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Abstract

Quality estimation (QE) of machine trans-
lation (MT), the task of predicting the
quality of an MT output without human
references, is particularly suitable in dy-
namic translation workflows, where trans-
lations need to be assessed continuously
with no specific reference provided. In this
paper, we investigate sentence-level neural
QE and its applicability in an industry use-
case. We assess six QE approaches, which
we divide into two-phase and one-phase
approaches, based on quality and cost. Our
evaluation shows that while two-phase sys-
tems perform best in terms of the predicted
QE scores, their computational costs sug-
gest that alternatives should be considered
for large-scale translation production.

1 Introduction

Quality estimation (QE) (Specia et al., 2009) is
the process of predicting the quality of a machine
translation (MT) system without human interven-
tion or reference translations. QE can be applied
at word-, sentence-, or document-level. In the case
of document- and sentence-level, the task is typi-
cally to predict a score that corresponds to a target
evaluation criteria or metric (e.g., BLEU (Papineni
et al., 2002), TER (Snover et al., 2006), etc.), i.e.
it is a regression task. In this work, we investigate
sentence-level QE, estimating TER scores.

QE has been the focus of multiple WMT shared
tasks. In such tasks the common evaluation cri-
teria are metrics that score the quality of the esti-
mates, such as Pearson’s r or Root Mean Square
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Error (RMSE). However, in a commercial setting,
it is important to set a balance between perfor-
mance and efficiency. Furthermore, a QE solu-
tion for industry needs to be generalizable and as
language-independent as possible. Feature-based
methods have ranked highly in such tasks. How-
ever, neural methods have recently not only outper-
formed feature-based ones, from a quality perspec-
tive, but they also provide a more generalizable
and language-independent solution. In our work,
we first assess the predictive capabilities of neu-
ral QE (NQE) systems applied on MT data from
the IT software domain, i.e. UI strings, for the
English→German and English→Spanish language
pairs. We then focus on the efficiency aspect. We
further compare the performance of QE systems
from a business perspective, i.e. using industry-
established metrics.

Our contribution is two-fold: the analysis and
comparison of NQE approaches, and the imple-
mentation of a new efficient method that scores on
a par with the others. The use of QE in commercial
setting has been discussed in previous work (As-
tudillo et al., 2018), but there are, to our knowl-
edge, no published results of tests as extensive as
ours of the application of QE to commercial data.

2 State-of-the-art

The state-of-the-art in QE was most recently pre-
sented at WMT 2018 (Specia et al., 2018a).

Traditional versus Neural QE In traditional
feature-based QE approaches, the input is first pro-
cessed and QE features are extracted. Then, these
features are used to train a regression or classifica-
tion model. For sentence-level QE there are 17 fea-
tures that have been established as standard (Spe-
cia et al., 2013), which can be classified as black-
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box (or system-independent) or glass-box (system-
dependent).

In contrast to traditional QE systems, NQE sys-
tems process source and target text in an end-to-
end fashion, using neural networks (NN). It is not
necessary to explicitly define QE features to feed
to the NQE system. Similar to the encoder-decoder
approach for MT (Sutskever et al., 2014; Cho et
al., 2014; Bahdanau et al., 2015), NQE systems
use one or multiple encoders to compress the input
information in a context vector and use this vector
to predict a quality score; the context vector im-
plicitly encodes features used to learn estimates.

One-phase and two-phase approaches We
classify QE in two groups: one-phase and two-
phase approaches. The former have a unified ar-
chitecture and are trained to generate estimates in
an end-to-end fashion, with no distinct intermedi-
ate stages. The latter employ two phases in training
and in testing, typically involving two networks
that are trained separately; the first one targets
decomposing the input (a source sentence and its
MT) into features, which are then used as input for
the second network to compute a QE score.

NQE Systems The top-scoring systems in the
segment-level task at WMT 2018 were QEBrain
(Wang et al., 2018) and UNQE (Li et al., 2018),
both two-phase systems.

