
Proceedings of the Fourth Arabic Natural Language Processing Workshop, pages 108–118
Florence, Italy, August 1, 2019. c©2019 Association for Computational Linguistics

108

Neural Arabic Question Answering

Hussein Mozannar, Karl El Hajal, Elie Maamary, Hazem Hajj
Department of Electrical and Computer Engineering

American University of Beirut
{hssein.mzannar,karlhajal,eliemaamary17}@gmail.com; hh63@aub.edu.lb

Abstract

This paper tackles the problem of open domain
factual Arabic question answering (QA) us-
ing Wikipedia as our knowledge source. This
constrains the answer of any question to be a
span of text in Wikipedia. Open domain QA
for Arabic entails three challenges: annotated
QA datasets in Arabic, large scale efficient in-
formation retrieval and machine reading com-
prehension. To deal with the lack of Arabic
QA datasets we present the Arabic Reading
Comprehension Dataset (ARCD) composed of
1,395 questions posed by crowdworkers on
Wikipedia articles, and a machine translation
of the Stanford Question Answering Dataset
(Arabic-SQuAD). Our system for open do-
main question answering in Arabic (SOQAL)
is based on two components: (1) a docu-
ment retriever using a hierarchical TF-IDF ap-
proach and (2) a neural reading comprehen-
sion model using the pre-trained bi-directional
transformer BERT. Our experiments on ARCD
indicate the effectiveness of our approach with
our BERT-based reader achieving a 61.3 F1
score, and our open domain system SOQAL
achieving a 27.6 F1 score.

1 Introduction

One of the goals in artificial intelligence (AI) is to
build automated systems that can perform open-
domain question answering (QA) through under-
standing natural language and gathering knowl-
edge (Kwiatkowski et al., 2019). The driver be-
hind progress in English QA has been the release
of massive datasets including the Stanford Ques-
tion Answering Dataset (SQuAD), WikiQA (Ra-
jpurkar et al., 2016; Yang et al., 2015). The task in
these datasets is to find the span of text in a docu-
ment that answers a given question. On the other
hand, progress in Arabic QA systems has lagged
behind their English counterparts. While there has
been a good body of work on methods for question

, YÊJ

	
®

	
K

B@ I. ªÊÓ ú




	
¯

�
éJ
ÖÞ

�QË @ é
�
KAK
PAJ.Ó É¿ ÈñK. Q

	
®K
A

	
K ø



XA

	
K I. ªÊK


. h. Q
	
®
�
JÓ 54,074 Pñ

	
�mÌ ©�

�
�K
 ø




	
YË@ ð

½Ê
�
J
	
¯ , ÈñK. Q

	
®J
Ë ø



XA

	
JË XðYÊË @ ðYªË@ Y

�
JK
A

	
KñK


Q�
��

�
�

	
�AÓ ø



XA

	
K Q�.

�
JªK


,
�
éK


	Q�
Êm.
�

	
'B


@ ÐY
�
®Ë@

�
èQ» ú




	
¯

�
HA�

	
¯A

	
JÖÏ @ Ñë


@ 	áÓ Q�.

�
Jª

�
K

�
HAêk. @ñÖÏ @

Q�
��

�
�

	
�AÓ

�
�

�
®k

�
IJ
k , H. A

�
®Ë


CË

�
A
�
®J


�
®m�

�
' ù



K
XA

	
K Q�

�»

@ ©Òm.

�
�
' �

IJ
k

.
�
éËñ¢�. 59 ÈñK. Q

	
®J
Ë

�
�

�
®k AÒ

	
J�
K. ,62 Y

�
JK
A

	
KñK


? ÈñK. Q
	
®J
Ë ø



XA

	
K Aê

�
®

�
®k

�
éËñ¢�.

	áÓ Õ»

�
éËñ¢�. 59

? é
�
KAK
PAJ.Ó ÈñK. Q

	
®J
Ë ø



XA

	
K I. ªÊK


	áK



@

YÊJ

	
®

	
K

B@ I. ªÊÓ

Figure 1: Example data point from ARCD containing
a paragraph with two accompanying questions

answering, they mostly have a common limitation
of being tested on small amounts of data and rely-
ing on classical methods (Shaheen and Ezzeldin,
2014).

In this work, we tackle the problem of answer-
ing Arabic open-domain factual questions using
Arabic Wikipedia as our knowledge source. The
open-domain setting poses many challenges, from
efficient large scale information retrieval, to highly
accurate answer extraction modules, and this re-
quires a sizable amount of data for training and
testing.

First, to deal with the need of large Arabic
reading comprehension datasets, we develop the
following: (1) The Arabic Reading Comprehen-
sion Dataset (ARCD) composed of 1,395 crowd-
sourced questions with accompanying text seg-



109

ments on Arabic Wikipedia as seen in figure 1, and
(2) Arabic-SQuAD consisting of 48k paragraph-
question-answer machine translated tuples from
the SQuAD dataset.

Second, modern open-domain QA systems are
generally composed of two parts: a retriever that
obtains relevant segments of text, and a machine
reading comprehension (MRC) model that ex-
tracts the answer from the text (Chen et al., 2017).
For our retriever, we propose the use of a hierar-
chical TF-IDF retriever that is efficiently able to
trade off between n-gram features and the number
of documents retrieved. We chose raw Wikipedia
text as our information source instead of knowl-
edge bases (Lehmann et al., 2015) which are com-
monly used for open-ended QA as it enables our
approach to tackle other domains and settings with
little adaptation. Now there has been remarkable
progress in designing neural MRC models that
read and extract answers from short paragraphs;
we selected two of the best performing models
on the SQuAD dataset (Rajpurkar et al., 2016) as
our document readers. The first is QANet (Yu
et al., 2018), an efficient convolution and self-
attention-based neural network, and the second is
BERT (Devlin et al., 2018), a transformer-based
pre-trained model. From the document retriever
and reader we build an open domain QA system
named SOQAL by combining confidence scores
from each.

