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Abstract

The move from pipeline Natural Language
Generation (NLG) approaches to neural end-
to-end approaches led to a loss of control
in sentence planning operations owing to
the conflation of intermediary micro-planning
stages into a single model. Such control
is highly necessary when the text should be
tailored to respect some constraints such as
which entity to be mentioned first, the entity
position, the complexity of sentences, etc. In
this paper, we introduce fine-grained control of
sentence planning in neural data-to-text gener-
ation models at two levels - realization of input
entities in desired sentences and realization of
the input entities in the desired position among
individual sentences. We show that by aug-
menting the input with explicit position identi-
fiers, the neural model can achieve a great con-
trol over the output structure while keeping the
naturalness of the generated text intact. Since
sentence level metrics are not entirely suitable
to evaluate this task, we used a metric spe-
cific to our task that accounts for the model’s
ability to achieve control. The results demon-
strate that the position identifiers do constraint
the neural model to respect the intended out-
put structure which can be useful in a variety
of domains that require the generated text to
be in a certain structure.

1 Introduction

Typical NLG models are characterized by a
pipeline of stages (Walker et al., 2007; Barzilay
and Lapata, 2006; Walker et al., 2002; Stent, 2002;
Barzilay and Lee, 2002; Langkilde and Knight,
1998; Reiter and Dale, 1997). This approach can
be conceptually divided into solving two ques-
tions: what to say? aka content determination and
planning, and how to say it? aka text realization
(Gatt and Krahmer, 2018). In contrast, end-to-
end NLG systems combine these stages in a single

end-to-end learning framework. Recently, there
has been a lot of interest in combining sentence
planning and realization stage into a single neural
model (Nayak et al., 2017; Dušek and Jurčı́ček,
2016; Lampouras and Vlachos, 2016; Wen et al.,
2015; Mei et al., 2015). Although this resulted
in some improvement at the grammatical level, in
neural natural language generation this led to a
loss of control that was otherwise possible in the
pipeline approaches.

Neural NLG systems struggle to produce a con-
sistent order of entities and are sometimes not
faithful to the input by either hallucinating, omit-
ting or repeating the entities (Moryossef et al.,
2019). They do not allow control over the out-
put structure and while they exhibit impressive
levels of fluency, they are less equipped to deal
with higher levels of text structuring in a consis-
tent manner. They are also unable to generalize
sentence planning operations beyond what is seen
in the training. It is therefore important to intro-
duce explicit control in neural NLG so that the
output is faithful to the input. In this way, the sys-
tem would be able to generate diverse realizations
making way for explicit control over the output
text structure.

By controlling the facts in the generated text,
different variations can be produced that empha-
size a particular fact which is more important than
others. For example, if the focus should be on “a
cheap italian place”, then “There is a cheap ital-
ian place called The Sorrento. It is located in the
city center.” will be more appropriate than “The
Sorrento is located in the city center. It is an Ital-
ian Restaurant. It is cheap too”. This is partic-
ularly helpful in different domains, for instance,
when generating hotel review summaries, it is im-
portant to put the elements important for the user
in front (e.g., family, bathroom etc), when generat-
ing company descriptions, it is important to put the
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(1) Alignment information “name[Blue Spice], eatType[coffee shop], area[city centre]”,
A coffee shop in the city centre area called Blue Spice.,(2: eattype) (21: area) (45: name)

(2) Annotated reference text a (eattype)coffee shop in the (area)city centre area called (name)blue spice.

(3) MR with sentence id. 1 name[ blue spice ], 1 eattype[ coffee shop ], 1 area[ city centre ]

(4) MR with sentence and slot id. 1 3 name[ blue spice ], 1 1 eattype[ coffee shop ], 1 2 area[ city centre ]

Table 1: Example of an MR augmented with sentence and slot position identifiers.

main company selling points in front, and when
generating messages for user with low literacy it is
important to break sentences in small pieces, etc.

