
Proceedings of the 4th Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task, pages 99–101
Florence, Italy, August 2, 2019. c©2019 Association for Computational Linguistics

99

Deep Learning for Identification of Adverse Effect Mentions in Twitter

Data

Paul Barry and Ozlem Uzuner, PhD, FACMI

George Mason University

pbarry2, ouzuner@gmu.edu

Abstract

Social Media Mining for Health

Applications (SMM4H) Adverse Effect

Mentions Shared Task challenges

participants to accurately identify spans of

text within a tweet that correspond to

Adverse Effects (AEs) resulting from

medication usage (Weissenbacher et al.,

2019). This task features a training data set

of 2,367 tweets, in addition to a 1,000 tweet

evaluation data set. The solution presented

here features a bidirectional Long Short-

term Memory Network (bi-LSTM) for the

generation of character-level embeddings.

It uses a second bi-LSTM trained on both

character and token level embeddings to

feed a Conditional Random Field (CRF)

which provides the final classification. This

paper further discusses the deep learning

algorithms used in our solution.

1 Data

The training data consists of 2,367 unique tweets

of which 1,212 are positive examples and 1,155 are

negative while the evaluation data consists of 1,000

tweets with 500 positive examples and 500

negatives. Of the 1,212 positive examples in the

training set, 345 examples present two or more

spans within the tweet that are AEs experienced by

the individual. The remaining positive examples

contain only one AE span. Spans of AEs are not

limited to singular words nor are they required to

be whitespace delimited. Because of this, many

AEs within the data set consist of multiple words.

Spans are not limited to English words or whole

words, so abbreviations, portions of words, and

concatenations of multiple words are expected.

Tweets provided to participants had all alphabetical

characters converted to their lowercase form. No

other preprocessing steps were performed prior to

dataset distribution. We divided the training dataset

into subsets with 1,657 tweets used for training,

355 for validation, and 355 for testing. We tuned

our parameters on the training set and report final

results on the shared task evaluation set.

2 Preprocessing

We preprocessed AEs to consolidate overlapping

spans and remove AEs that are a subset of others.

Subsequently, we replaced twitter handles with

“@person” to reduce the noise inherent to multiple

tokens sharing the same meaning and to reduce

dimensionality. To further reduce dimensionality,

we removed the URLs within tweets as they do not

provide contextual value. The hashtag character,

“#”, was removed so hashtag words could be

treated like regular words rather than as separate,

unique tokens. Tokenization was performed and

tested using several tokenizers to include the

Natural Language Toolkit’s (NTLK) Word

Tokenizer, NLTK’s Word Punct Tokenizer,

NLTK’s Whitespace Tokenizer, and the Stanford

Tokenizer (Manning et al., 2014; Bird et al., 2009).

Lastly, the removal of all special characters was

evaluated in conjunction with each of the above

methods.

3 System Structure

The system used in this study is based around a

Recurrent Neural Network (RNN) variant known

as a bi-LSTM which features the Long Short-term

Memory (LSTM) unit (Hochreiter and

Schmidhuber, 1997). The system consists of four

layers: a character embedding layer, a token

embedding layer, a label prediction layer, and a

label sequence optimization layer (Dernoncourt et

al., 2017). As input, it uses three portions of the

dataset for training, validation, and testing. Input to

the bi-LSTM consists of word embeddings. We

initialized word embeddings based on pretrained

GloVe embeddings (Pennington et al., 2014). We

then used ELMo to continue training embeddings

100

so they better represent each word’s usage within

the corpus (Peters et al., 2018). The trained word

embeddings are augmented by training a bi-LSTM

model on individual characters within a word and

concatenating the character embeddings onto the

word embedding vector. These character-enhanced

token-embeddings are then passed as input into a

second bi-LSTM layer in which both directions

predict the label. The output from both directions

is concatenated and passed to a CRF which

provides the model’s final prediction (Dernoncourt

et al., 2017).

4 Training

The hyperparameters that yield the best results

were identified as: character embeddings with 25

dimensions, character level LSTM hidden states

that use 25 dimensions, token embeddings with

100 dimensions, token level context embeddings

with 1,024 dimensions, and a token level hidden

state that uses 100 dimensions. We limited the

model to 100 epochs with early stopping when the

validation set’s F1 score did not improve after 10

epochs. Early stopping was triggered when the

model’s F1 score on the validation set peaked then

failed to achieve a better score within ten more

epochs. We used a learning rate of 0.005. We

clipped gradients at 5.0 and applied a dropout rate

of 0.5. We tested several other hyperparameters

with the model to include 200 dimension token

embeddings, 2,048 context embeddings, 0.001

learning rate, 0.4 and 0.6 dropout rates. None of

these provided significant increases in

performance, however, some did cause large

increases in training and inference times. Using a

16 core CPU, word embeddings are trained in 8

minutes and 43 seconds and training the model

takes 19 minutes and 22 seconds. Due to the small

data set size, only 3GB of free RAM is necessary

to train the system.

