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Abstract

We consider the task of detecting sentences
that express causality, as a step towards min-
ing causal relations from texts. To bypass
the scarcity of causal instances in relation ex-
traction datasets, we exploit transfer learning,
namely ELMO and BERT, using a bidirectional
GRU with self-attention (BIGRUATT) as a base-
line. We experiment with both generic public
relation extraction datasets and a new biomed-
ical causal sentence detection dataset, a sub-
set of which we make publicly available. We
find that transfer learning helps only in very
small datasets. With larger datasets, BIGRU-
ATT reaches a performance plateau, then larger
datasets and transfer learning do not help.

1 Introduction

A wide range of biomedical questions, from what
causes a disease to what drug dosages should
be recommended and which side effects might
be triggered, center around detecting particular
causal relationships between biomedical entities.
Causality, therefore, has long been a focus of
biomedical research, e.g., in medical diagnos-
tics (Rizzi, 1994), pharmacovigilance (Agbabi-
aka et al., 2008), and epidemiology (Karhausen,
2000). The most common way to detect causal
relationships is by carrying highly controlled ran-
domized controlled trials, but it is also possible
to mine evidence from observational studies and
meta-analyses (Ward and Johnson, 2008), where
information is often expressed in natural language
(e.g., journal articles or clinical study reports).

In natural language processing (NLP), causality
detection is often viewed as a type of relation ex-
traction, where the goal is to determine which re-
lations (e.g., part-whole, content-container, cause-
effect), if any, hold between two entities in a text
(Hendrickx et al., 2009), using deep learning in
most recent works (Bekoulis et al., 2018; Zhang

et al., 2018). The same view of causality detection
is typically adopted in biomedical NLP (Cohen and
Demner-Fushman, 2014; Li and Mao, 2019).

Existing relation extraction datasets, however,
contain few causal instances, which may not al-
low relation extraction methods to learn to infer
causality reliably. Note that causality can be ex-
pressed in many ways, from using explicit lex-
ical markers (e.g., “smoking causes cancer”) to
markers that do not always express causality (e.g.,
“heavy smoking led to cancer” vs. “the nurse led
the patient to her room”) to no explicit mark-
ers (“she was infected by a virus and admitted
to a hospital”). Also, existing relation extrac-
tion datasets contain sentences from generic, not
biomedical documents.

In this paper, we focus on detecting causal sen-
tences, i.e., sentences conveying at least one causal
relation. This is a first step towards mining causal
relations from texts. Once causal sentences have
been detected, computationally more intensive re-
lation extraction methods can be used to identify
the exact entities that participate in the causal re-
lations and their roles (cause, effect). To bypass
the scarcity of causal instances in relation extrac-
tion datasets, we exploit transfer learning, namely
ELMO (Peters et al., 2018) and BERT (Devlin et al.,
2018), comparing against a bidirectional GRU with
self-attention (Cho et al., 2014; Bahdanau et al.,
2015). We experiment with generic public rela-
tion extraction datasets and a new larger biomed-
ical causal sentence detection dataset, a subset of
which we make publicly available.1

Unlike recently reported results in other NLP

tasks (Peters et al., 2018; Devlin et al., 2018; Pe-
ters et al., 2019), we find that transfer learning

1We cannot provide the entire biomedical dataset, because
it is used to develop commercial products. We report, how-
ever, results for both the entire biomedical dataset and the
publicly available subset.
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helps only in datasets with hundreds of training
instances. When a few thousands of training in-
stances are available, BIGRUATT reaches a per-
formance plateau (both in generic and biomedical
texts), then increasing the size of the dataset or em-
ploying transfer learning does not improve perfor-
mance. We believe this is the first work to (a) focus
on causal sentence detection as a binary classifica-
tion task, (b) consider causal sentence detection in
both generic and biomedical texts, and (c) explore
the effect of transfer learning in this task.

