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Introduction

The workshop on NLG for Human–Robot Interaction (NLG-HRI) was held in Tilburg, The Netherlands
as part of the 11th International Conference on Natural Language Generation (INLG 2018).

The aim of the workshop was to bring the two research communities Natural Language Generation
(NLG) and Human–Robot Interaction (HRI) together in order to enable an interdisciplinary dialogue
between researchers of these fields.

The workshop invited short position papers from researchers working on human–robot interaction and/or
natural language generation. The workshop received eight submissions, all of which were reviewed by
two or three members of the program committee. Five of papers were chosen for long oral presentations
(15 minutes), and three for short oral presentations (7 minutes). This proceedings volume contains the
six papers whose authors agreed to have their position papers published.

The workshop began with a short tutorial-style introductions to the fields involved. This was followed
by presentations of the position papers. In the afternoon, two break-out groups were formed for in-depth
discussion of (i) interactive multimodal generation, and (ii) shared tasks, challenges, and tools. Finally,
future actions on the topics of the workshop as well as ways to continue the conversation were discussed.

Thirty-two participants registered for the workshop, most of them working on natural language
generation, some on natural language generation for human–robot interaction (or interactive systems
more generally) and a few on human–robot interaction. Attendees engaged in lively discussions around
the presented papers and the topics of the break-out groups, making the workshop a success.

We would, once again, like to thank the authors, the program committee members, and the workshop
attendees.

Mary Ellen Foster
Hendrik Buschmeier
Dimitra Gkatzia
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Context-Sensitive Natural Language Generation for Robot-Assisted
Second Language Tutoring
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Abstract

This paper describes the L2TOR intelli-
gent tutoring system (ITS), focusing pri-
marily on its output generation module.
The L2TOR ITS is developed for the
purpose of investigating the efficacy of
robot-assisted second language tutoring in
early childhood. We explain the process
of generating contextually-relevant utter-
ances, such as task-specific feedback mes-
sages, and discuss challenges regarding
multimodality and multilingualism for sit-
uated natural language generation from a
robot tutoring perspective.

1 Introduction

In recent years, an increasing body of work has
highlighted the potential of social robots for vari-
ous educational purposes (Mubin et al., 2013; Bel-
paeme et al., 2018a). This paper describes re-
search conducted in the context of second lan-
guage (L2) acquisition in early childhood as part
of a project called Second Language Tutoring us-
ing Social Robots, or L2TOR for short (Belpaeme
et al., 2015). The main goal of the L2TOR project
is to evaluate the possible benefits of using social
robots as (second) language tutors; more specif-
ically, the aim is to provide tentative guidelines
to aid the development and deployment of robot-
assisted platforms suitable to teach children be-
tween the ages of five and six an L2 (Belpaeme
et al., 2015, 2018b).

The rationale behind the use of a social robot
for the purpose of L2 tutoring is multifold. A
noted benefit is the possibility of providing more
one-to-one tutoring (Belpaeme et al., 2018a).
An advantage of the embodied aspect of a robot
tutor is its social and physical presence in the
referential world of the learner (Leyzberg et al.,

2012). A humanoid robot may capitalise on its
anthropomorphic appearance by non-verbally
communicating with the learner, such as through
the use of gestures, a scaffolding mechanism
which has been shown to have positive effects on
learning outcomes when used by human tutors
(e.g., Hald et al., 2016; Alibali and Nathan, 2007;
Tellier, 2008) and may similarly benefit children
learning an L2 from a robot tutor (de Wit et al.,
2018).

An important aspect in the development of the
L2TOR system is the human element; findings
from studies of human tutors are leading in the
design of the robot’s behaviours. The aforemen-
tioned use of gestures is an example of non-
verbal behaviours to be incorporated into the tu-
toring interactions. With respect to the verbal be-
haviours of the robot, the aim is to tailor the lexi-
cal output to the situational context of the learner
when appropriate. To this end, we turn to natu-
ral language generation (NLG). Through context-
sensitive NLG, we will be able to provide, among
other things, situationally-relevant feedback mes-
sages. Adjusting output to fit the situational con-
text is expected to make interactions between child
and robot more natural. Situated NLG for human-
robot interaction (HRI), however, is a rather com-
plex matter which requires us to address vari-
ous issues not typically of concern to more con-
ventional applications of NLG. We will discuss
in more detail the design choices and challenges
encountered with respect to the development of
the L2TOR system’s multimodal and multilingual
output generation module.

2 L2TOR ITS

The L2TOR system is designed to be a state-
of-the-art robot-assisted intelligent tutoring sys-
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Figure 1: The basic setup of the L2TOR ITS.

tem (ITS) intended to teach young children an
L2. The hardware components that constitute
the system’s learning environment are SoftBank
Robotic’s NAO humanoid robot and a tablet com-
puter. The basic setup is shown in Figure 1. Com-
bined with promising technologies, such as knowl-
edge tracing (Schodde et al., 2017; de Wit et al.,
2018), the motivation behind the system’s design
is to facilitate the transfer of pedagogical tech-
niques used by human tutors to the robot tutoring
domain.

The architecture of the L2TOR ITS is modular
in nature; modules in the system are each respon-
sible for dealing with specific parts of the tutor-
ing interaction, including the registration and in-
terpretation of learner inputs, the management of
interaction flow and the relaying of relevant in-
formation to other parts of the system, and the
generation of appropriate behaviours on the basis
of knowledge representations derived from learner
inputs and situational context. It should be noted
that the system relies on the tablet computer to
mediate interactions, as automatic speech recogni-
tion was considered insufficiently reliable to serve
as an input device for child-robot interactions
(Kennedy et al., 2017; Belpaeme et al., 2018b).

With the intention of investigating the efficacy
of robot-assisted L2 vocabulary training in a lon-
gitudinal setting (Belpaeme et al., 2015, 2018b),
a series of lessons was developed in conjunc-
tion with the L2TOR ITS. The curriculum cov-
ered two educational domains, namely the number
domain, which involves number words and (pre-
)mathematical concepts, and the space domain,
which covers basic spatial relations. A total of 34
target words were selected based on a systematic
review of educational curricula and standard lit-

eracy tests. The lessons were designed to cover,
on average, six of the target words per tutoring
session. Children were to interact with the robot
on seven occasions, i.e., six lessons covering both
educational domains followed by a recap session,
over the course of roughly three weeks.

3 Generating Output

In the L2TOR ITS, the module responsible for re-
alizing any and all robot output is referred to as
the Output Module. This output includes both ver-
bal and non-verbal behaviours. Verbal behaviours
are realised as synthesised speech through a text-
to-speech (TTS) engine. Verbal output is com-
bined with the appropriate non-verbal behaviours
such as (co-speech) gestures as well as gaze, all of
which is coordinated with accompanying actions
on the tablet computer. The Output Module com-
prises several submodules, each responsible for
their own part in the planning and realization of
the robot’s behaviours. One of these submodules
is concerned with the generation of contextually-
relevant feedback messages.

The primary purpose of situated NLG for HRI
is the contextualisation of output. For a tutoring
interaction this means that we would want NLG
to be able to take into account the current state
of affairs regarding the subject matter as well as
the learner’s inputs at any point in the interac-
tion to provide them with adequate information,
including feedback. In addition, NLG might help
make interactions more dynamic by adding varia-
tion. Note, however, that certain components, in-
cluding NLG, in the iteration of the ITS intended
to be evaluated in a longitudinal study (Belpaeme
et al., 2015, 2018b) are more constrained for rea-
sons of experimental consistency; applications of
the system outside of research would ideally in-
crease the level of adaptation and personalization.

3.1 Curriculum

The content of the lessons was designed to provide
meaningful context to the target words; in the vir-
tual environment presented on the tablet computer,
the children would visit several locations and take
part in activities that were related to the language
input the child received and which were expected
to speak to their imagination. For example, to-
gether with the robot, the child would visit the zoo
and interact with the animals to learn about num-
bers and (pre-)mathematical concepts. Activities
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"objective": {
"id": "cage",
"is_plural": false,
"rel": {

"target": {
"id": "animal",
"is_plural": true

},
"type": "most"
}

}

Figure 2: JSON-formatted data structure contain-
ing information regarding current state of the in-
teraction.

then took the form of various tasks. With the tablet
in use as the main input device, most of these ac-
tivities concerned interactions with objects shown
on screen (e.g., selecting and moving objects).