QEBrain is an extension of the ‘Neural Bilin-
gual Expert model’ (Fan et al., 2018) with ex-
tra features. The first phase extracts high latent
semantic and alignment information between the
source and the translation output. Based on Trans-
former (Vaswani et al., 2017), this network builds
a conditional language model – the neural bilin-
gual expert. It is complemented with an error-
prediction model which identifies possible mis-
matches of words. In the second phase, the fea-
tures of these two models are used in a bi-LSTM
model to output the QE score.

The POSTECH architecture (Kim et al., 2017)
consists of a word predictor model and an estima-
tor model. The predictor model is used to extract
QE feature vectors (QEFVs) which are employed
to train the estimator: a logistic regression model
based on a summary representation of the QEFVs.

deepQuest (Ive et al., 2018) implements two
types of architectures: (i) BiRNN (a one-phase
approach) and (ii) POSTECH (a two-phase ap-
proach). The BiRNN architecture employs two

bidirectional RNNs (with GRU units) whose out-
puts are combined through an attention mecha-
nism. The resulting vector representation is used
to produce an estimate of quality. Similarly, the
deepQuest implementation of POSTECH uses a
bidirectional RNN to compute QEFVs.

The first-phase models of systems like QEBrain
and POSTECH are typically trained on parallel
data. One-phase systems, such as the deepQuest
BiRNN, are trained only on QE data: source, MT
output, and a score.

3 SiameseQE

Siamese NNs were proposed initially for the prob-
lems of signature verification (Bromley et al.,
1993) and fingerprint recognition (Baldi and Chau-
vin, 1993). The model consists of two (or more)
identical networks, encoding different inputs. The
two networks share the same configuration with
mirrored weights. Siamese NNs have also been
applied to address the task of text similarity (Yih
et al., 2011; Mueller and Thyagarajan, 2016) and
image recognition (Koch et al., 2015).

With the aim of providing an efficient QE sys-
tem, we implemented our SiameseQE with one
LSTM-based RNN that encodes both source and
MT sentences in so called left and right passes,
respectively. The encoded representations – the
RNN outputs – of both sentences are used to com-
pute a distance score which is optimised through
an MSELoss with respect to the expected TER
score. We use Euclidean distance in our imple-
mentation. Given that we build on a single RNN,
we use joint vocabulary so that we could train
without mismatch of tokens.

We also explored three types of networks: (i)
with no attention; (ii) with Soft Dot Attention (Lu-
ong et al., 2015) and (iii) with word-by-word at-
tention, as defined in Rocktäschel et al. (2015).

Ueffing et al. (2018) presented a Siamese NN
system for QE with two LSTM RNNs with tied
weights, using cosine similarity. Their application
identified quality levels of automatically generated
product titles. We aim to further optimise the per-
formance via a single RNN (with LSTM units) and
by implementing attention mechanisms.

4 Use-case and data

Our use-case is QE of the translations of software
UI strings from Microsoft products. The domain
is, therefore, technical/IT. To train our QE sys-
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tems we used proprietary Microsoft data collected
from post-edits scored using TER. The language
pairs are English-German (EN-DE) and English-
Spanish (EN-ES). We also used parallel data from
Europarl (Koehn, 2005) and from Microsoft for
two-phase systems, abbreviated as EU and MS re-
spectively. In Table 1 we present details of the QE
and the extra parallel training data.

To train the one-phase systems, only the QE
data was used. To train the two-phase systems
(POSTECH systems and QEBrain) for EN-DE and
EN-ES we used parallel data (EU or MS) for the
feature-extraction part of the model, i.e. for the
first phase, and the provided QE data for the QE
score computation model, i.e. the second phase.
We trained one POSTECH system per language
pair on EU data, and another on the MS parallel
data sets. The evaluation of these four systems
(two per language) led to the conclusion that there
were no advantages in the use of the EU data, so
for the experiments with the QEBrain system we
used only MS parallel data.

QEdata EN-DE EN-ES Extra data EN-DE EN-ES
Train 67 718 46 217 EU 1 863 144 1 850 469
Dev 7 524 5 136 MS 1 741 218 1 581 875
Test 32 898 34 623

Table 1: Number of sentences in the QE data sets and number
of parallel sentences of extra data used to train the feature-
extraction part of the two-phase systems.

