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Abstract  

Scaling wide-coverage, constraint-based grammars such as Lexical-Functional Grammars 
(LFG) (Kaplan and Bresnan, 1982; Bresnan, 2001) or Head-Driven Phrase Structure Grammars 
(HPSG) (Pollard and Sag, 1994) from fragments to naturally occurring unrestricted text is 
knowledge-intensive, time-consuming and (often prohibitively) expensive. A number of 
researchers have recently presented methods to automatically acquire wide-coverage, 
probabilistic constraint-based grammatical resources from treebanks (Cahill et al., 2002, Cahill 
et al., 2003; Cahill et al., 2004; Miyao et al., 2003; Miyao et al., 2004; Hockenmaier and 
Steedman, 2002; Hockenmaier, 2003), addressing the knowledge acquisition bottleneck in 
constraint-based grammar development. Research to date has concentrated on English and 
German. In this paper we report on an experiment to induce wide-coverage, probabilistic LFG 
grammatical and lexical resources for Chinese from the Penn Chinese Treebank (CTB) (Xue et 
al., 2002) based on an automatic f-structure annotation algorithm. Currently 96.751% of the 
CTB trees receive a single, covering and connected f-structure, 0.112% do not receive an f-
structure due to feature clashes, while 3.137% are associated with multiple f-structure 
fragments. From the f-structure-annotated CTB we extract a total of 12975 lexical entries with 
20 distinct subcategorisation frame types. Of these 3436 are verbal entries with a total of 11 
different frame types. We extract a number of PCFG-based LFG approximations. Currently our 
best automatically induced grammars achieve an f-score of 81.57% against the trees in unseen 
articles 301-325; 86.06% f-score (all grammatical functions) and 73.98% (preds-only) against 
the dependencies derived from the f-structures automatically generated for the original trees in 
301-325 and 82.79% (all grammatical functions) and 67.74% (preds-only) against the 
dependencies derived from the manually annotated gold-standard f-structures for 50 trees 
randomly selected from articles 301-325. 

1 Introduction 
Scaling wide-coverage, constraint-based grammars such as Lexical-Functional Grammars (LFG) 
(Kaplan and Bresnan, 1982; Bresnan, 2001) or Head-Driven Phrase Structure Grammars (HPSG) 
(Pollard and Sag, 1994) from fragments to naturally occurring unrestricted text is knowledge-
intensive, time-consuming and (often prohibitively) expensive, constituting an instance of the 
knowledge acquisition bottleneck familiar from other traditional rule-based approaches in AI and 
NLP. 
 Starting with Charniak (1996), many researchers have explored automatic grammar acquisition 
methods where grammatical information is induced from treebanks. This approach incurs low 
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development cost and produces wide-coverage, robust, state-of-art resources. However, (with few 
exceptions) the grammars induced are mostly "shallow", i.e. without the deep syntactic (dependency) 
or semantic information captured by deep, constraint-based grammar formalisms such as LFG or 
HPSG. 
 A recent body of research had extended the basic paradigm of automatic PCFG acquisition from 
treebanks to the extraction of deep, wide-coverage, constraint-based grammars and lexical resources 
such as LFG (Cahill et al., 2002; Cahill et al., 2003; Cahill et al., 2004; O’Donovan et al., 2004), 
HPSG (Miyao et al., 2003; Miyao et al., 2004) and CCG (Hockenmaier and Steedman, 2002; 
Hockenmaier, 2003). Cahill et al. have developed a methodology for the automatic f-structure 
annotation of treebanks from which LFG grammars and lexical resources are extracted. To date this 
research has been applied to the Penn-II treebank (Marcus et al., 1994) for English and the TIGER 
treebank (Brants et al., 2002) for German. In this paper, we report on an experiment to extend this 
research to a new language—Mandarin Chinese—via the Penn Chinese Treebank (CTB) (Xue et al., 
2002). 
 In Section 2 we first give a brief review of Lexical-Functional Grammar. Section 3 provides a 
short description of the CTB (Xue et al., 2002). We present an automatic f-structure annotation 
algorithm for the CTB. The algorithm generates proto-f-structures (Cahill et al., 2002). Proto-f-
structures capture basic but possibly incomplete predicate-argument-adjunct structure as they do not 
yet resolve long-distance dependencies. Section 4 outlines the architecture underlying the automatic f-
structure annotation algorithm and how it was applied to the CTB. Section 5 provides an evaluation of 
the f-structures produced by the annotation algorithm against a gold-standard of f-structures for 50 
randomly selected trees from articles 301-325 CTB. Section 6 details the process of extracting lexical 
resources from the f-structure-annotated CTB. The extraction of PCFG- (Probabilistic Context Free 
Phrase Structure Grammar-) based LFG approximations from the f-structure-annotated CTB is 
presented and evaluated in Section 7. Conclusions and an outline of ongoing and future work are 
provided in Section 8. 