2 Methods

BIGRUATT: Our baseline model is a bidirectional
GRU (BIGRU) with self-attention (BIGRUATT)
(Cho et al., 2014; Bahdanau et al., 2015), a clas-
sifier that has been reported to perform well in
short text classification (Pavlopoulos et al., 2017;
Chalkidis et al., 2019). The model views each
sentence as the sequence 〈e1, . . . , en〉 of its word
embeddings (Fig. 1). We use WORD2VEC embed-
dings (Mikolov et al., 2013) pre-trained on approx.
(a) 3.5 billion tokens from PUBMED texts (Mc-
Donald et al., 2018)2 or (b) 100 billion tokens from
Google News.3 The BIGRU computes two lists
Hf , Hb of hidden states, reading the word embed-
dings left to right and right to left, respectively.
The corresponding elements of Hf , Hb are then
concatenated to form the output H of the BIGRU:

Hf =
〈
hf1 , . . . , h

f
n

〉
= GRUf (e1, . . . , en)

Hb =
〈
hb1, . . . , h

b
n

〉
= GRUb(e1, . . . , en)

H =
〈
[hf1 ;h

b
1], . . . , [h

f
n;h

b
n]
〉

where f , b indicate the forward and backward di-
rections, ei ∈ Rde , hfi , h

b
i ∈ Rdh , and ‘;’ denotes

concatenation.4 A linear attention computes an at-
tention score ai ∈ R for each element hi of H:

ãi = uatt · hi, ai = softmax(ãi; ã1, . . . , ãn)

where uatt ∈ R2×dh and · is the dot product. A
sentence embedding s, representing the entire sen-
tence, is then formed as the weighted (by the at-
tention scores) sum of the elements of H and is

2http://nlp.cs.aueb.gr/software.html
3https://drive.google.com/file/d/

0B7XkCwpI5KDYNlNUTTlSS21pQmM
4In our experiments, dh = 128; de is 300 for Google

News and 200 for biomedical embeddings; de increases by
1,024 when ELMO is added. We also tried LSTMs (Hochreiter
and Schmidhuber, 1997), but performance was similar.

Figure 1: Illustration of the BIGRUATT model.

passed to a logistic regression (LR) layer to esti-
mate the probability p that a sentence is causal:

s =
n∑

i=1

aihi, p = σ(up · s+ bp)

where up ∈ R2×dh , bp ∈ R, and σ is the sigmoid
function. We use cross-entropy loss, the Adam op-
timizer (Kingma and Ba, 2015), and dropout lay-
ers (Srivastava et al., 2014) before and after the BI-
GRU (Fig. 1). Word embeddings are not updated.
BIGRUATT+ELMO: ELMO (Peters et al., 2018)
produces word embeddings by passing the input
text (in our case, a sentence) to a pre-trained
stacked bidirectional LSTM language model (LM).
It then uses a linear combination of the states of the
LM (from the different layers of the stacked LSTM)
at each word position to produce the correspond-
ing word embedding. Like WORD2VEC, ELMO

(its LM) is pre-trained on large corpora. How-
ever, ELMO maps occurrences of the same word
to possibly different embeddings, depending on
context. Furthermore, it uses CNNs (LeCun et al.,
1989) to produce the initial word embeddings (that
are fed to the LM) from word characters, alle-
viating the problem of out-of-vocabulary words.
BIGRUATT+ELMO is the same as BIGRUATT, ex-
cept that the embedding of each word is now the
concatenation of its WORD2VEC and ELMO em-
beddings. We do not update the parameters of
ELMO and the word embeddings when training BI-
GRUATT+ELMO. We used the original pre-trained
ELMO of Peters et al. (2018).5 For biomedical
sentences, we also experimented with an ELMO

model pre-trained on PUBMED texts, but perfor-
mance was very similar as with the original ELMO.
BERT+LR: BERT (Devlin et al., 2018) is a model
based on Transformers (Vaswani et al., 2017), pre-

