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Abstract

In this paper, we propose a soft label approach

to target-level sentiment classification task, in

which a history-based soft labeling model is

proposed to measure the possibility of a con-

text word as an opinion word. We also apply

a convolution layer to extract local active fea-

tures, and introduce positional weights to take

relative distance information into considera-

tion. In addition, we obtain more informative

target representation by training with context

tokens together to make deeper interaction be-

tween target and context tokens. We conduct

experiments on SemEval 2014 datasets and the

experimental results show that our approach

significantly outperforms previous models and

gives state-of-the-art results on these datasets.

1 Introduction

Target-level sentiment classification aims to iden-

tify the sentiment polarities towards given targets

by analyzing sentence context. For example, in the

sentence “The food is good but service is bad.”,

there are two targets “food” and “service” men-

tioned. The sentiment towards “food” and “ser-
vice” are positive and negative respectively.

Neural network models (Tang et al., 2016a;

Wang et al., 2016; Tang et al., 2016b; Liu and

Zhang, 2017; Ma et al., 2017; Tay et al., 2017;

Chen et al., 2017; Huang et al., 2018; Gu et al.,

2018) have achieved high accuracy on this task.

Most of the neural network models introduce at-

tention mechanism to find the correlation between

target and context tokens. However, the combina-

tion of word-level features computed by attention

weights may introduce noise into model. For in-

stance, in “The dish tastes bad but its vegetable
is delicious though it looks ugly.”, these attention-

based models tend to highlight some involve some

other words such as “bad” and “ugly”.

Instead of using the attention mechanism, we

propose a soft label approach for the target-level

sentiment classification task. Intuitively, the task

could be treated as a two-step process. Firstly the

sentiment words that are related to the given target,

called opinion words, are labeled and extracted.

Then the final decision on the sentiment polarity

would be made by taking all the extracted opinion

words into account. However, this kind of hard la-

bel strategy, which directly determines whether a

token is an opinion word or not, for labeling opin-

ion words is non-differentiable and hinders train-

ing through normal back-propagation. Thus we

use a soft labeling model to avoid the hard deci-

sion and make sure the model works in an end-to-

end way.

Specifically, the soft label model is used to mea-

sure the likelihood of a context word as an opinion

word at each time step. The larger the value of

one word’s soft label, the greater its effect on tar-

get sentiment. In fact, given a target, people are

accustomed to going through a sentence from be-

ginning to end, and to judge whether current word

is highly related to the target sentiment at each

step with comparison of history information till

the current word in the reading process. There-

fore, we implement an LSTM-based (Hochreiter

and Schmidhuber, 1997) soft labeling model by a

history-based approach, which utilizes history in-

formation (previous soft labels and cell states) to-

gether with representation of the current word, to

decide how to pay attention to history information

or current word representation based on their cor-

relation with target representation.

Moreover, since the convolution layer (LeCun

et al., 1989) does better in capturing local ac-

tive features than other neural networks do and

these extracted features are proved to be benefi-

cial to text classification (Kim, 2014; Johnson and

Zhang, 2015), we apply a convolution based en-

coder to extract these features. The distance of the

features to target is also essential as texts may be

long and contain several targets. The closer tokens
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are more likely to affect on the targets. Therefore,

we adopt positional weights to scale the features

with relative distance information between context

tokens and the target.

Target representation is also critical to this task.

Previous works, such as Tang et al. (2016a), sim-

ply take the average of target embeddings as tar-

get representation. In fact, this kind of representa-

tion does not incorporate contextual information.

Words in a sentence have strong dependencies on

each other. Thus it is necessary to train target

representation together with context tokens to ob-

tain more informative representation dependent on

contextual information.

In summary, our contributions are as follows:

• Our model uses a soft label approach to eval-

uating the likelihood of a context word as an

opinion word based on the history informa-

tion.

• Our model leverages convolution layer,

which is seldom used in the task, to extract

features, and these features are accordingly

weighed by positional information.

• Our model learns more informative represen-

tation of the target, instead of the average of

target embeddings, and strengthens the inter-

action between target and context tokens in

soft label computation process.