2 Lexical-Functional Grammar 
Lexical-Functional Grammar (LFG) (Kaplan and Bresnan, 1982; Bresnan, 2001) is an early member 
of the family of constraint-based grammar formalisms (FUG, PATR-II, GPSG, HPSG, etc.). It enjoys 
continued popularity in theoretical and computational linguistics and natural language processing 
applications and research. At its most basic, an LFG involves two levels of representation: c-structure 
(constituent structure) and f-structure (functional structure). C-structure represents surface 
grammatical configurations such as word order and the grouping of linguistic units into larger phrases. 
The c-structure component of an LFG is represented by a CF-PSG (context-free phrase structure 
grammar). F-structure represents abstract syntactic functions such as sub(ject), obj(ect), pred(icate), 
sentential comp(lement), open xcomp(lement), adj(unct), app(osition) etc. in terms of recursive 
attribute-value structure representations approximating to basic predicate-argument-adjunct or 
dependency structure. These syntactic representations abstract away from the particulars of surface 
configuration. The motivation is that while languages differ with respect to surface representation they 
may still encode the same (or very similar) abstract syntactic functions (or predicate-argument 
structure).  
 

3 Penn Chinese Treebank version 3.0 (CTB) 
The Penn Chinese Treebank (CTB) version 3.0 (Xue et al., 2002) consists of 4185 sentences of 
Xinhua newswire text in Mandarin Chinese (with 99,529 words – about a tenth of the Penn-II treebank 
(Marcus et al., 1994)) in 325 articles. Chinese is subject pro-drop and exhibits little morphological 
marking. The CTB assumes that Mandarin Chinese is strictly configurational. The CTB annotation 
scheme involves 33 POS-tags, 17 phrasal tags, 6 verb compound tags, 7 empty category tags and 26 
functional tags. The CTB functional tags (Tag) can be attached to phrasal tags (Cat) to form Cat-Tag 
pairs. Functional tags are used to identify statement type (e.g. -Q(uestion)), to classify adjuncts (e.g. -



TMP temporal) and to indicate a basic distinction between subject and object grammatical function (-
SBJ, -OBJ). CTB annotation implements phrasal projection and configurational marking of adjuncts 
and complements. For a detailed comparison between Penn-II (Marcus et al., 1994) and CTB 
annotation conventions see (Levy and Manning, 2003). An example CTB tree is given in Figure 1. 
 

(IP-HLN  

     (NP-PN-SBJ  

          (NR 江泽民)  

          (NR 李鹏)) 

    (VP 

          (VV 电唁) 

          (NP-OBJ  

               (NP-PN  

                    (NR 尼克松))  

               (NP  

                    (NN 逝世)))))  

“江泽民李鹏电唁尼克松逝世”  

“Jiang Zemin and Li Peng condoled the bereavement of Nixon by a telegram.” 

 

Figure 1: Example CTB tree. 

4 Automatic F-Structure Annotation Algorithm 

4.1 Introduction 

This section outlines the architecture of the automatic LFG f-structure annotation algorithm of (Cahill 
et al., 2002; Cahill et al., 2003; Cahill et al., 2004; O’Donovan et al., 2004). The generic algorithm is 
modular, as outlined in Figure 2, and is language- and treebank-independent. The modules of the 
annotation algorithm must be manually seeded with linguistic information for the specific 
treebank/language pair, in this case the CTB for Mandarin Chinese.  
 