Recently there has been some work on control-
ling outputs of neural NLG models. In (Reed et al.,
2018), authors use token supervision to reproduce
sentence planning and discourse operations where
a sentence scoping operation controls the number
of sentences in the generated output which is mea-
sured using the period operator. This method does
not provide any information about the word or-
der in a particular sentence. While in (Moryossef
et al., 2019) an explicit and symbolic text plan-
ner is proposed which determines the information
structure and expresses it in the form of ordered
trees. The plan structures in this work take the
form of ad-hoc explorations for specific tasks and
does not evolve into general-purpose plan struc-
tures. Moreover, this work is dataset dependent
and does not generalize to datasets other than
graph-based ones. To improve over the work in
the literature of controlling neural NLG systems,
in this paper, we propose an approach to explicitly
control the realization of input entities in the de-
sired sentences and in the desired position among
individual sentences.

2 Overview of the Approach

Our method focuses on the control of sentence
planning at two levels - 1) realization of input facts
in the desired sentences and 2) realization of in-
put facts in the desired position in the individual
sentences. The idea is to directly attach sentence
identifiers and slot identifiers to each slot, that in-
dicate the sentence number and the position of the
slot within that sentence respectively. The next
step is to feed the modified Meaning Representa-
tion (MR) as an input to the seq2seq model and
test if the model is able to learn to realize the slots
in the correct positions.

2.1 Data Preparation
We used the E2E dataset for the experiments
which provides information about restaurants and
consists of about 50k combinations of a dialogue-
act-based MR and 8.1 text references on an aver-
age. Each MR consists of up to 8 slots/attributes
and their corresponding values.

As the dataset does not already contain a sen-
tence plan, we modified it in a way that the
MRs contain sentence and slot position identifiers.
More specifically, given a reference text, two po-
sition identifiers were attached to each slot of the
MR representing the sentence number in which the
slot is found and the location of the slot in that
specific sentence. The alignment information is
extracted using a script1 provided by the authors
of Juraska et al. (2018). Table 1 provides an exam-
ple of different stages of aligning the reference text
with the MR. Initially, we annotate the reference
text to identify the beginning of each slot value in
the text (line 2), then using this annotation, we first
attach the sentence identifiers (line 3), and finally
the MRs are augmented with the position of each
slot within a sentence (line 4). Owing to faults in
the alignment information, in some cases the slot
values are not detected in the reference text despite
being present in the MR and for other cases the
sentences do not contain some slots present in the
MR. For such cases, a position token in the format
0 0 Slottype[ Slot value ] is attached.

Ideally, we expect a human to assign the posi-
tion identifiers to each slot in the MR based on
the desired output text. However, doing so for
4000 samples of the test set for validating our work
would be very exhaustive. Therefore, we experi-
ment with two different strategies to attach the po-
sition identifiers. Firstly, we directly use the test
set reference text to extract the position identifiers.
However, this will lead to biased results when
computing the automatic metrics scores. Second

1https://github.com/jjuraska/
slug2slug/tree/master/data/rest_e2e

https://github.com/jjuraska/slug2slug/tree/master/data/rest_e2e
https://github.com/jjuraska/slug2slug/tree/master/data/rest_e2e
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Figure 1: The three proposed approaches to automati-
cally assign position identifiers to an MR.

strategy is to predict the position identifiers auto-
matically. For this, we propose three different ap-
proaches as shown in Figure 1 and described in
detail below:

• Random: The position identifiers are ran-
domly chosen and assigned to the slots in the
MR by taking care of a few rules.

• Seq2seq: The position identifiers are learned
using a sequence-to-sequence (seq2seq)
model. The train set MR without the position
identifiers and the corresponding train set
MR with the position identifiers are fed
as training data to the model described in
the Section 3. The test set MR without the
position identifiers are then fed to the trained
model, which outputs the test set MR with
learned position identifiers.

• Top Frequent: The position identifiers for
the test set are obtained from the most fre-
quent combination of position identifiers in
the train set. For each entry in the test set, the
slot types (e.g., name) and slot values (e.g,
blue spice) are separated and then the train-
ing entries which have slots with the same
values are identified. Then, the most com-
monly occurring position identifier combina-
tion is picked for the test set entry.

Our random approach could be considered as a
very naive baseline as randomly assigned identi-
fiers might not even make sense in some cases. For
example, having only one single slot in the first
sentence (which never happens in the training set)
would not be enough to form a grammatically cor-
rect sentence. Thus, in such cases, the model will
fail to follow the assigned identifiers. The seq2seq
model should perform much better than the ran-
dom approach since it learns how to put position
identifiers directly from the training data. How-
ever, this model has to re-generate the whole se-
quence including the slot type, slot value, and the

newly added position identifiers. This means that
any errors introduced during the generation pro-
cess will significantly effect the text generated by
the NLG model. Lastly, the top frequent approach
is expected to perform better than the other two
approaches. It extracts the most common sentence
plan for some given values directly from the train-
ing set. Thus, the chosen sentence plan is among
the ones that the NLG model was most exposed to
during the training process.

