
Pragmatics Through Context Management
Joakim N ivre

G öteborg

A bstract
Pragmatically based dialogue management requires flexible and efficient representation
of contextual information. The approach described in this paper uses logical knowledge
bases to represent contextual information and special abductive reasoning tools to
manage these knowledge bases. One of the advantages of such a reasoning based
approach to computational dialogue pragmatics is that the same rules, stated
declaratively, can be used both in analysis and generation.

1 Introduction
The purpose of the present paper is to illustrate an approach to
computational dialogue pragmatics that has been developed within the
ESPRIT project PLUS (A Pragmatics-based Language Understanding
System, ESPRIT P5254).l The purpose of this project was to build a
dialogue system for information-seeking (in the domain of the Yellow
Pages), and the basic idea of the project was to improve on existing
systems by making heavy use of pragmatics, i. e. by enabling the system to
make systematic use of contextual information in interpretation, planning
and response generation.^
In the PLUS system, contextual information is stored in a set of
kn ow led ge bases, represented as logic programs. The most important of
these knowledge bases is the Discourse Model, which contains the
information derived from the ongoing dialogue. The process of dialogue
management, i. e. of interpreting the user’s contributions, planning the
system’s actions, and generating appropriate responses, is then conceived
as the process of maintaining the contextual knowledge bases (in
particular, the Discourse Model) through such knowledge base operations
as querying, updating, checking (and restoring) consistency, etc. From a
computational point of view, then, the management of dialogue can be
seen as a side effect of the process of maintaining the contextual

^The PLUS consortium consists of CAP GEMINI INNOVATION (France), CAP debis
(Germany), ITK (The Netherlands), Omega Generation (Italy), UMIST (England),
LIMSI (France), University of Bristol (England), University of Göteborg (Sweden).
The Swedish part of the project has been funded by Teleannons AB and NUTEK.
^For an overview of the PLUS project, see Black et al (1991).

165

Proceedings of NODALIDA 1993, pages 165-174

knowledge bases (cf. Gallagher et al 1992). In short, d ia logue
management is reduced to context management.
In what follows, I will attempt to illustrate the PLUS approach to dialogue
management by means of a few simple examples. I will begin by giving a
brief overview of the PLUS system (section 2). After that, I will present an
extremely simplified version of the Discourse Model, containing only the
features that are absolutely necessary to illustrate the basic process of
dialogue management (section 3). Finally, in section 4, I will try to show
how the process of dialogue management can be implemented through the
management of contextual knowledge bases using a set of special
abductive update procedures.
Needless to say, the work presented here draws extensively on
collaborative work within the PLUS project. Most of these debts are
acknowledged through references cited throughout the text. In addition, the
paper is based on (so far unpublished) work carried out together with Jens
Allwood and Bjorn Beskow after the completion of the PLUS project. It is
also worth mentioning that the discussion of PLUS work contains many
simplifications and omissions, mainly due to limitations of space. For a
more complete account of the PLUS approach to pragmatics and dialogue
management, the reader is referred to Bunt and Allwood (1992), Nivre et
al (1992), Bunt et al (1992) and Bego et al (1992).

2 Overview of the PLUS System
The PLUS system is meant to he a prototype for an information dialogue
system using typed terminal input. It consists of three main components:

• A Dialogue Manager (DM)
• A Natural Language Engine (NLE): parser and surface generator
• An application database (the Yellow Pages for the prototype)

The Dialogue Manager is the heart of the system. It receives parsed user
input from the NLE, it queries the application database and it generates
system responses which are converted into output strings by the surface
generator. The Dialogue Manager itself can be broken down into three
components:

• A World and Application Model
• A Discourse Model
• A Knowledge Base Management System (KBMS)

The World and Application Model is a static knowledge base containing
general world knowledge as well as information about the application