  
 
 
 

 
Figure 2: Annotation Algorithm Modules 

 
The left-right context annotation matrices are based on a bi-partition of local trees of depth one (i.e. 
corresponding to CFG rules) into left context (Left) followed by the head (X) followed by right 
context (Right): XP → Left X Right. Each left-hand-side category XP is associated with an annotation 
matrix. For a given XP, the matrix states linguistic generalisations regarding the f-structure annotation 
of constituents to the left of the local head X and to the right of X. Annotation matrices are constructed 
by inspecting the most frequent rule types in a treebank expanding XP, so that the token occurrences 
of these rule types cover 85% of the corpus instances of XP expansions. In the case of the Penn-II 
treebank (Marcus et al., 1994) this means that instead of analysing >6000 NP rule types in the 
treebank, we only look at the most frequently occurring 102 NP rule types.  
 
Co-ordination is treated in a separate component, as treebanks often encode co-ordination in a very flat 
manner. Separating out co-ordination in this way simplifies the statement of generalisations in the 
annotation matrices, supporting modularity and maintainability of the algorithm. The co-ordination 
component may reuse Left/Right annotation matrices to annotate local constituents outside the co-
ordinate constituents of a parent category. 

Left/Right 
Annotation Matrices

Co-ordination Catch-All and 
Clean-Up 

Traces 
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The Trace component of the algorithm exploits the treebank encoding on long-distance dependencies 
and translates such dependencies into corresponding re-entrancies in the f-structures. If the trace 
component is skipped, the resulting f-structures will be proto-f-structures, i.e. possibly partial 
representations of basic predicate-argument-adjunct structure with long-distance dependencies 
unresolved.  
 
The first two components of the annotation algorithm sometimes overgeneralise to support the concise 
statement of linguistic generalisations. Such overgeneralisation is detected and corrected by the final 
Catch-All and Clean-Up component of the algorithm. Here we also provide a set of default annotations 
for any remaining unannotated nodes. 
 

4.2 Seeding the LFG Annotation Algorithm with Chinese Linguistic Information 

For a recent overview on LFG-based analyses of Chinese see e.g. (Bodomo and Luke, 2003). For 
LFG-based analyses of Cantonese Chinese see (Bodomo et al., 2004; Lam 2004). For LFG-based 
analyses of Mandarin Chinese see (Chief, 1996; Her, 2003; Sun, 2003). 
 

The first module of the automatic f-structure annotation algorithm, Left-Right Annotation 
Matrices, head-lexicalises the CTB using the head-lexicalisation rules of (Levy and Manning, 2003). 
This process creates a bi-partition of each local subtree, with nodes lying in either the left or right 
context of the head. An annotation matrix is manually constructed for each parent category in the 
CTB. In order to seed the matrices, for each parent category in the CTB we extract the most frequent 
rule types expanding that category with joint coverage of >=85% of total rule token occurrences for 
the parent category. We distinguish between identical parent categories bearing different CTB 
functional tags. This results in 645 seed rule types in total. We then automatically provide partial 
annotations for these seed rule types based on the CTB functional tags found with daughter categories 
in the right-hand side of the rule types: to give a simple example, an –OBJ CTB tag triggers an 
↑OBJ=↓ annotation. F-structure annotation of the partially automatically annotated seed rule types is 
then manually completed by the research team in Hong Kong. Annotation matrices are then 
constructed from the fully annotated seed rule set by the research team in Dublin.  
 

The annotation of co-ordinate structures is handled by a separate module in the annotation 
algorithm, because the relatively flat analysis of co-ordination in the CTB would complicate the Left-
Right Context Rules module, making them harder to maintain and extend. Once the elements of the 
co-ordination set have been identified, the Left-Right Context Rules module may be re-used to provide 
default annotations for any remaining unannotated nodes in a co-ordinate construction. 

 
Currently our annotation algorithm does not include a trace component resolving long-distance 

dependencies, so that the annotation algorithm generates proto-f-structures for the CTB. Resolving 
long-distance dependencies in the manner of (Cahill et al., 2004) constitutes an avenue for future 
work. 

 
The Catch-All and Clean-Up module provides default annotations for remaining unannotated 

nodes that are labelled with CTB functional tags. The functional tag –SBJ, for example, would be 
annotated ↑SUBJ=↓, while phrasal categories bearing –LOC or –TMP tags are annotated as elements 
of adjunct sets ↓∈↑ADJN. A small amount of over generation is accepted within the first two 
annotation algorithm modules to allow a concise statement of linguistic generalisations. Some 
annotations are overwritten to counter this problem and to systematically correct other potential 
feature clashes. 

