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Abstract
Systematic comparison of methods for relation
extraction (RE) is difficult because many ex-
periments in the field are not described pre-
cisely enough to be completely reproducible
and many papers fail to report ablation stud-
ies that would highlight the relative contribu-
tions of their various combined techniques. In
this work, we build a unifying framework for
RE, applying this on three highly used datasets
(from the general, biomedical and clinical do-
mains) with the ability to be extendable to new
datasets. By performing a systematic explo-
ration of modeling, pre-processing and train-
ing methodologies, we find that choices of pre-
processing are a large contributor performance
and that omission of such information can fur-
ther hinder fair comparison. Other insights
from our exploration allow us to provide rec-
ommendations for future research in this area.

1 Introduction

Relation Extraction (RE) has gained a lot of in-
terest from the community with the introduction
of the Semeval tasks from 2007 by (Girju et al.,
2007) and 2010 by (Hendrickx et al., 2009). The
task is a subset of information extraction (IE) with
the goal of finding semantic relationships between
concepts in a given sentence, and is an impor-
tant component of Natural Language Understand-
ing (NLU). Applications include automatic knowl-
edge base creation, question answering, as well as
analysis of unstructured text data. Since the in-
troduction of RE tasks in the general and medical
domains, many researchers have explored the per-
formance of different neural network architectures
on the datasets (Socher et al., 2012; Zeng et al.,
2014; Liu et al., 2016b; Sahu et al., 2016).

However, progress in RE is hampered by repro-
ducibility issues as well as the difficulty in assess-
ing which techniques in the literature will general-
ize to novel tasks, datasets and contexts. To assess

the extent of these problems, we performed a man-
ual review of 53 relevant neural RE papers1 citing
the three datasets (Hendrickx et al., 2009; Segura-
Bedmar et al., 2013; Uzuner et al., 2011). The
procedure for finding these papers is highlighted
in (Chauhan, 2019).

Reproducibility Reproducibility is important
for validating previous work and building upon it
(Fokkens et al., 2013). Lack of reproducibility can
be attributed to many factors such as difficulty in
availability of source code (Ince et al., 2012) and
omission of sources of variability such as hyperpa-
rameter details (Claesen and De Moor, 2015). We
found that only 16 out of the 53 relevant papers
had released their source code. 14 out of 53 pa-
pers were evaluated on multiple datasets, but the
source code was publicly available for only five of
those. Despite this, much of this code was lack-
ing in modularity to be easily extendable to new
datasets. In many cases, the process of reproduc-
ing the paper results was often unclear and lack
of documentation made this more difficult. Even
though most papers mentioned some hyperparam-
eter details, important details were missing such
as number of epochs, batch size, random initial-
ization seed, if any, and details about early stop if
that technique was applied.

Ablation Studies Lack of generalizability is
caused by a dearth of appropriate empirical evalu-
ation to identify the source of modeling gains. Ab-
lation studies are important for identifying sources
of improvements in results. Among the 53 papers
that we looked at, 20 of the 24 papers in the gen-
eral domain performed ablation studies. However,
only 10 out of 29 papers in the medical domain
performed one. Among these ablation studies,

1The 53 papers were filtered from a list of 728 papers
skimmed for relevance. Appendix A contains paper details.
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key details related to pre-processing were missing,
which we found critical in our experiments.

In the absence of such information about causes
of large variability of results, fair comparison of
models becomes difficult. In this paper, we present
an open-source unifying framework enabling the
comparison of various training methodologies,
pre-processing, modeling techniques, and evalu-
ation metrics. The code is available at https:
//github.com/geetickachauhan/
relation-extraction.

The experimental goals of this framework are
identification of sources of variability in results
for the three datasets and provide the field with
a strong baseline model to compare against for
future improvements. The design goals of this
framework are identification of best practices for
relation extraction and to be a guide for approach-
ing new datasets.

By performing systematic comparison on three
datasets, we find that 1) pre-processing choices
can cause the largest variations in performance, 2)
reporting scores on one test set split is problem-
atic due to split bias. We perform other analyses
in section 5 and also include recommendations for
future research in this field in section 7.