• We conduct experiments on benchmark

datasets and the experimental results show

that our approach significantly outperforms

previous models and achieves state-of-the-art

results on these datasets.

2 Related Work

Early methods mainly apply supervised learning

approach with large quantities of handcrafted fea-

tures (Blair-Goldensohn et al., 2008; Yu et al.,

2011; Jiang et al., 2011; Kiritchenko et al., 2014),

but ignore context information and deep relations

between target and context tokens.

Neural network models have achieved high ac-

curacy on this task. AE-LSTM and ATAE-LSTM
(Wang et al., 2016) simply concatenate target em-

beddings to context word embeddings to make

connection between targets and contexts. How-

ever, both models described above do not obtain

target representations based on context-aware in-

formation. Inspired by the TNet (Li et al., 2018),

which learns deep representations for targets, we

propose a model which could strengthen the inter-

action between target and context tokens.

Recently, most of the previous state-of-the-art

models leverage attention mechanism to evaluate

the correlation between the tokens in one sen-

tence. IAN (Ma et al., 2017) adopts two separate

LSTM layers and an interactive attention mech-

anism. Hazarika et al. (2018) classifies the senti-

ment polarities of all the targets in one sentence si-

multaneously with attention mechanism to model

inter-target dependencies. MemNet (Tang et al.,

2016b), RAM (Chen et al., 2017), TRMN (Wang

et al., 2018) and IARM (Majumder et al., 2018)

introduce deep memory network and multi-hop at-

tention model over sentence-level memories to in-

corporate target information into sentence repre-

sentations. Specifically, TRMN and IARM at-

tach importance to the interaction between targets

and contexts, and inter-target relations, which con-

tain the information of relationship between multi-

ple targets in one sentence, respectively. Different

from them, our model adopts a novel and effective

soft label approach in an intuitive way.

There are few works (Xue and Li, 2018; Huang

and Carley, 2018) applying CNN, which is con-

sidered to be good at text classification, on target-

level sentiment classification. GCAE (Xue and Li,

2018) and PG-CNN (Huang and Carley, 2018) are

both CNN-based models and adopt gate mecha-

nism to make interaction between target and con-

text tokens. To improve the effectiveness of con-

volution layers, our model further adopts posi-

tional weights, which take relative distance infor-

mation into account.

3 Model

Target-level sentiment classification task is to de-

cide which sentiment is expressed towards a tar-

get: positive, neutral or negative.

Our model is illustrated in Figure 1. It is divided

into four parts: (1) a Bi-LSTM (Schuster and Pali-

wal, 1997) layer to get context-aware representa-

tions, (2) a convolution based feature extractor,

(3) computation of soft labels, and (4) sentiment

classification using the soft labels and positional

weights.

We introduce the following notations: s =
[w1, w2, ..., wn] denotes a sentence which consists

of n words. wi ∈ R
d0 is the embedding of the i-th

word. t = [t, t+1, ..., t+m−1] denotes the posi-
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Figure 1: Overall architecture of the proposed method. We use the sentence “Delicious and good-looking Sake
Ikura roll, and sashimi tastes good as well.” as an example. The term “SLC” indicates soft label computation.

“TR” indicates target representation and “CR” represents context representation.

tion of the target tokens, where t ≥ 1, t+m−1 ≤
n. The length of the target is m.

3.1 Context-Aware Representations
Since words in a sentence have strong dependen-

cies on each other, it is necessary to fetch context-

aware representations to combine context infor-

mation with words. In order to incorporate the

context information into words, we encode them

with a Bi-LSTM layer:

xi = [
−−−−→
LSTM(wi);

←−−−−
LSTM(wi)] (1)

We concatenate the forward and backward hidden

outputs of LSTM, of which the dimension size is

both d′0, and [; ] denotes concatenation. We regard

xi ∈ R
2d′0 as the context-aware representation of

word wi, and feed it to following layers.