166

database. The Discourse Model is a dynamic knowledge base which is
built up and modified during the course of a dialogue. The KBMS, finally,
is a set of procedures for managing the knowledge bases (querying,
updating, consistency checking, etc.).
The tasks of the Dialogue Manager include interpretation of user
contributions (given the output of the parser), planning of system actions
(such as querying the database), and generation of system responses
(which are fed to the surface generator). These tasks are referred to
collectively as dialogue m anagem ent.
The pragmatics-based approach of PLUS entails that dialogue management
be based heavily on contextual information. The contextual information
includes information in the World and Application Model (static context)
as well as information in the Discourse Model (dynamic context). In this
paper, I will concentrate exclusively on the use of information in the
Discourse Model.

3 A S im ple D iscourse M odel
The contextual knowledge bases in the PLUS system are implemented as
logic programs. In this section, I will outline a very simple Discourse
Model to illustrate the basic principles of this approach. (For the
specification of the actual PLUS Discourse Model, see Bunt et al 1992.)

3.1 D ialogue H istory
In order to keep track of the dialogue history, we need to record (at least)
the following aspects of each contribution (or “utterance”) in the dialogue: •

• Contributor (or “speaker”)
• Verbatim form
• Grammatical structure
• Semantic (propositional) content
• Communicative function (illocutionary force)

These aspects can be specified by simple facts of the following form:
(1) c o n t r i b u t io n (N,A g e n t) .

v e rb a t im (N,S t r i n g) .
g ra m _s t ru c tu re (N,S truc tu re) .
p ro p _co n te n t (N,P).
comm_function(N,C F) .

167

The simple atomic formulas in (1) can be taken to represent a context
where the Nth contribution to the dialogue was made by Agent, having the
verbatim form s t r i n g , the grammatical structure s t r u c t u r e , the
propositional content p, and the communicative function c f . 1

3.2 A ttitudes
Both the interpretation of user contributions and the planning of system
actions (including dialogue contributions) normally require reasoning
about propositional attitudes, such as beliefs and intentions, attributed to
the user and the system. For example, a context where the system believes
some proposition p , where the user doesn’t know whether p, and where the
system wants the user to believe p can be represented as follows:

(2) b e l (s y s te m ,P) .
—iknow_wh(u s e r , P) .
w an t (s y s t e m ,b e l (u s e r ,P)) .

3.3 R ules and C onstraints
So far, we have only considered simple facts (i. e. atomic formulas and
their negations). However, the Discourse Model must also contain ru les
(universally quantified conditionals) defining relations between different
types of contextual information. For example, rules of the following kind
may be proposed to capture the relations between communicative
functions (such as s t a t e and a s k) and the propositional attitudes
underlying these communicative functions:

(3) c o m m _ f u n c t i o n (N ,state) <—

(4) comm_function(N ,ask)

c o n t r i b u t io n (N ,A) ,
g r a m _ s t r u c t u r e (N ,S) ,
—■ in terrogat ive (S) ,
p r o p _ c o n te n t (N ,P) ,
b e l (A , P) ,
w a n t (A , b e l (B , P)) ,
i n t e r l o c u t o r (A , B) .

c o n t r i b u t io n (N ,A) ,
p r o p _ c o n te n t (N ,P) ,
—iknow_wh (A , P) ,
w ant(A ,know _w h (A ,P))
i n t e r l o c u t o r (A , B) .

^In addition to these aspects of contributions, the real PLUS Discourse Model also
includes information about such things as topic, focus and discourse referents (cf. Bunt
et al 1992).

168

The first rule can be read as saying that a non-interrogative contribution
with propositional content p is a statement (or has the communicative
function s ta te) if the contributor believes p and wants the interlocutor to
believe p. In the same vein, the second rule says that a contribution with
propositional content p is a question (or has the communicative function
ask) if the contributor doesn’t know whether p but wants to know whether
p.