Upon testing various combinations of our ap-
proaches, we achieve results near state of the art
ranges for the three datasets: 85.89% macro F1
for Semeval 2010 task 8 dataset (Hendrickx et al.,
2009) i.e. semeval, 71.97% macro F1 for DDI
Extraction 2013 (Segura-Bedmar et al., 2013) i.e.
ddi and 71.01% micro F1 for i2b2/VA 2010 re-
lation classification dataset (Uzuner et al., 2011)
i.e. i2b2. We refer to ddi and i2b2 as medi-
cal datasets, as they belong to the biomedical and
clinical domains, respectively.

Dataset Rel Eval Agreement Det
semeval 18 Macro 0.6-0.95 No
ddi 5 Macro >0.8; 0.55-0.72 Yes
i2b2 8 Micro - Yes

Table 1: Dataset information, with columns Rel =
number of relations, Eval = evaluation metric (all F1
scores), Agreement = Inter-annotator agreement, Det =
whether detection task from section 3.4 was evaluated
on. Rel column only includes relations used in offi-
cial evaluation metric. ddi was built from two sep-
arately annotated sources and therefore contains two
inter-annotator agreements.

2 Datasets

We summarize important information about these
datasets in table 1. We introduce detection and
classification tasks in section 3.4, but also indicate
the tasks evaluated for each dataset in table 1.

Semeval 2010 semeval consists of 8000 train-
ing sentences and 2,717 test sentences for the
multi-way classification of semantic relations be-
tween pairs of nominals. Not included in the offi-
cial evaluation is an Other class which is consid-
ered noisy, with annotators choosing this class if
no fit was found in the other classes. It is impor-
tant to note that this is a synthetically generated
dataset, and detection scores were not calculated
due to the noisy nature of the Other class.

DDI Extraction ddi consists of 1,017 texts
with 18,491 pharmacological substances and
5,021 drug-drug interactions from Pubmed articles
in the pharmacological literature. None class in-
dicating no interaction between the drug pairs is
included in the evaluation metric calculation.

i2b2/VA 2010 relations i2b2 consists of dis-
charge summaries from Partners Healthcare and
the MIMIC II Database (Saeed et al., 2011). They
released 394 training reports, 477 test reports and
877 unannotated reports. After the challenge, only
a part of the data was publicly released for re-
search. None relation was present in the data and
not considered in the official evaluation.

3 Methodology

Our framework breaks up processing into dif-
ferent stages, allowing for future modular addi-
tion of components. First, a formatter con-
verts the raw dataset into a common comma sep-
arated value (CSV) input format accepted by the
pre-processor, and this information is then
fed to the model, which performs the training, af-
ter which evaluation is performed on the test
set. With our framework, we test the following
variations in the main components:

3.1 Pre-Processing

We test various pre-processing methods after per-
forming simple tokenization and lower-casing of
the words: entity blinding used by Liu et al.
(2016b), stop-word and punctuation removal, and
digit normalization commonly applied for ddi in
(Zhao et al., 2016), and named entity recognition

https://github.com/geetickachauhan/relation-extraction
https://github.com/geetickachauhan/relation-extraction
https://github.com/geetickachauhan/relation-extraction
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related replacement (we call this NER blinding).
We used the spaCy framework2 for tokenization
and to identify punctuation and digits.

Entity blinding and NER blinding are similar
concept blinding techniques where the first is per-
formed based on gold standard annotations, while
the second is performed by running NER on the
original sentence. We replace the words in the
sentence matching the entity or named entity span
with the target label and use those for training and
testing.

Entity labels for semeval were not anno-
tated with type information, whereas ddi identi-
fied drugs and i2b2 identified medical problems,
tests and treatments. Therefore, entity labels for
semeval were ENTITY, for ddi were DRUG
and for i2b2were PROBLEM, TREATMENT and
TEST. In this paper, we use fine-grained concept
type to refer to the presence of more than one con-
cept type, as in the the case of i2b2.

NER labels for semeval consisted of those
provided by the large english model by spaCy
and provided standard types such as PERSON and
ORGANIZATION, whereas those for the medical
datasets was provided by the scispacy medium
size model3 and did not provide types. In this case,
blinding consisted of replacing the words in the
sentence by Entity.

We chose the spaCy model for NER to com-
plement the extendable design goals of REflex.
Other options such as cTAKES (Savova et al.,
2010) for clinical data and MetaMAP4 for
biomedical data are highly specific to the dataset
type and require running additional scripts outside
of the REflex pipeline.

