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Abstract 

Social Media Mining for Health 

Applications (SMM4H) Adverse Effect 

Mentions Shared Task challenges 

participants to accurately identify spans of 

text within a tweet that correspond to 

Adverse Effects (AEs) resulting from 

medication usage (Weissenbacher et al., 

2019). This task features a training data set 

of 2,367 tweets, in addition to a 1,000 tweet 

evaluation data set. The solution presented 

here features a bidirectional Long Short-

term Memory Network (bi-LSTM) for the 

generation of character-level embeddings. 

It uses a second bi-LSTM trained on both 

character and token level embeddings to 

feed a Conditional Random Field (CRF) 

which provides the final classification. This 

paper further discusses the deep learning 

algorithms used in our solution. 

1 Data 

The training data consists of 2,367 unique tweets 

of which 1,212 are positive examples and 1,155 are 

negative while the evaluation data consists of 1,000 

tweets with 500 positive examples and 500 

negatives. Of the 1,212 positive examples in the 

training set, 345 examples present two or more 

spans within the tweet that are AEs experienced by 

the individual. The remaining positive examples 

contain only one AE span. Spans of AEs are not 

limited to singular words nor are they required to 

be whitespace delimited. Because of this, many 

AEs within the data set consist of multiple words. 

Spans are not limited to English words or whole 

words, so abbreviations, portions of words, and 

concatenations of multiple words are expected. 

Tweets provided to participants had all alphabetical 

characters converted to their lowercase form. No 

other preprocessing steps were performed prior to 

dataset distribution. We divided the training dataset 

into subsets with 1,657 tweets used for training, 

355 for validation, and 355 for testing.  We tuned 

our parameters on the training set and report final 

results on the shared task evaluation set. 

2 Preprocessing 

We preprocessed AEs to consolidate overlapping 

spans and remove AEs that are a subset of others. 

Subsequently, we replaced twitter handles with 

“@person” to reduce the noise inherent to multiple 

tokens sharing the same meaning and to reduce 

dimensionality. To further reduce dimensionality, 

we removed the URLs within tweets as they do not 

provide contextual value. The hashtag character, 

“#”, was removed so hashtag words could be 

treated like regular words rather than as separate, 

unique tokens. Tokenization was performed and 

tested using several tokenizers to include the 

Natural Language Toolkit’s (NTLK) Word 

Tokenizer, NLTK’s Word Punct Tokenizer, 

NLTK’s Whitespace Tokenizer, and the Stanford 

Tokenizer (Manning et al., 2014; Bird et al., 2009). 

Lastly, the removal of all special characters was 

evaluated in conjunction with each of the above 

methods. 

3 System Structure 

The system used in this study is based around a 

Recurrent Neural Network (RNN) variant known 

as a bi-LSTM which features the Long Short-term 

Memory (LSTM) unit (Hochreiter and 

Schmidhuber, 1997). The system consists of four 

layers: a character embedding layer, a token 

embedding layer, a label prediction layer, and a 

label sequence optimization layer (Dernoncourt et 

al., 2017). As input, it uses three portions of the 

dataset for training, validation, and testing. Input to 

the bi-LSTM consists of word embeddings. We 

initialized word embeddings based on pretrained 

GloVe embeddings (Pennington et al., 2014). We 

then used ELMo to continue training embeddings 
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so they better represent each word’s usage within 

the corpus (Peters et al., 2018). The trained word 

embeddings are augmented by training a bi-LSTM 

model on individual characters within a word and 

concatenating the character embeddings onto the 

word embedding vector. These character-enhanced 

token-embeddings are then passed as input into a 

second bi-LSTM layer in which both directions 

predict the label. The output from both directions 

is concatenated and passed to a CRF which 

provides the model’s final prediction (Dernoncourt 

et al., 2017). 

