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A B S T R A C T  

All of BBN's research under the TIPSTER III 
program has focused on doing extraction by 
applying statistical models trained on annotated 
data, rather than by using programs that execute 
hand-written rules. Within the context of MUC- 
7, the SIFT system for extraction of template 
entities (TE) and template relations (TR) used a 
novel, integrated syntactic/semantic language 
model to extract sentence level information, and 
then synthesized information across sentences 
using in part a trained model for cross-sentence 
relations. At the named entity (NE) level as well, 
in both MET-1 and MUC-7, BBN employed a 
trained, HMM-based model. 

The results in these TIPSTER evaluations are 
evidence that such trained systems, even at their 
current level of development, can perform 
roughly on a par with those based on rules hand- 
tailored by experts. In addition, such trained 
systems have some significant advantages: 

• They can be easily ported to new domains 
by simply annotating fresh data. 

• The complex interactions that make rule- 
based systems difficult to develop and 
maintain can here be learned automatically 
from the training data. 

We believe that improved and extended versions 
of such trained models have the potential for 
significant further progress toward practical 
systems for information extraction. 

I N T R O D U C T I O N  

We believe that trained statistical models offer 
significant advantages for information extraction 
tasks. In this report on BBN's research under the 
TIPSTER III program, we describe a number of 
research efforts that developed fully-trained 

systems whose extraction performance was close 
to the highest levels achieved by carefully 
optimized systems based on hand-written rules. 

SIFT, the first system described, extracts entities 
and relations from text. On the sentence level, it 
combines syntactic and semantic knowledge in a 
novel way, thus taking advantage of the 
significant recent progress in statistical parsing 
and leveraging those techniques for information 
extraction. Knowledge of English syntax 
extracted from the Penn Treebank is 
automatically combined with semantically 
annotated training material in the target domain 
that identifies how the entities and relations of 
interest in the domain are signaled in text. At the 
message level, the local entities and relations 
identified within each sentence are then merged, 
and cross-sentence relations are identified using 
an additional trained model. The resulting 
system achieved the second-best score of those 
participating in the MUC-7 evaluation. 

The second system described here is the 
IdentiFinder T M  system for locating named 
entities. This system is a fully-trained, HMM- 
based model that learns from examples the 
contextual clues that help to identify names in 
the text. 

S T A T I S T I C A L  E X T R A C T I O N  O F  

E N T I T I E S  A N D  R E L A T I O N S  

The SIFT system ("Statistically-derived 
Information From Text") combines a sentence- 
level model with message-level processing to 
merge elements and identify cross-sentence 
relations. 

At the sentence level, SIFT employs a unified 
statistical process to map from words to semantic 
structures. That is, part-of-speech determination, 
name-finding, parsing, and relationship-finding 
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all happen as part of the same process. This 
allows each element of the model to influence 
the others, and avoids the assembly-line trap of 
having to commit to a particular part-of-speech 
choice, say, early on in the process, when only 
local information is available to inform the 
choice. 

The SIFT sentence-level model was trained from 
two sources: 

• General knowledge of English sentence 
structure was learned from the Penn 
Treebank corpus of one million words of 
Wall Street Journal text. 

• Specific knowledge about how the target 
entities and relations are expressed in 
English was learned from about 500 K 
words of on-domain text annotated with 
named entities, descriptors, and semantic 
relations. 

In the on-domain training data, the names and 
descriptors of relevant items (persons, 
organizations, locations, and artifacts) are 
marked, as well as the target relationships 
between them that are signaled syntactically. For 
example, in the phrase "GTE Corp. of 
Stamford", the annotation would record a 
"location-of" connection between the company 
and the city. The model can thus learn the 
structures that are typically used in English to 
convey the target relationships. Doing extraction 
in a new domain would require fresh 
semantically annotated training data appropriate 
to the new domain, but the general syntactic 
knowledge acquired from the Penn Treebank 
would still be applicable. 

After the sentence-level model has identified 
names, descriptors, and relationships that are 
syntactially signaled within each sentence, 
further message-level processing is required to 
link up entities mentioned more than once or in 
different sentences, and to try to identify cross- 
sentence relationships or those not syntactically 
signaled. After the names, descriptors, and local 
relationships have been extracted from the 
sentence-level decoder's output, a merging 
process is applied to link multiple occurrences of 
the same name or of alternative forms of the 
name from different sentences. A second, cross- 
sentence model is then invoked to try to identify 
relationships that were not picked up by the 
decoder, such as when the two entities do not 
occur in the same sentence. Finally, some 

additional fields required by the MUC answer 
specification are filled in using heuristic tests and 
a gazetteer database, and output filters are 
applied to select which of the proposed internal 
structures should be included in the output. We 
are actively exploring ways of integrating this 
message-level processing more closely with the 
sentence-level model, since an integrated 
statistical model is the only way in which to 
make every choice in a nuanced way, based on 
all the available information. 

The following sections describe the sentence- 
level and message-level processing of the SIFT 
system in more detail. 

SIFT's Sentence-Level Model 
Figure 1 is a block diagram of the sentence-level 
model showing the main components and data 
paths. Two types of annotations are used to train 
the model: syntactic annotations for learning 
about the general structure of English, and 
semantic annotations for learning about the 
target entities and relations. From these 
annotations, the training program estimates the 
parameters of a unified statistical model that 
accounts for both syntax and semantics. Later, 
when presented with a new sentence, the search 
program explores the statistical model to find the 
most likely combined semantic and syntactic 
interpretation. 