The lesson content is stored in so-called story-
boards. These storyboards are essentially anno-
tated scripts in the form of spreadsheets. They
contain line-by-line information regarding ex-
pected robot and tablet output at any point in the
interaction. Although these storyboards can be
amended by non-experts, they are not stored in
a machine-readable format. We, therefore, use a
custom parser to transform them to a JSON-like
format such as shown in Figure 2.

3.2 State Tracking

Even though it is possible to generate
contextually-relevant feedback and task de-
scriptions to a certain extent when only the task
type and the objects involved are known, this
no longer holds when the context requires us to
distinguish between several (seemingly) identical
objects in order to generate the correct referring
expression. For example, this is problematic when
a task requires the learner to touch, in the virtual
environment on screen, the cage containing most
animals, but multiple cages are shown. The
system will only know that the object associated
with task completion is a cage with a specific
identifier (ID); this ID is not mapped to any
representation that uniquely identifies the object
from the others in natural language.

To ensure that the system is aware of which
object, in our example which cage, was the cor-
rect answer, while also being able to generate a
description that uniquely identifies it, we imple-
mented a discourse model to keep track of the
system’s current state — in this case the posi-

"monkey": {
"Dutch": {

"plural": {
"article": "de",
"text": "apen"

},
"singular": {

"article": "de",
"text": "aap"

}
}

}

Figure 3: Sample of dictionary containing infor-
mation on various task-related words and phrases.

tions of all virtual objects on the tablet — over
the course of the interaction. To make sure that
these object descriptions are generalizable to dif-
ferent languages and various situations, the model
stores data structures, such as shown in Figure
2, instead of full utterances. The components of
this data structure (cage, containing, most, ani-
mals) can then be translated using a dictionary,
such as shown in Figure 3, before being inserted
into the correct syntactic template. The conver-
sion between object IDs and their descriptions is
currently performed offline, i.e., prior to the inter-
action rather than during, when parsing the sto-
ryboards. During the interaction, the discourse
model is supplemented by functionalities from
Underworlds (Lemaignan et al., 2018), a spatial
and temporal modelling framework, which tracks,
in real time, whether certain tasks have been cor-
rectly carried out in the virtual environment.

3.3 NLG

As a result of the task-driven and scripted nature
of the tutoring interactions, NLG serves a niche
purpose within the ITS. Although progress has
been made with respect to end-to-end NLG sys-
tems (Gatt and Krahmer, 2018), given the focused
domain of application, namely situated NLG for
robot-assisted L2 acquisition, we have instead
opted for a template-based approach (van Deemter
et al., 2003; Gatt and Krahmer, 2018) as this al-
lows us to exert the necessary control over the out-
put, both verbal and non-verbal, to ensure its qual-
ity. Similarly to other data-to-text systems (Gatt
and Krahmer, 2018), we use hand-crafted syntac-
tic templates and fill gaps with task-specific in-
formation. This information is derived from data
structures such as shown in Figure 2 and Figure 3.

Part of the interaction for which NLG is re-
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Figure 4: Example of an object selection task presented on the tablet computer. For this hypothetical
scenario we assume the L1 to be Dutch and the L2 to be English. The learner was asked to touch the
monkey in the cage — here shown in the (pink) box —, but has instead touched one of the elephants
shown in the foreground. The robot will now provide the feedback message as shown above the image
(in italics). Note that neither the (pink) box nor the text are visible to the learner.

quired is the contextualisation of feedback. Rather
than telling the learner their execution of a task
was either wrong or right, we want to be able to
comment on the exact nature of their actions in re-
lation to what was required of them for task com-
pletion. The information required to make feed-
back messages contextually relevant varies per
task, as does the way in which this information is
organised. For this reason, different tasks require
the use of different syntactic templates for the pro-
vision of adequate feedback.

To illustrate the process of constructing a
contextually-relevant feedback message, Figure 4
provides an example of an incorrectly-executed
object selection task in an interaction in which the
L1 is Dutch. At this point in the interaction, there
are several animals shown on screen, one of which
is shown inside an enclosure (referred to as cage),
namely the monkey; two elephants, however, have
managed to escape. The learner is asked to touch
the monkey residing inside the cage, but does not
manage to do so. In order to provide feedback to
the learner, we use the template as shown in Table
1. The template contains a preposition ($prep) ex-
plaining the relationship between two objects, here
labeled as $trg (target) and $obj (object). In our
example, the target is the noun phrase the monkey
and the object is the noun phrase the cage (de kooi

in Dutch). In order to retrieve the correct form,
we consult a dictionary with information regarding
the objects in question, such as shown in Figure 3.
If the target in our example had been addressed in
the L1, we would have retrieved the Dutch singu-
lar version of the noun phrase, i.e., the determiner
de [the] and the noun aap [monkey]. To com-
plete the feedback message, the syntactic template
is preceded by a feedback phrase indicating more
explicitly that an incorrect answer was provided,
and followed by a prompt telling the learner to at-
tempt the task once more. Although the prompt is
hard-coded, the feedback phrase concerns a ran-
dom selection, without immediate repetition, from
a set of canned expressions as a way of introducing
some more variation to the message.

In addition, in the event that user input is
not registered for an extended period of time,
we attempt to re-engage the learner through a
contextually-relevant prompt. This prompt is con-
structed in a similar manner as the feedback mes-
sage, i.e., by means of slot-filling a task-relevant
syntactic template, to remind the user of the cur-
rent task.

3.4 Non-Verbal Behaviour

Human tutors often use gestures as a scaffold-
ing mechanism (e.g., Alibali and Nathan, 2007).

4



(A) Nee, dat klopt niet helemaal. [No, that’s not quite right.]
(B) Je moet $trg $prep $obj aanraken. [You need to touch $trg $prep $obj.]
(C) Probeer het nog maar een keer. [Try again.]

Table 1: Example of a feedback message for an object selection task. The message consists of three
parts: (A) a (negative) feedback phrase, (B) the syntactic template, and (C) a prompt.

Thanks to the NAO’s humanoid appearance, we
can incorporate gestures into tutoring interactions
in a similar manner. For gestures that coincide
with speech, i.e., co-speech gestures, the proper
alignment of speech and gesture is crucial. This
behavioural management is a built-in functionality
of the NAOqi API. The ALAnimatedSpeech mod-
ule1 processes text annotated with specific com-
mands in order to tell the robot at which point in
an utterance a behaviour, such as an iconic gesture,
is to be executed. To improve the timing of the ex-
ecution, we inserted timed pauses to synchronise
the stroke of the gesture with the target word. De-
spite increased synchronisation, the added pauses
do slow down the interaction.

In addition to iconic gestures, we make use of
deictic gestures to guide the learner’s attention.
The combination of gaze and pointing gestures
helps establish joint attention, while gaze may also
help build rapport between child and robot (Ad-
moni and Scassellati, 2017). All non-verbal be-
haviours are triggered from the annotated utter-
ance, of which an example is shown in Table 2.

3.5 Speech Synthesis

In contrast with typical NLG applications, the sur-
face realization of NLG for HRI is not a human-
readable text, but instead a rendition of an utter-
ance as synthesised speech. Depending on the
language of choice, the TTS engine of the NAO
robot is by default either powered by Nuance or
Acapela. These TTS engines are both capable of
producing a speech signal from a text string.

In the context of language acquisition, the qual-
ity of the synthesised speech may be of impor-
tance, as (young) learners have been shown to at-
tend to non-verbal cues present in the speech sig-
nal when presented with a novel language (e.g.,
Dominey and Dodane, 2004). Although the effects
of speech synthesis quality on learners’ percep-
tions have previously been studied for computer-
assisted language learning (e.g., Bione et al., 2016;

1http://doc.aldebaran.com/2-1/naoqi/
audio/alanimatedspeech.html

Handley, 2009; Kang et al., 2008), whether poor
quality speech synthesis impedes the efficacy of
language acquisition has not been unequivocally
established.

