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Abstract

Knowledge base construction is crucial for
summarising, understanding and inferring re-
lationships between biomedical entities. How-
ever, for many practical applications such as
drug discovery, the scarcity of relevant facts
(e.g. gene X is therapeutic target for dis-
ease Y) severely limits a domain expert’s abil-
ity to create a usable knowledge base, either
directly or by training a relation extraction
model. In this paper, we present a simple and
effective method of extracting new facts with a
pre-specified binary relationship type from the
biomedical literature, without requiring any
training data or hand-crafted rules. Our sys-
tem discovers, ranks and presents the most
salient patterns to domain experts in an inter-
pretable form. By marking patterns as com-
patible with the desired relationship type, ex-
perts indirectly batch-annotate candidate pairs
whose relationship is expressed with such pat-
terns in the literature. Even with a complete
absence of seed data, experts are able to dis-
cover thousands of high-quality pairs with the
desired relationship within minutes. When a
small number of relevant pairs do exist - even
when their relationship is more general (e.g.
gene X is biologically associated with disease
Y) than the relationship of interest - our sys-
tem leverages them in order to i) learn a better
ranking of the patterns to be annotated or ii)
generate weakly labelled pairs in a fully auto-
mated manner. We evaluate our method both
intrinsically and via a downstream knowledge
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base completion task, and show that it is an ef-
fective way of constructing knowledge bases
when few or no relevant facts are already avail-
able.

1 Introduction

In many important biomedical applications, ex-
perts seek to extract facts that are often complex
and tied to particular tasks, hence data that are
truly fit for purpose are scarce or simply non-
existent. Even when only binary relations are
sought, useful facts tend to be more specific (e.g.
mutation of gene X has a causal effect on disease
Y in an animal model) than associations typically
found in widely available knowledge bases. Ex-
tracting facts with a pre-specified relationship type
from the literature in the absence of training data
often relies on handcrafted rules, which are labo-
rious, ad-hoc and hardly reusable for other types
of relations. Recent attempts to create relational
data from scratch by denoising the output of mul-
tiple hand-written rules (Ratner et al., 2016) or by
augmenting existing data through the induction of
new black-box heuristics (Varma and Ré, 2018)
are still dependent on ad-hoc human effort or pre-
existing data. Our approach involves discovering
and recommending, rather than prescribing, rules.
Importantly, our rules are presented as text-like
patterns whose meaning is transparent to human
annotators, enabling integration of an automatic
data generation (or augmentation) system with a
domain expert feedback loop.

In this work, we make the following contribu-
tions:

• We propose a number of methods for extract-
ing patterns from a sentence in which two
eligible entities co-occur; different types of
patterns have different trade-offs between ex-
pressive power and coverage.
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• We propose a simple method for presenting
patterns in a readable way, enabling faster,
more reliable human annotation

• For cases where a small number of seed pairs
are already available, we propose a method
which utilises these seed pairs to rank newly
discovered patterns in terms of their compat-
ibility with the existing data. The resulting
patterns can be used with or without a human
in the loop.

The rest of the paper is organised as follows.
Section 2 describes some related work. Section 3
explains the relationship between patterns and la-
belling rules and presents some pattern types along
with techniques for rendering them interpretable.
Section 4 provides a high-level overview of the
system and covers details of our different work-
flows (with and without seed data; with and with-
out human feedback). Section 5 explains how we
measure the system’s performance both intrinsi-
cally and via a downstream knowledge base com-
pletion task. In section 6, we report the details
of our main experiments while in sections 7 and
8 we present some analysis along with further ex-
periments. The paper ends with conclusions and
proposals for further work in section 9.

2 Related work

The idea of extracting entity pairs by discovering
textual patterns dates back to early work on boot-
strapping for relation extraction with the DIPRE
system (Brin, 1999). This system was designed to
find co-occurrences of seed entity pairs of a known
relationship type inside unlabelled text, then ex-
tract simple patterns (exact string matches) from
these occurrences and use them to discover new
entity pairs. Agichtein et al. (2000) introduced a
pattern evaluation methodology based on the pre-
cision of a pattern on the set of entity pairs which
had already been discovered; they also used the
dot product between word vectors instead of an
exact string match to allow for slight variations
in text. Later work (Greenwood and Stevenson,
2006; Xu et al., 2007; Alfonseca et al., 2012)
has proposed more sophisticated pattern extrac-
tion methods (based on dependency graphs or ker-
nel methods on word vectors) and different pat-
tern evaluation frameworks (document relevance
scores).