5 Experimental setup

We experimented with three different systems:
deepQuest, QEBrain and SiameseQE. While the
first two systems have been developed over an
extensive period of time, have undergone signifi-
cant empirical evaluations, and have achieved high
rankings in WMT QE shared tasks, the last one is
developed by our team for maximum efficiency.

5.1 Hardware and software setup

We trained our models on two GPU-powered ma-
chines: one with 2 × nVidia TitanX, 64GB RAM
and an Intel(R) Core(TM) i7-5960X CPU; and an-
other with 4 × nVidia GTX 1080Ti, 128GB RAM
and an Intel(R) Core(TM) i7-7820X CPU. Each
model is trained and evaluated using one GPU,
with the exception of the QEBrain ones, which re-
quired a lot of computational power and for which
we used 4 GPUs to train one model in parallel,
as recommended. For fair comparison, we mir-

rored the software and configurations on the two
machines using Anaconda3 virtual environments.

5.2 Systems hyperparameters

deepQuest BiRNN and POSTECH. We used the
EU and MS parallel data (see Table 1) to train
the POSTECH models for EN-DE and EN-ES.
We used the default vocabulary size of 30 000
tokens. Sentences were clipped after length 70.
The mini-batch size was set to 70.
QEBrain We used the following settings for
the Expert model: max-vocab-size=49999;
num-train-steps=75000; embedding-size=512;
num-nits=512; num-layers=2; batch-size=512;
infer-batch-size=24; metrics=BLEU; src-max-
len=70; tgt-max-len=70; num-gpus=4; For the QE
model: num-train-steps=50000; rnn-units=128;
rnn-layers=1; qe-batch-size=10; infer-batch-
size=10; metrics=pearson.
SiameseQE We used the following options:
Vocabulary: joint; size: EN-DE 62 468, EN-ES
41 729; batch size: 64; RNN type: bidirectional,
LSTM; RNN units: 64; layers: 2; embedding size:
256; learning optimizer: Adam (Kingma and Ba,
2014); learning rate: 0.001.

6 Evaluation

6.1 Business impact

We compared the performance of the NQE systems
according to Microsoft’s business metrics, devel-
oped to maximise the use of MT output. As a base-
line we used a non-neural QE system based on 33
features (referred to as “33features”).

The following evaluation focuses only on strings
above 10 words, with TER scores below 0.3, in-
dicative of good quality. The metrics we used are:
AUC - area under the curve: a metric of the ca-
pacity of classification of the model;
Throughput: the percentage of words, out of all
translated words, that is approved for publication
at an optimal QE threshold. Note that, when calcu-
lated as a percentage of MTed words, these values
are much higher, since a large percentage of words
(up to as much as 55%) is not MTed: they are re-
cycled from translation memories, excluded due to
length restrictions, or due to the fact that they be-
long to high-impact strings (e.g. marketing).
Gain: the difference between the percentage of
volume approved (below the maximum low quality
admitted) by a non-QE system, and the throughput
of the QE system.
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Precision: these values are measured as ratios of
words that are associated with correct TER scores,
within a fine-grained optimal QE score threshold.
Distance to ideal (DtI): the distance between
throughput scores and the respective value for an
ideal QE system (a system with 100% precision,
100% recall), as estimated by Microsoft. The ideal
values for throughput are: 15.49% for German and
29.32% for Spanish.

The scores in these metrics are summarised in
Table 2 and Table 3.

System AUC ↑ Thr. ↑ Gain ↑ Prec. ↑ DtI ↓
BiRNN 0.7475 12.63% 2.83% 36.97% 2.86%
POST. EU 0.7154 12.38% 2.58% 36.74% 3.11%
POST. MS. 0.7047 11.95% 2.15% 34.50% 3.54%
QEBrain 0.8091 13.35% 3.55% 40.33% 2.14%
S. NoATT 0.6004 10.39% 0.59% 26.64% 5.10%
S. DotATT 0.7342 12.57% 2.77% 37.39% 2.92%
S. w2wATT 0.6698 12.43% 2.63% 35.67% 3.06%

33features 0.6639 11.10% 1.30% 29.24% 4.39%

Table 2: Business evaluation scores of QE systems for EN-
DE (best scores marked in bold).