Although both the Nuance and Acapela TTS en-
gines allow for modification of the speech signal
to a certain extent by means of parameter tuning
(e.g., pitch, volume, speaking rate), control over
the quality of the synthesised speech is limited.
The multilingual nature of the interaction causes
additional difficulties, as code-switching in the
current iteration of the ITS requires us to switch
TTS engine frequently, often within the same ut-
terance. As a result of the engines only receiv-
ing segments of the utterance rather than the ut-
terance as a whole, the quality of the speech sig-
nal is negatively affected as words and phrases, in
particular near segmentation boundaries, are mis-
pronounced to varying degrees. It should be noted
that the switch of engine also results in a change
of voice, as different languages have been dictated
by different speakers.

Despite certain difficulties being inherent to the
technologies themselves, we have managed to ad-
dress some of the TTS problems we have encoun-
tered. For example, in order to correct some of the
pronunciation errors, we have relied on phonetic
transcriptions of problematic words and phrases.
Take, for instance, the word tablet. When the L1
is Dutch, the TTS will pronounce the word as the
Dutch word for pill, rather than the intended pro-
nunciation referring to a tablet computer. How-
ever, when we use the following phonetic repre-
sentation of the word: t E: b l @ t, the syn-
thesised speech will more closely resemble the
expected pronunciation. Furthermore, to avoid
any chance of poorly synthesised speech being a
learner’s first exposure to a target word in the L2,
we instead make use of audio recordings of a na-
tive speaker, played back via the tablet’s speakers.

4 Conclusion

In this paper, we have described the L2TOR ITS,
focussing primarily on the system’s multimodal

5



Kijk John ˆstart(pointing/tablet) $toggle facetracking=False ˆstart(gaze/tablet) ,

de dieren spelen een spelletje met ons! $toggle facetracking=True

[Look John ˆstart(pointing/tablet) $toggle facetracking=False ˆstart(gaze/tablet) ,

the animals are playing a game with us! $toggle facetracking=True]

Table 2: Example of an annotated utterance returned by the Output Module. Here, John is the child’s
given name. ˆstart(pointing/tablet) indicates that the robot will direct the attention of the child to the
tablet by using a pointing gesture. As can be seen from $toggle facetracking=False, face tracking is
then disabled, after which the robot will direct its own gaze towards the tablet, ˆstart(gaze/tablet), in an
attempt to establish joint attention. At the end of the utterance, face tracking is once again enabled.

and multilingual output generation module. We
have discussed challenges with respect to situated
NLG for the purpose of robot-assisted language
tutoring, including natural-sounding TTS, multi-
modality and multilingualism, coordinating robot
actions and tablet output, and how and to what ex-
tent these were addressed within the context of the
project.
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Abstract

One of the most natural ways for hu-
man robot communication is through spo-
ken language. Training human-robot in-
teraction systems require access to large
datasets which are expensive to obtain and
labour intensive. In this paper, we de-
scribe an approach for learning from mini-
mal data, using as a toy example language
understanding in spoken dialogue systems.
Understanding of spoken language is cru-
cial because it has implications for natu-
ral language generation, i.e. correctly un-
derstanding a user’s utterance will lead to
choosing the right response/action. Fi-
nally, we discuss implications for Natural
Language Generation in Human-Robot In-
teraction.

1 Introduction

Robots are becoming prevalent as the technology
advances and the prices drop. The International
Federation of Robotics1 reported that in 2017,
there was a worldwide increase of 30% for in-
dustrial robots sales and there is a 39% increase
of professional service robots the sales (in value),
while forecasting a growth of 30-35% per year un-
til 2020 for domestic robotics. This will create op-
portunities for effective human robot communica-
tion and will require robots to combine different
skills such as computer vision, language under-
standing and generation as well as object manip-
ulation.

Human-robot interaction (HRI) can be en-
hanced via the use of natural language dialogue

∗This work was completed while Jekaterina was a student
at Edinburgh Napier University.

1https://ifr.org/

between humans and robots. In this paper, we dis-
cuss the implications of dialogue for HRI, by de-
riving insights from recent work on personal assis-
tants. In particular, we describe how one-shot
learning can guide natural language genera-
tion in scenarios where we only have access to
small amounts of example dialogues and discuss
how we can transfer lessons learnt to human robot
communication. Therefore, we initially describe
the development of a personal assistant capable to
handle users’ queries without being trained with
example dialogues, and then we describe how we
can adapt this approach to human-robot communi-
cation.

2 Approach

MOOBO is a personal assistant for an educational
platform Moodle2 that takes as input users queries
(such as queries regarding coursework, dealines,
etc.) and outputs responses. Moodle is used
by a large number of universities and it allows
lectures to share their learning materials such as
slides, academic papers, laboratory work as well
as coursework and assignments. The students can
then access all these documents and posts for their
courses. This data becomes available in both a
structured and unstructured way. MOOBO is able
to access this data and extract the relevant infor-
mation and render it to users in natural language.

2.1 Software Architecture

MOOBO is a web-based, platform independent
application and available to use on all devices:
desktops, tablets and mobiles. It uses a client-
server architectural style which consists of two
components, the client and the server, as shown
in Figure 1. The client makes a call to the server
and gets the response back. The server is contin-

2https://moodle.org/
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uously listening to client requests. They commu-
nicate over HTTP using REST methods (such as
GET, POST, PUT, DELETE) in a JSON format.

Figure 1: Client-server architecture

The client is a web browser passing on the user
input to the server. It is developed using JavaScript
framework, HTML and CSS. The server is devel-
oped in Python using Flask web framework that
offers a development server and RESTful request
dispatching.

MOOBO is effectively a spoken dialogue sys-
tem and thus, it consists of five main components
which are responsible for: Speech Recognition,
Natural Language Understanding, Dialog Man-
ager, Natural Language Generation and Text-to-
Speech Synthesis as shown in Figure 2.

Figure 2: MOOBO’s architecture.

Speech Recognition Speech Recognition uses a
JavaScript library called artyom.js 3. It resides
on the client side and listens to the users input
which is then forwarded to the server for further
processing. To improve the user experience, both
speech recognition and an option to write the input
as a text are available.

Natural Language Understanding To process
the user input, spaCy 4 was used in order to
recognise Named Entities and part of speech.

Dialogue manager The Dialogue Manager
(DM) is responsible for choosing the action which

3https://sdkcarlos.github.io/sites/artyom.html
4https://spacy.io/

will lead to generating output. For this domain,
dialogues were not available and therefore we cre-
ated a small dataset of potential dialogues. Then
each utterance was mapped to an intent as seen
in Table 2. The main challenge that the dialogue
manager needed to address is that different stu-
dents ask for the same information in different
ways. For instance, a student can ask ”What is the
module about?” and ”What will I learn from the
module?”. Although these questions are phrased
differently, the intent is the same: the student is re-
questing a module summary. When several exam-
ples of dialogues are available, it is easy to learn
that both questions result in the same intent. How-
ever, when we only have one example of an in-
tent, we need a clever way to associate all similar
queries to this one example. Therefore, we used
one-shot learning (Schroff et al., 2015) to address
this challenge.

One-shot learning One-shot learning initially
learns an embedding per instance usually using
some deep learning approach. Once the embed-
dings have been produced, then the intend recog-
nition simply becomes a k-NN classification prob-
lem. In our setup, one-shot learning was achieved
as follows:

1. Utilising the knowledge of NER and part
of speech tagging, embeddings of the nat-
ural language utterances were created using
Word2Vec (Mikolov et al., 2013) with a 4-
word window.

2. The K Nearest Neighbour algorithm (K-NN)
was used to find the nearest utterance in the
small dataset in terms of the Euclidean dis-
tance. After the Euclidean Distance is calcu-
lated, the system selects the three closest re-
sults and sorts them in terms of distance and
selects the first one.