We evaluated our system components on the
crowdsoured ARCD dataset: Our hierarchical TF-
IDF retriever is competitive with Google Search,
and our BERT reader is the current state-of-the-art
for reading comprehension. Finally, our open do-
main system SOQAL achieves a respectable 27.6
F1 on ARCD.

To summarize, the contributions of the paper
are:

• Datasets for Arabic QA. Crowdsourced
Arabic Reading Comprehension Dataset
(ARCD) of 1,395 questions, and trans-
lated Arabic-SQuAD: 48k translated ques-
tions from (Rajpurkar et al., 2016).

• Neural Reading comprehension in Arabic.
State of the art MRC models for Arabic based
on BERT (Devlin et al., 2018) and QANet
(Yu et al., 2018).

• Open domain Arabic QA system. End-to-
end system for open domain Arabic questions
using a hierarchical TF-IDF retriever, BERT

Dataset Source Formulation Size

Arabic-SQuAD Translated
SQuAD

p,q,a 48,344

ARCD Arabic
Wikipedia

p,q,a 1,395

ArabiQA
(Benajiba Yassine, 2007)

Wikipedia q,a 200

DefArabicQA
(Trigui et al., 2010)

Wikipedia and
Google search
engine

q,a with doc-
uments

50

Translated TREC and
CLEF
(Abouenour Lahsen and Rosso,
2010)

Translated
TREC and
CLEF

q,a 2,264

QAM4MRE
(Peas and Sporleder, 2011)

selected topics document,q
and multiple
answers

160

DAWQUAS
(Ismail and Homsi, 2018)

auto-generated
from web
scrape

q,a 3205

QArabPro
(Akour et al., 2011)

Wikipedia q,a 335

Table 1: Available question answering datasets in Ara-
bic. p:paragraph, q:question and a:answer

and linear answer ranking.

All the data and system implementation
is available at https://github.com/
husseinmozannar/SOQAL.

2 Related Work

Open-domain Arabic question answering. The
state of current Arabic QA systems is summarized
in (Shaheen and Ezzeldin, 2014): research has
focused mostly on open-ended QA using classi-
cal information retrieval (IR) methods, and there
are no common datasets for comparisons. Con-
sequently, progress has been slow. Furthermore,
the Arabic language presents its own set of dif-
ficulties: given the highly intricate nature of the
language, proper understanding can be difficult.
For instance, é

	
KñÊ¿


AJ
�

	
¯ means “so they will eat

it”, which demonstrates the complexity that can
be presented by a single word. Moreover, Arabic
words require diacritization for their meaning to

be completely understood. For example, �Õ

��
Î

�
« trans-

lates into “he taught”, and �ÕÎ�

�
« means “found out”;

modifying one diacritic changes the meaning en-
tirely.

We now review some of the methods and
datasets used in the literature and compare them
in table 1. Most of the datasets listed are of very
limited size and do not include accompanying text
segments so as to enable reading comprehension.
Furthermore, all datasets with size bigger than

https://github.com/husseinmozannar/SOQAL
https://github.com/husseinmozannar/SOQAL


110

1000 questions are synthetically generated. Ap-
proaches have tackled specific types of questions
and are heavily dependent on their nature focus-
ing more on document retreival. In (Azmi and
Alshenaifi, 2016), they attempt to answer ”why”
questions using classic IR methods and rhetorical
structure theory, and their methods are evaluated
on a set of 100 questions. On the other hand, De-
fArabicQA (Trigui et al., 2010) focuses on defini-
tion question and uses an answer ranking module
based on word frequency. QArabPro (Akour et al.,
2011) employs a rule-based question answering
system and obtains an 84% accuracy on 335 ques-
tions based on Wikipedia. The SemEval task 3 in
2015, 2016, and 2017 (Nakov et al., 2017) tack-
led community question answering. It included a
task in Arabic with each data point consisting of a
paragraph, a question, and multiple answers, and
the goal was to rank them in order of relevance.
One of the strategies used to solve the 2015 edi-
tion was to train an SVM ranker by embedding the
questions and answers using Word2vec (Belinkov
et al., 2015). The type of data used is not construc-
tive for training answer extraction systems but can
be helpful for recognizing relevance.

QA Datasets. As previously mentioned, the
driver behind progress in QA has been the release
of large datasets in addition to advances in deep
learning and language representation models (De-
vlin et al., 2018). The most popular benchmark
for reading comprehension has been the Stanford
Question Answering Dataset (Rajpurkar et al.,
2016). Other notable datasets include: WikiQA
(Yang et al., 2015), a sentence selection task using
Wikipedia passages, and TriviaQA (Joshi et al.,
2017), a dataset of trivia questions with provided
evidence.