System AUC ↑ Thr. ↑ Gain ↑ Prec. ↑ DtI ↓
BiRNN 0.6683 21.77% 5.02% 63.42% 7.55%
Post. EU 0.6401 21.01% 4.26% 62.10% 8.31%
Post. MS 0.6708 21.92% 5.16% 63.61% 7.40%
QEBrain 0.7259 22.82% 6.06% 65.38% 6.50%
S. NoATT 0.5359 16.65% -0.11% 54.95% 12.67%
S. DotATT 0.6557 21.87% 5.12% 63.62% 7.45%
S. w2wATT 0.6008 21.36% 4.60% 62.71% 7.96%
33features 0.6617 21.63% 4.88% 63.14% 7.69%

Table 3: Business evaluation scores of QE systems for EN-
ES (best scores marked in bold).

An interesting observation in these tables is the
fact that, although all systems were configured in
the same way (with the exception of the vocabulary
sizes determined by the available data), the scores
can be clearly grouped by language pairs:
• For throughput, gain and precision, all systems
trained with Spanish data achieve better scores
than any system trained with German data. For
example, Spanish systems show throughput values
of between 22.82% and 16.65%, but the German
systems are all below 13.35%.
• However, regarding distance to the ideal QE sys-
tem, all German-trained systems are better than the
Spanish ones: the distance to the ideal values for
German is between 2.14% and 5.10%, while for
Spanish it is 6.5% or more.

This clear separation between languages shows
the impact of fine-tuning and optimising metrics,
for different types of data and language.

The ranking of systems for German data shows
that QEBrain performs best according to all met-
rics. The BiRNN system takes second place in all
metrics except precision, in which the usually third
system, SiameseDotATT, replaces it. The sys-
tem that scores consistently lowest is the Siame-
seNoATT, followed by the 33features system.

The ranking of systems trained with Spanish
data is very similar to the German ranking, with a
few exceptions. QEBrain is confirmed as the best
system according to all metrics. The second-best
system according to most metrics (except preci-
sion) is the Postech MS system, instead of BiRNN.
The SiameseDotATT ranks third for most met-
rics, except precision. In all metrics, the 33fea-
tures system outperforms three systems (Siame-
seW2wATT, Postech EU and SiameseNoATT),
and in terms of AUC, it also outperforms the
SiameseDotATT system.

6.2 Model performance

We also evaluated the systems’ performance with
standard metrics used for the evaluation of QE sys-
tems: Pearson correlation coefficient (Pearson r),
RMSE and MAE. Pearson r is a measurement of
the strength of the linear dependency between two
variables. Both RMSE and MAE are measures
of the differences between predicted and expected
values.

Previous work has noted that in order to avoid
the biases and limitations of each metric, it is
necessary to consider them jointly (Specia et al.,
2018b). We define Equation (1) to combine these
metrics and derive a rank score (denoted by ω),
where r, MAE and RMSE are the arithmetic
means of the sets of scores for each of the respec-
tive metrics.

ωi = (0.5 + 0.5×ri
r )− (MAEi

MAE
+ RMSEi

RMSE
)/2 (1)

The intuition is to allow ascending metrics to
subsume descending ones and normalize over the
set of all tested systems, thus generating a ranking
score that takes into account not only the individ-
ual metrics and their combination, but also the dis-
tribution of these metrics’ scores over all investi-
gated systems. This method takes into account not
only the ranking of the systems according to each
metric, but also the distances within each metric.

The performance scores of all models are pre-
sented in Table 4 and Table 5 for EN-DE and EN-
ES, respectively.
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System Pearson ↑ MAE ↓ RMSE ↓ ω ↑ Rank
BiRNN 0.4811 0.2107 0.2819 0.3169 2
Post. EU 0.4102 0.2194 0.2838 0.1883 6
Post. MS 0.4255 0.2153 0.2770 0.2312 5
QEBrain 0.6232 0.1753 0.2416 0.6726 1
S. NoATT 0.2535 0.2555 0.3176 -0.1803 7
S. DotATT 0.4277 0.2132 0.2755 0.2416 4
S. w2wATT 0.2869 0.2545 0.3609 -0.1990 8
33features 0.4585 0.2124 0.2729 0.2938 3

Table 4: Performance and rank scores for experiments on
EN-DE.