3.2 Convolution Based Feature Extractor
To extract the local active features, we use a con-

volution layer with three parallel windows, which

have different sizes. Each kernel has d1 filters. For

kernel size sj , let W convj ∈ R
d1×sj×2d′0 be the d1

filters for the convolution with the same size sj ,
and bconvj ∈ R

d1 be the bias. xconvj , the output of

the convolution layer is produced by convoluting

W convj with the word window x
i−� sj−1

2
�:i+� sj

2
� at

each i ∈ [1, n] (positions out of range are padded

with zero):

x
convj
i = ReLU(x

i−� sj−1

2
�:i+� sj

2
� ◦ W convj+bconvj )

(2)

where ReLU indicates a nonlinear activation func-

tion, and ◦ is element-wise multiplication.

Merging outputs of three kinds of kernels, the

word representation is computed as:

hEi = xconv1i ⊕ xconv2i ⊕ xconv3i (3)

where ⊕ is concatenation. The dimension of hEi is

d′1 = 3d1.

htarget is computed by an average-pooling layer

to refine the target representation:

htarget =
1

m

m∑
i=1

hEt+i−1 (4)

3.3 Computation of Soft Labels

Instead of using a hard label strategy and labeling

explicitly context words as opinion words or not,

we adopt a soft labeling model in which soft label

is defined as the probability of each context word

as an opinion word. An LSTM layer is applied to

compute the final word representation hDi and the

soft label li for the i-th word. It takes both the

interacted representation produced by the convo-

lution based feature extractor and the soft label of

the previous time step as the input, in order to take

history contexts into consideration:

hDi , c
D
i = LSTM(hDi−1, c

D
i−1, ui) (5)

where hDi ∈ R
d′1 is the output of the i time stamp,

cDi ∈ R
d′1 is the LSTM cell state, which could be

treated as long-term memory till the i-th word, and

ui is the input which will be described later.

One problem encountered here is that the his-

tory information of previous time steps may not
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be closely related to the target. Consider predict-

ing the sentiment of the target “service” in the sen-

tence “Tasty food but the service was dreadful!”.

When the LSTM comes to the word “dreadful”, a

simple soft label approach might indicate that the

sentiment polarity is positive due to the influence

of the word “Tasty”, which in fact does not modify

the target “service”. To solve the problem, we ap-

ply a gate mechanism to determine the proportion

of the history information in the input, according

to the ratio of history information and current word

information’s correlation with the target:

gi =
exp(cDi−1W

ghtarget)

exp(cDi−1W
ghtarget) + exp(hEi W

ghtarget)
(6)

where W g ∈ R
d′1×d′1 is the weight matrix. Also,

we intend to strengthen the influence from target

representation. Thus we further incorporate target

information into the input:

ui = gi · (WDli−1) + (1− gi) · hEi + htarget (7)

where WD ∈ R
d′1 is the weight parameter and

li−1 is the soft label of the (i − 1)-th word. To

reduce the dimensions of LSTM inputs, we fuse

the target representation with word representations

by a simple addition operation.

With the output of the LSTM layer, the soft la-

bel li is computed as:

li = p(ei = 1|hDi )
= p(ei = 1|l1, l2, ..., li−1, h

D
i−1, h

E
i )

= sigmoid(W lhDi + bl)

(8)

where ei = 1 indicates that the word should be

considered as bearing sentiment towards the cur-

rent target, W l ∈ R
d′1 and bl ∈ R.

3.4 Sentiment Classification
Features that are close to the target often con-

tribute more to the sentiment towards the target.

Considering the impact of the distance to the tar-

get, we define the positional weights:

posi =

⎧⎪⎪⎨
⎪⎪⎩

1− t− i

β
i ∈ [1, ..., t− 1]

1− i− t+ 1

β
i ∈ [t, ..., n−m]

(9)

where β controls the rate of decaying of the po-

sitional weights according to the distances to the

target. The value of the rate is 1
β .

Algorithm 1 Training framework of our model.