Reading comprehension and QA. Recently,
machine reading comprehension has made signif-
icant progress using recurrent models and atten-
tion mechanisms to capture long term interactions
(Seo et al., 2016), and this has prompted its use
as part of open-domain QA. On the other hand,
given that recurrent networks are slow in train-
ing and inference, QANet (Yu et al., 2018) pro-
poses an approach based only on convolutions and
self-attention that is able to achieve very compet-
itive results on SQuAD while being 10x faster
than recurrent based approaches such as Bidirec-
tional Attention Flow (BiDAF) (Seo et al., 2016).
For open-domain QA, (Chen et al., 2017) in-

Figure 2: Interface for the crowdworkers

vestigates the use of Wikipedia as a knowledge
source and implements a two component system
based on a TF-IDF retriever and a RNN reader
achieving a 29.8% exact- match accuracy on open-
SQuAD. Other approaches have attempted to build
more sophisticated retrievers by formulating it as
a reinforcement learning problem (Wang et al.,
2018b,a), or as a supervised learning problem us-
ing distant supervision for data (Das et al., 2018;
Lin et al., 2018).

In the following sections we will first describe
the datasets collected, and then our proposed
method for Arabic open-domain question answer-
ing.

3 Dataset Collection

3.1 Arabic Reading Comprehension Dataset

To properly evaluate our system, we must have
questions written by proficient Arabic speakers,
and thus we resort to crowdsourcing to develop our
dataset.

Task Description. Each task presented to the
crowdworkers consists of five articles taken from
Arabic Wikipedia, from which we extracted the
first three paragraphs with a length greater than
250 characters. The worker has to write three
question-answer pairs for each paragraph in clear
Modern Standard Arabic, where the answer to
each question should be an exact span of text from
the paragraph. The interface, shown in figure 2,



111

consists of a paragraph along with two text boxes
for each of the 3 question-answer pairs. Pasting
is disabled in the question fields in order to en-
courage workers to use their own words, but it
is enforced in the answer fields to guarantee that
the answer is taken as-is from the paragraph. Be-
fore workers begin the task, they have to answer
a reading comprehension question from a test set
we created to make sure of their language profi-
ciency. Only workers who succeeded in the test
were accepted.

Article curation. The articles presented in the
tasks were 155 articles randomly sampled from
the 1000 most viewed articles on Wikipedia in
2018. We used MediaWiki’s API1 to retrieve the
most viewed articles per month in 2018 for Arabic
Wikipedia and aggregated the results. The articles
covered a diverse set of topics including religious
and historical figures, sports celebrities, countries,
and companies. We additionally manually filtered
out adult content.

Crowdsourcing. We resorted to Amazon Me-
chanical Turk for crowdsourcing. Crowdworkers
were required to have a minimum HIT acceptance
of 97%, and at least 100 HITs submitted. More-
over, our task description highlighted the need for
good Arabic skills. Workers were advised to spend
3 to 4 minutes per paragraph and were paid close
to 10 USD per hour. They were encouraged to ask
difficult questions framed in such a way that they
can be answered outside the scope of the para-
graph. In total, we collected 1,395 questions based
on 465 paragraphs from 155 articles based on the
Amazon Turk HITs.

3.2 Arabic-SQuAD

Translating SQuAD. While the crowdsourcing of
questions by proficient Arabic writers is essen-
tial to properly evaluate our systems, noisy data
could well suffice for training. Indeed, backtrans-
lation as a means for data augmentation has been
effective in improving the performance of neu-
ral MRC (Yu et al., 2018), and this gives hope
that translated data could be used to train our ma-
chine reading comprehension module. We chose
to translate SQuAD version 1.1 (Rajpurkar et al.,
2016). It is currently the most popular benchmark
for MRC and was collected through crowdsourc-
ing based on Wikipedia articles. SQuAD contains

1Availabe at https://en.wikipedia.org/w/
api.php

107,785 paragraph-question-answer tuples on 536
articles, and we translated the first 231 articles of
the SQuAD training set using the Google Trans-
late neural machine translation (NMT) API (Wu
et al., 2016). This resulted in 48,344 questions on
10,364 paragraphs.

4 Our System: SOQAL

We will now describe the architecture of our sys-
tem for open domain question answering for the
Arabic language (SOQAL). It is composed of
three modules: (1) a document retriever that ob-
tains relevant documents to the question, (2) a ma-
chine reading comprehension module that extracts
answers from the documents retrieved, and an (3)
answer ranking module that ranks the answers in
order of relevance by taking in scores from both
the document retriever and the reader. The inputs
to the system are a question consisting of m to-
kens q = {q1, · · · , qm}, and the entirety of Arabic
Wikipedia, and its output is a small span of text ex-
tracted from Wikipedia which should answer the
question. The pipeline is illustrated in figure 3.

4.1 Hierarchical TF-IDF Document
Retriever

The goal of this module is to select the docu-
ments that are most relevant to the question, thus
reducing the span of search of our reader. Ara-
bic Wikipedia is made up of 664,768 indexed ar-
ticles with an average of 3.4 paragraphs per arti-
cle, totalling 2,683,743 paragraphs with an aver-
age of 233 characters per paragraph. We discard
imagery, lists, and other structured information so
that our approach could translate well to various
knowledge sources.

There are two scopes on which we can search:
either articles or paragraphs. We denote the set of
documents searched over as D = {d1, · · · , dn},
where for 1 ≤ i ≤ n, di is a single document
which can be either an article or a paragraph from
an article.

