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Abstract

This paper describes the L2TOR intelli-
gent tutoring system (ITS), focusing pri-
marily on its output generation module.
The L2TOR ITS is developed for the
purpose of investigating the efficacy of
robot-assisted second language tutoring in
early childhood. We explain the process
of generating contextually-relevant utter-
ances, such as task-specific feedback mes-
sages, and discuss challenges regarding
multimodality and multilingualism for sit-
uated natural language generation from a
robot tutoring perspective.

1 Introduction

In recent years, an increasing body of work has
highlighted the potential of social robots for vari-
ous educational purposes (Mubin et al., 2013; Bel-
paeme et al., 2018a). This paper describes re-
search conducted in the context of second lan-
guage (L2) acquisition in early childhood as part
of a project called Second Language Tutoring us-
ing Social Robots, or L2TOR for short (Belpaeme
et al., 2015). The main goal of the L2TOR project
is to evaluate the possible benefits of using social
robots as (second) language tutors; more specif-
ically, the aim is to provide tentative guidelines
to aid the development and deployment of robot-
assisted platforms suitable to teach children be-
tween the ages of five and six an L2 (Belpaeme
et al., 2015, 2018b).

The rationale behind the use of a social robot
for the purpose of L2 tutoring is multifold. A
noted benefit is the possibility of providing more
one-to-one tutoring (Belpaeme et al., 2018a).
An advantage of the embodied aspect of a robot
tutor is its social and physical presence in the
referential world of the learner (Leyzberg et al.,

2012). A humanoid robot may capitalise on its
anthropomorphic appearance by non-verbally
communicating with the learner, such as through
the use of gestures, a scaffolding mechanism
which has been shown to have positive effects on
learning outcomes when used by human tutors
(e.g., Hald et al., 2016; Alibali and Nathan, 2007;
Tellier, 2008) and may similarly benefit children
learning an L2 from a robot tutor (de Wit et al.,
2018).

An important aspect in the development of the
L2TOR system is the human element; findings
from studies of human tutors are leading in the
design of the robot’s behaviours. The aforemen-
tioned use of gestures is an example of non-
verbal behaviours to be incorporated into the tu-
toring interactions. With respect to the verbal be-
haviours of the robot, the aim is to tailor the lexi-
cal output to the situational context of the learner
when appropriate. To this end, we turn to natu-
ral language generation (NLG). Through context-
sensitive NLG, we will be able to provide, among
other things, situationally-relevant feedback mes-
sages. Adjusting output to fit the situational con-
text is expected to make interactions between child
and robot more natural. Situated NLG for human-
robot interaction (HRI), however, is a rather com-
plex matter which requires us to address vari-
ous issues not typically of concern to more con-
ventional applications of NLG. We will discuss
in more detail the design choices and challenges
encountered with respect to the development of
the L2TOR system’s multimodal and multilingual
output generation module.

2 L2TOR ITS

The L2TOR system is designed to be a state-
of-the-art robot-assisted intelligent tutoring sys-
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Figure 1: The basic setup of the L2TOR ITS.

tem (ITS) intended to teach young children an
L2. The hardware components that constitute
the system’s learning environment are SoftBank
Robotic’s NAO humanoid robot and a tablet com-
puter. The basic setup is shown in Figure 1. Com-
bined with promising technologies, such as knowl-
edge tracing (Schodde et al., 2017; de Wit et al.,
2018), the motivation behind the system’s design
is to facilitate the transfer of pedagogical tech-
niques used by human tutors to the robot tutoring
domain.

The architecture of the L2TOR ITS is modular
in nature; modules in the system are each respon-
sible for dealing with specific parts of the tutor-
ing interaction, including the registration and in-
terpretation of learner inputs, the management of
interaction flow and the relaying of relevant in-
formation to other parts of the system, and the
generation of appropriate behaviours on the basis
of knowledge representations derived from learner
inputs and situational context. It should be noted
that the system relies on the tablet computer to
mediate interactions, as automatic speech recogni-
tion was considered insufficiently reliable to serve
as an input device for child-robot interactions
(Kennedy et al., 2017; Belpaeme et al., 2018b).