Input: Sentence w, target t, golden label y.
1: hE , htarget = ComputeRepresentation(w, t)
2: for word wi in sentence w do
3: if i == 1 then
4: gi = 0
5: else
6: gi = ComputeGate(hE

i , c
D
i−1, h

target) (Eq.6)
7: end if
8: ui = ComputeInput(gi, li−1, h

E
i , h

target) (Eq.7)

9: hD
i , cDi = LSTM(hD

i−1, c
D
i−1, ui)

10: li = ComputeSoftLabel(hD
i ) (Eq.8)

11: end for
12: p = Predict(l, hD, pos)
13: L = CrossEntropy(p,y)
14: Back propagate errors and update parameters θ

Then we combine the soft labels and positional

weights together to take both the history contexts

and the relative distances into consideration. The

integrated weight of the i-th word is:

ci = li · posi (10)

We put the word representations together to pre-

dict the sentiment towards the target, according to

the integrated weight of each word:

p(ỹ|w, t) = softmax(W pmax{ci · hDi }+ bp)
(11)

where ỹ is the three categories of sentiment polar-

ity, max{·} is the max-pooling operation, W p ∈
R
3×d′1 and bp ∈ R

3 are the prediction matrix and

its bias. In summary, the whole algorithm is shown

in Algorithm 1.

In training, we utilize the cross entropy loss

function as the objective:

L = − 1

T

T∑
i=1

3∑
j=1

yi,j log pi,j + λ||θ||2 (12)

where T is the number of training samples, yi ∈
R
3 denotes the ground truth label of sample i, rep-

resented by one-hot vector, and pi,j is the pre-

dicted probability of sample i with sentiment j. θ
is the set of all parameters and λ is the coefficient

for L2 regularization.

Algorithm 1 shows the overall framework of our

model.

4 Experiments

4.1 Experimental Setup

We conduct experiments using the benchmark

datasets of SemEval 2014 Task 4 (Pontiki et al.,
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Dataset Positive Negative Neutral

Restaurant Train 2159 800 632

Test 730 195 196

Laptop Train 980 858 454

Test 340 128 171

Table 1: Statistics of benchmark datasets.

2014)1, which contain reviews about laptop and

restaurant respectively and are used by previous

works. The statistics of two benchmark datasets

are shown in Table 1. There are three kinds of

sentiment polarity: positive, negative and neutral.

In our experiments, we use GloVe.840B.300d

embeddings (Pennington et al., 2014)2 as previ-

ous works do. Each word embedding has 300

dimensions. Out-of-vocabulary (OOV) words

are randomly sampled from the uniform distri-

bution U(−0.02, 0.02). Weight matrices are ini-

tialized by sampling from uniform distribution

U(−0.1, 0.1). The kernel sizes of convolution

based feature extractors s1, s2, s3 are 3, 4, 5. Each

kernel consists of 128 filters. The dimension of

outputs of LSTM 2d′0 and the convolution layer d′1
are 400 and 384 respectively. We use Adam op-

timizer (Kingma and Ba, 2014) with learning rate

0.003. The batch size is set to 128. In order to

alleviate overfitting, we set the dropout rate to 0.5

and the coefficient of L2 regularization to 0.00001.

The hyperparameter β used to calculate positional

weights is set to 40. We choose the model with the

minimum loss on testing set among 100 epochs.

Besides, since there exists class imbalance in Se-

mEval dataset, we additionally show the Macro-

F1 scores of each model together with accuracy

metric to further investigate the effectiveness and

robustness of our model.

4.2 Comparison Results

In order to evaluate the effectiveness of our model,

we compare it with 10 previous state-of-the-art

models. The description is below:

• AE-LSTM (Wang et al., 2016) encodes the

context-aware words to get representation. Then

it simply uses the concatenation of context-aware

word representations and target embeddings to

classify the sentiment. However, the target em-

1The detailed task definition can be obtained from
http://alt.qcri.org/semeval2014/task4/

2Pre-trained word embeddings can be obtained from
https://nlp.stanford.edu/projects/glove/

beddings do not contain contextual information.

• ATAE-LSTM (Wang et al., 2016) addition-

ally leverages attention mechanism on top of AE-
LSTM to find out relevant words with target.

• GCAE (Xue and Li, 2018) is based on CNN

and applies Gated Tanh-ReLU Units (GTRU) to

control the information flow from the target and

build interaction between targets and contexts.

• MemNet (Tang et al., 2016b) uses a multi-

hop attention mechanism whose query of the first

attention layer is target representation. The atten-

tion result and the linear transformation of target

representation are summed and used as the mem-

ory and the query of the next attention layer. Out-

put of the last attention layer is considered as the

sentiment representation used for classification.