Inspired by classical QA systems (Chen et al.,
2017), we employ a term frequency-inverse doc-
ument frequency (TF-IDF) based document re-
triever given its efficiency. Each document is first
tokenized and stemmed using the NLTK (Bird,
2006) Arabic tokenizer where stopwords are re-
moved. The TF-IDF matrix of weights of the doc-
ument set, i.e. Arabic Wikipedia, is then con-
structed using n-gram counts to take into account

https://en.wikipedia.org/w/api.php
https://en.wikipedia.org/w/api.php


112

كم تبلغ قوة لكمة محمد على؟

باوند1,000حوالي 

كم تبلغ قوة لكمة محمد على؟

Figure 3: Architecture of our open domain question answering system SOQAL. BERT illustration is adapted from
(Devlin et al., 2018)

local word order. As n increases, the retriever
becomes more accurate, but the retrieval process
becomes slower and more memory prohibitive.
Each document’s vector is normalized. Next, the
TF-IDF vector weights of the question are com-
puted based on the vocabulary of the document set.
The score for each document is then computed as
the cosine similarity between the question and the
document vectors. We use a sparse matrix repre-
sentation for the TF-IDF matrix to speed up com-
putations. Finally, we return the top k documents
with the highest similarity where k ∈ N is a hy-
perparameter. The higher k is, the more likely it
is that the set of retrieved documents contains rel-
evant documents, and the slower and more error-
prone is the answer extraction process.

To obtain the benefits of using large n-gram fea-
tures while keeping k small and being computa-
tionally efficient, we propose the following hierar-
chical TF-IDF retriever approach. The first step is
to build a TF-IDF retriever on Arabic Wikipedia
with bigram features and a very large k, say ≈
1000, and obtain the set of retrieved documents
for a given question, call it D′. Then, for each
question, we construct a seperate TF-IDF retriever
using as document setD′ with 4-gram features and
a small k, say≈ 15. The second retriever does not
sacrifice much in terms of the accuracy of the first
retrieval step, as 4-gram features are highly infor-
mative and do not add significant computations.

4.2 BERT Document Reader
Our proposed reader is Bert (Devlin et al., 2018),
a pre-trained language model that is currently the
state of the art on the SQuAD leaderboard 2.

Its core model is a bi-directional Transformer
(Vaswani et al., 2017). The input text is first tok-
enized using a shared Wordpiece (Wu et al., 2016)
vocabulary of 104 languages, and it is then embed-
ded; note that Arabic diacritics are removed. Each
input point of question and paragraph pairs is rep-
resented as a single sentence separated by a special
token. We need to learn two new vectors: start and
end S,E ∈ RH vectors indicating the position of
the answer; H is the dimension of the last hidden
layer outputs. For each token i in the paragraph,
we take the final hidden state of the Transformer
Ti and let the probability that i is the start or end
of the answer be:

Pstart(i) ∝ exp(STTi)

Pend(i) ∝ exp(ETTi)

Note that we take the un-normalized exponential
to be able to compare across documents. At in-
ference time we predict the span (i, j) such that
i ≤ j ≤ i + 15 that maximizes Pstart(i)Pend(j).
The training objective is the sum of the log likeli-
hood for each of the start and end positions.

4.3 Answer Ranking
Let us recall the operation of the end-to-end sys-
tem. The question is first passed to the retriever

2SQuAD leaderboard https://rajpurkar.
github.io/SQuAD-explorer/

https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/


113

and the top k documents are gathered; if a docu-
ment unit is an article then we gather all of its para-
graphs. Along with the documents’ text, we obtain
a score for each document denoted DocScore(i)
from the retriever; paragraphs have the same score
as their document. For our hierarchical TF-IDF
retriever, the scores are the cosine similarities be-
tween the document and the question.

The paragraphs obtained from the retriever are
each then fed as input to the document reader to
obtain candidate answers. We obtain a score for
each candidate answer i denoted:

AnsScore(i) ∝ Pstart(i) · Pend(i)

To make sure the answer and document scores
are on the same scale, we normalize both individ-
ually by passing each through a softmax function.
The final step to obtain the answer of the question
is by combining the scores through a linear combi-
nation and pick the maximizing answer as follows:

argmax
i∈[k]

β ·DocScore(i)+(1−β)·AnsScore(i)

Where β ∈ [0, 1] is a hyperparameter chosen
through a line search using a development set.

As a note, since articles can be very large, one
can additionally use a TF-IDF retriever with 4−
gram features to obtain a smaller set of paragraphs,
thus reducing the load on the reader. While this
step was not performed for our experimental eval-
uation, it is crucial when deploying the QA system
for usage.

5 Dataset Analysis

5.1 ARCD
In this section we analyze the properties of the
Arabic Reading Comprehension Dataset. To bet-
ter understand the difficulty of answering the ques-
tions, we randomly sampled 100 questions for the
following analysis.

Answer diversity. We, the authors, manually
categorized the answers by first separating the nu-
merical and non-numerical answers. Numerical
answers were either identified as dates by looking
at the question, or were otherwise labeled as other
numeric. For the non-numerical answers, we iden-
tify the type of phrase as either a verb, adjective, or
noun phrase. If it is a noun phrase, we check using
MADAMIRA (Pasha et al., 2014) for named en-
tities, and then manually verify the outcome. The
results are shown in table 2.

Answer type Percentage Example

Date 17% 1976 �PAÓ 10

Person 17% QëA
	

�Ë@ Õæ


Ê� Q«A

�
�Ë@ I. �
J.¢Ë@

Location 10% AJ
�
�
@

Organization 9% ÐY
�
®Ë@

�
èQºË ø




	Q�
Êm.
�

	
'B


@ XAm�
�
'B@

Verb Phrase 7% �
éK
Pñ£@Q�.ÓB


@

�
IÒ�

�
®

	
K @

Adjective Phrase 4% AêË ¨A�
�
�@ úæ�

�
¯

@

Noun Phrase 12% PYj
	
JÖÏ @ XP@ñË@

Other Numeric 15% Ð@Q
	
«ñÊJ
» 250

Other Entity 9% H. X

B@ ú




	
¯ ÉK. ñ

	
K

�
è 	Q


KAg.