The rules in (3 ^) define positive relationships between different types of
facts (i. e. if the clauses in the antecedent are true, then the consequent is
also true). However, we also have a need for negative con stra in ts stating
that a certain conjunction of clauses cannot be simultaneously true in the
knowledge base. In order to do this, we introduce a special predicate
in c o n s is te n t , occurring in the consequent of such constraints. For
example, the following are constraints saying that the Discourse Model is
inconsistent if it contains a contribution without a verbatim form, a
contribution without a grammatical structure, a contribution without a
propositional content, or a contribution without a communicative function.

(5) in co n sis ten t

(6) inconsistent

(7) inconsistent

(8) in co n sis ten t

<— c o n t r ib u t io n (N ,A g e n t) ,
—iverbatim_form {N, S t r in g) .

< r- c o n tr ib u t io n (N, A gen t) ,
—igram_strueture (N, S tru c tu re) .

<— c o n t r ib u t io n (N ,A g e n t) ,
—iprop_content (N, P) .

c o n t r ib u t io n (N ,A g e n t) ,
—iComin_function (N, CF) .

The joint effect of these constraints is that every contribution is required to
have a verbatim form, a grammatical structure, a propositional content as
well as a communicative function in order for the Discourse Model to be
consistent.

3.4 R easoning T ools
The Discourse Model (and the other contextual knowledge bases) in the
PLUS system are implemented as logic programs. The KBMS tools
developed for the management of these knowledge bases support standard
operations of asserting and retracting facts from a knowledge base,
querying the knowledge base (to find out if a goal is a consequence of the
knowledge base) and checking that the knowledge base is consistent.

169

In addition, special procedures for abductive updates have been developed
and implemented (cf. Guessoum and Gallagher 1992). The two main
predicates of these procedures are i n s e r t and d e l e t e , which can be
characterised in the following way:

• The call in s e r t (P, KB, Trans) returns the list Trans of transactions
(asserts and retracts) that would make p a consequence of the
knowledge base kb .

• The call d e le t e (P , KB, T ran s) returns the list Trans of transactions
(asserts and retracts) that would ensure that p is no longer a
consequence of the knowledge base kb .

A special use of these update procedures is the deletion of the special
predicate in c o n s is t e n t from the Discourse Model. As we will see in the
next section, the insertion of new facts into the Discourse Model will often
violate constraints in the Discourse Model, temporarily giving rise to states
where the Discourse Model is “inconsistent” in the sense that the formula
in c o n s i s t e n t is a consequence of the knowledge base. The normal way
for the system to deal with this problem is to attempt to remove the
inconsistency through an abductive update, i. e. by deleting the formula
in c o n s is te n t . This move may then introduce new inconsistencies which
have to be deleted through further updates and so on.

4 D ia logu e M anagem ent
By means of a few simple examples, I will now try to outline how the
process of dialogue management can be implemented through the use of
abductive update procedures to maintain a contextual knowledge base of
the kind described in the preceding section. I will subdivide the process of
dialogue management into three subprocesses;

• Interpretation of user contributions
• Planning of system actions
• Generation of system responses

It is important to note, however, that this is an analytic division which is
made primarily for purposes of exposition and which does not correspond
in any straightforward way to “system modules”. The basic computational
process is the same in all three cases, and many of the rules and constraints
involved apply across several subprocesses.

170

4.1 Interpretation
Whenever the user types some input (and hits the return key) the Discourse
Model is updated by inserting facts of the following form (where N is some
number and s t r in g is the verbatim form of the user input);

(9) c o n t r i b u t i o n (N ,user) .
v e r b a t i m _ f o r m (N ,S t r i n g) .