• IAN (Ma et al., 2017) uses two attention

mechanisms to select information from contexts

and targets according to the average of encoded

targets and contexts separately. The concatenation

of two attention results is used for sentiment clas-

sification.

• PG-CNN (Huang and Carley, 2018) is also

based on CNN and uses gate mechanism to incor-

porate target information into CNN architecture.

• The model designed by Hazarika et al. (2018)

classifies all the targets in one sentence simulta-

neously with attention mechanism and inter-target

dependencies detected by a complicated two-layer

LSTM structure. One LSTM layer is designed

to obtain the whole sentence representation based

on each target in one sentence, similar to ATAE-
LSTM. Then the model feeds the sentence repre-

sentations altogether into the other LSTM to find

the inter-target dependencies.

• RAM (Chen et al., 2017) uses multi-hop at-

tention mechanism on position-weighted memo-

ries and combines the attention results to synthe-

size important features in difficult sentence struc-

tures. The model still constructs the memories by

sentence-level information as MemNet does.

• TRMN (Wang et al., 2018) is a target-

sensitive memory network, where various interac-

tion mechanisms between target and context are

leveraged. The whole architecture is similar to

MemNet.
• IARM (Majumder et al., 2018) also lever-

ages recurrent memory networks with attention

mechanism. The memory is built by the sen-

tence representation based on target information

as ATAE-LSTM does. In addition, the model con-
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Models Restaurant Laptop
ACC Macro-F1 ACC Macro-F1

AE-LSTM∗ 76.60 66.45 68.90 62.45

ATAE-LSTM∗ 77.20 65.41 68.70 59.41

GCAE 77.28 - 69.14 -

MemNet∗ 78.16 65.83 70.33 64.09

IAN 78.20 - 72.10 -

PG-CNN 78.93 - 69.12 -

Hazarika et al. (2018) 79.00 - 72.50 -

RAM∗ 79.38 68.86 73.59 70.51

TRMN - 69.00 - 68.18

IARM 80.00 - 73.80 -

Ours∗ 80.98† 71.52† 74.56† 71.63†

Table 2: Comparisons with baselines and ablation experiments (%). The best results are in bold. The model with

∗ means its result is the average value of 5 runs. The result with † means statistical significant at the level of 0.05

with the baselines tagged by ∗.

centrates on inter-target dependencies by memory

networks, instead of vanilla LSTM structure used

in the model proposed by Hazarika et al. (2018).

The comparisons with baseline methods are

shown in Table 2. Our model significantly out-

performs all the baselines. Except for AE-LSTM,

GCAE and PG-CNN, the other baseline models

adopt attention mechanism to evaluate the correla-

tion between target and context words. However,

the attention score for each word is distributed si-

multaneously according to simple computation by

weight matrices. In our model, we intend to esti-

mate the probability of being an opinion word at

each time step based on the history information,

such as previous soft labels and cell states, to take

each word into account individually. Indeed, our

model achieves significant improvements over the

attention-based baseline models.

Moreover, we find that several baseline methods

are based on memory networks, such as MemNet,
RAM, TRMN and IARM. Note that the memo-

ries of these models are all based on the general

sentence-level representations which might lose

individual consideration and dilute the informa-

tion of opinion words. Thus, it is better to take

advantage of the history contexts and current word

representation to consider each token individually

instead of the overall sentence-level information.

Also, from the fact that IAN, which consid-

ers the interaction between target and context to-

kens, performs better than AE-LSTM and ATAE-
LSTM, we observe the importance of interaction

in this task. Though GCAE does not take context-

aware representations into account, it still per-

forms better than AE-LSTM and ATAE-LSTM
do. It demonstrates the effectiveness of GTRU

and further justifies the necessity of interaction be-

tween target and context. In our model, we em-

phasize the interaction when fusing the target rep-

resentation with the context word representations

and evaluating the correlation with targets to de-

cide which information we should focus on more.

