result and Discussion 

Generally, when using all corrections and expansions, we found more SNOMED-CT codes 

instances (over 150,000 or 14.3%) and distinct concepts (842 new concepts or 4.7%) in every 

SNOMED-CT category except Record artifact (Table 3). When only applying the misspelling 

tag in the proof correcting process, there are only around 22,000 new SNOMED-CT instances 

and 268 new concepts. Consequently, most new SNOMED-CT codes come from expansion of 

abbreviations and acronyms (85.4%) as the SNOMED-CT recognizer could not map these 

concepts. We can conclude that when applying an automated proof reading process, the clinical 

note is more informative as more medical concepts and instances are revealed. 

 

Table 3: Frequency of SNOMED-CT upper-level categories before and after proof reading. 

The figures in brackets show the number of distinct concepts in each category. 

Category Before  After  Difference  

Clinical finding 441,498 (8,673)  497,486 (9,052) 55,988 (379) 

Body structure 184,679 (2,462) 199,748 (2,542) 15,069 (80) 

Procedure 93,267 (2,181) 108,165 (2,345) 14,898 (164) 

Substance 75,630 (1,050) 79,509 (1,096) 3,879 (46) 

Observable entity 74,229 (792) 86,926 (836) 12,697 (44) 

Social context 70,243 (439) 104,141 (455) 33,898 (16) 

Physical object 32,623 (556) 38,003 (567) 5,380 (11) 

Situation with explicit context 26,275 (402) 32,531 (452) 6,256 (50) 

Environment or geographical location 22,516 (287) 22,936 (305) 420 (18) 

Pharmaceutical / biologic product 15,472 (467) 16,331 (486) 859 (19) 

Event 10,576 (158) 12,407 (162) 1,831 (3) 

Staging and scales 7,377 (19) 7,407 (21) 30 (2) 

Physical force 7,026 (39) 8,364 (42) 1,338 (3) 

Organism 5,450 (289) 5,475 (292) 25 (3) 

Specimen 676 (35) 770 (39) 94 (4) 

Record artifact 221 (13) 221 (13) 0 (0) 

Total  1,067,758 (17,862)  1,220,420 (18,705)  152,662 (842)  

 

On the other hand, most ring-fencing patterns contain abbreviations or acronyms. When using 

ring-fencing after misspelling corrections and abbreviation expansion, we lost more than 3000 

patterns in the corpus (for example BP is an acronym which is widely used in most blood 

pressure ring-fencing examples, if we expand BP we may lose some of these patterns). When 

applying misspelling corrections only, we found slightly more patterns. Table 4 indicates the 

detailed number of high frequency types in scores & measurements before and after processing, 

other types with low frequency (<50) are PaO2, ST, Ward, F, Alb, PaCO2, PS, SiO2, RENAL, 

FiO2, BSL, Creat, TV. 

Another experiment with the Concord database was to check the coincidence of manually 

assigned SNOMED-CT codes for each note from the principle diagnosis, additional diagnosis 

and progress text with values returned by TTSCT; we found 10465 over 22974 (45.48%) 

matches before proof reading with 1200 distinct concepts. After proof reading, the proportion 

of matched DIDs increased to 48.41% (10981 matches/ 22974 notes with DID) with the 

addition of 25 new concepts. From the experiments, it was found that the two most popular DID 

classes are Clinical finding (82.1%) and Body structure (6.2%). Furthermore, a maximum of 8 

different DIDs were referenced to a single CID. In addition, some assigned DIDs can only be 
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found in the progress working text (1785 before and 1834 after proof reading process), this 

means in this case the clinicians may need to pay more attention to the content of the patient‟s 

note to decide the representative DID for that note rather than solely based on diagnosis 

sections. In approximately 12,000 notes that the system could not find any match between the 

assigned codes and the computed codes, some examples were analyzed and the common 

explanation for the mismatch is that the assigned DID is a general term (parent class) of the 

computed codes which are found in the notes. Combining multiple codes of the same class to 

infer the possibility of parent class could be a future enhancement for the system. Table 5 

shows the distribution of matched DID within the notes. 

 

Table 4: High frequency scores & measurements before and after proof reading using 

misspelling tags only. 

Tag Before  After  Difference  

Measurement 13,638 13,650 12 

BP 4,004 4,006 2 

GCS 3,227 3,231 4 

O2-Measurement 3,220 3,220 0 

RR 2,988 2,988 0 

HR 2,584 2,585 1 

SaO2 2,270 2,276 6 

Temp 1,836 1,846 10 

Hb  846 847 1 

PEARTL 838 846 8 

PR 810 810 0 

K 289 289 0 

pH 142 142 0 

Total  36,692 36,736 44 

 

Finally, most of the unassigned notes contain information about at least one of two of the most 

popular classes which have been found in both assigned and computational SNOMED-CT 

codes. Within 20738 unassigned notes, 98.9% contain a clinical finding and 90.1% contains 

Body structure (86.2% contain both classes). This result means that many notes with 

unassigned SNOMED-CT DIDs might have the relevant codes computed from the annotated 

corpus. A list of CID candidates for each note is generated by the system and will be validated 

by clinical staff as well as the correctness of assigned DIDs against computed DIDs. 

 

Table 5: Locations of matched DIDs in notes. 

Section  Before  After  

Principle Diagnosis  8594 (82.12%)  9058 (82.49%)  

Additional Diagnosis  219 (2.09%)  251 (2.29%)  

Working Progress  5315 (50.79%)  5670 (51.63%)  
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5 Conclusion  

In this study, a general approach for proof reading of clinical notes is developed and evaluated. 

This work also introduces and illustrates the necessity of combining standardization and 

normalization into the cycle of the proof reading process in the clinical domain. The 

combination of REs and trainable FSR guarantees general classification of tokens and clinical 

pattern recognition. Automated lexical verification and high accuracy clinical spelling 

suggestion are supported in the LMS interface which then enable high accuracy and efficiency 

at manual resolution of unknown tokens. As a result, the proofed corpus becomes much more 

informative for automatic information extraction as well as human comprehension and 

interpretation. Finally, the method is easily adapted to other domains or others languages by re-

defining the training patterns for FSR and central resources used in the proof reading process 

(dictionaries, gazetteers …). 

The limitation in our work is that most abbreviations and acronyms are mapped directly 

from the accumulated dictionaries or manually expanded by using the LMS. The future 

development for our system is to apply an automated context-sensitive and probabilistic 

abbreviation, acronym expansion suggestion to support the lexical verification process and the 

LMS. A more general method for extracting and comparing computed SNOMED-CT codes 

with assigned codes to enable hierarchical inference is currently has our attention for future 

research. Furthermore, the clinical staffs will be involved in the evaluation process to have a 

better estimation of system performance. 
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