Two recent weak supervision techniques, Data
Programming (Ratner et al., 2016) and the method

underlying the Snuba system (Varma and Ré,
2018) have attempted to combine the results of
handcrafted rules and weak base classifiers respec-
tively. Data Programming involves modelling the
accuracy of ideally uncorrelated rules devised by
domain experts, then combining their output into
weak labels. Although this approach does not re-
quire any seed data, it does rely on handwritten
rules, which are both time consuming and ad-hoc
due to the lack of a data-driven mechanism for ex-
ploring the space of possible rules. Snuba learns
black-box heuristics (parameters for different clas-
sifiers) given seed pairs of the desired relationship.
This method avoids the need for manually com-
posing rules, however, the rules it learns are not
interpretable, which makes the pipeline harder to
combine with an active learning step. Second, the
system requires gold standard pairs. In contrast,
while our system can leverage gold standard an-
notations, if available, in order to reduce the space
of discovered rules, as well as tune the ranking
of newly discovered patterns, it is entirely capa-
ble of starting without any gold data if ranking is
heuristics-based (e.g. prioritisation by frequency)
and a human assesses the quality of the highest
coverage rules suggested. Our method does not
preclude use within a data programming setup as
a way of discovering labelling functions or within
a system like Snuba, as a way of generating seed
pairs. Another body of work, distant supervision
(Verga et al., 2018; Lin et al., 2016) has been a
recent popular way to extract relationships from
weak labels, but does not give the user any control
on the model performance.

A well known body of work, OpenIE (Banko
et al., 2007; Fader et al., 2011; Mausam et al.,
2012; Angeli et al., 2015) aims to extract patterns
between entity mentions in sentences, thereby dis-
covering new surface forms which can be clus-
tered (Mohamed et al., 2011; Nakashole et al.,
2012) in order to reveal new meaningful relation-
ship types. In the biomedical domain, Percha and
Altman (2018) attempt something similar by ex-
tracting and clustering dependency patterns be-
tween pairs of biomedical entities (e.g. chemical-
gene, chemical-disease, gene-disease). Our work
differs from these approaches in that we extract
pairs for a pre-specified relationship type (either
from scratch or by augmenting existing data writ-
ten with specific guidelines), which is not guaran-
teed to correspond to a cluster of discovered sur-
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face forms.

3 Extracting interpretable patterns

In a rule-based system, a rule, whether handwrit-
ten or discovered, can be described as a hypothet-
ical proposition “if P then Q”, where P (the an-
tecedent) is a set of conditions that may be true or
false of the system’s input and Q (the consequent)
is the system’s output. For instance, a standard
rule-based relation extraction system can i) take
as input a pair of entities (e.g. TNF-GeneID:7124

and Melanoma-MESH:D008545) that are mentioned
in the same piece of text, ii) test whether cer-
tain conditions are met (e.g. presence of lex-
ical or syntactic features) and iii) output a la-
bel (e.g. 1: Therapeutic target, 0: Not

therapeutic target.)
In this work, patterns are seen as the antecedents

of rules that determine which label (consequent)
should be assigned to some input (e.g. candidate
pair + text that mentions it.) We aim to extract
patterns that are expressive enough to allow a sys-
tem or a domain expert to discriminate between
the different labels available for an input but also
generic enough to apply to a wide range of inputs.
In this work, we have made the following simpli-
fying assumptions:

1. Relationships are binary (i.e. hold between
exactly two entities).

2. A pair of entities are candidates for relation
extraction if they are mentioned simultane-
ously in the same sentence.

3. There is a one-to-many relationship between
patterns and inputs. An input (i.e. sentence
+ entity pair) is described by a single pattern
(although this pattern can be a boolean com-
bination of other patterns) but one pattern can
correspond to multiple inputs.

4. We can select patterns which are expressive
enough to represent the relationship, so it is
possible to classify the input from which a
given pattern has been extracted by exam-
ining the pattern alone. However, the omit-
ted part of the sentence may contain contex-
tual information which specifies the condi-
tion when or where the relationship holds.
Modeling such contextual information would
be useful but is beyond the scope of this
work. A consequence of this assumption is
that it is possible to batch-annotate a group

of inputs that correspond to the same pattern
by annotating the pattern itself.