Table 2: Answer categories percentages in ARCD ac-
cording to the categorization by (Rajpurkar et al., 2016)

Question Reasoning To better understand the
reasoning required to answer the questions, we
manually labeled the questions according to the
following reasoning categories as in (Trischler
et al., 2017; Rajpurkar et al., 2016):

• Word matching (synonyms): question
matches the same word pattern up to syn-
onyms in the paragraph; simple pattern
matching is required.

• Word matching (world knowledge): question
matches the pattern of the paragraph, how-
ever additional inference using world knowl-
edge is required to answer.

• Syntactic variation: The question’s syntactic
dependency structure does not match that of
the answer sentence.

• Multiple sentence reasoning: The question
draws on knowledge from multiple sen-
tences. Only after making necessary links
across sentences can it be answered.

• Ambiguous: The question cannot be an-
swered given the information in the para-
graph or is unclear.

The results and examples are shown in table 3.

5.2 Arabic-SQuAD
We discuss some of the issues resulting from the
machine translation of SQuAD and how we han-
dled them.

We observed that translation performed well
for paragraphs and questions and maintained their
original meaning. The problem is, NMT is heav-
ily context dependent, thus identical words and
phrases have different translations if the context
is varied. This led to an inconsistency between
the translation of the answers and paragraphs with



114

Reasoning Example Percentage

Word matching
(synonyms)

. YÊJ

	
®

	
K

B@ I. ªÊÓ ú




	
¯

�
éJ
ÖÞ

�QË @ é
�
KAK
PAJ.Ó É¿ ÈñK. Q

	
®J
Ë ø



XA

	
K I. ªÊK


Q�
��

�
�

	
�AÓ

�
�

�
®k

�
IJ
k , ÈñK. Q

	
®J
Ë ø



XA

	
JË XðYÊË @ ðYªË@ Y

�
JK
A

	
KñK


Q�
��

�
�

	
�AÓ ø



XA

	
K Q�.

�
JªK


.
�
éËñ¢�. 59 ÈñK. Q

	
®J
Ë

�
�

�
®k AÒ

	
J�
K. ,62 Y

�
JK
A

	
KñK


? ÈñK. Q
	
®J
Ë ø



XA

	
K Aê

�
®

�
®k

�
éËñ¢�.

	áÓ Õ» :Q

59%

Word matching
(world knowledge)

, ø



Qå�Ó ù




K @ðP (2006 �¢�

	
«


@ 30 - 1911 Q�.Ò��
X 11)

	
 ñ

	
®m× I. J
m.

�
	
'

	
Y

	
JÓ

	
 ñ

	
®m× I. J
m.

�
	
' I.

�
J» . H. X


B@ ú




	
¯ ÉK. ñ

	
K

�
è 	Q


KAg. úÎ« 	Q


KAg ú



G
.
Q« Èð


@ ñë

.2004 ú
�
æk QÒ

�
J�@ð

�
HAJ


	
�J
ªK. P


B@

�
éK
 @YK.

?
	

 ñ
	
®m× I. J
m.

�
	
' AîD
Ê« É�k

�
éJ
ÖÏ A«

�
è 	Q


KAg. Ñë


@ ù



ë AÓ :Q

15%

Syntactic variation ,
	
àQ

�
®Ë@ 	áÓ Èð


B@ Y

�
®ªË@ ú




	
¯ ú



Îë


B@ ø



XA

	
JË @ ��
�


A
�
K

�
èQº

	
¯ ½K. ù




	
®¢Ë QÔ« hQ£

Yg. ðð , úÍð

B@

�
ék. PYËAK. A

�
J
�AJ
� AJ
ÊªË@ �P@YÖÏ @

�
éJ. Ê£ ø



XA

	
K ��
�


A
�
K

	
à


@ Q�.

�
J«@ é

	
K

B

.
�
é

	
�AK
QË @

�
é�PAÜØð

	
¨@Q

	
®Ë @

�
I

�
¯ð ZA

	
�

�
®Ë ÑêªÒm.

�'

 ú



æ

	
�AK
P X

�
A
	
K úÍ@



�
ék. Am�'

.
�
éJ. Ê¢Ë@ ZB


ñë

	
à


@

?
�
éJ. Ê¢ÊË ø



XA

	
JË @ ��


@ @

	
XAÖÏ :Q

13%

Multiple sentence
reasoning

	á�
ÒÊ�ÖÏ @
�
é

	
®J
Ê

	
gð

	á�
J

	
K AÒ

�
JªË@

	á�
£C�Ë@ Qå
�
�A« , Èð


B@

	
àA

	
g Õæ



Ê� 	áK. Èð


B@

	
àA

	
g

	
àAÒJ
Ê�

øñ
�
¯

@

�
Ij�. �


@ ú

�
æk AêË ¨A�

�
�@ úæ�

�
¯

@ èYê« ú




	
¯

�
éJ
ÓC�B


@

�
éËðYË@

�
I

	
ªÊK. ,

	
àñ

	
KAÒ

�
JË @

.
�

I
�
¯ñË@ ½Ë

	
X ú




	
¯ ÕËAªË @ ú




	
¯

�
éËðX

? èYê«
�

Im�
�
' 	

àA
	

g
	
àAÒJ
Ê�

�
éËðX

�
I

	
ªÊK. @

	
XAÓ :Q

10%

Ambiguous ? AêÖÞ�P ú
�
æÓ :Q 3%

Table 3: Examples of questions with their respective paragraph (trimmed to fit) and answer in bold from ARCD
and the reasoning required to answer them.