3.2 Modeling
We employ a baseline model based upon (Zeng
et al., 2014), (Santos et al., 2015) and (Jin et al.,
2018), which is a convolutional neural network
(CNN) with position embeddings and a ranking
loss (referred to as CRCNN in this paper). We
initialize the model with pre-trained word em-
beddings: the senna embeddings by Collobert
et al. (2011) for the general domain dataset and
the PubMed-PMC-wikipedia embeddings re-
leased by Pyssalo et al. (2013) for the medical
domain. We test several perturbations on top of
CRCNN model, such as piecewise max-pooling, as

2https://github.com/explosion/spaCy
3https://allenai.github.io/scispacy/
4https://metamap.nlm.nih.gov

suggested by Zeng et al. (2015) and the more re-
cent ELMo embeddings by Peters et al. (2018). To
compare different featurizations of contextualized
embeddings, we also employ the embeddings gen-
erated by the BERT model (rather than the stan-
dard fine-tuning approach). For ELMo, we use
the Original (5.5B) model weights in semeval
and PubMed contributed model weights in the
medical datasets released by (Peters et al., 2018).
For BERT, we use the BERT-large uncased model
(without whole word masking) in semeval re-
leased by (Devlin et al., 2018), BioBERT by
(Lee et al., 2019) in ddi and Clinical BERT by
(Alsentzer et al., 2019) in i2b2.

The fine-tuning approach, which tends to be
computationally expensive, has been thoroughly
explored for multiple tasks, including medical re-
lation extraction by Lee et al. (2019), but the
approach of featurizing them with an existing
model has not been explored in the literature as
much. We tested different ways of featurizing the
BERT contextualized embeddings for researchers
who want to utilize a less computationally inten-
sive technique, while still aiming for performance
gains for their task.

Because ELMo provides token level embed-
dings, we chose to concatenate them with the
word and position embeddings from CRCNN be-
fore the convolution phase. However, BERT pro-
vides word-piece level as well as sentence level
embeddings. The first was concatenated similar
to ELMo (which we call BERT-tokens), while the
second was concatenated with the fixed size sen-
tence representation outputted after convolution of
word and position embeddings (BERT-CLS).

3.3 Training

We explore two ways of doing hyperparame-
ter tuning: manual tuning and random search
(Bergstra and Bengio, 2012).

Evaluating on three datasets meant that we
needed to identify a default list of hyperparame-
ters by tuning on one of the datasets before we
could identify the hyperparameter list for the other
two. We chose semeval for initial tuning due
to its larger literature and because the CRCNN
model was originally evaluated on this dataset.
We started with reference hyperparameters listed
in Zeng et al. (2014) and Santos et al. (2015) and
identified default hyperparameters after tuning on
a dev set randomly sampled from the training data
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of the semeval dataset. These default hyperpa-
rameters5 were used as starting points for manual
tuning on the medical datasets as well as random
search for all datasets.

We perform manual tuning on a subset of the
hyperparameters, mentioned in table 2. In or-
der to avoid overfitting in cross validation pointed
out by Cawley and Talbot (2010), we perform a
nested cross validation procedure, keeping a dev
fold for hyperparameter tuning and a held out fold
for score reporting.

On these dev folds, we perform paired t-tests for
each of the perturbations to the parameters listed
in table 2. Our first pass involves changing one hy-
perparameter per experiment and noting the ones
that cause a statistically significant improvement,
which helps us identify a narrower list of hyperpa-
rameters to tune on. We further refine the hyper-
parameter values in our second pass by testing on
values similar to those that were leading to statis-
tically significant improvements in the first pass.
For example, if we noticed that lower epoch val-
ues were helpful in the first pass, we tested them in
combination with the other optimal hyperparame-
ter values (from first pass) in the second pass.

For each of the datasets, we tuned based on their
official challenge evaluation metrics listed in sec-
tion 2. ddi and i2b2 had 5-fold nested cross
validation performed on them, whereas semeval
had 10-fold cross validation performed.

Random search was performed based on the
official evaluation metrics for each dataset, on a
fixed dev set randomly sampled from the training
data. Final distributions are listed in table 3.