Pattern interpretability An important consid-
eration in this research is pattern interpretability,
which could assist domain experts (who are not
NLP experts) in exploring the space of labelling
rule antecedents for a given relationship type in a
given corpus. Hence, for each pattern, we con-
struct what we call a pattern lexicalisation, that
is converting a pattern to a readable text-like se-
quence.

Pattern types Simple patterns, which can po-
tentially be combined with boolean operators, can
be of different types. We illustrate some types of
patterns used in our experiments through the fol-
lowing example sentences that include mentions
of a gene-disease pair:

(1) “We investigate the hypothesis that the
knockdown of BRAF may affect melanoma
progression.”

(2) “The study did not record higher NF-kb ac-
tivity in cancer patients.”

Below are some types of patterns, as well as
their lexicalisations:

• KEYWORDS: words (e.g. ‘inhibiting’) or
lemmas (e.g. ‘inhibit’) in the entire sentence
or in the text between the entities. This pat-
tern’s lexicalisation is, trivially, the word it-
self.

• PATH: shortest path between the two entity
mentions in the dependency graph of the
sentence. For instance, in example (1), the
path could be BRAF <-pobj- of <-prep-

knockdown <-nsubj- affect -dobj->

progression -compound-> melanoma;
in example (2), the path could be NF-kb

<-compound- activity -prep-> in

-pobj-> patients -compound-> cancer).
To lexicalise patterns of this type, we extract
the nodes (i.e. words) from the path, arrange
them as per their order in the sentence and
replace the entity mentions by a symbol
denoting simply their entity types. For in-
stance, the first pattern becomes "knockdown
of GENE affect DISEASE progression".
This pattern is used extensively in our ex-
periments because it strikes a good balance
between expressive power and coverage.
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We call its lexicalisation a simplification
because it is a text-like piece that simplifies
a sentence by discarding all but the most
essential information.

• PATH ROOT: the root (word with no in-
coming edges) of the shortest path between
the two entities (e.g. ‘affect’ and ‘activ-
ity’ in examples (1) and (2) respectively).
The lexicalisation could be trivial (i.e. the
root itself) or, alternatively, if this pattern is
used in an AND boolean combination with the
PATH pattern, the root can simply be high-
lighted (e.g. "knockdown of GENE affect

DISEASE progression")

• SENTENCE ROOT: the root of the depen-
dency graph of the entire sentence (e.g.
‘investigate’ and ‘record’ in the examples
above), which is often not the same as root
of the path connecting the two entities. It can
be lexicalised similarly to the pattern above.

• PATH BETWEEN ROOTS: the path between
the root of the entire sentence and the
root of the path between the two entities
(e.g. investigate -dobj-> hypothesis

-acl-> affect and record -dobj->

activity for examples (1) and (2) re-
spectively). The pattern can be lexicalised
as what we have called “simplification”
(e.g. investigate hypothesis affect,
or, if AND-ed with the PATH pattern, all the
words from both patterns can be merged and
arranged as per their original order in the
sentence, potentially with some highlighting
to differentiate the two simpler patterns (e.g.
"investigate hypothesis knockdown of

GENE affect DISEASE progression")

• SENTENCE ROOT DESCENDANTS: the
direct descendants of the SENTENCE ROOT,
for instance, ‘did’, ‘not’ and ‘activity’ in
the example (1), because of the edges did

<-aux- record, not <-neg- record and
record -dobj-> activity. To lexicalise
this pattern, we can extract the words and
merge them with words of other patterns.
Alternatively, we can devise some simpler
sub-patterns, for instance, descendants with
aux, that is auxiliary, edges, such as ‘may’,
or descendants with neg edges such as ‘not’
and place them outside any simplification:
"investigate hypothesis knockdown

of GENE affect DISEASE progression +

hedging:[may]"

• PATH ROOT DESCENDANTS: the direct de-
scendants of the root of the path between
the entities (e.g. ‘may’ and ‘progres-
sion’ in example (1) because may <-aux-

affect and affect -dobj-> progression;
‘higher’ and ‘in’ in the example (2) because
higher <-amod- activity and activity

-prep-> in). Its lexicalisation can be the
same as that of the previous pattern type.