5https://allennlp.org/elmo

http://nlp.cs.aueb.gr/software.html
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM
https://allennlp.org/elmo
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trained on large corpora to predict (a) masked
words from their left and right contexts, and (b)
the next sentence. For a new NLP task, a task-
specific layer is added on top of a pre-trained BERT

model. The extra layer is trained jointly with BERT

on task-specific data (in our case, a causal sentence
detection dataset), a process that also fine-tunes
the parameters of the pre-trained BERT for the new
task. In BERT+LR, we add a logistic regression
(LR) layer on top of BERT, which estimates the
probability that the input sentence is causal. The
LR layer is fed with the embedding of the ‘classifi-
cation’ token, which BERT also produces for each
sentence. We used the pre-trained ‘base’ BERT

model of Devlin et al. (2018), which we fine-tuned
jointly with the LR layer. For biomedical sen-
tences, we also experimented with BIOBERT (Lee
et al., 2019), a BERT model pre-trained on biomed-
ical texts, but performance was very similar.
BERT+BIGRUATT: Common practice (Devlin
et al., 2018; Peters et al., 2019) is to combine BERT

with very shallow task-specific models, usually
only an LR layer. To explore if deeper task-specific
models can yield improved performance, we re-
placed the LR layer of BERT+LR with BIGRUATT,
leading to BERT+BIGRUATT. This is the same as
BIGRUATT, but uses the context-aware word em-
beddings that BERT produces at its top layer as the
input to BIGRUATT, instead of WORD2VEC em-
beddings. Again, we use the ‘base’ pre-trained
BERT model of (Devlin et al., 2018), and we
fine-tune the entire BERT+BIGRUATT network on
causal sentence detection datasets.
LR (n-grams): A plain LR classifier with TF-IDF

n-gram features (word n-grams, n = 1, 2, 3).6

3 Datasets

SemEval-2010 (Task 8): This dataset contains
10,674 samples, of which 1,325 causal (Hendrickx
et al., 2009). Each sample is a sentence annotated
with a pair of entities and the type of their relation-
ship. Since we are only interested in causality, we
treat sentences with a Cause-Effect relationship as
causal, and all the others as non-causal.
Causal-TimeBank (CausalTB): In this dataset
(Mirza et al., 2014), we identified causal sentences
using C-SIGNAL (causal signal) and CLINK (causal

6We used the LR code of SCIKIT-LEARN (https://
scikit-learn.org/). For all other methods, we used
our own PyTorch implementations (https://pytorch.
org/), with the BERT API of https://github.com/
huggingface/pytorch-pretrained-BERT .

link) tags, discarding causal relationships between
entities from different sentences, following Li and
Mao (2019). The resulting dataset contains 2,470
sentences, of which 244 are causal.
Event StoryLine (EventSL): In this dataset
(Caselli and Vossen, 2017), we detected causal
sentences by examining the CAUSES and
CAUSED BY attributes in the PLOT LINK tags,
again following Li and Mao (2019). Again, we
discarded causal relationships between entities
from different sentences. The resulting dataset
contains 4,107 sentences, of which 77 are causal.
BioCausal: The full biomedical causal detection
dataset we developed (BioCausal-Large) con-
tains 13,342 sentences from PUBMED, of which
7,562 causal. Each sentence was annotated by a
single annotator familiar with biomedical texts.7

The publicly available subset (BioCausal-Small)
contains 2,000 sentences, of which 1,113 causal.8

Li and Mao (2019) report that SemEval-2010
contains a large number of causal samples with ex-
plicit causal markers; by contrast, CausalTB and
EventSL contain more complex causal relations
with no explicit clues. BioCausal includes causal
sentences both with and without explicit clues.

SemEval-2010, CausalTB, and EventSL are
highly imbalanced, with the vast majority of sen-
tences being non-causal. To prevent a high bias
towards the non-causal class, in our experiments
we randomly selected 2500, 500, 200 non-causal
sentences respectively, discarding the rest. The re-
sulting causal to non-causal ratios (Table 1) are,
thus, roughly 1:2 (SemEval, CausalTB) or 1:3
(EventSL). By contrast, the BioCausal (Large and
Small) datasets are roughly balanced. All five
datasets were then split into train (70%), valida-
tion (15%) and test (15%) subsets, maintaining the
same ratio between the two classes in the three
subsets.

4 Experimental results

Tables 1–2 report our experimental results. For
each neural model, we performed 10 repetitions
(with different random seeds) and report averages
and standard deviations. For completeness, we
show precision, recall, F1, and area under the
precision-recall curve (AUC), though AUC scores
are the main ones to consider, since they examine

7The average inter-annotator agreement on a sample of
300 sentences was 79.36%. Cohen’s Kappa was 0.56.