The convolution layer has been proved to be

good at extracting local active features. How-

ever, the convolution based model GCAE and PG-
CNN behave poorly in this task because vanilla

convolution based models tend to find the salient

features in the whole sentence rather than figure

out the active features which are strongly asso-

ciated with the target. Intuitively, closer words

are more likely to modify the given target, and

some of the previous state-of-the-art models also

consider the relative position factors. There-

fore, inspired by them, we apply a convolution

based model combined with position information

to achieve better performance.

4.3 Ablation Study

To evaluate the effect of each part in our model,

we remove some important components or replace

them with widely used alternatives. The compar-

isons with ablated tests are shown in Table 3. The

results of ablation tests are the averages of 5 runs.

The biggest change from previous models is
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Models Restaurant Laptop
ACC Macro-F1 ACC Macro-F1

Ours 80.98‡ 71.52‡ 74.56‡ 71.63‡

with Hard Labels 78.34 68.17 73.14 69.01

with Attention 79.01 68.61 73.35 69.18

w/o Convolution Layer 79.15 68.45 73.28 69.24

w/o Soft Labels 79.34 68.37 73.62 69.52

w/o History Information 79.53 67.98 73.07 69.17

with AVG 80.29 69.65 73.84 70.31

w/o Positional Weights 80.54 69.95 73.65 70.44

Table 3: The results of ablation tests (%). The best results are in bold. w/o History Information indicates the

soft label approach without consideration of history information. with AVG indicates the target representation is

replaced by the averaged target embeddings. The result with ‡ means statistical significant at the level of 0.05.

that we use the soft label approach based on his-

tory information, such as previous soft labels and

cell states, instead of using attention scores. To

further confirm the effectiveness of the soft label

strategy, we replace it with attention mechanism,

which treats the target representation as a query

and uses a weight matrix to compute the correla-

tion between target and context words. The ex-

perimental results show that the accuracy drops

over 1.97% and 1.21% and Macro-F1 score drops

2.91% and 2.45% respectively. It strongly proves

the effectiveness of our soft label strategy and the

better performance can be attributed to the careful

consideration of each word at each time step. Ad-

ditionally, we compare our model with w/o His-
tory Information, which does not feed previous

time step’s soft label and cell states information

into the input of the current time step and simply

uses a weight matrix to project the hidden outputs

to the values of soft labels. The improvements

show that the history information is indispensable

for the task. The whole process of determining the

soft label value in our model is fairly similar to the

process of people reading a sentence and predict-

ing the sentiments for targets discussed in Section

1. Besides, our model outperforms with Hard La-
bels, where the value of the label is either 0 or 1,

because the soft approach can alleviate the prop-

agation problem caused by hard decision. More-

over, our model greatly improves the performance

compared with w/o Soft Labels. Obviously, the

history-based soft label approach has great effects.

As mentioned before, the interaction between

target and context is important in this task. Com-

pared with the model with AVG, our model has

Figure 2: Effect of β on two datasets.

better performance on the two datasets for the tar-

get representation of our model contains contex-

tual information and thus is more informative. The

results indeed prove the usefulness of strengthen-

ing interaction. Lastly, without the convolution

layer, the performance drops 1.83%, 1.28% on ac-

curacy and 3.07%, 2.39% on Macro-F1 score re-

spectively, suggesting that the convolution layer is

capable of extracting active features for sentiment

classification. Using relative distance information,

our model greatly improves the performance of

w/o Positional Weights. It indicates that position-

aware information is beneficial to our model.

4.4 Impact of Rate of Decaying on Positional
Weights

As our model involves the rate of decaying of po-

sitional weights which is controlled by β, we at-

tempt to investigate which value is proper for β.

Eq. 9 shows that the bigger β is, the slower the rate

is. In our experiments, we keep the other experi-

mental setups the same, and then vary β from 10 to

100, increased by 10. The results on two datasets

are shown in Figure 2. Firstly, we notice that our

model is better than most of the state-of-the-art



13

models on two datasets even if we do not opti-

mize on β, suggesting that the other components

of our model are effective. Besides, we observe

that the performance tends to get better before β
reaches 40, and there is a downward trend after

it. When β equals 10, the rate of decaying is rel-

atively fast. Since there are some long sentences

in the datasets, the positional weights would lead

to the loss of word information and result in worse

performance. When β is large, like 100, the rate

is slow and the positional weights may negligibly

affect the classification process. Thus, it is neces-

sary to choose a proper value for β.