Other examples of patterns could be regu-
lar expressions or rules informed by an ex-
ternal biomedical ontology (e.g. GENE is a

Rhodopsin-like receptor) or with lexical in-
formation from databases like WordNet (Miller,
1995) (e.g. for increasing pattern coverage lever-
aging synonyms or hypernyms of words in a pat-
tern.)

It should be obvious that the more expressive a
pattern becomes (for instance by AND-ing multiple
other patterns), the less capable it is of subsuming
many sentences. It is important to discover pat-
terns with this trade-off in mind.

4 System overview

In this section, we will describe each step of our
system, outlined in Figure 1.

4.1 Data preparation

Extracting named entities and patterns The
first step is performing named entity recognition
(NER) on the sentences in the corpus to enable
us to identify all the sentences which contain en-
tity pairs of interest. Our experiments are focused
on gene-therapeutic target pairs, however, the sys-
tem is designed to be agnostic to different types
of entities and relationships between them. We
then extract the desired patterns from each of these
sentences, as described in section 3. For simplic-
ity, we limited our experiments to sentences that
contain exactly one gene-disease pair, however,
extending the system to handle multiple pairs is
straightforward.

We index each sentence in a database along with
the lexicalisation for its pattern (e.g. the ‘simpli-
fication’ for PATH or PATH BETWEEN ROOTS pat-
terns) and the entity pair found. This allows us to
easily query this database i) for all entity pairs that
correspond to a pattern (which is now lexicalised
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extraction of named entities and patterns

filter out sentences

rank patterns

labels

expert annotates top patterns

generate new pairs from good patterns
(intrinsic evaluation)

downstream task: KB completion
(extrinsic evaluation)

Figure 1: System overview. Diamond box is present
only in workflows with seed labels available (i.e. “no
expert but labels” and “expert with labels”), elliptical
box is only present in workflows involving an expert
(i.e. “expert - no labels” and “expert with labels”) and
rectangular boxes are always present.

and stored as a string) or ii) for all patterns that
correspond to an entity pair.

Filtering out sentences with negation and hedg-
ing. Since we are interested in inputs which un-
ambiguously encode affirmations of facts about
entities, we filter out any sentences which con-
tain negation, speculation, or other forms of
hedging. We adopt a conservative approach
by excluding sentences which match specific
instantiations of these pattern types: i) KEY-
WORDS (e.g. presence of terms such as “no”,
“didn’t”, “doubt”, “speculate” etc. in the sen-
tence); our list is modified from NegEx (Chap-
man et al., 2013), ii) SENTENCE ROOT AND SEN-
TENCE ROOT DESCENDANTS (e.g. “study we in-
vestigated”, which makes no statement of results),
iii) PATH ROOT AND PATH ROOT DESCENDANTS

(e.g. “was used”, “was performed”), iv)
path between roots (e.g. “found associated”) This
filtering is applied at all stages in our system where
sentences are used.

4.2 Ranking patterns
Below we describe methods for ranking and se-
lecting top patterns in the presence or absence of
domain expertise or labelled training data.

Baseline workflow: “no expert - no labels” In
this workflow, we simply extract new pairs using

simplifications (from the PATH pattern type, but
other types are also described in our experiments)
that have a high enough (>= 5) count of entity
pairs.

Manual curation in the absence of any labelled
training data: “expert - no labels” In this
workflow, we have a domain expert (a biologist)
available for manual curation but there is no la-
belled training data. It is not possible for a domain
expert to annotate all simplifications; this would
be too time-consuming. In such cases, active
learning can be helpful in deciding which simplifi-
cations should be shown to the domain experts for
manual curation to best improve the output of our
system. The approach that we adopt here is sim-
ple but the system could be extended with more
sophisticated active learning strategies. We rank
the simplifications by their count of entity pairs;
by this we mean the number of unique pairs con-
tained in the sentences in our corpus which corre-
spond to a given simplification (similar to section
4.2). We then show the top ranked simplifications
(i.e. those with the greatest pair count) to our do-
main expert with a fixed number of random exam-
ple sentences who then decides if a given simpli-
fication is an appropriate heuristic to extract new
entity pairs from the corpus, by selecting one of
three options “Yes”, “No”, “Maybe”.