Training Data 
Our source for syntactically annotated training 
data was the Penn Treebank (Marcus et al., 
1993). Significantly, we do not require that 
syntactic annotations be from the same source, or 
cover the same domain, as the target task. For 
example, while the Penn Treebank consists of 
Wall Street Journal text, the target source for this 
evaluation was New York Times newswire. 
Similarly, although the Penn Treebank domain 
covers general and financial news, the target 
domain for the MUC-7 evaluation was space 
technology. The ability to use syntactic training 
from a different source and domain than the 
target is an important feature of our model. 

Since the Penn Treebank serves as our 
syntactically annotated training corpus, we need 
only create a semantically annotated corpus. 
Stated generally, semantic annotations serve to 
denote the entities and relations of interest in the 
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Figure 1: Block diagram of sentence-level model. 

target domain. More specifically, entities are 
marked as either names or descriptors, with co- 
reference between entities marked as well. 
Figure 2 shows a semantically annotated 
fragment of a typical sentence. 

From only these simple semantic annotations, 
the system can be trained to work in a new 
domain. To train SIFT for MUC-7, we 
annotated approximately 500,000 words of New 
York Times newswire text, covering the domains 
of air disasters and space technology. (We have 
not yet run experiments to see how performance 
varies with more/less training data.) 

Semantic/Syntactic Structure 
While our semantic annotations are quite simple, 
the internal model of sentence structure is 
substantially more complicated, since this 
combined model must account for syntactic 
structure as well as for entities and semantic 
relations. Our underlying training algorithm 
requires examples of these internal structures in 
order to estimate the parameters of the unified 
semantic/syntactic model. However, we do not 

wish to incur the high cost of annotating parse 
trees. Instead, we use the following multi-step 
training procedure, exploiting the Penn 
Treebank: 

1) Train the sentence-level model on the purely 
syntactic parse trees in the Treebank. Once 
this step is complete, the model will function 
as a state-of-the-art statistical parser. 

2) For each sentence in the semantically 
annotated corpus: 

a) Apply the sentence level model to 
syntactically parse the sentence, 
constraining the model to produce only 
parses that are consistent with the 
semantic annotation. 

b) Augment the resulting parse tree to 
reflect semantic structure as well as 
syntactic structure. 

3) Retrain the sentence-level model on the 
augmented parse trees produced in step 2. 
Once this step is complete, we have an 
integrated model of semantics and syntax. 

Details of the statistical model will be discussed 

J 
Nance , who 

coreference ~ employee 
~ ~ relation ~ 

person-descriptor 

i-organization 7 

is also a paid consultant to ABC News , said 

Figure 2: An example of semantic annotation. 
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later. For now, we turn our attention to (a) 
constraining the decoder and (b) augmenting the 
parse trees with semantic structure. 

Constraints are simply bracketing boundaries 
that may not be crossed by any parse constituent. 
There are two types of constraints: hard 
constraints that cannot be violated under any 
conditions, and soft constraints, that may be 
violated only if enforcing them would result in 
no plausible parse. All named entities and 
descriptors are treated as hard constraints; the 
model is prohibited from producing any 
constituents that overlap either edge of the span 
of these elements. In addition, we attempt to 
keep possible appositives together through soft 
constraints. Whenever there is a co-referential 
relation between two entities that are either 
adjacent or separated by only a comma, we posit 
an appositive and introduce a soft constraint to 
encourage the parser to keep the elements 
together. 

Once a constrained parse is found, it must be 
augmented to reflect the semantic structure. 
Augmentation is a five step process. 

1) Nodes are inserted into the parse tree to 
distinguish names and descriptors that are 
not bracketed in the parse. For example, the 
parser produces a single noun phrase with 
no internal structure for "Lt. Cmdr. David 
Edwin Lewis". Additional nodes must be 
inserted to distinguish the descriptor, "Lt. 
Cmdr.," and the name, "David Edwin 
Lewis." 

2) Semantic labels are attached to all nodes that 
correspond to names or descriptors. These 
labels reflect the entity type, such as person, 
organization, or location, as well as whether 
the node is a proper name or a descriptor. 

3) For relations between entities, where one 
entity is not a syntactic modifier of the 
other, the lowermost parse node that spans 
both entities is identified. A semantic tag is 
then added to that node denoting the 
relationship. For example, in the sentence 
"Mary Fackler Schiavo is the inspector 
general of the U.S. Department of 
Transportation," a co-reference semantic 
label is added to the S node spanning the 
name, "Mary Fackler Schiavo," and the 
descriptor, "the inspector general of the U.S. 
Department of Transportation." 

4) Nodes are inserted into the parse tree to 
distinguish the arguments to each relation. 
In cases where there is a relation between 
two entities, and one of the entities is a 
syntactic modifier of the other, the inserted 
node serves to indicate the relation as well 
as the argument. For example, in the phrase 
"Lt. Cmdr. David Edwin Lewis," a node is 
inserted to indicate that "Lt. Cmdr." is a 
descriptor for "David Edwin Lewis." 

5) Whenever a relation involves an entity that 
is not a direct descendant of that relation in 
the parse tree, semantic pointer labels are 
attached to all of the intermediate nodes. 
These labels serve to form a continuous 
chain between the relation and its argument. 