Because K-NN can be sensitive to outliers and
has no confidence, the application used three near-
est neighbours to make the result more stable.

There are six tasks that the system can perform
as depicted in Table 2. They all require either in-
formation extraction or text summarization. This
is different to traditional dialogue systems which
utilise structured information stored in databases.

2.1.1 Natural Language Generation
After the DM has identified the right task, it sends
it to the Natural Language Generation (NLG)
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Input Intent
What can I potentially learn from the module module summary
What is the coursework summary cw summary
What are my courses course summary
Who is the programme leader for the module programme leader
When is the coursework deadline cw deadline

Table 1: Examples of utterances mapped to intents.

Task Management
1. Coursework summary
2. Coursework deadline
3. Module summary
4. Course summary
5. Get a program leader
6. Lab/ Lecture summary

Table 2: List of MOOBO’s actions.

module. At this instance, NLG is template-based
with slot-filling.

Slot-filling in our project, required accessing
unstructured text and deriving the correct informa-
tion. Consider for instance the task of finding a
program leader. The Named Entity Recognition
module is used to look for a PERSON entity in
a specific module section. The coursework dead-
line was extracted using Spacy NER DATE and
ORGINAL types. Some coursework files were
written in the specific template, which gave a pos-
sibility to use regular expressions to extract the in-
formation. For summaries generation TextRank
was used (Mihalcea and Tarau, 2004). TextRank
is a graph-based ranking algorithm which builds a
graph, where the vertices are the units (extracted
sentences) to be ranked. The algorithm measures
the similarity between the sentences and attaches
a ranking score to each one of them.

Figure 3 shows MOOBO’s interface and a short
example of dialogue.

3 Evaluation

The system was evaluated with humans through
a task-based evaluation, followed by a question-
naire. There were 18 participants recruited who
are all undergraduate students at Edinburgh Napier
University (so they were all familiar with the stan-
dard Moodle). Each participant was given a gen-
eral overview of MOOBO and time to interact
with the system. Each user was tasked to perform

Figure 3: MOOBO’s interface.

Questions
1. Was MOOBO accurate?
2. Was MOOBO easy to use?
3. Would you use MOOBO
4. Would you prefer using Moobo or a stan-
dard Moodle?
5. Overall how would you rate the experi-
ence? (0-bad, 10-excellent)

Table 3: List of questions answered by partici-
pants after completing the task-based evaluation.

a set of pre-defined tasks using MOOBO and then
using the standard Moodle. Specifically, the par-
ticipants had to find information regarding the fol-
lowing:

1. The lab summary for ”fundamentals of paral-
lel systems” in week 2.

2. The coursework for ”computational intelli-
gence”.

3. The deadline for the ”Algorithms and Data
structures” module.

4. The program leader for the ”Design Dia-
logues” module.

After finishing these tasks, the participants were
given a short questions (see Table 3.
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4 Results and Discussion

The results showed that the participants really pre-
ferred MOOBO to standard Moodle. In fact, 76%
of students said that it was accurate, 24% men-
tioned that it was accurate to an extent, adding
that ”I had to repeat a few times, but it was ac-
curate afterwards” and ”Sometimes it was unable
to recognize what I said”. Interestingly, none of
the participants said that MOOBO was inaccurate.

All participants said that MOOBO was easy to
use, which was expected given the widespread use
of personal assistants nowadays as well as the par-
ticipants’ background. 71% of the users said they
would use MOOBO, with 47% answering that
they would use Moobo over Moodle. 24% stated
they would use both, depending on the task and
only 29% preferred the standard Moodle.

In the last question, students were asked to rate
the overall experience from 0 to 10, where 0 is bad
and 10 is excellent. The average rating was 8.5
(mode = 8, median = 8, no rating below 7 was
given).

As seen from the results, Personal Assistants are
positively seen by the users and they can speed
up and ease performing specific tasks. Most stu-
dents (76%) said that the answers were accurate
which shows that the question was understood,
and the Dialogue Manager selected the correct in-
tent. However, there were some misunderstand-
ings and MOOBO could not recognise the words
or allocate the right task for the input. The second
question received overwhelming responses. Ev-
ery tester said it was easy to use MOOBO. This
means that the designed user interface helped with
the interaction. Extra features such as provid-
ing the link to a requested file and re-confirming
if the question is correct were highly valued by
users and helped them to access the information
quicker. Personal Assistants become more popu-
lar and used, however they are not completely in-
tegrated with daily tasks.

5 Discussion and Conclusions

From the results presented, the following conclu-
sions can be drawn for real-world NLG systems.
Firstly, NLG NLG for interactive systems is an
extremely challenging task. The main reason for
this is that NLG is always influenced by other fac-
tors, such as natural language understanding, ob-
ject recognition, human action recognition, dia-
logue management etc.

Secondly, NLG is quite domain-dependent,
which requires access to example datasets of dia-
logues and interactions or access to experts. Both
can be very expensive to acquire. By using
approaches such as one-shot learning or
even zero-shot learning(e.g. (Sadamitsu
et al., 2017)) can help reducing the need of acquir-
ing sizeable datasets. Our proposed setup can be
extended to include visual information, which will
enhance a robot’s capability to monitor the envi-
ronment and allow it to refer to objects in it as well
as reason about it.

Finally, our toy example shows that we can ap-
proximate the state of the system by using em-
beddings. Pre-trained embeddings transfer knowl-
edge from other domains to a new one and are
especially useful in situations where only small
datasets are available. This is an approach that
can be transferred to human-robot communica-
tion. For instance, in situated setups, where a hu-
man and robot work together to accomplish a task
such as assembling furniture, image and language
embeddings can be used to approximate states,
even if these states do not exist in the dataset.

6 Summary and Future Work
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Abstract

Humor is an important aspect in human
interaction to regulate conversations, in-
crease interpersonal attraction and trust.
For social robots, humor is one aspect
to make interactions more natural, enjoy-
able, and to increase credibility and ac-
ceptance. In combination with appropri-
ate non-verbal behavior, natural language
generation offers the ability to create con-
tent on-the-fly. This work outlines the
building-blocks for providing an individ-
ual, multimodal interaction experience by
shaping the robot’s humor with the help
of Natural Language Generation and Re-
inforcement Learning based on human so-
cial signals.

1 Introduction

Humor is an important aspect in human interac-
tion. It regulates conversations, increases inter-
personal attraction and trust. For embodied con-
versational agents, including social robots, humor
makes interactions more natural, enjoyable and in-
creases credibility and acceptance (Nijholt, 2007).
Canned jokes are the first type of humor that come
to mind. In Human-Robot Interaction (HRI), they
are used for entertainment purposes like stand-up
comedy and joke telling. Moreover, there are sev-
eral types of conversational humor (Dynel, 2009)
which are employed in human conversation. Gen-
eration of such humorous contents from the com-
putational perspective is hard because it usually re-
quires human creativity, not only because it is of-
ten context-dependent. Several research projects
already investigated generation of humor for chat
bots and joke generation.

Natural Language Generation (NLG) is a key
component for social robots to generate humor-

ous contents on-the-fly, as it opens up the pos-
sibility to react to user input and to generate ut-
terances without the need to prepare scripted con-
tent in advance. The expression of humor also re-
quires to incorporate other modalities in the pre-
sentation, being mainly gestures, gaze and facial
expressions.

Keeping the diversity of interaction contexts,
tasks and human preferences in mind, social
robots should not only express humor, but also
adapt it accordingly. We propose an approach to
realize this by combining NLG and Reinforcement
Learning (RL) to adapt the robot to the individ-
ual user’s preferences. Being able to dynamically
generate and present humorous content in a multi-
modal manner is one step to explore how to in-
crease perceived social intelligence and natural-
ness of interactions. As an example for the NLG
part we focus on ironical contents here.