 



5 Annotation Algorithm Evaluation 
The annotation algorithm is applied to each CTB tree and assigns functional annotations to nodes in 
CTB trees. The resulting annotations are collected, passed to a constraint solver and LFG f-structures 
are generated. The f-structures are evaluated for quantity and quality.  
 
5.1 Quantitative Evaluation: Fragmentation 
 

The annotation algorithm achieves good coverage for the CTB with 96.75% of the 3570 trees in 
the CTB training set (we follow the split into development, training and test sets in (Levy and 
Manning, 2003)) receiving a single connected and covering f-structure. Table 1 provides a quantitative 
evaluation of the f-structures produced by the annotation algorithm. Feature clashes in the annotation 
of 4 trees  (0.112%) result in no f-structure being produced for those sentences. Nodes left unannotated 
by the annotation algorithm in 112 trees (3.137%) resulted in separate, disjoint f-structure fragments 
being produced for each of those sentences.  
 

#Fragments #Sentences % Treebank 
0 4 0.112
1 3454 96.751
2 105 2.941
3 4 0.112
4 1 0.028
7 1 0.028
9 1 0.028

Table 1: Annotation Coverage 
 

5.2 Qualitative Evaluation against a Gold-Standard 
 
While achieving such wide coverage is important, the annotation quality must be of a high 

standard, particularly as the annotation algorithm plays a vital role in the extraction of wide-coverage, 
probabilistic LFG parsing technology and lexical resources. Annotation quality is measured in terms 
of precision and recall against the dependencies derived from a set of manually constructed, gold-
standard f-structures for 50 randomly selected sentences from the CTB test set. Following the 
methodology in (Cahill et al., 2002; King et al., 2003), the 50 CTB trees were automatically annotated 
with the f-structure annotation algorithm. The f-structure annotations were then manually corrected, 
extended and checked over a number of iterations. 

 
Using the evaluation methodology and software presented in (Crouch et al., 2002) and (Riezler et 

al., 2002), the gold-standard f-structures and the f-structures generated by annotation algorithm were 
then translated into dependency triples and evaluated. Currently the automatic f-structure annotation 
algorithm achieves an f-score of 92.52% for complete f-structures and 85.92% for preds-only f-
structures (Table 2).1  

 
 

 All Grammatical Functions Preds Only 
Precision 92.41 85.96 

Recall 92.63 85.88 
F-Score 92.52 85.92 

Table 2: Annotation Quality 

                                                      
1 Preds-only f-structures consider only paths in f-structures ending in a pred feature-value pair. 
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Table 3 provides a breakdown of annotation results by feature name. Note that a number of features 
(classifier and obl) have been added manually to the gold-standard but are currently not supported by 
the automatic annotation algorithm, while obj2 is produced by the annotation algorithm but does not 
occur in the gold-standard. 
 

 Precision Recall F-Score 
adjunct 93 86 90
app 75 100 86
classifier 0 0 0
comp 23 39 23
coord 92 99 96
det 100 100 100
noun_type 100 100 100
number_type 33 67 44
obj 78 92 84
obj2 0 0 0
obl 0 0 0
pers 100 100 100
poss 98 90 94
quant 95 64 77
subj 91 87 89
topic 100 100 100
xcomp 80 80 80

 
Table 3: Annotation Quality Results by feature name 

 

6 Extraction of Lexical Resources 
In LFG, subcategorisation requirements are expressed at the level of f-structure and represented in 
terms of semantic forms. For example, a semantic form of type pred[subj,obj] states that the predicate 
pred locally requires a subj(ect) and an obj(ect) grammatical function. We refer to [subj,obj] as a 
frame type.  
 
LFG distinguishes between subcategorisable (arguments: subj, obj, obj2, comp, xcomp etc.) and non-
subcategorisable grammatical functions (adjuncts: adjn, xadjn, app etc.). If the f-structures generated 
by the automatic f-structure annotation algorithm on the treebank trees are of good quality, then 
reliable semantic forms can be extracted following the method presented in (O’Donovan et al., 2004): 
for each f-structure, for each level of embedding, determine the local pred and collect all 
subcategorisable grammatical functions present at that level (cf. Figure 3). 
 