Figure 3 shows an augmented parse tree 
corresponding to the semantic annotation in 
Figure 2. Note that nodes with semantic labels 
ending in "-r" mark MUC reportable names and 
descriptors. 

Statistical Model 
In SIFT's statistical model, augmented parse 
trees are generated according to a process similar 
to that described in Collins (1996, 1997). For 
each constituent, the head is generated first, 
followed by the modifiers, which are generated 
from the head outward. Head words, along with 
their part-of-speech tags and features, are 
generated for each modifier as soon as the 
modifier is created. Word features are 
introduced primarily to help with unknown 
words, as in Weischedel et al. (1993). 

We illustrate the generation process by walking 
through a few of the steps of  the parse shown in 
Figure 3. At each step in the process, a choice is 
made from a statistical distribution, with the 
probability of each possible selection dependent 
on particular features of previously-generated 
elements. We pick up the derivation just after the 
topmost S and its head word, said, have been 
produced. The next steps are to generate in 
order: 

1. A head constituent for the S, in this case a 
VP. 

2. Pre-modifier constituents for the S. In this 
case, there is only one: a PER/NP. 

3. A head part-of-speech tag for the PER/NP, 
in this case PER/NNP. 
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Figure 3: An augmented parse tree. 

, vbd 

I I 
, said 

4. A head word for the PER/NP, in this case 
nance. 

5. Word features for the head word of the 
PER/NP, in this case capitalized. 

6. A head constituent for the PER/NP, in this 
case a PER-R/NP. 

7. Pre-modifier constituents for the PER/NP. 
In this case, there are none. 

8. Post-modifier constituents for the PER/NP. 
First a comma, then an SBAR structure, and 
then a second comma are each generated in 
turn. 

This generation process is continued until the 
entire tree has been produced. 

We now briefly summarize the probability 
structure of the model. The categories for head 
constituents, Ch, are predicted based solely on the 
category of the parent node, Cp: 

e (c  h I Cp ), e.g. P(vp I s) 

Modifier constituent categories, Cm, are 
predicted based on their parent node, cp, the head 
constituent of their parent node, Chp, the 
previously generated modifier, Cm-1, and the head 
word of their parent, Wp. Separate probabilities 
are maintained for left (pre) and right (post) 
modifiers: 

PL(Cm I Cp,Chp,Cm_l,Wp), e.g. 
PL (per / n p  I s, vp, null, said) 

PR( Cm I Cp,Chp,Cm_l,Wp), e.g. 
PR(null I s, vp, null, said) 

Part-of-speech tags, tin, for modifiers are 
predicted based on the modifier, Cm, the part-of- 
speech tag of the head word , th, and the head 
word itself, wh: 

P(t m I c m, t h , w h ),  e.g. 
P(per  / nnp I per /np,  vbd, said) 

Head words, win, for modifiers are predicted 
based on the modifier, Cm, the part-of-speech tag 
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of the modifier word, tin, the part-of-speech tag 
of the head word , th, and the head word itself, 
Wh: 

e ( w  m ] Cm, tm,th, Wh ) ,  e.g. 
P(nance I per I np, per I nnp, vbd, said) 

Finally, word features, fro, for modifiers are 
predicted based on the modifier, Cm, the part-of- 
speech tag of the modifier word, tm, the part-of- 
speech tag of the head word,  th, the head word 
itself, wh, and whether or not the modifier head 
word, Win, is known or unknown. 

P( ]m I Cm, tra,th, Wh, k n o w n ( w  m )), e.g. 
P(cap I per / np, per / nnp, vbd, said, true) 

The probability of a complete tree is the product 
of the probabilities of generating each element in 
the tree. If we generalize the tree components 
(constituent labels, words, tags, etc.) and treat 
them all as simply elements, e, and treat all the 
conditioning factors as the history, h, we can 
write: 

P(tree) = H P(e I h) 
• ~ tree 

Tra in ing  the M o d e l  

Maximum likelihood estimates for all model 
probabilities are obtained by observing 
frequencies in the training corpus. However, 
because these estimates are too sparse to be 
relied upon, they must be smoothed by mixing in 
lower-dimensional estimates. We determine the 
mixture weights using the Witten-Bell 
smoothing method. 

For modifier constituents, the mixture 
components are: 

P ' ( c  m ICp,Chp,Cm_l,Wp)= 

21 P ( c  m I Cp,Chp,Cm_l,Wp) 

-I-~, 2 P ( c  m ICp,Chp,Cm-l) 

For part-of-speech tags, the mixture components 
are: 

P'(t m I Cm, t h, w h) = 21 P(t m I cm, w h ) 

+ 2  2 P(t m ]Cm,th) 

+2 3 P(t m I c m) 

For head words, the mixture components are: 

P'(W m I Cm,tm,th,Wh) = 21 P(W m I cm,tm,W h) 

+ 2  2 P(W m ICm,tm,t h) 

+ 2  3 P ( w  m I Cm,t m) 

-1"2 4 e ( w  m It m) 

Finally, for word features, the mixture 
components are: 

P ' (  fm I c m , t m , t h , w h , k n o w n  ( w m )) = 

21 P ( f m  ICm, tm ,Wh ,known(w , ) )  

+22 P ( f m  ICm, tm' th 'known(wm))  

+23 P ( f m  Icm, tm,kn°wn(Wm))  

+24 P ( f m  I tm ,kn°wn(Wm))  

Search ing  the M o d e l  

Given a sentence to be analyzed, the search 
program must find the most likely semantic and 
syntactic interpretation. More concretely, it must 
find the most likely augmented parse tree. 
Although mathematically the model predicts tree 
elements in a top-down fashion, we search the 
space bottom-up using a chart based search. The 
search is kept tractable through a combination of 
CKY-style dynamic programming and pruning 
of low probability elements. 