With the intention of investigating the efficacy
of robot-assisted L2 vocabulary training in a lon-
gitudinal setting (Belpaeme et al., 2015, 2018b),
a series of lessons was developed in conjunc-
tion with the L2TOR ITS. The curriculum cov-
ered two educational domains, namely the number
domain, which involves number words and (pre-
)mathematical concepts, and the space domain,
which covers basic spatial relations. A total of 34
target words were selected based on a systematic
review of educational curricula and standard lit-

eracy tests. The lessons were designed to cover,
on average, six of the target words per tutoring
session. Children were to interact with the robot
on seven occasions, i.e., six lessons covering both
educational domains followed by a recap session,
over the course of roughly three weeks.

3 Generating Output

In the L2TOR ITS, the module responsible for re-
alizing any and all robot output is referred to as
the Output Module. This output includes both ver-
bal and non-verbal behaviours. Verbal behaviours
are realised as synthesised speech through a text-
to-speech (TTS) engine. Verbal output is com-
bined with the appropriate non-verbal behaviours
such as (co-speech) gestures as well as gaze, all of
which is coordinated with accompanying actions
on the tablet computer. The Output Module com-
prises several submodules, each responsible for
their own part in the planning and realization of
the robot’s behaviours. One of these submodules
is concerned with the generation of contextually-
relevant feedback messages.

The primary purpose of situated NLG for HRI
is the contextualisation of output. For a tutoring
interaction this means that we would want NLG
to be able to take into account the current state
of affairs regarding the subject matter as well as
the learner’s inputs at any point in the interac-
tion to provide them with adequate information,
including feedback. In addition, NLG might help
make interactions more dynamic by adding varia-
tion. Note, however, that certain components, in-
cluding NLG, in the iteration of the ITS intended
to be evaluated in a longitudinal study (Belpaeme
et al., 2015, 2018b) are more constrained for rea-
sons of experimental consistency; applications of
the system outside of research would ideally in-
crease the level of adaptation and personalization.

3.1 Curriculum

The content of the lessons was designed to provide
meaningful context to the target words; in the vir-
tual environment presented on the tablet computer,
the children would visit several locations and take
part in activities that were related to the language
input the child received and which were expected
to speak to their imagination. For example, to-
gether with the robot, the child would visit the zoo
and interact with the animals to learn about num-
bers and (pre-)mathematical concepts. Activities
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"objective": {
"id": "cage",
"is_plural": false,
"rel": {

"target": {
"id": "animal",
"is_plural": true

},
"type": "most"
}

}

Figure 2: JSON-formatted data structure contain-
ing information regarding current state of the in-
teraction.

then took the form of various tasks. With the tablet
in use as the main input device, most of these ac-
tivities concerned interactions with objects shown
on screen (e.g., selecting and moving objects).

The lesson content is stored in so-called story-
boards. These storyboards are essentially anno-
tated scripts in the form of spreadsheets. They
contain line-by-line information regarding ex-
pected robot and tablet output at any point in the
interaction. Although these storyboards can be
amended by non-experts, they are not stored in
a machine-readable format. We, therefore, use a
custom parser to transform them to a JSON-like
format such as shown in Figure 2.

3.2 State Tracking

Even though it is possible to generate
contextually-relevant feedback and task de-
scriptions to a certain extent when only the task
type and the objects involved are known, this
no longer holds when the context requires us to
distinguish between several (seemingly) identical
objects in order to generate the correct referring
expression. For example, this is problematic when
a task requires the learner to touch, in the virtual
environment on screen, the cage containing most
animals, but multiple cages are shown. The
system will only know that the object associated
with task completion is a cage with a specific
identifier (ID); this ID is not mapped to any
representation that uniquely identifies the object
from the others in natural language.

To ensure that the system is aware of which
object, in our example which cage, was the cor-
rect answer, while also being able to generate a
description that uniquely identifies it, we imple-
mented a discourse model to keep track of the
system’s current state — in this case the posi-

"monkey": {
"Dutch": {

"plural": {
"article": "de",
"text": "apen"

},
"singular": {

"article": "de",
"text": "aap"

}
}

}

Figure 3: Sample of dictionary containing infor-
mation on various task-related words and phrases.

tions of all virtual objects on the tablet — over
the course of the interaction. To make sure that
these object descriptions are generalizable to dif-
ferent languages and various situations, the model
stores data structures, such as shown in Figure
2, instead of full utterances. The components of
this data structure (cage, containing, most, ani-
mals) can then be translated using a dictionary,
such as shown in Figure 3, before being inserted
into the correct syntactic template. The conver-
sion between object IDs and their descriptions is
currently performed offline, i.e., prior to the inter-
action rather than during, when parsing the sto-
ryboards. During the interaction, the discourse
model is supplemented by functionalities from
Underworlds (Lemaignan et al., 2018), a spatial
and temporal modelling framework, which tracks,
in real time, whether certain tasks have been cor-
rectly carried out in the virtual environment.