2.2 Evaluation Metrics

In most NLG problems, sentence level metrics
such as BLEU, ROUGE and METEOR are used
to evaluate the results. However, these metrics are
not entirely suitable to evaluate slot positioning
since they measure performance at sentence level
and do not provide precision in terms of sentence
planning accuracy. In addition to using these au-
tomatic metrics to compare the results of the po-
sition augmented dataset with the original dataset,
we evaluate the sentence planning accuracy using
a modified version of the word error rate called the
Slot Error Rate (SER) which is computed as:

SER =
S +D + I

N
,

where S refers to number of substitutions, D
refers to number of deletions, I refers to number
of insertions and N refers to the total number of
slots in the input MR. If a slot is realized in the
wrong sentence it is counted as wrong-sentence
substitution whereas if a slot appears in the wrong
position but the correct sentence, it is counted as a
case of wrong-slot-position substitution. It is im-
portant to note that the slot error rate compares
two sequences of different nature (MR vs text).
The generated text is pre-processed to extract the
expressed slots and position of each slot using a
script with some heuristics that involves lots of
E2E dataset-specific handwritten rules. It is worth
mentioning that our definition of SER is slightly
different from the ones in the literature, particu-
larly (Reed et al., 2018). In our case we take into
account the exact position of each slot in the gener-
ated text, thus, the positioning of the realized slot
in the generated text plays has a huge impact on
the SER. Because of this difference, our metric
can also be interpreted as slot position error rate
in the realized text.
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MR: 1 1 name[ the cricketers ], 1 2 eattype[ restaurant ], 1 3 food[ chinese ], 1 4 pricerange[ 20-25 ], 4 1 customer
rating[ high ], 2 1 area[ riverside ], 0 0 familyfriendly[ no ], 3 1 near[ all bar one ]
Output: the cricketers is a restaurant providing chinese food in the 20-25 price range. it is located in the riverside. it is near all
bar one. its customer rating is high.
MR: 1 1 name[ the cricketers ], 1 3 eattype[ restaurant ], 1 2 food[ chinese ], 1 7 pricerange[ cheap ], 1 6 customer
rating[5 out of 5 ], 1 5 area[ city centre ], 1 8 familyfriendly[ yes ], 1 4 near[ all bar one ]
Output the cricketers is a chinese restaurant near all bar one in the city centre with a customer rating of 5 out of 5 and is cheap
and family friendly.

Table 2: Output examples: position identifiers added from text references.

Experiment Type SER

MR with sentence identifier 27%
MR with sentence and slot identifier 7%

Table 3: Results: SER on the test set prepared from test
set alignment information.

SER BLEU ROUGE METEOR

Random 32% 0.22 0.39 0.34
Seq2Seq 5% 0.20 0.40 0.27
Top Frequent 0.7% 0.30 0.49 0.35

Table 4: Results: SER and sentence-level metrics on
different versions of the test set with sentence and slot
identifiers

3 Model Architecture

We use a standard seq2seq model with atten-
tion (Bahdanau et al., 2014; Luong et al., 2015).
The seq2seq model consists of an encoder and
a decoder based on Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997).
The encoder reads the position augmented MR to-
kens one by one and feeds each token into an em-
bedding layer and then to an LSTM layer. Fi-
nally the LSTM-based decoder takes the last hid-
den state from the encoder and starts generating
output tokens one by one. Our decoder uses the
dot attention mechanism as described in (Luong
et al., 2015).

4 Experiments and Results

We begin by comparing the SER obtained using
the test set with only sentence identifier and the
test set with both sentence and slot identifiers. The
position identifiers are attached based on the align-
ment information obtained from the test set. Ta-
ble 3 shows that the SER for the model with both
sentence and slot identifiers is significantly lower.
This is probably because the model in this case has
more information to learn from and the slot iden-
tifier proves to be very important. In order to ana-

lyze the results better, in Table 2 some of the out-
put examples are shown. As it can be seen, even
though both examples have quite complex combi-
nation of position identifiers, all the slots are real-
ized in the correct position as indicated in the MR.