Dynamic Programming: Whenever two or more 
constituents are equivalent relative to all possible 
later parsing decisions, we apply dynamic 
programming, keeping only the most likely 
constituent in the chart. Two constituents are 
considered equivalent if: 

1. They have identical category labels. 

2. Their head constituents have identical labels. 

3. They have the same head word. 

4. Their leftmost modifiers have identical 
labels. 

5. Their rightmost modifiers have identical 
labels. 

Pruning: Given multiple constituents that cover 
identical spans in the chart, only those 
constituents with probabilities within a threshold 
of the highest scoring constituent are maintained; 
all others are pruned. For purposes of pruning, 
and only for purposes of pruning, the prior 
probability of each constituent category is 
multiplied by the generative probability of that 
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constituent (Goodman, 1997). We can think of 
this prior probability as an estimate of the 
probability of generating a subtree with the 
constituent category, starting at the topmost 
node. Thus, the scores used in pruning can be 
considered as the product of: 

1. The probability of generating a constituent 
of the specified category, starting at the 
topmost node. 

2. The probability of generating the structure 
beneath that constituent, having already 
generated a constituent of that category. 

The outcome of the search process is a tree 
structure that encodes both the syntactic and 
semantic structure of the sentence, so that the TE 
entities and local TR relations can be directly 
extracted from these sentential trees. 

SIFT's Message-Level Processing 
The sentence-level model in SIFT predicts 
names, descriptors, and relationships that are 
cued by the local sentence structure, but it 
considers each sentence in isolation. Merging 
such information between sentences is an 
important and difficult problem in information 
extraction. The information that indicates the 
presence of a template relation is often 
distributed across multiple sentences, and this 
merging problem would naturally become even 
more severe when trying to extract more 
complex structures like full scenario templates. 
We have explored various approaches to this 
merging problem in our TIPSTER research. 

Our overall goal is to use trained and integrated 
models where possible, particularly for all of the 
language understanding. For some portions of 
SIFT's message-level processing, we used hand- 
written rules combined with external sources like 
gazetteers. The MUC-7 deadlines caused us to 
use an existing alias process for merging names 
rather than implementing a statistical alias 
procedure. In the current system, simple heuristic 
code handles the filling of the type and country 
fields that are required by the MUC 
specification, and the distinction between 
substantial and non-substantial descriptors. (The 
MUC guidelines call for ignoring certain 
descriptors like "the company".) 

A trained cross-sentence relation model is used 
to identify template relations that link entities 
across different sentences. This model was 

trained on 200 articles annotated with full MUC 
answer keys, so that even non-local relations 
were marked. (That level of semantic annotation 
was available for only a small subset of the data 
used to train the sentence-level model.) The 
model applies a set of structural and contextual 
features that help to indicate when such a 
relation might be present. Feature counts from 
the training data are used to estimate the 
probability of a relationship between each 
possible pair of entities mentioned in separate 
sentences in the text. 

While the cross-sentence model is currently 
applied as a separate step after the sentence-level 
decoding is complete, we are exploring various 
approaches toward integrating the two models 
more closely, and also toward doing more of the 
named entity merging and type field prediction 
by means of trained models. 

Merging Named Entities 
The first step in merging the results of the 
sentence-level model is to group together the 
different mentions of the same named entity. In 
SIFT, a set of heuristic rules were used for this. 
Different mentions of the same name (say, 
different mentions of "IBM") would be grouped, 
as would strings that were related in certain 
predictable ways, for example, by initials 
(linking "IBM" with "International Business 
Machines") or by the addition of a corporate 
designator (linking "International Business 
Machines" with "International Business 
Machines, Inc."). This merging process also 
tested whether one name was a prefix of the 
other, linking "Legg Mason Wood Walker, Inc." 
with "Legg Mason". 

The Cross-Sentence Relation Model 
The cross-sentence model then uses structural 
and contextual clues to hypothesize template 
relations between two elements that are not 
mentioned within the same sentence. Since 80- 
90% of the relations found in the answer keys 
connect two elements that are mentioned in the 
same sentence, the cross sentence model has a 
narrow target to shoot for. Very few of the pairs 
of entities seen in different sentences turn out to 
be actually related. This model uses features 
extracted from related pairs in training data to try 
to identify those cases. 
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It is a classifier model that considers all pairs of 
entities in a message whose types are compatible 
with a given relation; for example, a person and 
an organization would suggest a possible 
employment relation. For the three MUC-7 
relations, it turned out to be somewhat 
advantageous to build in a functional constraint, 
so that the model would not consider, for 
example, a possible employment relation for a 
person already known from the sentence-level 
model to be employed elsewhere. 