25,490 answers not found in their respective para-
graphs, almost 47.3% of the total questions. We
remarked that the type of errors that caused the an-
swers to not match in the paragraph mostly arised
from two factors: (1) translation was unable to
recognize named entities without context and thus
transliterated them, and (2) minor typographic like
errors from missing or added 	

K
Qª
�
JË @ ÐB (the)

and differing tenses. To fix this issue, we translit-
erated all the paragraphs and answers to Arabic
and found the span of text of length at most 15
words with the least edit-distance with respect to
the answer. To verify the efficacy of this approach,
we randomly sampled 100 questions where the an-
swer is not found in the paragraph and provided
the correct answer. On this test set, the approach
managed to exactly find 44% of the answers, and
64% of the proposed answers contained the cor-
rect answer and did not exceed more than twice its
length.

6 System Experiments

We now showcase experiments for every compo-
nent in our system and the end-to-end open do-
main system.

Datasets. Arabic-SQuAD is split 80-10-10%

into three parts for training, development and test-
ing: Arabic-SQuad-Test is composed of 2,966
questions on 24 articles; note that articles are dis-
tinct between the parts. Similarly, ARCD is split
50-50 into training and testing with ARCD-Test
having 702 questions on 78 articles.

6.1 Retriever

Method k ARCD
Wikipedia API 15 34.8%
Google Search 10 75.6%
TF-IDF Unigram Article 15 41.7%
TF-IDF Bigram Article 15 47.7%
TF-IDF Bigram Article 350 73.5%
Hierarchical TF-IDF 15 65.3%
Embedding fastText Paragraph 50 27.0%

Table 4: Comparison of the different retrievers on
ARCD. k: number of documents retrieved

We examine the performance of our different
retriever modules on the full ARCD dataset. To
compare the approaches we assign to each the ra-
tio of questions for which the answer appears in
any of the retrieved document over the total num-
ber of questions.



115

Method Arabic-SQuAD Test ARCD
EM F1 SM EM F1 SM

Random Guess 0.23 4.34 23.5 0.07 8.13 51.0
Sliding Win. + Dist. (Richardson et al., 2013) 0.00 5.80 29.2 0.07 14.2 58.4
Embedding fastText 0.04 6.96 43.1 0.36 15.3 73.1
TF-IDF Reader 0.27 2.41 49.2 0.22 5.6 75.3
QANet fastText (Yu et al., 2018) 29.4 44.4 61.7 11.0 38.6 83.2
BERT (Devlin et al., 2018) 34.1 48.6 66.8 19.6 51.3 91.4

Table 5: Comparison of the different document reader modules on Arabic-SQuAD test set and all of ARCD.
QANet and BERT were trained only on the training set of Arabic-SQuAD.

Baselines. We implement three baselines: the
first is using Wikipedia’s Search API 3, and the
second is through Google Custom Search en-
gine 4 restricted to the Arabic Wikipedia site.
Furthermore, we implement an embedding based
retriever using fastText embeddings 300 dimen-
sional Wikipedia pre-trained word embeddings
(Joulin et al., 2016) that computes for each para-
graph a representation using the sum of its word
embeddings. Other embedding models exist for
Arabic but fastText is the most specialized to
Wikipedia (Badaro et al., 2018; Al Sallab et al.,
2015)

Results and Analysis Our results are reported
in table 4. We find that even the simple TF-IDF
unigram retriever is able to beat the Wikipedia
API baseline. Google Search with k = 10 is
the golden standard with 75.6%, TF-IDF using bi-
gram features and k = 350 is able to come close
with 73.5%. Using our hierarchical approach of
adding a second 4-gram TF-IDF retriever to a bi-
gram k = 1000 retriever achieves a respectable
65.3% improving on the single bigram by 17.6%
and a reduction of 8.2% from the full k = 350
retriever. The embedding retriever using fastText
(Joulin et al., 2016) performed badly in accor-
dance with the results in (Chen et al., 2017).

It is important to note that since the questions
in ARCD were written with a specific paragraph
in mind, they might be ambiguous without their
context, hence why it is hard to beat the Google
Search baseline.

6.2 Reader

Metrics. We evaluate our different readers based
on three metrics. The first is exact match (EM)

3https://www.mediawiki.org/wiki/API:
Search

4We use the official API https://developers.
google.com/custom-search/

Method ARCD-Test
EM F1 SM

Reader:
BERT (SQuAD) 23.8 53.0 90.6
BERT (ARCD) 23.9 50.1 88.0
BERT (SQuAD + ARCD) 34.2 61.3 90.0
Open-Domain:
SOQAL (top-1) 12.8 27.6 29.8
SOQAL (top-3) 17.8 37.9 44.0
SOQAL (top-5) 20.7 42.5 51.7

Table 6: Results of BERT as a document reader on
ARCD-Test under different data regimes and of our
open domain system SOQAL when returning the top
k answers

which measures the percentage of predictions that
match the ground truth answer exactly, the second
is a (macro-averaged) F1 score (Rajpurkar et al.,
2016) that measures the average overlap between
the prediction tokens and the ground truth answer
tokens. Finally, we use a sentence match (SM)
metric that measures the percentage of predictions
that fall in the same sentence in the paragraph as
the ground truth answer.