First, we outline related work covering humor
from the perspective of language, gestures, gaze
and facial expressions, as well as adaptive social
robots. Afterwards, we look at how to imple-
ment expression of multimodal irony by combin-
ing NLG with non-verbal behaviors. Finally, we
propose the use of RL in combination with human
social signals to optimize parameters for afore-
mentioned robot modalities automatically, result-
ing in personalized interaction experiences for the
human user.

2 Related Work

We split up related work in two research areas:
(1) computational humor and experiments, which
investigate how to generate and present jokes, as
well as the role of humor for robots (2) adapta-
tion of social robots with focus on Reinforcement
Learning.
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2.1 Humor

Several experiments for generation of humor in
text form include e.g. the “Light Bulb Joke
Generator” (Attardo and Raskin, 1994), “JAPE”
and “STANDUP” for punning riddles (Binsted
and Ritchie, 1997; Black et al., 2007) and “HA-
HACRONYM” for humorous acronyms (Stock
and Strapparava, 2002), only to name a few.
When looking at entertainment, Sjöbergh and
Araki (2008) found that jokes presented by robots
are rated significantly funnier than their text-only
equivalents. Further scenarios include Japanese
Manzai (Hayashi et al., 2008), stand-up comedy
(Nijholt, 2018; Knight, 2011; Katevas et al., 2015)
and joke telling (Weber et al., 2018), where the
robot presents scripted contents to the audience.
Apart from canned jokes, there are many types
of conversational humor (Dynel, 2009). For em-
bodied conversational agents, humor is one aspect
which contributes to the naturalness of an interac-
tion: it can help to solve communication problems
and to increase acceptance of natural language in-
terfaces when used sparingly and carefully (Bin-
sted et al., 1995). Appropriateness plays an impor-
tant role, as humor will yield misunderstanding in
the wrong situation (Nijholt, 2007).

In the context of robots, research by Mirnig
et al. (2016) comes to the conclusion that pos-
itively attributed forms of humor (self-irony)
are rated significantly higher than negative ones
(Schadenfreude) when it comes to robot likabil-
ity. Their results also indicate a general positive
effect of humor and an interaction effect between
user personality and preferred type of humor. Re-
sults from recent studies by Mirnig et al. (2017) in-
dicate that adding unimodal verbal or non-verbal,
humorous elements to non-humorous robot behav-
ior does not automatically result in increased per-
ceived funniness. They point out that humor is
multilayered and results from several modalities.

2.2 Social Adaptation

Social robots, which adapt their behaviors to hu-
man users, are used in a variety of settings. Aly
and Tapus (2016) employ NLG with a NAO robot
for user-robot personality matching. Both gestures
and speech are adapted to the human’s personality
profile while the user can get information about
several restaurants from the robot. Another ap-
proach is used by Tapus et al. (2008): the authors
use RL to optimize the robot’s personality in the

context of post-stroke rehabilitation therapy. They
use scripted utterances in the context of exercises.

RL is used often as machine learning framework
for adaptation of social robots’ behaviors. For ex-
ample, it is used to learn social behavior (Bar-
raquand and Crowley, 2008), for student tutor-
ing (Gordon et al., 2016), to maintain long-term
user engagement when playing games (Leite et al.,
2011) and intervention for children with autism
spectrum disorder (Liu et al., 2008).

Different data is used to provide the RL
feedback signal (reward), including task-related
information like user performance (e.g. in
exercises/games) and human social signals.
Tactile (Barraquand and Crowley, 2008) or
prosodic (Kim and Scassellati, 2007) feedback,
interaction distance, gaze meeting, motion speed,
timing (Mitsunaga et al., 2008), gesture and
posture (Najar et al., 2016; Ritschel et al., 2017),
or gaze direction (Fournier et al., 2017) are used
in different scenarios. Another option is to use
physiological data from ECG (Liu et al., 2008)
or EEG (Tsiakas et al., 2018). In the context of
humor, smile and gaze (Leite et al., 2011; Gordon
et al., 2016; Hemminghaus and Kopp, 2017), as
well as laughter (Hayashi et al., 2008; Knight,
2011; Katevas et al., 2015; Weber et al., 2018) are
used, as these are contemporary human reactions
serving as an indication whether a joke is good or
bad from the perspective of the human listener.

3 Adaptive Robot Humor with NLG

To shape the humor of a social robot, both humor-
ous content as well as an adaptation approach to
the human’s preferences is presented. Since lan-
guage plays an important role for communicat-
ing information, we take a look at NLG for gen-
erating ironical statements, combined with multi-
modal markers including facial expression, gaze
or gestures. In combination, these can result in hu-
morous contents and elicit human social signals,
which can serve as indication whether the robot’s
behavior is pleasing or not.

3.1 Generating Ironical Statements

Computational creation of creative, humorous
content is very hard. However, there are many
findings concerning types and multimodal mark-
ers of humor (Burgers and van Mulken, 2017), es-
pecially for irony (Attardo et al., 2003), which can
result in humor, too. We focus on ironical con-
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Figure 1: Generating ironical statements in multiple stages

Figure 2: Overview of the adaptation process

tents here because the generation task can be real-
ized as illustrated in Figure 1. First, Natural Lan-
guage Processing (NLP) is used to check whether
the input utterance can be transformed in an iron-
ical statement. Then, NLG allows to convert the
original utterance by inverting and applying lin-
guistic markers. Apart from the semantic content
of an ironical utterance, the way in which it is pre-
sented plays a crucial role. While written text may
use direct, typographic or morpho-syntactic mark-
ers to help the reader to identify ironical content,
linguistic, paralinguistic and visual markers are of
special interest. Finally, these should be expressed
by a robot with non-verbal behavior. Otherwise,
irony might not be perceived by the listener. Fa-
cial expressions that indicate irony include raised
or lowered eyebrows, wide open eyes, squinting
or rolling, winking, nodding, smiling or a “blank
face”. Moreover, there are different acoustic pa-
rameter modulations. However, these are not con-
sistent and differ from language to language.

The mentioned findings form a good starting
point to implement expressive multimodal humor-
ous contents for social robots by emphasizing spo-
ken words generated by NLG with matching gaze,
facial expressions and gestures in real-time.

3.2 Adaptation Process

Adaptation of humorous contents is often based
on human social signals, primarily by sensing vo-
cal laughter and smile to estimate the spectator’s
amusement. This applies to the aforementioned
Japanese Manzai, standup comedy and joke telling
scenarios. These experiments adapt the presented

contents and their delivery in terms of animation,
sound or voice parameters, but without generating
content on-the-fly with the help of NLG.

Figure 2 outlines our suggested adaptation
mechanism for learning about which humor the
user prefers. It is based on the general idea of in-
cluding human social signals in the learning pro-
cess of the robot (Ritschel, 2018). The user’s so-
cial signals are captured via camera and micro-
phone. Signal processing allows to extract user
smile and vocal laughter, similar to the opera-
tionalization in Weber et al. (2018). This infor-
mation can be used to shape the reward of the
machine learning process. RL is used to manip-
ulate the generation of the humorous content by
altering parameters for NLG and animation, e.g.
resulting in the use of ironical comments in one
situation or not. Actually, there are many op-
tions what actually can be learned, including hu-
mor types or parameters of animation generation,
e.g. to optimize non-verbal aspects of joke pre-
sentation, which might have different effects when
expressed by a robot than by a human. By incor-
porating the user’s feedback in terms of smile and
laughter, the agent is able to learn how to make
the user laugh by means of language, facial ex-
pression, gaze or gestures. Combining NLG with
the generation of additional multimodal behaviors
allows social robots to add humorous elements in
conversations. It provides the opportunity to per-
sonalize and adapt the interaction experience to
the individual preferences of the human user.