Given the measured features for a possible 
relation, the probability of a relation holding or 
not holding can be computed as follows: 

p( rel I feats) = p( feats l rel) p( rel) 
p(feats) 

p(feats l ~rel) p(~rel) 
p(~rel l feats) = 

p(feats) 

If the ratio of those two probabilities, computed 
as follows, is greater than 1, the model predicts a 
relation: 

p(rell feats) p(featsl rel)p(rel) 
p(-re l l  feats) p(featsl ~rel)p(-rel) 

We approximate this ratio by assuming feature 
independence and taking the product of the 
contributions for each feature. 

p(rel I feats) p(rel)FIi P(feati I rel) 

p(~rel I feats) p (~re l )H  p(feat, I ~rel) 
I 

The cross-sentence feature model applies to 
entities found by the sentence-level model, 
which is run over all of the sentence-like 
portions of the text. An initial heuristic 
procedure checks for sections of the preamble or 
trailer that look like sentential material, that 
should be treated like the body text. There is also 
a separate handwritten procedure that searches 
the preamble text for any byline, and, if one is 
found, instantiates an appropriate employee 
relationship. 

Model Features 
Two classes of features were used in this model: 
structural features that reflect properties of the 
text surrounding references to the entities 
involved in the suggested relation, and content 

features based on the actual entities and relations 
encountered in the training data. 

Structural Features 
The structural features exploit simple 
characteristics of the text surrounding references 
to the possibly-related entities. The most 
powerful structural feature, not surprisingly, was 
distance, reflecting the fact that related elements 
tend to be mentioned in close proximity, even 
when they are not mentioned in the same 
sentence. Given a pair of entity references in the 
text, the distance between them was quantized 
into one of three possible values: 

Code Distance Value 
0 Within the same sentence 
1 Neighboring sentences 
2 More remote than neighboring 

sentences 

For each pair of possibly-related elements, the 
distance feature value was defined as the 
minimum distance between some reference in 
the text to the first element and some reference to 
the second. 

A second structural feature grew out of the 
intuition that entities mentioned in the first 
sentence of an article often play a special topical 
role throughout the article. The "Topic Sentence" 
feature was defined to be true if some reference 
to one of the two entities involved in the 
suggested relation occurred in the first sentence 
of the text-field body of the article. 

Other structural features that were considered but 
not implemented included the count of the 
number of references to each entity. 

Content Features 
While the structural features learn general facts 
about the patterns in which related references 
occur and the text that surrounds them, the 
content features learn about the actual names and 
descriptors of entities seen to be related in the 
training data. The three content features in 
current use test for a similar relationship in 
training by name or by descriptor or for a 
conflicting relationship in training by name. 

The simplest content feature tests using names 
whether the entities in the proposed relationship 
have ever been seen before to be related. To test 
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this feature, the model maintains a database of all 
the entities seen to be related in training, and of 
the names used to refer to them. The "by name" 
content feature is true if, for example, a person in 
some training message who shared at least one 
name string with the person in the proposed 
relationship was employed in that training 
message by an organization that shared at least 
one name string with the organization in the 
proposed relationship, 

A somewhat weaker feature makes the same kind 
of test for a previously seen relationship using 
descriptor strings. This feature fires when an 
entity that shares a descriptor string with the first 
argument of the suggested relation was related in 
training to an entity that shares a name with the 
second argument. Since titles like "General" 
count as descriptor strings, one effect of this 
feature is to increase the likelihood of generals 
being employed by armies. Observing such 
examples, but noting that the training didn't 
include all the reasonable combinations of titles 
and organizations, the training for this feature 
was seeded by adding a virtual message 
constructed from a list of such titles and 
organizations, so that any reasonable such pair 
would turn up in training. 

The third content feature was a kind of inverse of 
the first "by name" feature which was true if 
some entity sharing a name with the first 
argument of the proposed relation was related to 
an entity that did no t  share a name with the 
second argument. Using the employment relation 
again as an example, it is less likely (though still 
possible) that a person who was known in 
another message to be employed by a different 
organization should be reported here as 
employed by the suggested one. 

Training 
Given enough fully annotated data, with both 
sentence-level semantic annotation and message- 
level answer keys recorded along with the 
connections between them, training the features 
would be quite straightforward. For each 
possibly-related pair of entities mentioned in a 
document, one would just count up the 2x2 table 
showing how many of them exhibited the given 
structural feature and how many of them were 
actually related. The training issues that did arise 
stemmed from the limited supply of answer keys 
and that the keys were not connected to the 
sentence-level annotations. 

The government training and dry run data 
provided 200 messages' worth of TE and TR 
answer keys, Those answer keys, however, 
contained strings without recording where in the 
text they were found. In order to train structural 
features from that data, we needed the locations 
of references within the text. A heuristic string 
matching process was used to make that 
connection, with a special check to ensure for 
names that the shorter version of a name did not 
match a string in the text that also matched a 
longer version of the same name. 

Training the content features, on the other hand, 
did not require positional information about the 
references. The plain answer keys could be used 
in combination with a database of the name and 
descriptor strings for entities related in training 
to count up the feature probabilities for actually 
related and non-related pairs. The string database 
was collected first, and one-out training was then 
used, so that the rest of the training corpus 
provided the string database for training the 
feature counts on each particular message. The 
additional training data that was semantically 
annotated for training the sentence-level model 
but for which answer keys were not available 
could still also be used in building up the string 
database for the content features. 

The probabilities based on the final feature 
counts were smoothed by mixing them with 
0.01% of a uniform model. 