From the automatically f-structure-annotated CTB we extract a total of 10479 semantic form tokens 
with 26 distinct frame types. Of these 2510 are verbal semantic forms which occur with all 26 distinct 
frame types.  

 

 



subj : coord_form : null 

       coord : 1 : pred : '江泽民' 

                   pers : 3 

                   noun_type : proper 

                   gloss : 'Jiang_Zemin' 

               2 : pred : '李鹏' 

                   pers : 3 

                   noun_type : proper 

                   gloss : 'Li_Peng' 

pred : '电唁' 

gloss : condole_by_a_telegram 

obj : adjunct : 3 : pred : '尼克松' 

                    pers : 3 

                    noun_type : proper 

                    gloss : 'Nixon' 

      pred : '逝世' 

      pers : 3 

      noun_type : common 

      gloss : ‘bereavement’ 

 

 Semantic form: 电唁([subj,obj]) 

 

“江泽民李鹏电唁尼克松逝世”  

“Jiang Zemin and Li Peng condoled the bereavement of Nixon by a telegram.” 

 

Figure 3: An example of an automatically-generated f-structure and extracted semantic form. 
 
 

 Tokens Types 
All forms 10469 26 
Verbal 2510 26 
Nominal 6227 4 
Adjectival 715 1 
Adverbial 579 1 

 
Table 4: Semantic forms extracted from CTB 

 

7 PCFG-Based LFG Approximations and Parsing Architectures 

7.1 Methodology 

Following the methodology presented in (Cahill et al., 2004) we extracted a number of PCFG-based 
LFG approximations in both the pipeline and integrated processing architectures.  
 
In the pipeline architecture we first extract a PCFG from the CTB, use the PCFG to parse unseen text 
and send the trees generated for the unseen text to the automatic f-structure annotation algorithm to 
generate f-structures. 
 
In the integrated architecture we first annotate the CTB with our automatic f-structure annotation 
algorithm, associating nodes in the treebank trees with one or more f-structure equations. We then 
extract an annotated PCFG (PCFG-A) where CFG categories (such as XP, YP, ZP) followed by (one 
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or more) f-structure equations of the form [up… = down… ] are interpreted as monadic categories for 
grammar extraction and parsing: XP[up… = down…] => YP[up… = down…] ZP[up… = down…]. 
We parse unseen text with the PCFG-A, retrieve the functional annotations from the parse trees and 
send them to a constraint solver to generate an f-structure.  
 
The integrated architecture can, in fact, be understood as an instance of a grammar transformation 
(Johnson, 1999). In the case of a PCFG-A, the transformation is provided by the f-structure annotation 
algorithm.  
 
In the experiments reported below, we furthermore study the effect of the parent transformation 
(Johnson, 1999) and its interaction with our two parsing architectures. The parent transformation 
annotates each non-preterminal node in a treebank tree with its parent category (thus encoding a 
limited, but useful, amount of contextual information not available to the original PCFG). In addition, 
we also study the effects of either preserving or deleting CTB functional tags in our extracted 
probabilistic grammars. CTB functional tags are different from the functional annotations (f-structure 
equations) generated by the f-structure annotation algorithm and consist of (possibly sequences of) 
functional tags of the form –TAG associated with CTB CFG categories.  
 
In total, we extract the following probabilistic grammars:  
 

• PCFG: a PCFG with all CTB functional tag annotations (F) stripped. 
• PCFG-F: a PCFG with CTB functional tag annotations (F) preserved. 
• PCFG-P: a PCFG with the parent transformation (P) but without CTB functional tags (F). 
• PCFG-P-F: a PCFG with the parent transformation (P) and with CTB functional tags (F). 
• PCFG-A: a PCFG without CTB functional tags (F) but with f-structure annotations (A). 
• PCFG-A-P: a PCFG without CTB functional tags (F) but with f-structure annotations (A) and 

with parent transformation (P). 
 
In each case, the experiments replicate the experimental set-up reported in (Levy and Manning, 2003) 
as regards split between training, development and test set. We use the BitPar parsing software 
(Schmid, 2004). Results of the parsing experiments are described and interpreted below. 
 