5 Evaluation and Results

We measured performance of the system based on

provided gold label AEs. We used Precision,

Recall, and F1 Score to monitor a model’s

performance as it trained and to check that the

reported values were reflective of the model’s

ability to generalize to the test set. Due to the

inherently noisy nature of user generated social

media text, we found that noise reduction

techniques performed during the preprocessing

stage had a much higher impact on model

performance than hyperparameter tuning.

Swapping tokenizers netted performance increases

in F1 Score as big as 9.73, when keeping special

characters, and 8.07, when not. Table 1 shows that

best results on the test set are achieved with

NLTK’s Word Punct tokenizer and when special

characters are kept.

Figure 1: The character-enhanced bi-LSTM CRF

system architecture. Where Te is the token

embedding, Ce are the character embeddings, and P is

the bi-LSTM’s predicted class.

Table 1: System performance on test set with

different tokenizers.

Tokenizers Special

Characters
P R F1

Stanford Yes 35.12% 47.19% 40.27

Stanford No 33.13% 52.27% 40.55

NLTK Word Yes 42.08% 58.17% 48.83

NLTK Word No 46.09% 51.46% 48.62

Word Punct Yes 42.79% 60.13% 50.00

Word Punct No 39.52% 53.25% 45.27

Whitespace Yes 32.90% 58.22% 42.04

Whitespace No 44.29% 52.92% 48.22

101

The shared task was evaluated using a total of six

performance metrics including both strict and

relaxed variants of Precision, Recall, and F1 Score.

Table 2 shows that our final system provided a 59.7

Relaxed F1 Score and a 40.7 Strict F1 Score on the

evaluation set, beating shared task averages by 5.9

and 9.0, respectively.

Error analysis shows that words heavily associated

with AEs, such as “withdrawal”, are almost always

accurately identified as being AEs. Alternatively,

words with neither positive nor negative

connotations are frequently missed as being AEs,

such as “sleep” in “it could be two months before i

sleep well again”. Errors also occurred when

tokens frequently associated with AEs were

present but not in relation to medication usage. An

example would be the identification of “rejection

hurts” in “rejection hurts, cymbalta can help”. The

model appears to give excessive weight to the

specific word being used while not giving enough

weight to the word’s context. Future work would

explore the use of a larger corpus that includes

more negative examples of those words, additional

LSTM layers in the label prediction layer, and the

use of more recent word embedding algorithms.

References

Franck Dernoncourt, Ji Young Lee, Ozlem Uzuner, and

Peter Szolovits (2017). De-identification of patient

notes with recurrent neural networks. Journal of the

Amerian Medical Informatics Association, volume

24 (Issue 3), 596-606.

Sepp Hochreiter and Jurgen Schmidhuber (1997).

Long Short-term Memory. Neural Computation,

volume 9 (Issue 8), 1735–1780.

Edward Loper, Ewan Klein, and Steven Bird (2009).

Natural Language Processing with Python.

O’Reilly Media.

Christopher D. Manning, Mihai Surdeanu, John Bauer,

Jenny Finkel, Steven J. Bethard, and David

McClosky (2014). The Stanford CoreNLP Natural

Language Processing Toolkit. In Proceedings of

52nd Annual Meeting of the Association for

Computational Linguistics: System

Demonstrations, 55-60.

Jeffrey Pennington, Richard Socher, and Christopher

Manning (2014). Glove: Global Vectors for Word

Representation. In Proceedings of the 2014

Conference on Empirical Methods in Natural

Language Processing, 1532-1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt

Gardner, Christopher Clark, Kenton Lee, and Luke

Zettlemoyer (2018). Deep Contextualized Word

Representations. In Proceedings of the 2018

Conference of the North American Chapter of the

Association for Computational Linguistics: Human

Language Technologies, volume 1.

Davy Weissenbacher, Abeed Sarker, Arjun Magge,

Ashlynn Daughton, Karen O'Connor, Michael Paul,

and Graciela Gonzalez-Hernandez (2019).

Overview of the Fourth Social Media Mining for

Health (SMM4H) Shared Task at ACL 2019. In

Proceedings of the 2019 ACL Workshop SMM4H:

The 4th Social Media Mining for Health

Applications Workshop & Shared Task.

Metric Our System Task Average

Relaxed Precision 59.6% 51.3%

Relaxed Recall 59.9% 61.7%

Relaxed F1 Score 59.7 53.8

Strict Precision 40.6% 30.3%

Strict Recall 40.7% 35.8%

Strict F1 Score 40.7 31.7

Table 2: System Performance on evaluation set.