Other Message Level Processing 
After the cross sentence model has been applied, 
some further heuristic message-level processing 
is done before generating the answers in MUC 
template form. In one step, those portions of the 
preamble of the message, which includes the title 
and by-line, that are not English sentences are 
searched for a possible employment relation 
between the article author and the organization 
holding the copyright. A limited form of voting 
was also applied across messages, so that if the 
same name was identified by the sentence-level 
model as, say, an organization in one case and a 
person in another, only the plurality type is 
actually output. Heuristic models are used to fill 
in some additional required fields, 
distinguishing, for instance, between civilian, 
military, and government organizations; this 
could have been trained, but time did not permit 
this. Identifying the type and country of locations 
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is a simple process, benefiting greatly from 
gazetteer lookup. 

Finally, a heuristic choice is made whether or not 
to output each element. For example, a descriptor 
that was not paired by the sentence-level 
processing with any named entity could either 
actually be an isolated descriptor or it could be 
one where the true link with a named entity was 
missed by the sentence-level model. Lacking at 
this point any trained model to distinguish those 
two cases, SIFT plays it safe by not outputting 
such entities. 

S I F T  S y s t e m  E x a m p l e s  

The main determinant of SIFT's performance is 
the sentence-level model, and the semantic 
structures that it produces. Secondary but still 
significant effects on performance come from the 
message-level processing steps that derive TE 
and TR output from the sentence-level decoder 
tree: 

• Extracting elements and relations 

• Merging TE elements 

• Searching for additional relations with the 
cross-sentence model 

• Filtering candidate entities and relations for 
output 

This section will present examples from the 
output for one of the MUC-7 test messages, 
demonstrating the different effects that applied. 

Example 1 shows a case where everything 
worked as planned. 

Here the decoder correctly recognized a person 
name (PER/NPA) bound to a person descriptor 
(PER-DESC/NP-R). That descriptor contains an 
organization (ORG/NP) which in turn is linked 
to a location. The LINK and PTR nodes connect 
the descriptor with the person, the organization 
with the person descriptor (and thus indirectly 
with the person), and the location with the 
organization. In the post-processing, the person 
name is extracted, with the descriptor text is 
linked to it, the organization name is extracted, 
and the employment relationship noted. The 
organization is also linked to the nested location; 

(SINV 

(VBD said)) 
(PER/NP 

(PER/NPA 
(PER/NPP 

(NNP Eric) 
(NNP Stallmer))) 

(, ,) 
(PER-DESC-OF/NP-LINK 

(PER-DESC/NP-R 
(PER-DESC/NPA 

(NN spokesman)) 
(ORG-OF/NP-PP-LINK 

(ORG-PTR/PP 
(IN for) 
(ORG/NP 

(ORG/NPA 
(DT the) 
(ORG/NPP 

(NNP Space) 
(NNP Transportation) 
(NNP Association))) 

(LOC-OF/NP-PP-LINK 
(LOC-PTR/PP 

(IN of) 
(LOC-PTR/NPA 

(LOC/NPP 
(LOC/NPP 

(NNP Arlington)) 
(, ,) 
(LOC/NPP 

(NNP Virginia))))))))))) 

Example 1 
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of the two location elements in the LOC phrase, 
the first is taken as the LOCALE field filler, 
while the second is looked up in the gazetteer to 
identify a country in which the locale value is 
then looked up. 

Example 2 shows the effect of a decoder error. 

(ORG/NP 
(ORG/NPA 

(ORG/NPP 
(NNP Bloomberg) 
(NNP Information) 
(NNP Television))) 

(ORG-DESC-OF/NP-LINK 
(ORG-DESC/NP-R 

(ORG-DESC/NPA 
(DT a) 
(NN unit)) 

(PP 
(IN of) 
(ORG/NPA 

(ORG/NPP 
(NNP Bloomberg) 
(NNP L.P.)))))) 

(, ,) 
(ORG-DESC-OF/NP-LINK 

(ORG-DESC/NP-R 
(ORG-DESC/NPA 

(DT the) 
(NN parent)) 

(PP 
(IN of) 
(ORG/NPA 

(ORG/NPP 
(NNP Bloomberg) 
(NNP Business) 
(NNP News)))))) 

(, ,)) 

Example 2 

Here the sentence-level decoder linked both 
organization descriptors back to the top-level 
named organization, while the correct reading 
would have attached the second descriptor to the 
nested "Bloomberg L.P.". The post-processing 
also therefore links both descriptor phrases to 
"Bloomberg Information Television" internally. 
Only the longest descriptor, however, is actually 
output, which in this case results in output of 
only the mistaken value. 

Not surprisingly, a number of the decoder errors 
that affected output stemmed from conjunctions. 
In another paragraph, for example, the 
manufacturer organization name "Lockheed 
Space and Strategic Missiles" was incorrectly 
broken at the conjunction, causing the location 
relation with Bethesda to be missed. 

The cross sentence model is the system 
component that tries to find further relations 

beyond those identified by the sentence-level 
model. In the walk-through article, that 
component did not happen to succeed in finding 
any such relations. Example 3 shows the sort of 
relation that we would like that model to be able 
to get. There the sentence-level decoder did link 
Rubenstein to the organization descriptor 
"company", but since that descriptor was never 
linked to "News Corporation", the employee 
relation was missed. However, since News 
Corporation is mentioned both in that sentence 
and the following sentence, an improved cross 
sentence model would be one way of attacking 
such examples. 

