
Proceedings of the Fourth Arabic Natural Language Processing Workshop, pages 239–243
Florence, Italy, August 1, 2019. c©2019 Association for Computational Linguistics

239

Mawdoo3 AI at MADAR Shared Task:
Arabic Tweet Dialect Identification

Bashar Talafha Wael Farhan Ahmed Altakrouri Hussein T. Al-Natsheh
Mawdoo3 Ltd, Amman, Jordan

{bashar.talafha, wael.farhan, ahmed.altakrouri, h.natsheh}@mawdoo3.com

Abstract
Arabic dialect identification is an inherently
complex problem, as Arabic dialect taxonomy
is convoluted and aims to dissect a continu-
ous space rather than a discrete one. In this
work, we present machine and deep learning
approaches to predict 21 fine-grained dialects
form a set of given tweets per user. We adopted
numerous feature extraction methods most of
which showed improvement in the final model,
such as word embedding, Tf-idf, and other
tweet features. Our results show that a sim-
ple LinearSVC can outperform any complex
deep learning model given a set of curated fea-
tures. With a relatively complex user voting
mechanism, we were able to achieve a Macro-
Averaged F1-score of 71.84% on MADAR
shared subtask-2. Our best submitted model
ranked second out of all participating teams.

1 Introduction

In recent years, an extensive increase in social
media platforms usages, such as Facebook and
Twitter, led to an exponential growth in the user-
base generated content. The nature of this data
is diverse. It comprises different expressions, lan-
guages, and dialects which attracted researchers to
understand and harness language semantics such
as sentiment, emotion, dialect identification, and
many other Natural Language Processing (NLP)
tasks. Arabic is one of the most spoken languages
in the world, being used by many nations and
spread across multiple geographical locations led
to the generation of language variations (i.e., di-
alects) (Zaidan and Callison-Burch, 2014).

In this paper, we tackle the problem of predict-
ing the user dialect from a set of his given tweets.
We describe our work on exploring different ma-
chine and deep learning methods in our attempt to
build a classifier for user dialect identification as
part of MADAR (Multi-Arabic Dialect Applica-
tions and Resources) shared subtask-2 (Bouamor

et al., 2018) (Bouamor et al., 2019). The task of
user dialect identification can be seen as a text
classification problem, where we predict the prob-
ability of a dialect given a sequence of words and
other features provided by the task organizers. Be-
sides reporting the results from different models,
we show how the provided dataset for the task is
not straightforward and requires additional analy-
sis, feature engineering, and post-processing tech-
niques.

In the next sections, we describe the methods
followed to achieve our best model. Section 2
lists previous work done, Section 3 analyses the
dataset, while Section 4 describes models and dif-
ferent approaches. Section 5 compares and dis-
cusses empirical results and finally conclude in
Section 6.

2 Related Work

Recent work in the Arabic language tackles the
task of dialect identification. Fine-grained dialect
identification models proposed by Salameh et al.
(2018) to classify 26 specific Arabic dialects with
an emphasis on feature extraction. They trained
multiple models using Multinomial Naive Bayes
(MNB) to achieve a Macro-Averaged F1-score of
67.9% for their best model.

In addition to traditional models, deep learn-
ing methods tackle the same problem. The re-
search proposed by Elaraby and Abdul-Mageed
(2018), shows an enhancement in accuracy when
compared to machine learning methods. In Huang
(2015), they used weakly supervised data or dis-
tance supervision techniques. They crawled data
from Facebook posts combined with a labeled
dataset to increase the accuracy of dialect identi-
fication by 0.5%.

In this paper, we build on top of methods from
Salameh et al. (2018) and Elaraby and Abdul-



240

Train Dev Test
Available 195227 26750 43918
Unavailable 22365 3119 6044
Total 217592 29869 49962
Retweet 135388 17612 29868

Table 1: Distribution of the Train, Dev and Test sets
used in our experiments.

Mageed (2018), by exploring machine and deep
learning models to tackle the problem of fine-
grained Arabic dialect identification.

3 Dataset

The dataset used in this work represents infor-
mation about tweets posted from the Arabic re-
gion, where each tweet is associated with its
dialect label (Bouamor et al., 2018) (Bouamor
et al., 2019). This dataset is collected from 21
countries which are Algeria, Bahrain, Djibouti,
Egypt, Iraq, Jordan, Kuwait, Lebanon, Libya,
Mauritania, Morocco, Oman, Palestine, Qatar,
Saudi Arabia, Somalia, Sudan, Syria, Tunisia,
United Arab Emirates, Yemen.

As shown in Figure 1, the distribution of tweets
among countries is unbalanced. Around 35% of
the tweets belong to Saudi Arabia, where only
0.08% belong to Djibouti.