4 Conclusion

We have outlined the important role and opportu-
nities of NLG to increase the credibility and ac-
ceptance of the robot and the naturalness of inter-
actions. Generating contents on-the-fly allows to
add humorous elements on demand. We have de-
scribed an adaptation process to realize individu-
alized interaction experiences for the human user.
By incorporating human social signals in the RL
process the robot can optimize the presentation of
humorous contents depending on interaction con-
text, task and human preferences.
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Abstract

We propose the combination of a robotics
ontology (KnowRob) with a linguistically
motivated one (GUM) under the upper on-
tology DUL. We use the DUL Event, Situ-
ation, Description pattern to formalize rea-
soning techniques to convert between a
robot’s beliefstate and its linguistic utter-
ances. We plan to employ these techniques
to equip robots with a reason-aloud abil-
ity, through which they can explain their
actions as they perform them, in natural
language, at a level of granularity appro-
priate to the user, their query and the con-
text at hand.

1 Introduction

It is a sunny afternoon in the not too distant future,
and Elroy wants to play ball in the garden with
Rosie the robot. He finds her moving about in the
dining room and asks “What are you doing?”. “I
am busy”, Rosie answers, politely but suggesting
she doesn’t want to be interrupted right now. Dis-
appointed, but not wanting to let go just yet, Elroy
presses on. “What are you doing?” he asks again.
“I am setting the table,” Rosie answers. Still not
satified he repeats his question again and Rosie
explains “I am bringing cutlery and plates to the
table and currently looking in this cupboard for a
spoon and fork for Judy. They must not be plastic,
for she is allergic to it.”

The little scene above shows an interaction be-
tween a human and a household robot where the
appropriate level of granularity with which the

∗This work was partially funded by Deutsche Forschungs-
gemeinschaft (DFG) through the Collaborative Research
Center 1320, EASE.

robot should describe its task varies greatly as the
dialog situation evolves. Generally, such interac-
tions cannot be restricted to command-giving (by
the human) and command-taking (by the robot).
Even a specialized device, e.g. a coffee machine,
offers some feedback about its state. Indeed,
the spectrum of possible interactions can be quite
complex: the robot might ask for a way around
an obstacle it encountered in a task, discuss user
preferences and task schedules, take initiative in
asking for parameters of upcoming tasks, or ask
the users about their activities, as these will affect
the robot’s task planning and execution.

Compared to more complex situations, the one
in our example scene seems simple, but it never-
theless captures an aspect that will be important
for the interlocutionary capabilities of robots: the
ability to interpret events and to describe them un-
derstandably, at a level of granularity appropriate
for the user and their query. This requires integrat-
ing heterogeneous forms of knowledge, such as
records of sensor data, representations of activities
at different abstraction levels, and theories about
the environment and the interlocutionary partners.

For this undertaking, we envision a reason-
aloud capability for robotic agents, analogous to
human think-aloud. Humans are quite capable
of reflecting overtly on their actions and describ-
ing them in parallel to their execution, which is
why the think aloud protocol has become widely
used in numerous studies in cognitive science,
psychology and human-computer interaction (van
Someren and Barnard, 1994). For this a situated
artificial agent must combine knowledge of the ac-
tivities at hand with the knowledge required to ex-
press them declaratively.
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2 Approach

Our approach is to extend an Ontology for Every-
day Activities, originally developed as part of the
EASE project in robotics (Beetz et al., 2018). We
base this extended ontology on the principles pro-
posed by Masolo et al. using the DOLCE+DnS
Ultralite ontology (DUL) as an overarching foun-
dational framework (Masolo et al., 2003; Mascardi
et al., 2010). The purpose of the ontology is to ex-
tend the KnowRob ontology to support more nat-
ural, commonsense interactions concerning every-
day activities in robotics. Specific branches of the
KnowRob knowledge model pertaining to every-
day activities (Beetz et al., 2018), such as those in-
volved in table setting, have already been aligned
to the DUL framework. Additional axiomatization
that is beyond the scope of description logics is
integrated by means of the Distributed Ontology
Language (Mossakowski, 2016). The extension
we consider in this paper is for adding language
generation capabilities, to which end we align the
linguistically motivated ontology GUM (Bateman
et al., 2010), and its extension to spatial concepts,
to DUL and the EASE ontology.

The key advantage of this ontological alignment
via DUL is first and foremost a bridge between the
KnowRob system, a mature knowledge processing
system for robotics (see section 3) and language
generation software that uses GUM representa-
tions, such as KPML (Bateman, 1997). Using
the DUL-specific Descriptions and Situations pat-
tern, we can employ these to supply concepts and
reasoning methods for the problem of interpret-
ing Events into Situations and constructing
Descriptions for them (see section 4.1).

We will only look at command-taking and the
robot performing a “reasoning aloud” (analogous
to human “think aloud”) in this paper. We hope
the reasoning techniques enabled by our approach
will lay a scalable base for future work on more
complex interactions, e.g. dialogical negotiating
when activities conflict, but we stress that a “rea-
soning aloud” capability can be useful on its own.
It shows understanding on the robot’s part of the
task it performs, and makes the robot itself more
understandable to the user.

3 KnowRob and KPML

KnowRob (Beetz et al., 2018) is a software system
to integrate and reason with a variety of robotics
knowledge sources. Its interface is a database

query system via Prolog predicates, providing a
uniform way to access the reasoning mechanisms
underneath. These mechanisms can, however, be
varied by employing an approach called computa-
bles which allows for predicates to map to and take
results from functions appropriate for a task.

In this way, KnowRob can do hybrid reasoning
on symbolic data - which it queries or infers from a
logical database - as well as raw data - such as sen-
sor readings and log files. Reasoning mechanisms
can make use of logical axioms, but also perform
collision or visibility testing in an environment
and draw on inverse kinematics, physical simula-
tion, etc. To handle uncertainty, KnowRob uses
probabilistic, first-order relational models. These
models are intended to capture general principles
about similar objects. For example, they may rep-
resent a probability distribution on where to look
for an item, or where to store it in a kitchen, given
its type.

To handle environment dynamics, the
KnowRob ontology includes some concepts
for Actions and their Effects. We have extended
the ontology’s coverage in this respect and brought
it into alignment with DUL. Also, the KnowRob
ontology defines concepts that have been used
to construct what are termed within the EASE
project as NEEMS (Narratively Enabled Episodic
Memories), which are comprehensive records of
a robot’s activity: this includes what the robot
has observed through its sensors, how it acted in
the world, its task tree (from which a hierarchy
of intentions is discernible) and the execution
status of tasks. KnowRob contains predicates to
select and reason with Events recorded in the
NEEMS, including temporal calculi. NEEMS

were intended as data collection for learning, to
improve robot performance. Expert users can
employ them to debug the robot. On their own
however, they are too large and incomprehensible
for the average user to handle, making natural
language techniques highly relevant.

For generating comprehensible and appropriate
language we propose to employ KPML. This sys-
tem offers a well-tested platform for grammar en-
gineering that is specifically designed for natu-
ral language generation (Reiter and Dale, 2000).
KPML employs the use of large-scale gram-
mars written with the framework of Systemic-
Functional Linguistics (SFL). The employment of
SFL enables us to include linguistic phenomena
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which are important for the generation of natural
texts alongside the propositional content that is to
be expressed (Bateman, 1997).

In the following, we will outline how the re-
spective interleaving of the symbolic layers of
KnowRob and the ontological model of GUM via
DUL facilitates crossing the bridge from a robot
executing particular actions to talking about them
in real time. As stated before, we also are work-
ing on using the same bridge to enable the robot to
understand linguistic input, i.e. instructions.

4 From Language to Beliefstate– and
back again

4.1 Event, Situation, Description
We will first summarize a few DUL concepts that
are central to our approach. Events are either
Processes or States, in which several ob-
jects may participate. An Event is related to one
or more Situations, which are views on (or in-
terpretations of) an Event. A Situation sat-
isfies, or is consistent with, a Description. As
an example, a robot’s movements and the contacts
between objects that they cause would be events.
A situation would be the robot executing a plan for
table setting. The table setting plan itself would be
the description consistent with the situation.

A robot’s knowledge cuts across all these dis-
tinctions. The robot causes, observes, and records
events as they happen. It may be situated as ex-
ecuting a task, or interacting with a user towards
some purpose. And it has theories of the environ-
ment around itself, e.g. action, environment, and
user models, as well as higher-level plans.