( PER-DESC/NP 
( PER-DESC/NP 

( PER-DESC/NPA-R 
(ORG-DESC-OF/NP-LINK 

( ORG-DESC/NP-R 
(NN company) ) ) 

(NN spokesman) ) 
( PER-OF/NPA-LINK 

( PER-PTR/NPA 
( PER/NPP 

(NNP Howard) 
(NNP J.) 
(NNP Rubenstein) ) ) ) ) 

Example 3 

The last step in processing is the output filter, 
which heuristically determines whether a 
proposed constituent should be included in the 
output. Example 4 shows two examples where 
this filter overrode correct decoder structure. 

(s 
(ART-DESC/NP-R 

(ART-DESC/NPA 
(DT A) 
(JJ Chinese) 
(NN rocket) ) 

(ART-PTR/VP 
(VBG carrying) 
(ART-DESC/NPA-R 

(DT an) 
(ORG/NPP 

(NNP Intelsat)) 
(NN satellite) ) ) ) 

(VP 
(VBD exploded) 

Example 4 

Here the decoder correctly identified both the 
artifact descriptors "A Chinese rocket" and "an 
Intelsat satellite", but the output filter chose not 
to include them. That choice was made because 
of frequent cases where an indefinite artifact 
descriptor not linked to any named artifact 
should not be output; an example from elsewhere 
in this message is "the last rocket I 'd 
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recommend". But this example shows that this 
decision not to output such cases sometimes cost 
the system points. 

SIFT System Results and Summary 
The SIFT system worked by first applying the 
sentence-level model to each sentence in the 
message and then extracting entities, descriptors, 
and relations from the resulting trees, 
heuristically merging TE elements, applying the 
cross-sentence model to identify non-local 
relations, and finally filtering and formatting TE 
and TR templates for output. In the MUC-7 
evaluation, the system's score on the TE task 
was 83% recall with 84% precision, for an F of 
83.49%. Its score on TR was 64% recall with 
81% precision, for an F of 71.23%. 

Because most of the relations in the answer keys 
were locally signaled, the cross sentence model 
in this application adds only a small boost to the 
performance of the sentence-level model. When 
measured before the evaluation on 10 randomly- 
selected messages from the airplane crash 
domain training, the cross sentence model 
improved TR scores by 5 points. It proved a bit 
less effective on the 100 messages of the MUC-7 
test set, improving scores there by only 2 points. 
(The F score on the formal test set with the cross 
sentence model component disabled was 
69.33%.) 

A S T A T I S T I C A L  N A M E - F I N D E R  

Overv iew of  the Ident iFinder  H M M  

M o d e l  

For identifying named entities in text, BBN has 
developed the IdentiFinder T M  trained named 
entity extraction system (Bikel, et. al., 1997), 
which utilizes an HMM to recognize the entities 
present in the text. 

The HMM labels each word either with one of 
the desired classes (e.g., person, organization, 
etc.) or with the label NOT-A-NAME (to 
represent "none of the desired classes"). The 
states of the HMM fall into regions, one region 
for each desired class plus one for NOT-A- 
NAME. (See Figure 4.) The HMM thus has a 
model of each desired class and of the other text. 
Note that the implementation is not confined to 
the seven name classes used in the NE task; the 
particular classes to be recognized can be easily 
changed via a parameter. 

Within each of the regions, we use a statistical 
bigram language model, and emit exactly one 
word upon entering each state. Therefore, the 
number of states in each of the name-class 

regions is equal to the vocabulary size, Ivl. 
Additionally, there are two special states, the 
START-OF-SENTENCE and  END-OF-SENTENCE 

states. In addition to generating the word, states 
may also generate features of that word. 
Features used in the MUC-7 version of the 
system include several features pertaining to 
numeric expressions, capitalization, and 
membership in lists of important words (e.g. 

START-OF SENTENCE END.OF SENTENCE 

Figure 4: Pictorial representation of conceptual model 
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known corporate designators). 

The generation of words and name-classes 
proceeds in the following steps: 

1. Select a name-class NC, conditioning on the 
previous name-class and the previous word. 

. Generate the first word inside that name- 
class, conditioning on the current and 
previous name-classes. 

. Generate all subsequent words inside the 
current name-class, where each subsequent 
word is conditioned on its immediate 
predecessor. 

4. If not at the end of a sentence, go to 1. 

Whenever a person or organization name is 
recognized, the vocabulary of the system is 
dynamically updated to include possible aliases 
for that name. Using the Viterbi algorithm, we 
search the entire space of all possible name-class 
assignments, maximizing Pr(W,F,NC), the joint 
probability of words, features, and name classes. 

This model allows each type of "name" to have 
its own language, with separate bigram 
probabilities for generating its words. This 
reflects our intuition that: 

There is generally predictive internal 
evidence regarding the class of a desired 
entity. Consider the following evidence: 
Organization names tend to be stereotypical 
for airlines, utilities, law firms, insurance 
companies, other corporations, and 
government organizations. Organizations 
tend to select names to suggest the purpose 
or type of the organization. For person 
names, first person names are stereotypical 
in many cultures; in Chinese, family names 
are stereotypical. In Chinese and Japanese, 
special characters are used to transliterate 
foreign names. Monetary amounts typically 
include a unit term, e.g., Taiwan dollars, 
yen, German marks, etc. 