Automated workflow: “no expert but labels”
For this workflow, a set of gold standard pairs ex-
ists as training data but we have no domain ex-
perts available. The sentence simplifications can
be ranked using various metrics calculated against
the gold standard training data. Each simplifica-
tion is considered as a classifier: A given pair
is ‘classified’ by the simplification as positive if
the pair can be discovered using the simplifica-
tion’s underlying rule in the corpus. Otherwise,
it is classified as negative. The metrics we use
to rank the simplifications are precision and re-
call. The gold standard pairs will form the pos-
itive pairs in our training data. To obtain nega-
tive pairs, we operate under the closed world as-
sumption: any entity pair found in our corpus of
sentences not present in our gold standard set is
taken to be negative. This results in an imbalance
in the sizes of positive and negative training data
which skews the value of precision. To address
this, we use a precision metric where the number
of true positives and false positives are normalised
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by the total number of positive and negative pairs
respectively in our training data. For each simpli-
fication S we define true positives (TPS) and false
positives (FPS) as the sets of correctly and incor-
rectly positive-labelled entity pairs respectively.
Our variant of precision for a simplification S is
then, precisionS = |TPS |/NP

|TPS |/NP+|FPS |/NN
where

NP and NN are the number of positive and neg-
ative pairs respectively in the training data. With
this metric, if a simplification classifies 10% of the
positive pairs as true positives and 10% of the neg-
ative pairs as false positives then precisionS =

0.1
0.1+0.1 = 0.5. The metric utilises the percent-
age of each class instead of the absolute number
of pairs, as would be the case for the standard pre-
cision metric. The definition of recall for a given
simplification S is with respect to just the positive
training data and is thus unaffected by an imbal-
ance in the sizes.

Manual curation with labelled data: “expert
with labels” For this workflow, both domain ex-
perts and labelled training data are available to us.
We improve on our methodology in the “expert -
no labels” workflow by making use of the metrics
discussed in the “no expert but labels” workflow
which are calculated using the labelled training
data. As we want to maximise the number and pre-
cision of new pairs extracted, we keep only sim-
plifications with recall and precision above certain
respective thresholds and present them to domain
experts ranked by pair count to ensure they see the
most impactful simplifications first.

4.3 Generating new pairs

All previous stages aim at generating a list of good
simplifications. We now have a collection of rules
which can be used to extract new entity pairs from
the corpus. Any simplification selected as useful
implies that all entity pairs recovered from the cor-
pus using this rule can be added as positive ex-
amples to the dataset. With the selected simplifi-
cations, we can batch-annotate thousands of sen-
tences, and hence pairs, with minimal effort. We
simply query our database for all new pairs which
are found in a sentence expressing any of our se-
lected simplifications.

Clustering simplifications We found that many
simplifications can be very similar up to a few
characters. We create clusters of quasi-identical
simplifications, and use them i) to enforce diver-

sity in the selection of simplifications for the user
to annotate, by picking only one simplification per
cluster and, ii) to safely extend the selection of
positive simplification to other simplification in
the cluster. We create clusters of simplifications by
detecting connected components in a graph where
the nodes are the simplifications and the edges are
between simplifications which are at a maximum
Levenshtein distance of 2. This allows us to be in-
variant to plural forms, upper/lower case, to short
words like in/of etc. Note that some (not all) of
these variations could be captured with a lemma-
tiser. Example of a distance 2 cluster:
{GENE effects on DISEASE,
GENE effect on DISEASE,
GENE effects in DISEASE}
With a distance of 2, we typically increase the
number of positive simplifications by 50%, which
significantly increases the recall on new pairs.