3.4 Evaluation

The official challenge problems for all datasets
compared models based on multi-class classifica-
tion, but for the medical datasets, we were also
interested in looking at the changes in model per-
formance if we treated the task as a binary classi-
fication problem. This was based on the rationale
that in the drug literature, for example, pharma-
cologists would not want to sacrifice the ability
to identify a potentially life threatening drug in-
teraction pair, even if the type of the drug pair is
not known. Therefore, we report results for both
multi-class and binary classification scenarios. For
clarity, we refer to them in the rest of the paper as
classification and detection respectively.

5listed in source code

Detection results were obtained using our eval-
uation scripts by treating existing relations as one
class, ignoring the types outputted by the model.
The other class in this task was the None or Other
class, representing non-existing relations. Note
that we did not re-train our model for this.

In addition to evaluating on two tasks for the
medical and one task for the general dataset, we
comment on the implications of different evalua-
tion metrics in section 5.5.

4 Results

For experiments on the medical datasets i.e. i2b2
and ddi, we used hyperparameters found from
manual search individually performed on them.
semeval had the default hyperparameters used
for its experiments. These sets of hyperparame-
ters were used in all experiments other than those
reported in table 6, where we compare hyperpa-
rameter tuning methodologies.

Once we had a fixed set of hyperparameters for
each dataset, we tested the perturbations for pre-
processing as well as modeling in tables 4 and
5. Perturbations on the hyperparameter search are
listed in table 6 and compare performance with
different hyperparameter values found using dif-
ferent tuning strategies.

We generate the standard classification and the
additional detection scores by the procedure de-
scribed in section 3.4, and report these results un-
der the Class and Detect columns.

We also report additional experiments in tables
7 and 8 based on the improvements found in tables
4 and 5. For all results tables, we report official
test set results at the top, with accompanying cross
validated results (averaged over all folds with their
standard deviation) in smaller font below them.6

5 Discussion

Recently, CNNs have achieved strong perfor-
mance for text classification and are typically
more efficient than recurrent architectures (Bai
et al., 2018; Kalchbrenner et al., 2014; Wang et al.,
2015; Zhang et al., 2015b). The speed of our base-
line CRCNN model allows us to explore multiple
alternatives for every stage of our pipeline. We
discuss these results pertaining to the classifica-
tion task for all datasets and the detection task for

6Results tables for metrics other than the official ones
were omitted in the interest of space, but their analysis ex-
ists in section 5.5.
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Hyperparameter Values
epoch {50,100,150,200}
lr decay [1e-3, 1e-4, 1e-5]
sgd momentum {T, F}
early stop {T, F}
pos embed {10, 50, 80, 100}
filter dimension {50, 150}
filter size 2-3-4, 3-4-5
batch size {70, 30}

Table 2: Hyperparameters explored for the first pass
of manual search. lr decay means learning rate decay
at [60, 120] epochs, pos embed refers to the position
embedding size.

Hyperparameter Distributions
epoch uniform(70, 300)
lr {constant, decay}
lr init uniform(1e-5, 0.001)

filter size
2-3, 2-3-4, 2-3-4-5

3-4-5, 3-4-5-6
early stop {T, F}
batch size uniform(30, 70)

Table 3: Hyperparameter distributions for random
search. Those written in {} are picked with equal prob-
abilities. The learning rate (lr) was uniformly initial-
ized, and decayed from 0.001 to the intialized value at
half of the number of epochs. If early stop was true,
patience was set to a fifth of the number of epochs. We
ran 100-120 experiments for each dataset to search for
optimal hyperparameters.

the medical datasets.

5.1 Pre-processing

Often, papers fail to mention the importance of
pre-processing in performance improvements. Ex-
periments in table 4 reveal that they can cause
larger variations in performance than modeling.

We applied pre-processing changes with the
CRCNN model with default hyperparameters for
semeval and manual hyperparameters for the
medical datasets. All comparisons are per-
formed against the original pre-processing tech-
nique, which involved using the original dataset
sentences in training and test.

Punctuation and digits hold more importance
for the ddi dataset, which is a biomedical dataset,
compared to the other two datasets. We looked
at examples where this technique led to an incor-
rect prediction, but original pre-processing led to
a correct one to investigate the source of perfor-
mance further. The examples indicate that removal

of punctuation is driving worse performance com-
pared to the normalization of digits. A detailed
analysis for these is present in (Chauhan, 2019).