Most generally, communication between user
and robot involves the two exchanging descrip-
tions, for which we identify two problems:

• command/inform: the robot receives a lin-
guistic description. It creates new descrip-
tions and situations as appropriate so as to up-
date its belief state about the world or begin
executing a requested task.

• reason aloud: the robot has a record of events,
a representation of the situations it is in,
and various descriptions. It summarizes this
knowledge into a description, to answer a
query at an appropriate level of granularity,
without overwhelming the user.

The purpose of our combined ontology is to en-
able reasoning techniques to bridge these conver-

sions: events to situations, and situations to de-
scriptions. All the more specific components are
consequently related to the DUL backbone.

4.2 Events↔ Situations
The direction especially relevant for us here is go-
ing from events to situations that interpret them.
The opposite, from situations to events, means
simply that the robot causes events in the world ac-
cording to some chosen plan. For this purpose, we
define several classes of situations in our ontology,
with restrictions to specify when it is appropriate
to use the situation as an interpretation for the set
of events. Several situations may be appropriate to
interpret a set of events. Situations include:

• an agent (human/robot) acting on inanimate
objects, e.g. ‘Actor Creates Something’, ‘Ac-
tor Affects Something’, ‘Resource Absent’.

• human-robot interaction, e.g. ‘Command Is-
sued’, ‘Availability Query’.

• inanimate objects acting on each other, e.g.
‘Stable Placement’, ‘Physical Interaction’.

Usually, choosing an interpretation when the
robot is the only active agent in the events is
straightforward; the robot “knows” what its task
tree is, i.e., what it wants to do, because for the
robotic system we use the programs it runs are se-
mantically annotated with goals.

Finding an appropriate situation in other cases
either implies guessing the other agent’s inten-
tions, for which probabilistic reasoning or simula-
tion can be used to find the most likely intentions
given the observed evidence, or, if there is no ac-
tive agent in the event, parsing an event timeline
according to a grammar of situations (cf. (Beßler
et al., 2018b) for an action parser using the DUL
and KnowRob ontologies).

4.3 Situations↔ Descriptions
We will first look at describing a situation to the
user. Some situation classes in our ontology have
unique description correspondents, e.g., “Actor
Creates Something” has GUM’s “CreativeMate-
rialAction”, while others may define, via restric-
tions, subsets of descriptions applicable to them.

To construct description individuals – filling in
semantic roles – we use a method employed in
KnowRob for assembly planning (Beßler et al.,
2018a) which checks that an individual asserted
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to belong to a class actually respects restrictions
placed on that class, in particular whether it is
linked to other individuals by appropriate object
properties. If this is not the case, the method
creates new individuals and relations as needed.
Restrictions on fillers for a description’s semantic
frame roles can be written in SWRL.

We will also investigate reasoning methods to
update the interaction situation in the robot’s be-
liefstate based on user utterances. These will
be semantically analyzed and interpreted as com-
mands or queries. For commands, robot programs
will be constructed using blocks from a library of
basic actions. Query answering involves the event-
situation-description bridges described previously.

As an example of how our approach is intended
to work, consider the following scenario: the robot
has “setting the table” as its top-level task, and it
knows this task is intended to prepare another task
(“eating”) to be done by other agents. The cur-
rent subtask the robot is performing is “picking” a
spoon. Note, mechanisms to represent and reason
about task trees are already in place in our knowl-
edge processing system.

Suppose the robot decides to report that it
is “setting the table” , which is a particular type of
situation captured by a broad situation concept
AgentAffectsSomething. Our ontological character-
ization is that a AgentAffectsSomething individual
satisfies some gum-DispositiveMaterialAction, so we
create an individual of this latter type to describe
what the robot is doing.

Individuals of type gum-DispositiveMaterialAction
should obey certain restrictions however. One
such restriction is such an individual should have
an actor that is some GUMThing, and our newly cre-
ated individual has no such information attached
yet. To enforce this restriction, an agenda item is
generated to create and look for a suitable actor,
which in this case will be a description of the agent
of the “setting the table” situation.

Where needed one can go beyond restric-
tions placed on descriptions in the GUM.
For example, suppose we want the robot to
say why it is “setting the table” . In this case,
we add a new restriction on the newly cre-
ated gum-DispositiveMaterialAction individual, that it
should have as reason some GUMThing, and this
will result in an agenda item to look for a filler for
this role, which will be a description of the task
that “setting the table” prepares.

What the user should be told as part of a “think-
aloud” protocol depends on what the robot thinks
the user might know about the robot’s task, so
let’s suppose as an example the user knows noth-
ing. The question then is what to report from
the task tree, which will probably have very many
nodes? Several heuristics may be tried here, but
they can be formulated in terms of the task tree
structure. One such heuristic is to report the cur-
rent subtask, “picking” , the robot’s top-level task,
“setting the table” , and the task being prepared by the
robot’s top-level task, “eating” .

Each of these situations gets a Description indi-
vidual of appropriate GUM type. There is flexi-
bility in choosing which of the three gets to be the
main clause of the resulting utterance and which
get to be dependents, which offers us flexibility in
generating a report:

I ’m p i c k i n g up t h e spoon b e c a u s e I ’m
s e t t i n g t h e t a b l e so p e o p l e can e a t .

I ’m s e t t i n g t h e t a b l e b e c a u s e p e o p l e w i l l
e a t , t h e r e f o r e I ’m p i c k i n g up t h e spoon .

Pe op l e w i l l e a t soon t h e r e f o r e I ’m s e t t i n g
t h e t a b l e so I ’m p i c k i n g up t h e spoon .

4.4 Matching the Description Granularity

There may be several parses of a set of events, sev-
eral situations that are possible views on them, and
several descriptions for each situation; e.g., levels
of abstraction at which to report in the reasoning
aloud. Fortunately, the graphs representing the sit-
uations already feature different levels of general-
ity. For example, a situation where we encounter
a “grasp - lift - place - release” pattern will be cat-
egorized as a “pick and place” action, which, in
turn, can be part of a more general activity such as
“table setting”. The hierarchy and the respective
distances in the graph has to be aligned to the in-
formation stemming from the interaction situation
to pick out which level of abstraction to report.

Numerous approaches have been proposed to
control such alignments. Very prominent in nat-
ural language generation are approaches based on
user modeling, e.g. the TAILOR system (Paris,
1988). However, also discourse modeling (Pfleger
et al., 2003) or the situational context (Porzel,
2009) come into play when selecting the propo-
sitional level of granularity. Formally, levels of
granularity can also be expressed as a set of
theories forming a hierarchical structure (Hobbs,
1985). Nevertheless, a concrete method for match-
ing these structures has to be found and tested.
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Abstract

Human-robot interactions situated in a dy-
namic environment create a unique mix of
challenges for conversational systems. We
argue that, on the one hand, NLG can con-
tribute to addressing these challenges and
that, on the other hand, they pose interest-
ing research problems for NLG. To illus-
trate our position we describe our research
on non-humanoid robots using non-verbal
signals to support communication.

1 Introduction

Our research is about interaction strategies for
robots who have to approach and communicate
with strangers in busy public spaces (Cass et al.,
2015, 2018). For example, in one of our target sce-
narios a delivery robot in a busy academic build-
ing on a college campus has to solicit help to op-
erate the elevator from humans passing by. In an-
other scenario a robot is recruiting survey partici-
pants in a shopping mall. In order to develop so-
lutions that will work in a real-world deployment,
we collect data and study human-robot interaction
not just in laboratory experiments but also in field
studies conducted in the wild.

In these field studies we have encountered chal-
lenges that are traditionally not addressed by
the natural language generation (NLG) pipeline.
However, we would like to argue that an NLG sys-
tem aware of these issues can contribute to a bet-
ter solution and that they also pose interesting re-
search problems for NLG.