5 Evaluation

We implement two evaluation frameworks. The
first is an intrinsic evaluation of the quality of the
new extracted pairs. The second is extrinsic; we
consider how the inclusion of the new pairs dis-
covered by our system affects the performance of
a downstream knowledge base completion task.∗

5.1 Intrinsic evaluation

Pair-level Our aim in this subsection is to con-
struct an intrinsic evaluation framework which
can directly measure the quality of the discovered
pairs. We do this by holding out a fraction of the
gold standard positive pairs and the negative pairs
(under the closed world assumption) to be used as
a test set. The remaining fraction is used as train-
ing data. We evaluate our system by measuring
its recall, specificity (true negative rate), precision,
and F-score against this test set. In more detail,
the new pairs discovered by our selected simplifi-
cations are taken to be the positive pairs predicted
by our system. The overlap between these new
pairs and the positive test set are the true positives
(TP ) while the overlap with the negative test set
are the false positives (FP ). Recall and specificity
take their standard definitions. Again, we consider
a precision score which is normalised to correct

∗We consider the second type of evaluation extrinsic be-
cause knowledge base completion aims to recover latent re-
lationships, whereas knowledge base construction, which the
system is built for, is limited to extracting pairs from the lit-
erature.
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for the imbalance in numbers between positive and
negative pairs, precision = |TP |/NP

|TP |/NP+|FP |/NN
,

where NP and NN are the numbers of positive and
negative pairs respectively present in the test set
(as described in section 4.2). We take the F-score
to be the harmonic mean of this precision variant
and recall.

Simplification-level For the manual workflows,
we also consider the expert annotations while as-
sessing the quality of the simplifications. We
report MSP , the manual simplification preci-
sion, based on NY es, NNo and NMaybe, the num-
ber of simplifications that the expert has anno-
tated as “Yes”, “No” and “Maybe”. MSP =

NY es
NY es+NNo+NMaybe

. We expect MSP to be as high
as possible.

Extrinsic evaluation via knowledge base com-
pletion The setup for our extrinsic evaluation
framework is straightforward and intuitive. The
initial gold standard set of positive pairs is split
into training and test data. A graph completion
model is then trained using the training data and
evaluated to determine whether it can predict the
existence of the pairs in the test data. To de-
termine whether our knowledge base construction
system can add value, we use the new pairs found
from our system to augment the training data for
the graph completion model, and observe whether
this improves its performance against the test
set. We use ComplEx (Trouillon et al., 2017), a
well-established tensor factorisation model, as our
knowledge base completion model. We provide
standard information retrieval metrics to quantify
the performance of the graph completion model.
These are the precision, P (k), and recall, R(k),
calculated for the top k predictions along with the
mean average precision (mAP ). For gene-disease
entity pairs, for example, mAP = 1

Nd

∑
d
AveP ,

where the sum is over the diseases d with Nd be-
ing the total number of diseases, and AveP =∑
k
P (k) (R(k)−R(k − 1)) with P (k) and R(k)

as defined above.

6 Main experiments and results

6.1 Datasets

For all the following experiments, our data was
drawn from the following datasets: DisGeNET
(Pinero et al., 2016) and Comparative Toxicoge-
nomics Database (CTD) (Davis et al., 2018). CTD

contains two relation types: ‘marker/mechanism’
and ‘therapeutic’. We use both the entire CTD
dataset and the subset of therapeutic gene-disease
pairs which we refer to as CTD therapeutic.

The datasets above are first restricted to human
genes and then to the gene-disease pairs which ap-
pear in our corpus of sentences; this corpus con-
sists of sentences from PubMed articles which
have been restricted, for simplicity, to sentences
which contain just one gene-disease pair each.
With these restrictions in effect, the CTD dataset
has 8828 gene-disease pairs, CTD therapeutic has
169 pairs, and Disgenet has 33844 pairs.

6.2 Intrinsic evaluation results
In table 1, we report the pair-level metrics (see sec-
tion 5.1) for our three proposed workflows and a
baseline (see section 4). We also report the expert-
based metric MSP (see section 5.1) for the two
manual workflows. The CTD therapeutic dataset
was the most suitable dataset for this evaluation
because i) it is very relevant to crucial domains of
application such as drug discovery, and ii) its small
size makes it a good candidate for expansion. In
each session, the expert annotated 200 simplifica-
tions accompanied by 20 sentences. It took the
expert about 3 hours to annotate the first session,
which is a rapid way to generate thousands of new
pairs from scratch.

We find that our three main proposed workflows
(‘expert - with labels’, ‘expert - no labels’, and the
fully automated ‘no expert but labels’) all discover
a significant number of new gene-disease thera-
peutic pairs. As confirmed by both pair-level and
user-based metrics, incorporating the use of do-
main expert’s time and the use of labelled data re-
sults in higher precision at the expense of recall.