Baselines. We compare against three non-
learning baselines. For all three methods, we gen-
erate candidate answers by considering every text
span of length maximally 10 words in each sen-
tence as a candidate. We implement the follow-
ing baselines: the sliding window distance based
algorithm of (Richardson et al., 2013), a TF-IDF
reader based on 4-gram features which operates
exactly like the retriever with k = 1, and finally
an embedding approach where the candidate with
the highest cosine similarity with respect to fast-
Text embeddings is returned (Joulin et al., 2016;
Belinkov et al., 2015). We also compare against
QANet (Yu et al., 2018), a competitive MRC net-
work that is especially fast for prediction.

https://www.mediawiki.org/wiki/API:Search
https://www.mediawiki.org/wiki/API:Search
 https://developers.google.com/custom-search/
 https://developers.google.com/custom-search/


116

Implementation Details. For Bert, we fol-
low the reference implementation for training on
SQuAD5. We fine-tune from the BERT-Base un-
normalized multilingual model which includes
Arabic. The model has 12-layers with H = 768,
12-heads for self attention and inputs are padded
to 384 tokens. We train on the training set of
Arabic-SQuAD for 2 epochs with a learning rate
of 3 · 10−5. Similarly for QANet we modify the
implementation of 6 and use fastText embeddings
and train for a total of 4 epochs.

Results and Analysis We report all reader ex-
periments in table 5. The non-learning baselines
are unable to obtain a significant improvement
over a random guess on the EM and F1 metrics.
The embedding and TF-IDF readers reach a sen-
tence match accuracy of almost 75%; this 75%
accuracy in fact corresponds to the percentage of
word matching questions as in table 3. On the
other hand, BERT and QANet on the test set of
Arabic-SQuAD reach 44.4 and 48.6 F1 scores re-
spectively; as previously noted half of Arabic-
SQuAD answers might be faulty as a result of
NMT and this explains the relatively low results
compared to the SQuAD leaderboard (Rajpurkar
et al., 2016). Now without having been trained
on ARCD, both neural MRC models are able to
perform well transferring knowledge from Arabic-
SQuAD with BERT reaching a remarkable 90.08
SM accuracy.

Transfer Learning. To evaluate the effective-
ness of using translated data as training data on the
ARCD test set we train BERT under the following
data regimes: (a) Arabic-SQuAD only, (b) ARCD-
Train only and (c) Arabic-SQuAD and ARCD-
Train combined; results are reported in table 6. We
remark that training under regimes (a) or (b) had
very similar results, this gives strong evidence that
Arabic-SQuAD could be in fact sufficient for ob-
taining powerful MRC models. When combining
both datasets, we obtain an improvement of 8.3%
on the F1 score with a total score of 61.3; the train-
ing on ARCD allowed the model to better adapt to
its differing answer distribution.

6.3 Open Domain QA
We test our open domain approach SOQAL on
ARCD-Test. For our retriever we combine our hi-
erarchical TF-IDF retriever with the Google Cus-

5https://github.com/google-research/
bert

6https://github.com/NLPLearn/QANet

tom Search Engine to make sure we have a to-
tal of 10 retrieved articles. We train BERT on
Arabic-SQuAD for two epochs and then fine-tune
on ARCD-Train for an epoch.

We report in table 6 the accuracy of our pro-
posed system on ARCD-Test achieving a 27.6 F1
and a 29.8 SM. The close F1 and SM scores indi-
cate that the system is able to correctly retrieve the
answer when it selects the correct paragraph, the
issue then lies with it not scoring highly enough
the correct paragraph. We also report the accuracy
when the system outputs the top 3 and top 5 results
(choosing the best answer out of them).

7 Conclusion

To further the state of Arabic natural language un-
derstanding we proposed an approach for open do-
main Arabic QA and introduced the Arabic Read-
ing Comprehension Dataset (ARCD) and Arabic-
SQuAD: a machine translation of SQuAD (Devlin
et al., 2018). Our approach consisted of a doc-
ument retriever using hierarchical TF-IDF and a
document reader using BERT (Devlin et al., 2018).
We achieve a F1 score of 61.3 and a 90.0% sen-
tence match on ARCD and a 27.6 F1 score on an
open domain version of ARCD. We also showed
the effectiveness of using translated data as a train-
ing resource for QA. Future work will aim to ex-
pand the size of ARCD and improve the end-to-
end system by focusing on paragraph selection.

References
Karim Bouzouba Abouenour Lahsen and Paolo Rosso.

2010. An evaluated semantic query expansion and
structure-based approach for enhancing arabic ques-
tion/answering. In International Journal on Infor-
mation and Communication Technologies 3, no. 3,
pages 37–51.

Mohammed Akour, Sameer Abufardeh, Kenneth
Magel, and Qasemm Al-Radaideh. 2011. Qarabpro:
A rule based question answering system for reading
comprehension tests in arabic. American Journal of
Applied Sciences, 8(6):652.

Ahmad Al Sallab, Hazem Hajj, Gilbert Badaro, Ramy
Baly, Wassim El Hajj, and Khaled Bashir Shaban.
2015. Deep learning models for sentiment analysis
in arabic. In Proceedings of the second workshop on
Arabic natural language processing, pages 9–17.