Stop word removal is a common technique in
Natural Language Processing (NLP) to simplify
the sentence by cutting out commonly used words
such as the and is in order to simplify the sentence.
We found that stop words seem to be important
for relation extraction for all three datasets that we
looked at, to a smaller degree for i2b2 compared
to the other two datasets. Looking at examples
misclassified by this technique revealed important
stop words for different relations, which indicates
that the removal of stop words is not beneficial in
the relation extraction setting. Example types are
shown in (Chauhan, 2019).

The availability of fine-grained concept types
is likely to boost performance in relation extrac-
tion settings. The i2b2 dataset provided fine-
grained concept types in the form of medical prob-
lem, test and treatments. Entity blinding causes
almost 9% improvement in classification perfor-
mance and 1% improvement in detection perfor-
mance. In contrast, ddi only provided gold stan-
dard annotations for drug types in the sentence,
and while this does not cause statistically signifi-
cant improvements for cross validation, it does im-
prove test set classification performance by about
1.5% and detection performance by 1%. For these
medical datasets, NER blinding consisted of re-
placing the detected named entities by Entity be-
cause named entity types were not available. Due
to the coarse-grained nature of the entities, it hurts
classification performance significantly, and de-
tection performance a little.

While entity blinding hurts performance for
semeval, possibly due to the coarse-grained na-
ture of the replacement, NER blinding does not
hurt performance. Looking at misclassified exam-
ples for entity blinding and NER blinding tech-
niques supports this hypothesis (Chauhan, 2019).

To recall, entity blinding involved replacement
of entity words by Entity, while NER blinding in-
volved replacing named entities in the sentence
with labels such as ORGANIZATION and PER-
SON. In settings where fine-grained entity blind-
ing may not be helping, they may be helpful
as added features into the model, as shown by
(Socher et al., 2012).

For the medical datasets, while classification
performance varies highly with different pre-
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Preprocess
Dataset semeval ddi i2b2

Class Detect Class Detect

Original
81.55 65.53 81.74 59.75 83.17

80.85 (1.31) 82.23 (0.32) 88.40 (0.48) 70.10 (0.85) 86.45 (0.58)

Entity Blinding
72.73 67.02 82.37 68.76 84.37

71.31 (1.14) 83.56 (2.05)• 89.45 (1.05)• 76.59 (1.07) 88.41 (0.37)

Punct and Digit
81.23 63.41 80.49 58.85 81.96

80.95 (1.21)• 80.44 (1.77) 87.52 (0.98) 69.37 (1.43)• 85.82 (0.43)

Punct, Digit and Stop
72.92 55.87 76.57 56.19 80.47

71.61 (1.25) 78.52 (1.99) 85.65 (1.21) 68.14 (2.05)• 84.84 (0.77)

NER Blinding
81.63 57.22 79.03 50.41 81.61

80.85 (1.07)• 78.06 (1.45) 86.79 (0.65) 66.26 (2.44) 86.72 (0.57)•

Table 4: Pre-processing techniques with CRCNN model. Row labels Original = simple tokenization and lower
casing of words, Punct = punctuation removal, Digit = digit removal and Stop = stop word removal. Test set results
at the top with cross validated results (average with standard deviation) below. All cross validated results are
statistically significant compared to Original pre-processing (p < 0.05) using a paired t-test except those marked
with a •

Modeling
Dataset semeval ddi i2b2

Class Detect Class Detect

CRCNN
81.55 65.53 81.74 59.75 83.17

80.85 (1.31) 82.23 (0.32) 88.40 (0.48) 70.10 (0.85) 86.45 (0.58)

Piecewise pool
81.59 63.01 80.62 60.85 83.69

80.55 (0.99)• 81.99 (0.38)• 88.47 (0.48)• 73.79 (0.97) 89.29 (0.61)

BERT-tokens
85.67 71.97 86.53 63.11 84.91

85.63 (0.83) 85.35 (0.53) 90.70 (0.46) 72.06 (1.36) 87.57 (0.75)

BERT-CLS
82.42 61.3 79.63 56.79 81.91

80.83 (1.18)• 82.71 (0.68)• 88.35 (0.77)• 67.37 (1.08) 85.43 (0.36)