6.3 Extrinsic evaluation results
In table 2, we list the results of the downstream
knowledge base completion task for the fully auto-
mated workflow and the baseline. We compare the
performance of our knowledge base completion
model when trained with just the initial seed train-
ing data versus the seed training data augmented
with the new pairs discovered by our fully auto-
mated workflow (and baseline workflow).

The addition of new pairs from the fully auto-
mated workflow gives us a higher mean average
precision (mAP ) than with just the seed dataset.
We obtain a higher precision (for the top 100 and
top 1000 predictions) while maintaining the same
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Selection method MSP New pairs Recall Specificity Precision F-score
expert with labels 0.315 8875 0.286 0.976 0.923 0.436
expert - no labels 0.265 9560 0.250 0.975 0.908 0.392

no expert but labels - 30006 0.679 0.920 0.894 0.772
no expert - no label (baseline) - 59913 0.774 0.842 0.830 0.801

Table 1: Intrinsic evaluation results for the main experiments on the CTD therapeutic dataset. This was carried out
with a train/valid/test split of 0.4/0.1/0.5, and precision threshold of 0.6 for the ‘expert with labels’ and ‘no expert
but labels’ workflows. MSP is our “manual simplification precision” metric. The precision and F-scores reported
here are normalised as described in the section 4.2.

level of recall. For the baseline workflow, mAP
is higher but with lower precision (for the top 100
and 1000 predictions respectively).

7 Top simplifications

In table 3, we show the simplifications with the
highest count of Disease-Gene pairs in our whole
corpus (after the sentence filtering), which have
been annotated by the expert as “Yes” or “No”,
for the CTD therapeutic dataset. While “Yes” and
“No” patterns look similar, we can clearly see dif-
ferences in language. The “No” annotations look
unspecific while the “Yes” ones express the target
has a therapeutic effect on the disease.

8 Further experiments

We performed several other experiments using our
fully automated workflow to evaluate the quality
of the new pairs discovered as we varied our ex-
periment parameters.

We consider three dimensions of variation:
varying the precision threshold for selecting sim-
plifications, varying the size of the seed training
set, and varying the expressiveness of the sim-
plification (for example, by including the SEN-
TENCE ROOT or restricting to simplifications with
at least a specified number of words).

The intrinsic evaluation results for these exper-
iments are listed in tables 4, 5, and 6. In all cases,
as we make our system more selective either by
raising the precision threshold, by starting with
fewer seeds pairs, or by restricting to more infor-
mative simplifications, we unsurprisingly obtain
higher precision at the expense of lower recall.

The extrinsic evaluation framework is less sen-
sitive to these changes but improvements were ob-
served (without any noticeable trend) for all these
parameter changes.

9 Conclusions and further work

We have presented a simple and effective method
for knowledge base construction when the desired
relational data are scarce or absent. We have
demonstrated its effectiveness via i) classification
metrics on a held-out test set, ii) human evalua-
tion and iii) performance on a downstream knowl-
edge base completion task. We further show that
in the presence of a small set of data, it is possi-
ble to control the quality of the pairs discovered,
by introducing stricter precision thresholds when
ranking patterns. Our method could in principle
be extended in order to: 1) handle higher-order
(e.g. ternary) relations between tuples, as opposed
to pairs (for instance using dependency subgraphs
that connect more than two entities cooccurring in
a sentence), 2) discover explicit negative examples
of a binary relation instead of simply positive ex-
amples, 3) train sentence-level relation extraction
systems, 4) collect and utilise continuous, rather
than discrete annotations for each pattern (e.g. an-
notators could indicate the percentage of correct
example sentences that correspond to a pattern
displayed) as part of a more sophisticated active
learning strategy, 5) extract patterns from a seman-
tic representation (Banarescu et al., 2013) and, fi-
nally, 6) map patterns to a vector space using a
distributional representation (e.g. defined by their
neighbouring words in sentences) and cluster them
for an optimal balance between expressive power
and coverage.

Acknowledgments

We are very grateful to Nathan Patel for his en-
gineering support and to Alex de Giorgio for his
thorough feedback and domain expertise. We
would also like to thank many of our colleagues
working on drug discovery and link prediction for
insightful conversations, as well as Felix Kruger
for proofreading the final version of this paper.