  

4 Training 

The hyperparameters that yield the best results 

were identified as: character embeddings with 25 

dimensions, character level LSTM hidden states 

that use 25 dimensions, token embeddings with 

100 dimensions, token level context embeddings 

with 1,024 dimensions, and a token level hidden 

state that uses 100 dimensions. We limited the 

model to 100 epochs with early stopping when the 

validation set’s F1 score did not improve after 10 

epochs. Early stopping was triggered when the 

model’s F1 score on the validation set peaked then 

failed to achieve a better score within ten more 

epochs. We used a learning rate of 0.005.  We 

clipped gradients at 5.0 and applied a dropout rate 

of 0.5. We tested several other hyperparameters 

with the model to include 200 dimension token 

embeddings, 2,048 context embeddings, 0.001 

learning rate, 0.4 and 0.6 dropout rates. None of 

these provided significant increases in 

performance, however, some did cause large 

increases in training and inference times. Using a 

16 core CPU, word embeddings are trained in 8 

minutes and 43 seconds and training the model 

takes 19 minutes and 22 seconds. Due to the small 

data set size, only 3GB of free RAM is necessary 

to train the system.  

5 Evaluation and Results 

We measured performance of the system based on 

provided gold label AEs.  We used Precision, 

Recall, and F1 Score to monitor a model’s 

performance as it trained and to check that the 

reported values were reflective of the model’s 

ability to generalize to the test set.  Due to the 

inherently noisy nature of user generated social 

media text, we found that noise reduction 

techniques performed during the preprocessing 

stage had a much higher impact on model 

performance than hyperparameter tuning. 

Swapping tokenizers netted performance increases 

in F1 Score as big as 9.73, when keeping special 

characters, and 8.07, when not. Table 1 shows that 

best results on the test set are achieved with 

NLTK’s Word Punct tokenizer and when special 

characters are kept. 

Figure 1: The character-enhanced bi-LSTM CRF 

system architecture. Where Te is the token 

embedding, Ce are the character embeddings, and P is 

the bi-LSTM’s predicted class. 

Table 1: System performance on test set with 

different tokenizers. 

Tokenizers Special 

Characters 
P R F1 

Stanford Yes 35.12% 47.19% 40.27 

Stanford No 33.13% 52.27% 40.55 

NLTK Word  Yes 42.08% 58.17% 48.83 

NLTK Word  No 46.09% 51.46% 48.62 

Word Punct Yes 42.79% 60.13% 50.00 

Word Punct No 39.52% 53.25% 45.27 

Whitespace Yes 32.90% 58.22% 42.04 

Whitespace No 44.29% 52.92% 48.22 
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The shared task was evaluated using a total of six 

performance metrics including both strict and 

relaxed variants of Precision, Recall, and F1 Score. 

Table 2 shows that our final system provided a 59.7 

Relaxed F1 Score and a 40.7 Strict F1 Score on the 

evaluation set, beating shared task averages by 5.9 

and 9.0, respectively. 

Error analysis shows that words heavily associated 

with AEs, such as “withdrawal”, are almost always 

accurately identified as being AEs. Alternatively, 

words with neither positive nor negative 

connotations are frequently missed as being AEs, 

such as “sleep” in “it could be two months before i 

sleep well again”. Errors also occurred when 

tokens frequently associated with AEs were 

present but not in relation to medication usage. An 

example would be the identification of “rejection  

hurts” in “rejection hurts, cymbalta can help”. The 

model appears to give excessive weight to the 

specific word being used while not giving enough  

weight to the word’s context. Future work would 

explore the use of a larger corpus that includes 

more negative examples of those words, additional 

LSTM layers in the label prediction layer, and the 

use of more recent word embedding algorithms. 
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Metric Our System Task Average 

Relaxed Precision 59.6% 51.3% 

Relaxed Recall 59.9% 61.7% 

Relaxed F1 Score 59.7 53.8 

Strict Precision 40.6% 30.3% 

Strict Recall 40.7% 35.8% 

Strict F1 Score 40.7 31.7 

Table 2: System Performance on evaluation set. 