• Local evidence often suggests the 
boundaries and class of one of the desired 

expressions. Titles signal beginnings of 
person names. Closed class words, such as 
determiners, pronouns, and prepositions 
often signal a boundary. Corporate 
designators (Inc., Ltd., Corp., etc.) often 
end a corporation name. 

While the number of word-states within each 

name-class is equal to Ivl, this "interior" bigram 
language model is ergodic, i.e., there is a non- 
zero probability associated with every one of the 

[VI 2 transitions. As a parameterized, trained 
model, for transitions that were never observed, 
the model "backs off '  to a less-powerful model 
which allows for the possibility of unknown 
words. 

Training 
The model as used for the MUC-7 NE evaluation 
was trained on a total of approximately 790,000 
words of NYT newswire data, annotated with 
approximately 65,500 named entities. In order 
to increase the size of our training set beyond the 
90,000 words of training of airline crash 
documents provided by the Government, we 
selected additional training data from the North 
American News Text corpus. We annotated full 
articles before discovering a more effective 
annotation strategy. Since the test domain was to 
be similar to the dry-run domain of air crashes, 
we used the University of Massachusetts 
INQUERY system to select 2000 articles which 
were similar to the 200 dry run training and test 
documents. About half of our training data 
consisted of full messages; this portion included 
the 200 messages provided by the Government 
as well as 319 messages from the 2000 retrieved 
by INQUERY. The second half of the data 
consisted of sample sentences selected from the 
remainder of the 2000 messages with the hope of 
increasing the variety of training data. This 
sampling strategy proved more effective than 
annotating full messages. Improvement in 
performance as measured on the (dry run) airline 
crash test set is shown in Figure 5. 
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Figure 5: F-Measure Increases With Size of Training Set 

IdentiFinder Results under Varying 
Test and Training Conditions 
Our F-measure for the official MUC-7 test, 
90.44, is shown as "Text Baseline" in Figure 6. 
In addition to this baseline condition, we 
performed some unofficial experiments to 
measure the accuracy of the system under more 
difficult conditions. Specifically, we evaluated 
the system on the test data modified to remove 
all case information ("Upper Case" in Figure 6), 
and also on the test data in SNOR (Speech 
Normalized Orthographic Representation) format 
("SNOR" in Figure 6). By converting the text to 
all upper case characters, information useful for 
recognizing names in English is removed. 
Automatically transcribed speech, even with no 
recognition errors, is harder due to the lack of 
punctuation, spelling numbers out as words, and 
upper case in SNOR format. 

The degradation in performance from mixed case 
to all upper case is somewhat greater than that 
previously observed in similar tests run on 
generic newswire data (about 2 points). One 
possible explanation is that case information is 
more useful in instances where the test domain is 
different than the domain of the training set. The 
degradation from all upper case to SNOR is 
similar to that previously observed. 

We also measured the effect of the training set 
size on the performance of the system in the air 
crash domain of the dry run. As is to be 
expected, increasing the amount of training data 
results in improved system performance. 

Figure 5 shows an almost two point increase in 
F-measure as the training set size was doubled 
from 91,000 words to 176,000 words. However, 
the next doubling of the number of words in the 
training set only resulted in a one point increase 

in F-measure. This is most likely due to the fact 
that as training set size increases, the likelihood 
of seeing a unique name or construction 
decreases. Though performance might not have 
peaked, adding more training data will have a 
progressively smaller effect since the system will 
not be seeing many constructions which it has 
not already seen in previous training. 

MUC-7 NYT Test 

g 

- -  O 

J~ 

Input Conditions 

Figure 6: IdentiFinder Named Entity Results 

C O N C L U S I O N S  

Throughout its extraction research under the 
TIPSTER III program, BBN's goal has been to 
apply statistical models trained from data in as 
integrated a fashion as possible. We believe that 
this approach is fully capable of matching the 
performance of systems based on rules 
handwritten by experts, and that it further offers 
significant advantages in applicability to new 
problems and new domains, and to degraded 
input (e.g., from a speech recognizer, from OCR, 
or from sources less polished than newspaper 
text). 
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The SIPI" system successfully uses an integrated 
syntactic/semantic model to extract entities and 
relations. It employs the Penn Treebank as its 
source of syntactic information, and thus requires 
for its training data only the semantic annotation 
of entities, descriptors, and relationships. Its 
sentence-level model determines parts of speech, 
parses, finds names, and identifies semantic 
relationships in a single, integrated process, with 
a separate merging model then used to connect 
information between sentences. Given the 
current early stage of development of the SIFT 
system, we believe that significant performance 
improvements are still possible. We are also 
interested in measuring performance as a 
function of training set size, and have begun 
applying SIFT to the broadcast news domain. 

IdentiFinder is BBN's trained system for 
identifying named entities. Its performance in the 
MUC-7 evaluation demonstrates the robustness 
of the learning algorithm used, even when the 
testing is in a different though similar domain to 
that of the training material. Further tests also 
showed its robustness to all upper case input, and 
input with no punctuation. Our future plans for 
IdentiFinder include: 

• evaluation in the broadcast news domain, 
which requires speech input in a much 
broader domain, 

• applying IdentiFinder to unsegmented 
languages, and 

• working on performance improvements and 
improvements in the training process. 
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