System Pearson ↑ MAE ↓ RMSE ↓ ω ↑ Rank
BiRNN 0.3599 0.2226 0.2914 0.0930 2
Post. EU 0.3055 0.2534 0.3214 -0.1036 6
Post. MS 0.3636 0.2292 0.2975 0.0747 3
QEBrain 0.5235 0.1856 0.2455 0.4940 1
S. NoATT 0.1115 0.2216 0.2750 -0.2530 7
S. DotATT 0.3206 0.2297 0.2898 0.0212 5
S. w2wATT 0.2993 0.3084 0.4237 -0.3975 8
33features 0.3650 0.2349 0.2935 0.0712 4

Table 5: Performance and rank scores for experiments on
EN-ES.

These are the most important observations re-
garding the different system performance scores:
• QEBrain is clearly the best-performing system.
It ranks first across all metrics by quite some
distance to the other systems.
• BiRNN ranks second in both language pairs,
although its ranks per metric are very different. In
German, it ranks second in terms of Pearson’s r
score and MAE, but it is only fifth for RMSE; in
Spanish, it is the third system (for MAE only) or
fourth system in each metric rank. However, its
consistent scores make it second-best.
• The next best-ranked systems are either the
POSTECH MS or the Siamese DotATTN.
• The baseline system (“33features”) has very
good scores for German (second best for RMSE,
and third in the other scores). In Spanish, it
reaches second position for Pearson’s r, but ranks
lower for the other metrics.

The rank and scores of the Siamese NoATT sys-
tem called our attention:
• In Spanish, this system ranks quite highly ac-
cording to MAE and RMSE (it is the second-best
system according to these metrics), but it scores
very poorly according to Pearson’s r. In the case
of EN-ES, the variance in this system’s predictions
is very low, but so is the mean: σ2 = 0.0012,
µ = 0.2909; and the max and min values are
max = 0.4435, min = 0.2159. The error mea-
surement based on the mean difference between

predicted and expected values will also be low, as
there will not be extreme differences per assessed
pair. However, Pearson’s r takes this into account
and, as seen from Table 5, gives such a system a
lower score. This further supports the claim that,
although widely used in QE research, these three
metrics should not be considered independently.
• In the case of EN-DE, the variance, mean, min
and max values are broader and thus cover the dis-
tribution of TER scores more realistically.

Our ranking method balanced these disparate re-
sults, making this system rank low, as expected, in
the global ranking for both language pairs.

6.3 Cost of the different systems

Table 6 shows training times, and Table 7 inference
times, i.e., the time for the model to generate TER
scores for the given input. These tables also show
adjusted values for cost, as described next.

The first three systems (BiRNN, POSTECH EU
and POSTECH MS) were trained on a TitanX ma-
chine, while the last four were trained on a GTX
1080Ti system. To compensate for the speed dif-
ference of these machines and obtain realistic com-
parative times, we ran the BiRNN model on the
GTX 1080Ti machine and we calculated a speed
coefficient. We also took into account that QE-
Brain was trained in parallel on 4 GPUs, using
TensorFlow’s in-graph replication. To further ac-
count for this, we multiplied the time consumed
for training the expert model by 4.

The ranking according to GPU costs shows how
the total cost of QEBrain significantly exceeds all
others: by a factor of approximately 4 for the sec-
ond slowest system, by a factor of 95 for the fastest
EN-DE system and a factor of 62 for the fastest
EN-ES system. The biggest share of the con-
sumed time of two-phase systems is during phase
1, when systems are learning word-level features
from parallel data. The most cost-effective sys-
tems are one-phase: Siamese systems and Deep-
Quest BiRNN. In fact, all one-phase systems train
more than 10 times faster than the fastest two-
phase system. Also, since they can run on a single
GPU, one-phase systems can train different mod-
els in parallel, on multi-GPU machines.