The dataset contains 6 features for each user;
username of the Twitter user, tweet ID, the lan-
guage of the tweet as automatically detected by
Twitter, a probability scores of 25 city dialects and
MSA (Modern Standard Arabic) for each tweet
obtained by running the best model described in
(Salameh et al., 2018) and most importantly the
tweet text.

Each user has at most 100 tweets, labeled with
the same dialect, and exists in one set. For ex-
ample, if a user is listed in the training set then
that user will not exist in development nor test set.
Moreover, the maximum length of each tweet is
280 characters including spaces, URLs, hashtags,
and mentions which makes it challenging to iden-
tify the dialects automatically (Twitter).

Another challenge of the dataset is that around
61% of the tweets are retweets, as shown in Table
1. This means that the majority of the tweets are
a re-post of other Twitter users. For example, the

Figure 1: The distribution of 21 Arabic dialects in
MADAR Twitter corpus

tweet ”RT @Bedoon120: @Y » 	PðA « h. Q
	

jÖÏ @

https://t.co/sIKqXCUSAn for the user
@abushooooq8 is an Egyptian tweet but it has a
label of Kuwait because the user who retweeted is
Kuwaiti (i.e. @abushooooq8), where the original
author is Egyptian (i.e. @Bedoon120).

Table 1 shows the distribution of available and
unavailable data across different sets. It is also
worth mentioning that around 10% of the data is
missing; some tweets are not accessible because
they were deleted by the author or owner account
was deactivated.

4 Models

In this section, we explain our feature extraction
methodology then we go over the various experi-
mented approaches.

4.1 Feature Extraction
As a preprocessing step, normalization of Ara-
bic letters is common when it comes to deal with
Arabic text. We adopted the same preprocessing
methodology used in (Soliman et al., 2017).

Aravec: A pre-trained word embedding mod-
els proposed by (Soliman et al., 2017) for the Ara-
bic language using three different datasets: Twit-
ter tweets, World Wide Web pages, and Wikipedia
Arabic articles. Those models were trained us-
ing Word2Vec skip-gram and CBOW (Mikolov
et al., 2013). In our experiments, we used the 300-
dimensional Twitter Skip-gram AraVec model.

fastText: An extension to Word2Vec model
proposed by (Bojanowski et al., 2017). The
model feeds an input based on sub-words rather
than passing the entire words. In our experi-
ments, a model with 300 dimension was trained



241

on a combination of 5 different datasets: Au-
toTweet (Almerekhi and Elsayed, 2015), Ara-
pTweet (Zaghouani and Charfi, 2018), DART (Al-
sarsour et al., 2018), PADIC (Parallel Arabic DI-
alectal Corpus) (Harrat et al., 2014), MADAR
shared tasks (Bouamor et al., 2018) (Bouamor
et al., 2019).

Tf-idf: It has been proven that Tf-idf is efficient
to encode textual information into real-valued vec-
tors that represent the importance of a word to
a document (Salameh et al., 2018). One of the
drawbacks of Tf-idf vectorized representation of
the text is that it looses the information of the
word order (i.e., syntactical information). Consid-
ering n-grams, for both levels word and charac-
ters, reduces the effect of that drawback. Accord-
ingly, unigram and bigram word level Tf-idf vec-
tors were extracted in addition to a character level
Tf-idf vectors with n-gram values ranging from 1
to 5.

Features specific to tweets: There are features
that are unique to Twitter such as user mentions,
(e.g., @abushooooq8) and emojis. It has been
found that using username as a feature can help
the model understand the user dialect, for instance,
it can easily find that the users @7abeeb ksa,
@a ksa2030 @alanzisaudi have a Saudi Arabia
dialect. Character level unigram Tf-idf has been
extracted from each of the mentioned features.

4.2 Classification Methods
We used a range of classification methods starting
from traditional machine learning methods into
more complicated deep learning techniques.

4.2.1 Machine Learning Approaches
Traditional models include linear and probabilis-
tic classifiers with various feature engineering
techniques. We used SVM classifier that imple-
ments LinearSVC from the Scikit-learn library
(Pedregosa et al., 2011). We used the LinearSVC
model to predict the dialect given the tweet text
represented as Tf-idf, username features and lan-
guage model probabilities as formulated in Equa-
tion 1:

ŷ = argmax
d∈D

P (d|tfidf, tweet feat, lm) (1)

where ŷ is the predicted dialect, D is probability
space of all dialects, tfidf is the Tf-idf features ex-
tracted from a given tweet, tweet feat is the tweet

features and lm is the language model probabili-
ties.

4.2.2 Deep Learning Approaches

fastText Classification: The word embedding of
the words in an input sentence that is fed into a
weighting average layer. Then, it is fed to a linear
classifier with softmax output layer (Joulin et al.,
2017).