8BioCausal-Small is available at https://archive.
org/details/CausalySmall.

https://scikit-learn.org/
https://scikit-learn.org/
https://pytorch.org/
https://pytorch.org/
https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT
https://archive.org/details/CausalySmall
https://archive.org/details/CausalySmall
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Dataset (causal:non-causal) SemEval (1,325 : 2,500) CausalTB (244 : 500) EventSL (77 : 200) BioCausal-Small (1,113 : 887)
Model F1 P R AUC F1 P R AUC F1 P R AUC F1 P R AUC

LR (n-grams) 76.22 88.67 66.83 87.50 36.36 100.00 22.22 65.02 42.86 100.00 27.27 73.55 77.49 73.91 81.44 87.65

BIGRUATT
90.64
±0.70

93.96
±1.71

87.59
±1.52

96.57
±0.32

69.98
±3.58

67.04
±5.16

73.89
±6.60

74.38
±4.16

63.65
±10.12

70.09
±7.47

60.91
±17.28

70.36
±9.84

85.97
±0.90

83.57
±2.03

88.62
±2.69

93.91
±0.88

BIGRUATT+ELMO
92.81
±0.78

94.45
±0.94

91.26
±1.77

97.03
±1.44

75.08
±4.20

81.29
±5.43

70.28
±6.81

82.06*
±3.59

66.55
±7.82

77.47
±5.05

59.09
±10.17

77.31
±4.84

87.32
±0.78

89.46
±2.34

85.39
±2.50

94.95
±0.33

BERT+LR
91.55
±0.53

86.62
±1.16

97.09
±0.67

96.94
±2.25

80.55
±3.62

71.17
±6.02

93.33
±3.33

82.26*
±3.41

72.35
±5.36

62.44
±8.21

87.17
±4.58

78.15*
±9.48

85.64
±0.61

78.87
±1.16

93.71
±1.54

90.75
±3.69

BERT+BIGRUATT
91.45
±0.59

86.80
±1.28

96.63
±0.60

97.61
±0.29

80.06
±2.94

74.52
±4.46

86.94
±5.56

84.27*
±1.71

73.09
±5.27

66.15
±7.86

83.64
±10.60

84.17*
±4.04

85.87
±0.88

79.43
±1.53

93.47
±1.08

93.75
±0.45

Table 1: Precision, recall, F1, AUC on the four publicly available datasets, averaged over 10 repetitions, with
standard deviations (±). Next to each dataset name, we show in brackets the total causal and non-causal sentences
that we used. The best results are shown in bold. The best AUC results are also shown in gray background. In the
AUC columns, stars indicate statistically significant (p ≤ 0.05) differences compared to BIGRUATT.

performance at multiple classification thresholds;
the other measures are computed only for a partic-
ular threshold, which was 0.5 in our experiments.

Model F1 P R AUC
LR (n-grams) 79.21 76.75 81.82 86.54

BIGRUATT 85.84
±0.36

84.28
±0.66

87.47
±0.75

93.71
±0.15

BIGRUATT+ELMO 86.77
±0.52

87.46
±1.29

86.12
±1.49

94.64*
±0.26

BERT+LR 87.33
±0.47

82.11
±0.89

93.27
±0.67

92.77
±1.57

BERT+BIGRUATT 87.09
±0.34

81.70
±0.58

93.25
±0.40

94.70
±0.24

Table 2: Results on BioCausal-Large (7,562 : 5,780).

Focusing on AUC scores, BIGRUATT outper-
forms the simpler LR with n-grams by a wide
margin, with the exception of EventSL, which is
probably too small for the capacity of BIGRU-
ATT.9 The precision of LR is perfect on CausalTB
and EventSL, at the expense of very low recall,
suggesting that LR learned perfectly few high-
precision n-grams in those datasets. Transfer
learning (ELMO, BERT) improves the AUC of BI-
GRUATT by a wide margin in the two small-
est datasets (CausalTB, EventSL), which contain
only hundreds of instances, and the AUC differ-
ences from BIGRUATT are statistically significant
(stars in Table 1), except for BIGRUATT+ELMO in
EventSL.10 However, in the other three datasets
which contain thousands of instances, the AUC

differences between transfer learning and plain
BIGRUATT are small, with no statistical signifi-
cance in most cases. Also, the AUC scores of all
methods on BioCausal-Large are close to those on
BioCausal-Small, despite the fact that BioCausal-
Large is approx. seven times larger. Similar obser-
vations can be made by looking at the F1 scores.