In the next part of the experiments, instead of
using the reference text of the test set, we used
3 other approaches listed in Section 2.1 to attach
the sentence and slot identifiers. The idea here is
to i) not rely on the reference text, since it will
bias the automatic metrics such as BLEU, ROUGE
and METEOR and ii) to try more complex po-
sition identifier combinations and test the robust-
ness of the model. Table 4 summarizes the BLEU,
ROUGE, METEOR, and SER results obtained on
the test set using the 3 approaches. It can be
seen that the sentence-level metrics scores for the
different versions of position augmented test set
are quite variable. Top frequent seems to signifi-
cantly outperform the other two approaches. This
can be attributed to the fact that top frequent uses
the most common sentence plans from the train
set which are the easiest for the model to gen-
erate. This also shows that the test set and the
training sets are extremely similar in their sen-
tences’ structures. Surprisingly the seq2seq ap-
proach performs significantly worse than the top
frequent one. As described earlier, this is mainly
because the seq2seq model introduces many errors
in the slot types and values during the generation
process which does not happen in the top frequent
approach. These errors are also propagated to the
NLG model, and hence, the performance is signif-
icantly impacted. It is important to note that these
sentence-level metrics are computed on a single
reference as opposed to the E2E challenge sys-
tems where multiple references where used, and
as a matter of fact, their results there were much
higher. The reason that we cannot use multiple
references is because in the case of the random
approach, each MR is changed and is assigned a
unique set of identifiers, thus, distinguishing all of
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the previously unique MRs. To make the results
consistent, we report single reference scores for
the other two approaches as well.

When it comes to SER, we can see that top
frequent again achieves the lowest score of 0.7%.
The seq2seq model was trained with the position
augmented train set that mostly consists of text
with just one sentence. As data with one sen-
tence is relatively easier than the data with multi-
ple sentences, the SER of 5% with seq2seq model
based test set is justifiable. The test set prepared
with random identifiers reports an SER of 32%,
which can be explained by the fact that the iden-
tifiers are attached without significant rules, and
hence, some of the MRs do not make a logical
sense if realized as text. Nevertheless, the model
still learns to produce logically and grammatically
correct sentences.

To better assess the faithfulness of the model,
we used human verification of the model’s output.
We randomly selected 50 generated outputs (from
samples of Table 3, line 2) and 4 annotators man-
ually annotated the MR to show deletion, inser-
tion, substitution and hallucination of slots where
hallucination refers to realization of a wrong slot
value. The original MR is compared with the
new annotated MR to obtain an SER. The different
scores obtained were averaged and the final SER
reported is 14.25%. This score is slightly higher
than the 7% reported in Table 3 since human sub-
jects were additionally annotating hallucinations
too. Excluding hallucinations will lead to a similar
score obtained using the SER metric. Thus we can
say that the human verification scores is consistent
with the scores obtained from the SER metric.

5 Conclusion

We presented an approach to explicitly control the
output text structure by incorporating control at
two levels of sentence planning- realization of in-
put entities in desired sentences and in the de-
sired position among individual sentences. We
created a new data set with position identifiers de-
signed specifically for controlling sentence plan-
ning operations and we investigated different ways
of preparing such sentence plans. Our results show
that the model learns from the extra position iden-
tifiers which provide the capability to control vari-
ation in the output and enables generalizing to un-
seen combinations without a significant loss of
performance in terms of sentence-level metrics.

Acknowledgments

This project was partly funded by the IDEX Uni-
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Alpes (AISUA-2018-2019).

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Regina Barzilay and Mirella Lapata. 2006. Aggrega-
tion via set partitioning for natural language genera-
tion. In Proceedings of the main conference on Hu-
man Language Technology Conference of the North
American Chapter of the Association of Computa-
tional Linguistics, pages 359–366. Association for
Computational Linguistics.

Regina Barzilay and Lillian Lee. 2002. Bootstrapping
lexical choice via multiple-sequence alignment. In
Proceedings of the ACL-02 conference on Empirical
methods in natural language processing-Volume 10,
pages 164–171. Association for Computational Lin-
guistics.
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