ELMo
85.89 66.63 83.05 63.18 84.54

84.79 (1.08) 84.53 (0.96) 90.11 (0.56) 72.53 (0.80) 87.81 (0.34)

Table 5: Modeling techniques with original pre-processing. Test set results at the top with cross validated results
(average with standard deviation) below. All cross validated results are statistically significant compared to CRCNN
model (p < 0.05) using a paired t-test except those marked with a •. In terms of statistical significance, comparing
contextualized embeddings with each other reveals that BERT-tokens is equivalent to ELMo for i2b2, but for
semeval BERT-tokens is better than ELMo and for ddi BERT-tokens is better than ELMo only for detection.

processing techniques, detection is relatively un-
affected. In a setting where one cares more about
detection of relationships rather than multi-class
classification, one would be able to get away with
using non-complicated pre-processing techniques
to maintain reasonable performance.

5.2 Split Bias

All three datasets evaluate models based on one
score on the test set, which is common practice
for NLP challenges. Reporting one score as op-
posed to a distribution of scores has been shown to
be problematic by Reimers and Gurevych (2017)
for sequence tagging. Recently, Crane (2018) dis-
cuss similar problems for question-answering. We
show that even if you keep the same random ini-

tialization seed (all our experiments have a fixed
random initialization seed), split bias can be an-
other source of variation in scores.

In our experiments, significance testing of some
cross validated results reveals no significance even
when the test set result improves in performance.
This is particularly concerning for ddi where en-
tity blinding (called drug blinding in the litera-
ture) is used as a standard pre-processing tech-
nique without ablation studies demonstrating its
effectiveness. Our results suggest the contrary:
entity blinding seems to help test set performance
for ddi in table 4, but shows no statistical signifi-
cance. Table 8 further demonstrates that using this
in conjunction with other techniques results in test
score variations despite being statistically insignif-
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Hyperparam Tuning
Dataset semeval ddi i2b2

Class Detect Class Detect

Default
81.55 62.55 80.29 55.15 81.98

80.85 (1.31) 81.62 (1.35) 87.76 (1.03) 67.28 (1.83) 86.57 (0.58)

Manual Search
- 65.53 81.74 59.75 83.17

82.23 (0.32)• 88.40 (0.48)• 70.10 (0.85) 86.45 (0.58)•

Random Search
82.2 62.29 79.04 55.0 80.77

81.10 (1.26)• 75.43 (1.48) 83.54 (0.60) 60.66 (1.43) 82.73 (0.49)

Table 6: Hyperparameter tuning methods with original pre-processing and fixed CRCNN model. Test set results
at the top with cross validated results (average with standard deviation) below. All cross validated results are
statistically significant compared to Default with p < 0.05 except those marked with a •. Note that hyperparameter
tuning can involve much higher performance variation depending on the distribution of the data. Therefore, even
though there is no statistical significance in the manual search case for the held out fold in the ddi dataset, there was
statistical significance for the dev fold which drove those set of hyperparameters. For both ddi and i2b2 datasets,
manual search is better than random search with p < 0.05.

Technique
Task

Classification Detection

E + ent
70.46 86.17

77.70(1.26) 89.36 (0.50)

B + ent
70.56 85.66

76.72 (1.04) 88.63 (0.33)

E + piece + ent
70.62 86.14

79.41 (0.53) 90.37 (0.44)

B + piece + ent
71.01 86.26

79.51 (1.09) 90.34 (0.53)

piece + ent
69.73 85.44

78.12 (1.10) 89.74 (0.44)

E + piece
63.19 84.92

74.76 (0.68) 89.90 (0.37)

B + piece
63.23 85.45

74.67 (0.89) 89.61 (0.68)

Table 7: Additional experiments for i2b2. E = ELMo,
B = BERT-tokens, ent = entity blinding, piece = piece-
wise pooling. All results are statistically significant
compared to BERT-tokens and ELMo models respec-
tively from table 5 and piece + ent row is statistically
significant compared to piecewise pool model as well
as entity blinding model. These are all statistically sig-
nificantly better than the CRCNN model from table 5

icant.
No statistical significance is seen even when the

test set result worsens in performance for BERT-
CLS in table 5 where it hurts test set performance
on ddi but is not statistically significant when
cross validation is performed.