9Indeed BIGRUATT overfits the training set of EventSL.
10We performed two-tailed Approximate Randomization

tests (Dror et al., 2018), p ≤ 0.05, with 10k iterations, ran-
domly swapping in each iteration 50% of the decisions (over
all tested sentences) across the two compared methods. When
testing statistical significance, for each method we use the
repetition (among the 10) with the best validation F1 score.

It seems that causal sentence detection, at least
with the neural methods we considered, reaches a
plateau with few thousands of training sentences
both in generic and biomedical texts; then increas-
ing the dataset size or employing transfer learn-
ing does not help. The latter finding is not in
line with previously reported results (Peters et al.,
2018; Devlin et al., 2018; Peters et al., 2019),
where ELMO and BERT were found to improve
performance in most NLP tasks without studying,
however, the effect of dataset size. Furthermore,
BERT+BIGRUATT consistently performed better
than BERT+LR in AUC (but not in F1), which casts
doubts on the practice of adding only shallow task-
specific models to BERT.11 BIGRUATT+ELMO

is competitive in AUC to BERT+BIGRUATT (with
the exception of EventSL). Mainly comprised of
sentences with simple explicit causal statements
(Li and Mao, 2019), SemEval expectedly demon-
strated the best classification performance across
datasets.

5 Related and Future Work

Recent work on (causal) relation extraction uses
LSTMs (Zhang et al., 2017) or CNNs (Li and Mao,
2019), assuming however that the spans of the two
entities (cause, effect) are known. A notable ex-
ception is the model of Bekoulis et al. (2018),
which jointly infers the spans of the entities and
their relationships. Such finer relation extraction
methods, however, are computationally more ex-
pensive than our causal sentence detection meth-
ods, especially when they involve parsing (Zhang
et al., 2018). We plan to consider pipelines where
computationally cheaper causal sentence detection
components will first detect sentences likely to ex-
press causality, and then finer relation extraction
components will pinpoint the entities, the type of

11We note, however, that the AUC difference between
BERT+LR and BERT+BIGRUATT is statistically significant
(p ≤ 0.05) only in BioCausal-Large.
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causality (e.g., up-regulate), and entity roles.

Appendix

A Hyper-parameters

Batch sizes of 128, 32, 16, 32 and 256 were used
for Semeval, CausalTB, EventSL, BioCausal-
Small and BioCausal-Large, respectively, for all
neural models. Trainable parameters were initial-
ized using the default PyTorch initialization meth-
ods except from self-attention weights where the
method of Glorot and Bengio (2010) was used.

BIGRU and BIGRUATT+ELMO were trained for
100 epochs using Adam (Kingma and Ba, 2015)
with initial learning rate 2e-3 , β1/β2 = 0.9/0.999
and eps = 1e−8. The learning rate was decayed
linearly every 20 epochs as lrnew ← lrprev · 0.75.
Gradients were clipped using a clip norm thresh-
old of 0.25. The GRU’s hidden size was set to 128
and its depth to 1. A dropout of 0.5 was applied
to the input and output connections of the BIGRU

encoder. Validation F1 was checked periodically
in order to keep the model’s checkpoint with the
best validation performance.

BERT and BERT+BIGRUATT used the BERT-
BASE uncased pre-trained model, which has 12
layers, 768 hidden size, 12 attention heads, and
110M parameters. For both models the entire net-
work was fine-tuned for 10 epochs using Adam
with a very small learning rate of 2e-5, β1/β2 =
0.9/0.999, eps = 1e−6, L2 weight decay of
0.01 and linear warmup of 0.1. A dropout of
0.1 was applied to all BERT-specific layers. For
BERT+BIGRUATT, an additional dropout of 0.5
was applied to the input and output connections
of its BIGRU encoder. Similarly to BIGRU and BI-
GRUATT+ELMO, the hidden size of the GRU was
set to 128 and its depth to 1.
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