Since there are no rules in the Discourse Model which allows the system to
prove such facts, they will simply be asserted into the Discourse Model.
(In other words, user contributions and their verbatim form can only be
observed, they can never be inferred, neither deductively nor abductively.)
Asserting these facts into the Discourse Model will make the knowledge
base inconsistent, because of the following constraints (cf. section 3.3):

(6) inconsistent

(7) inconsistent

(8) inconsistent

<— c o n t r ib u t io n (N ,A g e n t) ,
—igram _stru c tu re (N ,S tru c tu re)

c o n t r i b u t io n (N ,A g e n t) ,
—iprop_content (N, P) .

<- c o n t r ib u t io n (N ,A g e n t) ,
—iComm_function (N, CF) .

In order to make the Discourse Model consistent again, the system must
prove that the Nth contribution from the user has a certain grammatical
structure s t r u c t u r e , a certain propositional content p, and a certain
communicative function c f . In a PLUS-Iike system, the first goal will be
resolved by calling the parser, which will instantiate the variable
s t r u c t u r e to a grammatical feature structure containing, among other
things, a compositional semantic analysis of the input. From this semantic
analysis, together with contextual information already stored in the
Discourse Model, the system will then attempt to derive a propositional
content p for the contribution in question.
Let us now consider in a little more detail how the analysis of
communicative function can proceed. In order to make the Discourse
Model consistent again, the system must prove the goal
com m _function (N, C F) , for some CF. As noted above, the Discourse
Model contains rules relating to communicative function, such as the
following (cf. section 3.3):

171

(3) com m _function (N ,state)

(4) coinin_function (N, ask)

c o n t r i b u t io n (N , A) ,
g ra m _s t ru c tu re (N , S) ,
—■in terrogat ive (S) ,
p rop _co n ten t (N , P) ,
b e l (A , P) ,
w an t(A,b e l (B , P)) ,
i n t e r l o c u t o r (A ,B) .

c o n t r i b u t io n (N , A) ,
p rop _co n ten t (N , P) ,
—iknow_wli (A, P) ,
want (A,)cnow_wh (A, P)) ,
i n t e r l o c u t o r (A ,B) .

The important point about these rules is that the attitude goals cannot be
proven deductively in the Discourse Model but have to be abduced (if they
are compatible with the rest of the system’s knowledge). For example,
when the system tries to insert that a certain user contribution is a
statement, the update procedures will propose as a possible transaction to
assert (i. e. to abduce) that the user believes the propositional content and
weints the system to believe the same thing.
If there is no conflict with the rest of the information in the Discourse
Model, these attitude facts can be assumed, representing an interpretation
of the communicative function of the user’s contribution. If there is
conflicting information (the system may know on other grounds that the
user does not believe the propositional content), then the abduction is
blocked and the system will continue to search for another interpretation. If
all interpretations are blocked in this way, the system will be forced to
initiate a repair (asking the user what she meant, whether she has changed
her mind, etc.).

4.2 P lanning
As we have seen above, the interpretation of a user contribution will
typically result in the abduction of a set of user attitudes (beliefs, goals,
etc.) in order to restore the consistency of the Discourse Model. However,
the addition of these user attitudes will normally generate new
inconsistencies, because of constraints relating user attitudes to system
attitudes. For example, if the system is meant to be ideally cooperative,
then it seems reasonable to require that any goal of the user is also a goal
of the system (with certain restrictions that I will not go into here). A
cooperativity constraint of this kind would have the following form:

(10) in c o n s is te n t w a n t (u s e r ,P) ,
—iwant (system, P)

172

The presence of this constraint in the Discourse Model will guarantee that
as soon as the system has inferred that the user has a certain goal, the
system will try to insert that it has the same goal. This insertion will
generate further system goals, such as the goal to find a certain piece of
information in the database and give it to the user, etc. In this way,
planning of system actions can be carried out by the same basic process of
maintaining the Discourse Model through abductive updates that was used
for the interpretation of user contributions.