7.2 Parsing Experiments 
  
In order to assess the quality of the extracted grammars we carried out three types of parsing 
experiments:  
 

• In experiment 1 we evaluate the CFG tree output of our parsers against the original trees for 
strings length <= 40 in articles 301-325 CTB, reporting f-scores for labelled and unlabelled 
bracketings using evalb.  

 
• In experiment 2 we evaluate the f-structures generated by our grammars against the manually 

annotated 50 gold-standard f-structures for randomly selected trees from articles 301-325 
using the triple-based dependency encoding and evaluation software from (Crouch et al., 
2002; Riezler et al., 2002). 

 
• In experiment 3 we evaluate the f-structures generated by our grammars against the f-

structures for the full 318 test strings as generated by the automatic f-structure annotation 
algorithm for the original trees in articles 301-325 CTB using the triple-based dependency 
encoding and evaluation software from (Crouch et al., 2002; Riezler et al., 2002). 

 



 
7.2.1 Experiment 1 (Tree-Based Evaluation) 
 
Table 5 describes the results obtained in experiment 1. In this experiment we evaluate the parse  output 
generated by our grammars against the original CTB trees in articles 301-325 (length <= 40) using 
evalb, (cf. Sekine and Collins, 1997). Note that while coverage results in Table 5 are given for all 318 
sentences (with no length restriction) in articles 301-325, f-scores are  for the 271 sentences of length 
<= 40. We carry out the usual preprocessing steps prior to grammar extraction: deletion of empty 
nodes and cyclic unary productions (cf. Levy and Manning, 2003). PCFG is the grammar obtained by 
also deleting any CTB functional tags. PCFG-P is the parent-transformed PCFG (Johnson, 1999), 
while PCFG-A is the f-structure-annotated PCFG. Note the effect of the parent (P) and f-structure 
annotation (A) grammar transformations on grammar size. PCFG-F is the grammar extracted with 
CTB functional tags. PCFG-P (i.e. PCFG with parent transformation but without CTB functional tags) 
outperforms PCFG-F (i.e. the PCFG with CTB functional tags preserved) even though the size of 
PCFG-P is smaller than that of PCFG-F. This suggests that for Chinese and the given CTB tree 
representations, the parent transformation captures more pertinent information than the CTB 
functional tags. PCFG-P-F (i.e. PCFG with parent transformation and CTB functional tags) 
outperforms both PCFG-F and PCFG-P. Significantly, PCFG-A (f-structure annotations on the raw 
PCFG without CTB functional tags) outperforms PCFG-P-F (and, hence also PCFG-F and PCFG-P). 
Our best results achieved to date are those of the combined f-structure-annotated and parent 
transformed grammar PCFG-A-P with a labelled f-score of 81.57%, compared to the previous best 
reported labelled f-scores of 76.1% by (Hearne and Way, 2004), 78.8% by (Levy and Manning, 2003) 
and 79.9% by (Chiang and Bikel, 2002). 
 

 PCFG PCFG-F PCFG-P PCFG-P-F PCFG-A PCFG-A-P 
#Rules 1498 3313 2611 6105 3224 6803 
#Parses 318 318 318 318 318 317 

Labelled F-Score 72.52 75.95 77.52 79.17 79.60 81.57 
Unlabelled F-Score 73.25 77.08 78.20 80.00 80.23 82.21 

Table 5: Parsing results for sentences of length <= 40 against articles 301-325 
 

7.2.2. Experiment 2 (Dependency Evaluation against Gold-Standard) 
 
Table 6 describes the results obtained in experiment 2. In this experiment we evaluate the f-structures 
generated by our grammars against the 50 gold-standard f-structures in terms of the triple encoding of 
dependencies and the evaluation software in (Crouch et al., 2002; Riezler et al., 2002). Compared to 
all grammatical functions, preds-only is the stricter measure as “minor” feature-value pairs such as 
those for (say) person features tend to be associated with the correct local pred even if the pred itself is 
misattached in the global f-structure (and corresponding dependency triple representation). It is 
interesting to note that even though there is a general tendency for grammars with better f-scores on 
trees (compare Table 5 above) to produce improved f-scores on dependency triples, the relative f-score 
dependency ranking between grammars deviates from that established on trees with PCFG-P-F and 
PCFG-A providing the best results against the gold-standard. The reason why PCFG-F and PCFG-P-F 
perform well in the pipeline architecture is that these grammars preserve CTB functional tags. These 
tags are exploited by the automatic annotation algorithm.  
 