3.3 NLG

As a result of the task-driven and scripted nature
of the tutoring interactions, NLG serves a niche
purpose within the ITS. Although progress has
been made with respect to end-to-end NLG sys-
tems (Gatt and Krahmer, 2018), given the focused
domain of application, namely situated NLG for
robot-assisted L2 acquisition, we have instead
opted for a template-based approach (van Deemter
et al., 2003; Gatt and Krahmer, 2018) as this al-
lows us to exert the necessary control over the out-
put, both verbal and non-verbal, to ensure its qual-
ity. Similarly to other data-to-text systems (Gatt
and Krahmer, 2018), we use hand-crafted syntac-
tic templates and fill gaps with task-specific in-
formation. This information is derived from data
structures such as shown in Figure 2 and Figure 3.

Part of the interaction for which NLG is re-
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Figure 4: Example of an object selection task presented on the tablet computer. For this hypothetical
scenario we assume the L1 to be Dutch and the L2 to be English. The learner was asked to touch the
monkey in the cage — here shown in the (pink) box —, but has instead touched one of the elephants
shown in the foreground. The robot will now provide the feedback message as shown above the image
(in italics). Note that neither the (pink) box nor the text are visible to the learner.

quired is the contextualisation of feedback. Rather
than telling the learner their execution of a task
was either wrong or right, we want to be able to
comment on the exact nature of their actions in re-
lation to what was required of them for task com-
pletion. The information required to make feed-
back messages contextually relevant varies per
task, as does the way in which this information is
organised. For this reason, different tasks require
the use of different syntactic templates for the pro-
vision of adequate feedback.

To illustrate the process of constructing a
contextually-relevant feedback message, Figure 4
provides an example of an incorrectly-executed
object selection task in an interaction in which the
L1 is Dutch. At this point in the interaction, there
are several animals shown on screen, one of which
is shown inside an enclosure (referred to as cage),
namely the monkey; two elephants, however, have
managed to escape. The learner is asked to touch
the monkey residing inside the cage, but does not
manage to do so. In order to provide feedback to
the learner, we use the template as shown in Table
1. The template contains a preposition ($prep) ex-
plaining the relationship between two objects, here
labeled as $trg (target) and $obj (object). In our
example, the target is the noun phrase the monkey
and the object is the noun phrase the cage (de kooi

in Dutch). In order to retrieve the correct form,
we consult a dictionary with information regarding
the objects in question, such as shown in Figure 3.
If the target in our example had been addressed in
the L1, we would have retrieved the Dutch singu-
lar version of the noun phrase, i.e., the determiner
de [the] and the noun aap [monkey]. To com-
plete the feedback message, the syntactic template
is preceded by a feedback phrase indicating more
explicitly that an incorrect answer was provided,
and followed by a prompt telling the learner to at-
tempt the task once more. Although the prompt is
hard-coded, the feedback phrase concerns a ran-
dom selection, without immediate repetition, from
a set of canned expressions as a way of introducing
some more variation to the message.

In addition, in the event that user input is
not registered for an extended period of time,
we attempt to re-engage the learner through a
contextually-relevant prompt. This prompt is con-
structed in a similar manner as the feedback mes-
sage, i.e., by means of slot-filling a task-relevant
syntactic template, to remind the user of the cur-
rent task.

3.4 Non-Verbal Behaviour

Human tutors often use gestures as a scaffold-
ing mechanism (e.g., Alibali and Nathan, 2007).
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(A) Nee, dat klopt niet helemaal. [No, that’s not quite right.]
(B) Je moet $trg $prep $obj aanraken. [You need to touch $trg $prep $obj.]
(C) Probeer het nog maar een keer. [Try again.]

Table 1: Example of a feedback message for an object selection task. The message consists of three
parts: (A) a (negative) feedback phrase, (B) the syntactic template, and (C) a prompt.

Thanks to the NAO’s humanoid appearance, we
can incorporate gestures into tutoring interactions
in a similar manner. For gestures that coincide
with speech, i.e., co-speech gestures, the proper
alignment of speech and gesture is crucial. This
behavioural management is a built-in functionality
of the NAOqi API. The ALAnimatedSpeech mod-
ule1 processes text annotated with specific com-
mands in order to tell the robot at which point in
an utterance a behaviour, such as an iconic gesture,
is to be executed. To improve the timing of the ex-
ecution, we inserted timed pauses to synchronise
the stroke of the gesture with the target word. De-
spite increased synchronisation, the added pauses
do slow down the interaction.