4.3 G eneration
A very basic requirement on a cooperative dialogue system, is that it
should generate a response to every contribution from the user. This
requirement can be implemented by adding the following constraint to the
Discourse Model:

(11) inconsistent contribution(N,user),
—icontribution(N+1,system)

This constraint will ensure that the addition of a user contribution to the
Discourse Model is always followed by the addition of a system
contribution. Moreover, once the new contribution has been added, the
constraints in (5-8) will come into play again and will drive the generation
process further until a fully specified system contribution has been
generated. In this way, the same constraints are used to drive both
interpretation and generation.
Furthermore, the rules relating to communicative functions can also be
exploited both in interpretation and in generation. Suppose, for example,
that the Nth contribution has been interpreted as a question by the user
with propositional content p. Suppose further that the system knows p to
be the case (p may be a fact in the application database, such as the fact
that a certain company has a certain phone number), and that we have the
following (not too implausible) rules in the Discourse Model:

(12) w a n t (A , b e l (B , P)) w ant (A , know_wh(B , P))
P.

(13) b e l (system, P) <- P.

We can then prove the following facts in the Discourse Model:
(14) b e l (s y s t e m ,P) .

w a n t (s y s t e m ,b e l (u s e r ,P)) .

173

Now, given the constraint in (11), the system will sooner or later be forced
to add a new system contribution to the Discourse Model:

(15) c o n t r i b u t io n (N + l , system) .

And in order to satisfy the constraint in (8), the system must then be able to
prove comm_f unct ion (N + l , CF) for some CF. If we consider the rules (3-
4) and the facts in (14), we see that it may be possible for the system to
prove c o m m _ fu n c t io n (N + l , s t a t e) , thus generating an answer to the
question, but not comm_function (N + l , a s k) , which would result in a new
question. Without going into all the details, the important point is that the
same rules and constraints apply both in interpretation and generation.

5 C onclusion
In the present paper, I have tried to illustrate a certain approach to dialogue
management based on knowledge base representations of contextual
information and reasoning tools incorporating abductive updates. There are
still many open problems in relation to the use of abductive reasoning, but
I nevertheless think that the approach presented here is interesting enough
to merit further attention. Hopefully, I am not alone in thinking this.

R eferen ces
Bego, H. (ed.), B. Beskow, H. Bunt, A. Derain, L. Horel, K. Jokinen, W. Kraaij,

D. Pernel and G. Tabuteau. 1992. Pragmatic Knowledge in PLUS. Part III:
Pragmatic Rules, Review Report. ESPRIT-II-P5254 PLUS.

Black, W. J. (ed.), J. Allwood, H. C. Bunt, F. J. H. Dols, C. Donzella, G. Ferrari,
J. Gallagher, R. Haidan, B. Imlah, K. Jokinen, J.-M. Lancel, J. Nivre, G. Sabah and
T. J. Wachtel. 1991. A Pragmatics-based Language Understanding System. In
Information Processing Systems . Results and Progress of Selected
Projects in 1991, ESPRIT, Brussels.

Bunt, H. and J. Allwood. 1992. Pragmatics in PLUS. Deliverable D2.3., ESPRIT-II-
P5254 PLUS.

Bunt, H. and C. Godin, (eds.), K. Jokinen, W. Kraaij, R. Meyer, J. Nivre and D. Pernel.
1992. Pragmatic Knowledge in PLUS. Part II: Discourse Model. Review Report,
ESPRIT-II-P5254 PLUS.

Gallagher, J., A. Guessoum, R. Haidan and R. Meyer. 1992. Reasoning Tools and
Pragmatic Reasoning. Internal Report, ESPRrT-II-P5254 PLUS.

Guessoum, A. and Gallagher, J. 1992. The PLUS Update Procedures. Internal Report,
ESPRIT-n-P5254 PLUS.

Nivre, J. (ed.), A. Cavalli, A. Guessoum, T. Lager, R. Meyer and N. Underwood. 1992.
Pragmatic Knowledge in PLUS. Part I: World and Application Model. Review
Report, ESPRIT-II-P5254 PLUS.

174