In terms of inference (prediction of the TER
scores for unseen data), presented in Table 7, we
notice similar trends in the time consumption for
all systems, with only one exception; the deep-
Quest systems perform the quickest. There are
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Original Adjusted time (m)
System GPU time (m) GPU speed coef. = 0.45

EN-DE EN-ES EN-DE EN-ES
I II Tot. I II Tot. I II Tot. I II Tot.

BiRNN T – – 265 – – 152 – – 119 – – 68
Post. EU T 1 770 262 2 032 1 859 159 2 018 797 118 915 837 72 908
Post. MS T 1 118 160 1 268 1 752 154 1 906 503 72 575 788 69 858
QEBrain G 859 107 966 863 91 954 3 436 107 3 543 3 452 91 3 543
S. NoATT G – – 37 – – 86 – – 37 – – 86
S. DotATT G – – 102 – – 80 – – 102 – – 80
S. w2wATT G – – 75 – – 62 – – 75 – – 62

Table 6: Training time in minutes for phase 1, phase 2 and total, denoted as I, II and Tot. respectively. Training time for
single-phase systems is only marked as total for readability.

Original Adjusted time (s)
System GPU time (s) speed coef. = 0.45

EN-DE EN-ES EN-DE EN-ES
val. test val. test val. test val. test

BiRNN T 15 62 10 71 7 28 5 32
Post. EU T 56 213 40 242 25 96 18 109
Post. MS T 56 209 40 244 25 94 18 110
QEBrain G 42 163 30 195 43 163 30 195
S. NoATT G 29 136 20 144 29 136 20 144
S. DotATT G 32 146 22 157 32 146 22 157
S. w2wATT G 32 148 22 161 32 148 22 161

Table 7: Inference time (in seconds) for the validation and
the test sets. Number of sentence pairs for the validation set
for EN-DE and EN-ES: 7525, 5136 respectively; for the test
set for EN-DE and EN-ES: 32898, 34623 respectively.

several factors that play a role here, one of which is
the batch size. In the experiments for the Siamese
networks we invoke per-sentence inference, i.e.,
the batch size during test is equal to 1.

In a commercial setting, latency is critical, as it
is essential that a deployed QE model does not in-
troduce any additional latency into the workflow.
A factor in favour of the one-phase systems is
memory consumption. While typically two-phase
systems would consume almost 100% of the GPU
memory, the one-phase systems with our configu-
ration would only consume between 70% – 90%.
This would suggest that, by adapting the training
hyperparameters of the one-phase systems to max-
imally utilise the GPU hardware, one can expect
that either one model can be trained faster, or mul-
tiple models can be trained on the same GPU, e.g.,
by adapting the batch or vocabulary size. We also
ought to note the size of models and additional files
stored on the disk as an extra cost worth consider-
ing, one which is optimal for SiameseQE systems.

While the numbers in the previous rankings are
in favour of the two-phase systems, we suggest that
these rankings should be considered in combina-
tion with costs of implementation and use of such
systems. We also point out that other business fac-

tors must be taken into account when evaluating
such systems. For example, two-phase systems re-
quire more training data, which may not be easily
available, or of sufficiently high quality. In addi-
tion, other computing resources increase the cost
of ownership or rental of equipment, or the mainte-
nance and optimisation cost for such systems. All
these issues should be addressed in future research.

7 Conclusion – discussion of results and
future work

This paper investigates NQE applied to industry
data. We tested existing deepQuest (BiRNN and
POSTECH) and QEBrain systems and the newly-
introduced SiameseQE (no attention, Soft Dot at-
tention and word-to-word attention). We con-
ducted a series of experiments to test the perfor-
mance of these systems on data provided by Mi-
crosoft and with additional training data.

Our evaluation shows that the QEBrain system
outperforms all others, but is by far the most com-
putationally expensive. An important outcome
of our work is the observation that simpler, one-
phase systems like BiRNN and Siamese networks
show very promising results with low computa-
tional costs and easy implementations. In addi-
tion, the Siamese NN systems evidence reason-
able room for improvement. Using attention yields
much better results.We should also note that the
baseline system – a statistical QE system – per-
forms quite well. This suggests that statistical,
feature-based systems can potentially be integrated
into new hybrid approaches.
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