In addition to iconic gestures, we make use of
deictic gestures to guide the learner’s attention.
The combination of gaze and pointing gestures
helps establish joint attention, while gaze may also
help build rapport between child and robot (Ad-
moni and Scassellati, 2017). All non-verbal be-
haviours are triggered from the annotated utter-
ance, of which an example is shown in Table 2.

3.5 Speech Synthesis

In contrast with typical NLG applications, the sur-
face realization of NLG for HRI is not a human-
readable text, but instead a rendition of an utter-
ance as synthesised speech. Depending on the
language of choice, the TTS engine of the NAO
robot is by default either powered by Nuance or
Acapela. These TTS engines are both capable of
producing a speech signal from a text string.

In the context of language acquisition, the qual-
ity of the synthesised speech may be of impor-
tance, as (young) learners have been shown to at-
tend to non-verbal cues present in the speech sig-
nal when presented with a novel language (e.g.,
Dominey and Dodane, 2004). Although the effects
of speech synthesis quality on learners’ percep-
tions have previously been studied for computer-
assisted language learning (e.g., Bione et al., 2016;

1http://doc.aldebaran.com/2-1/naoqi/
audio/alanimatedspeech.html

Handley, 2009; Kang et al., 2008), whether poor
quality speech synthesis impedes the efficacy of
language acquisition has not been unequivocally
established.

Although both the Nuance and Acapela TTS en-
gines allow for modification of the speech signal
to a certain extent by means of parameter tuning
(e.g., pitch, volume, speaking rate), control over
the quality of the synthesised speech is limited.
The multilingual nature of the interaction causes
additional difficulties, as code-switching in the
current iteration of the ITS requires us to switch
TTS engine frequently, often within the same ut-
terance. As a result of the engines only receiv-
ing segments of the utterance rather than the ut-
terance as a whole, the quality of the speech sig-
nal is negatively affected as words and phrases, in
particular near segmentation boundaries, are mis-
pronounced to varying degrees. It should be noted
that the switch of engine also results in a change
of voice, as different languages have been dictated
by different speakers.

Despite certain difficulties being inherent to the
technologies themselves, we have managed to ad-
dress some of the TTS problems we have encoun-
tered. For example, in order to correct some of the
pronunciation errors, we have relied on phonetic
transcriptions of problematic words and phrases.
Take, for instance, the word tablet. When the L1
is Dutch, the TTS will pronounce the word as the
Dutch word for pill, rather than the intended pro-
nunciation referring to a tablet computer. How-
ever, when we use the following phonetic repre-
sentation of the word: t E: b l @ t, the syn-
thesised speech will more closely resemble the
expected pronunciation. Furthermore, to avoid
any chance of poorly synthesised speech being a
learner’s first exposure to a target word in the L2,
we instead make use of audio recordings of a na-
tive speaker, played back via the tablet’s speakers.

4 Conclusion

In this paper, we have described the L2TOR ITS,
focussing primarily on the system’s multimodal

5



Kijk John ˆstart(pointing/tablet) $toggle facetracking=False ˆstart(gaze/tablet) ,

de dieren spelen een spelletje met ons! $toggle facetracking=True

[Look John ˆstart(pointing/tablet) $toggle facetracking=False ˆstart(gaze/tablet) ,

the animals are playing a game with us! $toggle facetracking=True]

Table 2: Example of an annotated utterance returned by the Output Module. Here, John is the child’s
given name. ˆstart(pointing/tablet) indicates that the robot will direct the attention of the child to the
tablet by using a pointing gesture. As can be seen from $toggle facetracking=False, face tracking is
then disabled, after which the robot will direct its own gaze towards the tablet, ˆstart(gaze/tablet), in an
attempt to establish joint attention. At the end of the utterance, face tracking is once again enabled.

and multilingual output generation module. We
have discussed challenges with respect to situated
NLG for the purpose of robot-assisted language
tutoring, including natural-sounding TTS, multi-
modality and multilingualism, coordinating robot
actions and tablet output, and how and to what ex-
tent these were addressed within the context of the
project.
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Junko Kanero, James Kennedy, Aylin C. Küntay,
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