150

Selection method New pairs MAP Precision Recall
seed dataset only - 0.0414 0.0179 / 0.0179 1.0 / 1.0

no expert but labels 30006 0.0545 0.0192 / 0.0192 1.0 / 1.0
no expert - no label (baseline) 59913 0.1885 0.01 / 0.0015 0.6019 / 0.9208

Table 2: Extrinsic evaluation results for the CTD therapeutic dataset. The experiment parameters are the same as
those given in table 1. Precision figures are given as ‘top 100 / top 1000’ and similarly for recall.

Pairs “Yes” simplif.
3345 role of GENE in DISEASE

839 GENE plays in DISEASE
648 GENE involved in DISEASE
321 GENE target in DISEASE
318 GENE target for DISEASE
289 GENE mice develop DISEASE
279 DISEASE caused by mutations

in GENE
276 GENE gene for DISEASE
273 role of GENE in development

of DISEASE
237 GENE promotes DISEASE

Pairs “No” simplif.
6629 GENE DISEASE
4110 DISEASE GENE
3350 GENE and DISEASE
2370 GENE in DISEASE
2333 DISEASE and GENE
1228 GENE DISEASE cells
904 DISEASE of GENE
879 DISEASE in GENE
638 DISEASE in GENE mice
572 role for GENE in

DISEASE
528 GENE in DISEASE

patients

Table 3: Top 10 simplifications for CTD Therapeutic
annotated “Yes” (left) and “No” (right) by the expert.

Dataset Thres. New pairs R S P F
CTD 0.8 29592 0.297 0.918 0.783 0.430
CTD 0.4 50329 0.379 0.863 0.735 0.500
DG 0.8 17441 0.180 0.947 0.773 0.292
DG 0.4 45446 0.314 0.867 0.703 0.434

Table 4: Intrinsic evaluation results (Recall, Specificity,
Precision and F-score) on CTD and DisGeNET (DG)
as we vary the precision threshold for the ‘no expert
but labels’ workflow. Experiments are done with a
train/valid/test split of 0.8/0.1/0.1 and we restrict to
simplifications with at least 5 words to ensure that they
are reasonably expressive.
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tomating weak supervision to label training data.
Proc. VLDB Endow., 12(3):223–236.

P Verga, E Strubell, and A McCallum. 2018. Si-
multaneously self-attending to all mentions for full-
abstract biological relation extraction. In North
American Chapter of the Association for Computa-
tional Linguistics (NAACL).

Feiyu Xu, Hans Uszkoreit, and Hong Li. 2007. A seed-
driven bottom-up machine learning framework for
extracting relations of various complexity. In ACL,
pages 584–591.

http://dl.acm.org/citation.cfm?id=2145432.2145596
http://dl.acm.org/citation.cfm?id=2145432.2145596
http://dl.acm.org/citation.cfm?id=1641408.1641412
http://dl.acm.org/citation.cfm?id=1641408.1641412
http://dl.acm.org/citation.cfm?id=1641408.1641412
https://doi.org/10.18653/v1/P16-1200
https://doi.org/10.18653/v1/P16-1200
http://dl.acm.org/citation.cfm?id=2390948.2391009
http://dl.acm.org/citation.cfm?id=2390948.2391009
http://dblp.uni-trier.de/db/journals/pvldb/pvldb5.html#NakasholeWS12
http://dblp.uni-trier.de/db/journals/pvldb/pvldb5.html#NakasholeWS12
http://dblp.uni-trier.de/db/journals/bioinformatics/bioinformatics34.html#PerchaA18
http://dblp.uni-trier.de/db/journals/bioinformatics/bioinformatics34.html#PerchaA18
http://dblp.uni-trier.de/db/journals/bioinformatics/bioinformatics34.html#PerchaA18
https://academic.oup.com/nar/article/45/D1/D833/2290909
https://academic.oup.com/nar/article/45/D1/D833/2290909
https://academic.oup.com/nar/article/45/D1/D833/2290909
http://arxiv.org/abs/1605.07723
http://arxiv.org/abs/1605.07723
https://arxiv.org/1702.06879
https://arxiv.org/1702.06879
https://doi.org/10.14778/3291264.3291268
https://doi.org/10.14778/3291264.3291268