SepCNN: Stands for Separable Convolutional
Neural Networks (Denk, 2017), and is composed
of two consecutive convolutional layers. The first
is operating on the spatial dimension and per-
formed on channels separately, while the second
layer convolutes over the channel dimension only.
Word embedding of the sentences is looked up
from AraVec(Soliman et al., 2017). Then, the
embedding of each word in the sentence (i.e.,
the tweet) are passed into a number of SepCNN
blocks followed by a max pooling layer.

Word-level LSTM: A traditional deep learn-
ing classification method. The word sequence is
passed into an AraVec layer to look up word em-
bedding and then fed into a number of LSTM lay-
ers. The final word sequence is used as an input
to a softmax layer to predict the dialect (Liu et al.,
2016).

Char-Level CNN: In this architecture, the in-
put is represented as characters that are converted
into 128 character embedding. Those embedding
vectors are then passed into a number of one-
dimensional convolutional layers. Each convolu-
tional layer is followed by a batch normalization
layer to optimize training and to add a regulariza-
tion factor. The final output is then passed into
one hidden layer and followed by a softmax out-
put layer (Zhang et al., 2015).

Char-Level CNN and Word-level LSTM: A
combination of the previous two methods. The
output of word-level LSTM is concatenated with
character-Level CNN before passing both of them
into a hidden layer followed by a softmax output
layer.

Char-Level CNN and Word-level CNN: In
this network words are transformed into word em-
bedding using AraVec, then concatenated with the
output of character level CNN. The concatenated
result is fed into the LSTM layer, which computes
the final output. Then, passed into a hidden layer
and a softmax output layer to make the final pre-
diction (Zhang et al., 2017).



242

Model Hyperparameters Dev Test
Acc F1 Acc F1

LinearSVC C=1.0, penalty=L2, loss=hinge, tolerance=0.0001 54.26 38.95 - -
fastText Classifier emb size = 100 48.5 31.12 - -
SepCNN filters=128, dense units=256, emb size=300, kernel=4, blocks=3 45.46 26.30 - -
Word LSTM embed size=300, dense units=256, lstm size=512 44.91 26.89 - -
Word Bi-LSTM embed size=300, dense units=256, lstm size=512 45.08 26.36 - -
Word LSTM with fastText embed size=300, dense units=256, lstm size=512 50.59 34.65 - -
Char CNN dense units=256, char embed=128, filters=64, kernel sizes= [3, 3, 4] 41.55 20.25 - -
Char CNN and Word LSTM Combining hyperparameters of Char CNN and Word LSTM models 47.12 30.32 - -
Char CNN and Word CNN embed size=300, char embed size=128, char filters=[6,5,4,3,2] 43.96 29.0 - -
LinearSVC Combined C=1.0, penalty=L2, loss=hinge, tolerance=0.0001 77.33 70.43 75.40 65.54
LinearSVC with User Voting ranges=5, retweet weight=8, unavailable weight=1, saudi weight=1 81.67 71.60 76.20 69.86
LinearSVC with Threshold C=1.0, penalty=L2, loss=hinge, tolerance=0.0001, threshold=75% 80.02 70.72 78.00 67.75

Table 2: Final results on the development set for MADAR shared subtask-2

5 Results and Discussion

Two types of experiments were conducted to
evaluate our models. At first, each tweet was
treated independently with its corresponding label
in the training and testing stages without group-
ing tweets for each user. All our experiments
on MADAR shared subtask-2 were evaluated us-
ing the Macro-Averaged F1-score. Table 2 shows
the accuracy and Macro-Averaged F1-score of
the LinearSVC model. LinearSVC outperformed
other traditional machine learning models hence
we discarded reporting their results. On the other
hand, deep learning models are known to gener-
alize better on a large dataset, but unexpectedly it
under-performed machine learning models.

The second type of experiments were done by
grouping predictions per user. The unifying ap-
proach was done by either combining all tweets
together in one document per user or by apply-
ing voting per tweet. In the former, we applied
LinearSVC on the combined data with averaging
the language model scores for all the tweets per
user. This model achieved results of 77.33% ac-
curacy and 70.43% Macro-Averaged F1-score. In
the latter, we took the output of the first model
(Uncombined LinearSVC) and applied two voting
techniques.