 PCFG PCFG-F PCFG-P PCFG-P-F PCFG-A PCFG-A-P 
All Grammatical Functions 66.56 79.55 66.77 82.79 81.22 76.99 
Preds-only 52.30 61.36 52.17 67.74 64.80 62.35 

Table 6: Parsing results against the gold-standard 
 

PACLIC 18, December 8th-10th, 2004, Waseda University, Tokyo



7.2.3. Experiment 3 (Dependency Evaluation against Automatically Annotated Treebank Trees) 
 
Table 7 describes the results obtained in experiment 3. In this experiment we evaluate the f-structures 
generated by our grammars against the f-structures generated by the automatic f-structure annotation 
algorithm for the original 318 treebank trees in the test set. Evaluation uses the triple encoding of 
dependencies and evaluation software of (Crouch et al., 2002; Riezler et al., 2002). Comparing Table 7 
with Table 6 for experiment 2, above it is interesting to note that the dependency-based relative 
ranking in experiment 3 almost preserves the ranking established in experiment 2. The main difference 
is that that PCFG-A is now the best-performing grammar. Compared to experiment 2, overall results 
in experiment 3 are higher. This is to be expected: evaluation against a manually corrected and 
extended gold-standard is more taxing than evaluation against the automatically f-structure-annotated 
original treebank trees. 
 

 PCFG PCFG-F PCFG-P PCFG-P-F PCFG-A PCFG-A-P 
All Grammatical Functions 66.84 83.53 67.38 85.39 86.06 82.36 
Preds-only 54.78 69.40 56.27 72.75 73.98 71.09 

 Table 7: Parsing results for the sentences in articles 301-325 in CCG style experiment 

8 Conclusions and Ongoing Work 

In this paper we have reported on a project on inducing wide-coverage Lexical-Functional 
Grammar resources for Mandarin Chinese from treebanks. We estimate that to date we have spent 
less than a total of 3 person months between the research groups at Hong Kong and Dublin on the 
development of the automatic f-structure annotation algorithm for the CTB, the automatic 
extraction of wide-coverage PCFG-based LFG approximations, the extraction of lexical resources, 
the construction of a gold-standard for Chinese LFG resources and the evaluation experiments. In 
particular, the (partly) manual construction of a gold-standard for evaluation is non-trivial and 
time-consuming. We expect that our results to-date, while encouraging, can be improved 
significantly given further concerted research effort. In particular, we will continue working on 
refining the annotation algorithm, extending the gold-standard and including a treatment of long-
distance dependencies along the lines presented for English in (Cahill et al., 2004) to generate 
proper rather than proto-f-structures for the CTB. Compared to our work on English (Cahill et al., 
2004; O’Donovan et al., 2004) and German (Cahill et al. 2003), our work on Mandarin Chinese 
and the CTB to date uses a smaller feature set and a less fine-grained analysis. Currently 96.75% 
of the CTB trees receive a covering and connected f-structure, while 2.94% are associated with 
two f-structure fragments. From the f-structure-annotated CTB we extract a total of 12975 lexical 
entries with 20 distinct subcategorisation frame types. Of these, 3436 are verbal entries with a total 
of 11 different frame types. We extract a number of PCFG-based LFG approximations. Currently 
our best automatically-induced grammars achieve an f-score of 81.57% against the trees in unseen 
articles 301-325; 86.06% f-score (all grammatical functions) and 73.98% (preds-only) against the 
dependencies derived from the f-structures automatically generated from the original trees in 301-
325 and 82.79% (all grammatical functions) and 67.74% (preds-only) against the dependencies 
derived from the manually-annotated gold-standard f-structures for 50 trees randomly selected 
from articles 301-325.The experiments and results reported here were carried out on a 4.1K 
sentence corpus, the CTB version 3.0 as described in (Xue et al, 2002). We will take this work as a 
seed to automatically annotate and induce LFG resources from the recently released full CTB with 
approximately 50K sentences. The results reported here and our previous experience with inducing 
wide-coverage LFG resources for English and German suggests that the treebank-based, 
constraint-based grammar induction method is attractive as it succeeds in generating multi-lingual 
wide-coverage resources at a much faster rate than traditional hand-coding of similar resources. 
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