5.3 Modeling

In table 5, we tested the generalizability of the
commonly used piecewise pooling technique pro-
posed in (Zeng et al., 2015), a variant of which

Technique
Task

Classification Detection

E + ent
68.69 83.72

86.25 (1.54) 91.35 (0.90)

B + ent
70.66 85.35

85.79 (1.54) 91.26 (0.63)

Table 8: Additional experiments for ddi. E = ELMo,
B = BERT-tokens, ent = entity blinding. Results are not
statistically significant compared to BERT-tokens and
ELMo models respectively from table 5 and not from
each other either.

was applied in the model by Luo et al. for i2b2.
We also tested the improvements offered by differ-
ent featurizations of contextualized embeddings,
which has not been explored much for relation ex-
traction.

Modeling changes were applied with the
original pre-processing technique for the
CRCNN model with default hyperparameters
for semeval and manual hyperparameters
for the medical datasets. All comparisons are
performed with the baseline performance of the
CRCNN model.

While piecewise pooling helps i2b2 by 1%,
it hurts test set performance on ddi and doesn’t
affect performance on semeval. While it may
be intuitive to split pooling by entity location, this
technique is not generalizable to other datasets.

We also found that while contextualized embed-
dings generally boost performance, they should
be concatenated with the word embeddings before
the convolution stage to cause a significant boost
in performance. We found ELMo and BERT-
tokens to boost performance significantly for all
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datasets, but that BERT-CLS hurt performance for
the medical datasets. While BERT-CLS boosted
test set performance for semeval, this was not
found to be a statistically significant difference
for cross validation. Note that we featurized
ELMo similarly to BERT-tokens and the details
are present in section 3.2.

This indicates that the technique of featurizing
the contextualized embeddings is important for a
CNN architecture. Concatenating the contextual-
ized embeddings with the word embeddings keeps
a tighter coupling, which is helpful for relation ex-
traction where the word level associations are es-
sential in predicting the relation type.

5.4 Hyperparameter Tuning

Bergstra and Bengio (2012) show the superior-
ity of random search over grid search in terms
of faster convergence, but leave to future work
automating the procedure of manual tuning, i.e.
sequential optimization. Bayesian optimization
strategies could help with this (Snoek et al., 2012)
but often require expert knowledge for correct ap-
plication. We tested how manual tuning, requiring
less expert knowledge than Bayesian optimization,
would compare to the random search strategy in
table 6. For both i2b2 and ddi corpora, manual
search outperformed random search.

5.5 Evaluation Metrics

Picking the right evaluation metric for a dataset is
critical, and it is important to choose a metric that
has the biggest delta between different model per-
formances for example types we care about. Ta-
bles for different metric results for all datasets are
provided in Appendix B.

When using micro and macro statistics (preci-
sion, recall and F1), class imbalance dictates the
one to pick. Macro statistics are highly affected
by imbalance, whereas micro statistics are able to
recover well. Despite suffering due to class imbal-
ance, though, macro statistics may be more appro-
priate than micro as they provide stronger discrim-
inative capabilities by providing equal importance
to classes of smaller sizes. However, micro statis-
tics are as discriminative as macro statistics in set-
tings when the classes are relatively balanced. We
are going to talk about the classification tasks in
the next two paragraphs.

Compared to semeval, ddi and i2b2 suf-
fer from stark class imbalances. semeval has a

number of examples in non-Other classes rang-
ing from 200 or 300 to 1000. Other class has
about 3000 examples which are not included in
the official metric calculations. ddi has one class
with 228 examples, while the others have about
1000 examples. The None class has 21,948 exam-
ples which is included for the official score cal-
culations. i2b2 has five classes in the 100-500
range, while the others contain about 2000 exam-
ples. None is the largest class with 19,934 exam-
ples.

Using micro statistics is reasonable for i2b2
because the highly imbalanced class is not in-
cluded in the calculations. Therefore, this metric
is able to be as discriminative as macro statistics.
For example, test set micro F1 between baseline
and entity blinding techniques is 59.75 and 68.76,
while that for macro F1 is 36.44 and 43.76. In con-
trast, using micro statistics is a bad idea for ddi
because the performance on the None class would
drive most of the predictive results of the model.
For example, micro-F1 between baseline and NER
blinding is 88.69 and 86.18, whereas macro-F1 is
65.53 and 57.22. semeval does not have a stark
contrast between micro and macro scores due to
Other class not being included in the calculation.
Using either metric to evaluate models is reason-
able for this dataset.