The first technique was user voting based on di-
alect weighting. This approach aims to give more
emphasis on less frequent dialects by multiplying
each predicted label with a weight associated for
each dialect d weight. Which is calculated as fol-
lows:

step =
3√max count− 3√min count

5

d weight = 6− ceil(
3√
d count− 3√min count

step )

Where max count is the number of tweets for the
largest dialect (i.e., Saudi Arabia), min count is
the number of tweets for the smallest dialect (i.e.,
Djibouti), step is a range defined as inverse cubic
difference between maximum and minimum di-
alect counts divided by 5. dialect weight is an in-
teger between 1 and 6 that defines dialect weight.
Moreover, we found that increasing the weight of
a retweet to 6 enhanced the accuracy of the model,
and decreasing the weight of <UNAVAILABLE>
tweets to 1 had a similar effect. The final user vot-
ing model achieved 81.67% accuracy and 71.60%
F1-score which is the best model as shown in Ta-
ble 2

Secondly, the other voting technique is based
on majority voting with a penalty on the largest
dialect. In this approach, we took the most fre-
quent label from user tweets as the final label for
that user. We impose selecting Saudi Arabia only
if 75% of the predictions were Saudi Arabia for a
given user. This approach achieved 80.02% accu-
racy and 71.84% Macro-Averaged F1-score.

6 Conclusion

This paper describes various methods applied on
MADAR shared subtask-2 to predict an Arabic
dialect from a set of given tweets, username,
and other features. Experimental results show
that LinearSVC was the most powerful predic-
tion model, achieving the best Macro-Averaged
F1-score than other machine learning models and
deep learning ones. Despite the fact that there was
a substantial amount of unavailable tweets in our
dataset, yet we were able to achieve a relatively
high F1-score of 71.60% on the development set
and 69.86% on the test set, ranking second in the
competition.



243

References

Hind Almerekhi and Tamer Elsayed. 2015. Detect-
ing automatically-generated arabic tweets. In AIRS,
pages 123–134. Springer.

Israa Alsarsour, Esraa Mohamed, Reem Suwaileh, and
Tamer Elsayed. 2018. Dart: A large dataset of di-
alectal arabic tweets. In Proceedings of the Eleventh
International Conference on Language Resources
and Evaluation (LREC-2018).

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Houda Bouamor, Nizar Habash, Mohammad Salameh,
Wajdi Zaghouani, Owen Rambow, Dana Abdul-
rahim, Ossama Obeid, Salam Khalifa, Fadhl Eryani,
Alexander Erdmann, and Kemal Oflazer. 2018. The
MADAR Arabic Dialect Corpus and Lexicon. In
Proceedings of the Language Resources and Eval-
uation Conference (LREC), Miyazaki, Japan.

Houda Bouamor, Sabit Hassan, and Nizar Habash.
2019. The MADAR Shared Task on Arabic Fine-
Grained Dialect Identification. In Proceedings of the
Fourth Arabic Natural Language Processing Work-
shop (WANLP19), Florence, Italy.

Timo I. Denk. 2017. Text classification with separable
convolutional neural networks.

Mohamed Elaraby and Muhammad Abdul-Mageed.
2018. Deep models for arabic dialect identification
on benchmarked data. In Proceedings of the Fifth
Workshop on NLP for Similar Languages, Varieties
and Dialects (VarDial 2018), pages 263–274.

Salima Harrat, Karima Meftouh, Mourad Abbas, and
Kamel Smaili. 2014. Building resources for alge-
rian arabic dialects. In 15th Annual Conference of
the International Communication Association Inter-
speech.

Fei Huang. 2015. Improved arabic dialect classifica-
tion with social media data. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 2118–2126.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427–431. Association for Computational
Linguistics.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang.
2016. Recurrent neural network for text classi-
fication with multi-task learning. arXiv preprint
arXiv:1605.05101.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. Journal of machine
learning research, 12(Oct):2825–2830.

Mohammad Salameh, Houda Bouamor, and Nizar
Habash. 2018. Fine-grained Arabic dialect identi-
fication. In Proceedings of the International Con-
ference on Computational Linguistics (COLING),
pages 1332–1344, Santa Fe, New Mexico, USA.

Abu Bakr Soliman, Kareem Eissa, and Samhaa R El-
Beltagy. 2017. Aravec: A set of arabic word embed-
ding models for use in arabic nlp. Procedia Com-
puter Science, 117:256–265.

Twitter. Api reference index twitter developers.

Wajdi Zaghouani and Anis Charfi. 2018. Arap-tweet:
A large multi-dialect twitter corpus for gender, age
and language variety identification. arXiv preprint
arXiv:1808.07674.

Omar F Zaidan and Chris Callison-Burch. 2014. Ara-
bic dialect identification. Computational Linguis-
tics, 40(1):171–202.

Shiwei Zhang, Xiuzhen Zhang, and Jeffrey Chan.
2017. A word-character convolutional neural net-
work for language-agnostic twitter sentiment analy-
sis. In Proceedings of the 22nd Australasian Docu-
ment Computing Symposium, page 12. ACM.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems, pages 649–657.

https://developer.twitter.com/en/docs/api-reference-index.html