4.5 Case Study

To further manifest the performance of our pro-

posed model, we choose a case and show it in a

heatmap form. In this case, the input sentence is

“The dish tastes bad but its vegetable is delicious
though it looks ugly.” and the given target is “veg-
etable”. There are two targets and three important

sentiment words (“bad”, “delicious” and “ugly”)

in the sentence. The challenge the model faces

is to find out which sentiment word contributes

more to the sentiment polarity of “vegetable”.

The upper part of Figure 3 is the visualization re-

sult of with Attention instead of using our pro-

posed soft label strategy. We can easily find that

the model attends on all the three sentiment words

listed before, especially on “bad” and “ugly”, and

wrongly predicts the sentiment as a negative one.

It partially justifies attention mechanism’s ability

of extracting the sentiment words, but the wrong

prediction could be attributed to the simultaneous

weight distribution of attention scores and lack of

individual consideration on each word.

Our proposed soft label approach is a good solu-

tion that could deal with the difficulty of matching

multiple opinion words to the given target. The

lower part indicates the visualization result of the

value of soft labels and represents the process of

soft label computation from the beginning of the

sentence to the end. Besides, the proportions of

history information gi are all above 0.4, except for

those of “bad” and “delicious”, which are 0.217

and 0.105 respectively. The relatively small value

means that there might be a sentiment change in

the place of the word. When the model browses

to the word “bad”, as words before do not con-

tain strong emotions, the cell states are now com-

bined with the sentiment information of “bad”.

When turning to “delicious”, the model recog-

nizes that “delicious” is more relevant to the target

while competing with the previous memory. Thus,

its soft label’s value becomes higher than that of

“bad” and the word accounts for relatively great

proportion of the cell states. Lastly, the model

considers the cell states containing the information

of “delicious” are more closely connected with

the target than the word “ugly” is. As a result, the

value of the soft label of “ugly” is low. Since the

value of the soft label of “delicious” is the highest

among those of all the other tokens in the sentence,

the model predicts the sentiment correctly. The

complex case strongly demonstrates the effective-

ness of finding correct opinion words for target.

5 Error Analysis

Though our model achieves good performance by

adopting the soft label strategy, we find that our

model fails to predict the sentiment correctly in

some cases. For example, when predicting the

sentiment of the target “staff” in the sentence

“The staff should be a bit more friendly.”, our

model tends to classify the sentiment as a posi-

tive one because of the opinion word “friendly”.

Actually, the modal verb “should” represents the

implicit meaning that the staff is not friendly and

the customer hopes the staff could change the atti-

tude towards customers. Therefore, there is still

a room for our model to mine the kind of im-

plicit semantics, not only based on the explicit

opinion words. Additionally, we choose to detect

the sentiment of “startup times” in the sentence

“Startup times are incredibly long: over two min-
utes.” and find that our model wrongly predicts

the sentiment as a positive one. Though “long”
is usually used to praise the quality of battery, it

represents negative meaning when modifying the

“startup times”. The fact that the same opinion

word represents totally different sentiments in dif-

ferent contexts may lead to the error.

6 Conclusion and Future Work

We propose a soft label approach to target-level

sentiment classification task. Our model benefits

from the soft label strategy based on history infor-

mation, positional weights to take relative distance

into account, and deeper interaction between tar-

get and context tokens. Experimental results on

two benchmark datasets show that our model in-

deed substantially outperforms previous works. In



14

The dish tastes bad but its vegetable is delicious though it looks ugly

with Attention Prediction: Negative

Our model            Prediction: Positive

Figure 3: Case study of our proposed model and with Attention described in Section 4.3. The given target is

“vegetable” and the sentiment towards it is positive. The deeper the blue is, the bigger the values of attention

scores and soft labels are. Notice that the values of soft labels are normalized and they do not contain any position

information.

the future, taking the encountered errors into ac-

count, we will do further researches on mining im-

plicit semantics and distinguishing different senti-

ments expressed by the same opinion word in var-

ious kinds of contexts.
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