The detection task does not suffer from such
variations due to the lower class imbalance. For
example, ddi dataset micro-F1 between baseline
and NER blinding model is 90.01 and 88.74, while
macro-F1 is 81.74 and 79.03. This further sug-
gests that modeling differences and pre-processing
differences cause more variation in performance in
settings when the class imbalance is higher.

6 Comparison with SOTA

The best classification test set results found are
listed in table 9. Note that we do not compare
the extraction task for datasets other than ddi be-
cause the official challenges only compared classi-
fication results. Even though the official challenge
did not rank models based on the detection task,
recent papers in the ddi literature mention these
results.

Wang et al. (2016) report a result of 88% on
semeval and do not provide any public source
code for replication purposes. Despite being be-
low the state of the art range, REflex provides
the best performing publicly available model for
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Dataset Result Technique
semeval 85.89 E
ddi 71.97, 86.53 B
i2b2 71.01 B + piece + ent

Table 9: Best test set classification results for all
datasets, except ddi where detection results are men-
tioned after the classification results. piece = Piece-
wise pooling, ent = entity blinding, E = ELMo, B =
BERT-tokens. Result corresponds to F1 scores, macro
for semeval and ddi, but micro for i2b2.

this dataset. Zheng et al. (2017) report the best re-
sult on ddi (77.3%) but perform negative instance
filtering, which is a highly specific pre-processing
technique that does not fit with the flexible na-
ture of REflex. This technique cuts specific ex-
amples from the dataset, but the paper is unclear
about whether train as well as test data are short-
ened. If the test data is being shortened, the per-
formance comparison becomes unfair due to eval-
uation on different test samples. Unfortunately,
source code was not publicly available to answer
these questions.

Note that Zhao et al. (2016) show that negative
instance filtering causes a 4.1% improvement in
test set performance. If REflex were to use this
pre-processing technique, it would reach close to
the state-of-the-art (SOTA) number on the classi-
fication task. On the other hand, results from the
detection results outperform this model by 2.53%.

Sahu et al. (2016) (code unavailable) report a
state of the art result of 71.16% on i2b2, which
the results in table 9 are able to match. Note that
(Rink et al., 2011) report a result of 73.7% with a
support vector machine, but they used a larger ver-
sion of the dataset. Comparison against different
subsets of the dataset would not be fair.

Comparison against these numbers demon-
strates that REflex is the only open-source
framework, providing performance near SOTA
ranges for the three datasets. Therefore, REflex
can be used as a strong baseline model in future
relation extraction studies.

7 Conclusion

Our findings reveal variations offered by pre-
processing and training methodologies, which of-
ten go unreported. They indicate that comparing
models without having these techniques standard-
ized can make it difficult to assess the true source

of performance gains. Our key findings are:

1. Pre-processing can have a strong effect
on performance, sometimes more than modeling
techniques, as is the case of i2b2. Concept types
seem to offer useful information, perhaps reveal-
ing more general semantic information in the sen-
tence that can help with predictions. Fine-grained
Gold standard annotated concept types are most
beneficial, but those from automatically extracted
packages may also be useful as long as they con-
sist of multiple types. Punctuation and digits may
hold more importance in biomedical settings, but
stop words hold significance in all settings.

2. Reporting on one test set score can be prob-
lematic due to split bias, and a cross validation ap-
proach with significance tests may help ease some
of this bias. Drug blinding for ddi is commonly
used in the literature but does not seem to offer any
statistically significant improvements. Therefore,
it is unnecessary to use in this domain.

3. Contextualized embeddings are generally
helpful but the featurizing technique is important:
for CNN models, concatenating them with the
word embeddings before convolution is most ben-
eficial.

4. Picking the right hyperparameters for a
dataset is important to performance. We suggest
an initial manual hyperparameter search based
on cross validation significance tests because that
may be sufficient in most cases. If one is not
pressed for time, random search is a reasonable au-
tomated option for hyperparameter tuning, but re-
quires more experience for picking the right search
space and the right distributions for the hyperpa-
rameters.

5. Picking the right evaluation metrics for a new
dataset should be driven by class imbalance issues
for the classes chosen to be evaluated on.
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