Aqil M Azmi and Nouf A Alshenaifi. 2016. Answer-
ing arabic why-questions: Baseline vs. rst-based ap-
proach. ACM Transactions on Information Systems
(TOIS), 35(1):6.

https://github.com/google-research/bert
https://github.com/google-research/bert
https://github.com/NLPLearn/QANet


117

Gilbert Badaro, Obeida El Jundi, Alaa Khaddaj, Alaa
Maarouf, Raslan Kain, Hazem Hajj, and Wassim El-
Hajj. 2018. Ema at semeval-2018 task 1: Emotion
mining for arabic. In Proceedings of The 12th Inter-
national Workshop on Semantic Evaluation, pages
236–244.

Yonatan Belinkov, Alberto Barrón-Cedeño, and
Hamdy Mubarak. 2015. Answer selection in arabic
community question answering: A feature-rich ap-
proach. In Proceedings of the Second Workshop on
Arabic Natural Language Processing, pages 183–
190.

Abdelouahid Lyhyaoui Benajiba Yassine, Paolo Rosso.
2007. Implementation of the arabiqa question an-
swering system’s components. In Proc. Workshop
on Arabic Natural Language Processing, 2nd In-
formation Communication Technologies Int. Sympo-
sium, ICTIS-2007, Fez, Morroco, April, pages 3–5.

Steven Bird. 2006. Nltk: The natural language toolkit.
In COLING ACL 2006, page 69.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading wikipedia to answer open-
domain questions. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), volume 1,
pages 1870–1879.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer,
and Andrew McCallum. 2018. Multi-step retriever-
reader interaction for scalable open-domain question
answering.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Walaa Saber Ismail and Masun Nabhan Homsi. 2018.
Dawqas: A dataset for arabic why question answer-
ing system. In Procedia computer science 142,
pages 123–131.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. arXiv preprint arXiv:1705.03551.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
Matthijs Douze, Hérve Jégou, and Tomas Mikolov.
2016. Fasttext.zip: Compressing text classification
models. arXiv preprint arXiv:1612.03651.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Matthew Kelcey,
Jacob Devlin, Kenton Lee, Kristina N. Toutanova,
Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Transactions of the Association of Com-
putational Linguistics.

Jens Lehmann, Robert Isele, Max Jakob, Anja
Jentzsch, Dimitris Kontokostas, Pablo N Mendes,
Sebastian Hellmann, Mohamed Morsey, Patrick
Van Kleef, Sören Auer, et al. 2015. Dbpedia–a
large-scale, multilingual knowledge base extracted
from wikipedia. Semantic Web, 6(2):167–195.

Yankai Lin, Haozhe Ji, Zhiyuan Liu, and Maosong
Sun. 2018. Denoising distantly supervised open-
domain question answering. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 1736–1745.

Preslav Nakov, Doris Hoogeveen, Lluı́s Màrquez,
Alessandro Moschitti, Hamdy Mubarak, Timothy
Baldwin, and Karin Verspoor. 2017. Semeval-2017
task 3: Community question answering. In Proceed-
ings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 27–48.

Arfath Pasha, Mohamed Al-Badrashiny, Mona Diab,
Ahmed El Kholy, Ramy Eskander, Nizar Habash,
Manoj Pooleery, Owen Rambow, and Ryan Roth.
2014. Madamira: A fast, comprehensive tool for
morphological analysis and disambiguation of ara-
bic. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC-2014).

Eduard H. Hovy Pamela Forner lvaro Rodrigo Richard
FE Sutcliffe Corina Forascu Peas, Anselmo and
Caroline Sporleder. 2011. Overview of qa4mre
at clef 2011: Question answering for machine
reading evaluation. In CLEF (Notebook Pa-
pers/Labs/Workshop), pages 1–20.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Matthew Richardson, Christopher JC Burges, and Erin
Renshaw. 2013. Mctest: A challenge dataset for
the open-domain machine comprehension of text.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
193–203.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. arXiv preprint
arXiv:1611.01603.

Mohamed Shaheen and Ahmed Magdy Ezzeldin. 2014.
Arabic question answering: systems, resources,
tools, and future trends. Arabian Journal for Sci-
ence and Engineering, 39(6):4541–4564.

Omar Trigui, Lamia Hadrich Belguith, and Paolo
Rosso. 2010. Defarabicqa: Arabic definition ques-
tion answering system. In Workshop on Lan-
guage Resources and Human Language Technolo-
gies for Semitic Languages, 7th LREC, Valletta,
Malta, pages 40–45.



118

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-
ris, Alessandro Sordoni, Philip Bachman, and Ka-
heer Suleman. 2017. Newsqa: A machine compre-
hension dataset. ACL 2017, page 191.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang,
Tim Klinger, Wei Zhang, Shiyu Chang, Gerry
Tesauro, Bowen Zhou, and Jing Jiang. 2018a. R 3:
Reinforced ranker-reader for open-domain question
answering. In Thirty-Second AAAI Conference on
Artificial Intelligence.

Zhen Wang, Jiachen Liu, Xinyan Xiao, Yajuan Lyu,
and Tian Wu. 2018b. Joint training of candidate
extraction and answer selection for reading compre-
hension. arXiv preprint arXiv:1805.06145.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
Wikiqa: A challenge dataset for open-domain ques-
tion answering. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2013–2018.

Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui
Zhao, Kai Chen, Mohammad Norouzi, and Quoc V
Le. 2018. Qanet: Combining local convolution
with global self-attention for reading comprehen-
sion. arXiv preprint arXiv:1804.09541.