In particular, the following two sources of chal-
lenges have stood out to us. First, the robot is sit-
uated in a dynamic environment with human in-
teraction partners that can act while the robot is

∗Position paper presented at the workshop on natural lan-
guage generation for human-robot communication at INLG
2018.

speaking or planning an utterance. As in other
situated communication tasks (Koller et al., 2010;
Smith et al., 2011) the timing of the robot’s ut-
terances is important. For fluent interactions the
robot needs to monitor the human’s actions and
changes in the environment and react to them in
a timely manner, potentially by interrupting itself
or modifying an utterance mid-stream (Clark and
Krych, 2004).

Second, many environmental factors may hin-
der communication and are not controllable by us
or the robot. For example, in a busy public space
the background noise level may be high, making it
hard for people to hear the robot. People may be
passing by and even in between the robot and the
addressee. The robot will encounter many differ-
ent reactions from addressees; some will be sur-
prised, scared, or embarrassed to interact with it.

One approach to these challenges would be to
solve these issues first in order to create a situa-
tion where a “traditional” NLG pipeline, based on
NLG for text generation, can be used optimally.
For example, we could try to develop a module
that perfectly times utterances, make sure to ad-
just the audio level to always be above the en-
vironmental noise level, and only communicate
with addressees that are directly in front of the
robot. However, these goals may be impossible
to achieve. For example, while it makes sense to
optimize the timing of utterances, most contribut-
ing factors are out of our control, so that the robot
will always have to be prepared to deal with unex-
pected actions by the human addressee, changes in
the environment, or network delays. Furthermore,
this approach may lead to suboptimal results. For
instance, if the robot only communicates with peo-
ple if they are positioned right in front of it, in a
busy space with people passing through, many op-
portunities for interaction may be lost.

Therefore, we believe that NLG should be
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aware of these issues and can contribute to a so-
lution. For example: An incremental NLG mod-
ule may be able to better time utterances and re-
act to unexpected changes (Allen et al., 2001;
Buschmeier et al., 2012). When the environment
is noisy or the robot is far away from the ad-
dressee, generating shorter utterances using sim-
pler words and complementing speech with non-
verbal signals might be more effective. Previous
work has explored the problem of adapting the
form and content of generated utterances to situa-
tional constraints (e.g. Jokinen and Wilcock, 2003;
Walker et al., 2007; Rieser et al., 2014), but typi-
cally not in the context of human-robot interaction.

In order to illustrate our position, we will de-
scribe some results and observations from our on-
going research on making human-robot communi-
cation more robust using non-verbal signals. A lot
of work has been done on generating non-verbal
signals, like gestures, facial expressions, and pos-
ture for animated characters (known as embodied
conversational agents or virtual humans). Some of
this work has been transferred to humanoid robots.
However, because of our application scenario, the
use of humanoid robots is not practical for us. We
need robots that are tall enough to interact with
standing humans and that are not too expensive to
be deployed in a busy public space. We work with
robots that have a wheeled base and a mounted
screen (see Figure 1).

The research challenge is, therefore, to find out
what non-verbal signals are effective communica-
tive devices for these non-humanoid robots. These
signals may mimic human behaviors, or they may
be visual metaphors that express the robot’s inten-
tions in a way that is not modeling realistic human
behavior, similar to the way comics express a char-
acter’s movement or emotions.

2 Related Work

People accompany their speech with non-verbal
signals, which support and add to the content
of the speech and which help manage the di-
alog. For example, iconic hand gestures may
depict some features of an object or event be-
ing described (McNeill, 1992), eye gaze plays an
important role in regulating turn-taking in dia-
log (Kendon, 1967), and facial displays express a
speaker’s emotions (Ekman and Friesen, 2003) but
also serve pragmatic functions that help organize
the dialog (Chovil, 1991).

Embodied conversational agents (ECAs) or vir-
tual humans are animated characters that engage
with humans in a dialog using both verbal and
non-verbal communication (Cassell et al., 2000).
Typical research in this area closely analyzes hu-
man non-verbal behavior and aims to model these
behaviors in the animated character.

Some of this work on generating non-verbal
behaviors for animated conversational characters
has been transferred to physical humanoid robots.
Salem et al. (2012) and Hasegawa et al. (2010) use
gesture generation strategies developed for ECAs
on humanoid robots. Breazeal (2000) presents a
robot with a simple cartoonish face that can ex-
press emotions and interaction cues. Most expres-
sions are modeled on human facial expressions.
But the robot can also use its non-human, animal-
like ears to indicate arousal and attention.

While Breazeal’s (2000) work shows that even
with humanoid robots going beyond the normal
human repertoire of non-verbal signals can be ben-
eficial, non-humanoid robots often are not capable
of mimicking human non-verbal behaviors. It is
therefore essential to identify what behaviors of
non-humanoid robots can easily be interpreted by
humans (Cha et al., 2018). Recent work has, for
example, explored the interpretability of robot arm
movements (Dragan et al., 2013). In a study that
is most similar to our research, Cha and Matarić
(2016) have shown that a service robot can use
light and sound signals to indicate that it needs
help and to communicate levels of urgency.

3 Experiments Exploring Non-verbal
Signals for Non-humanoid robots

We describe three studies we have carried out
or are currently conducting to explore how non-
verbal behaviors can contribute to communication
between humans and non-humanoid robots. In
these studies we explore non-verbal robot behav-
iors modeled on human behaviors as well as robot
behaviors designed to communicate metaphori-
cally through movement.

The two robots we have used for this work,
SARAH and VALERIE, both have a mobile base,
a screen on which a simple cartoon face can be
displayed, and a suite of cameras and depth sen-
sors (VALERIE is shown in Figure 1). Impor-
tantly, the robots have a non-humanoid form, lack-
ing the typical mechanisms for human non-verbal
expression. Our experiments are conducted using
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Figure 1: VALERIE

a Wizard of Oz (WoZ) protocol, in which a human
wizard remotely controls the robot unbeknownst
to the participants. The wizard interface provides
a set of pre-planned behaviors the wizard can ini-
tiate, as well as lower-level controls for the robot.

3.1 Robot eye gaze to support reference

In this ongoing study we look at whether humans
use our robot’s eye gaze to resolve referring ex-
pressions. Hanna and Brennan (2007) found that
humans use a human instruction giver’s eye gaze
to distinguish an object being described from its
similar looking distractors. We replicated their ex-
periment, in the laboratory, with VALERIE taking
the instruction giver’s place.

Participants stood opposite VALERIE with a ta-
ble between them. On the table was a sequence
of colored shapes, each of which also had a num-
ber of black dots. Some layouts contained dis-
tractor pairs, which are shapes of the same color
and form, but with a different number of dots.
VALERIE gave instructions of the form “Press
the button corresponding to the blue triangle with
three dots”, while either only moving her mouth
or, additionally, accompanying the instruction by a
movement of the pupils in the direction of the tar-
get shape. A preliminary analysis of the data sug-
gests that VALERIE’s eye gaze helps participants
pick out the right target more quickly in situations
where the layout contains a distractor shape that is
sufficiently far away from the target shape that it
can be distinguished by eye gaze.

This shows that the participants do indeed inter-
pret the robot’s eye gaze and use it to guide their
own behavior. From an NLG point of view, the
generation of eye gaze is interesting because eye
gaze has to be coordinated with the natural lan-
guage utterance it accompanies, while also pro-
ducing natural looking eye movements.

Limitations and future work: This study was

done in a laboratory environment using a repeti-
tive and unrealistic task. We plan to conduct a fol-
low up study that tests the effectiveness of robot
eye gaze as a communicative device in the wild.

3.2 Robot body movement and orientation to
attract attention and initiate interactions

In this experiment in the wild, the robot behav-
ior was designed to (very crudely) mimic the be-
haviors humans might use to initiate an inter-
action with a passer-by in a busy public space.
SARAH was stationed in a popular hallway. She
would greet people (“Hello! Can you please help
me?”) either while standing still or accompanied
by a rotational movement that followed the sub-
ject we wished to engage. People who approached
SARAH were then asked to press a specific num-
ber on a keypad.

We collected video data of 14 one-hour sessions
over the course of 5 weeks. In total, 1658 peo-
ple passed by SARAH. Of those, only 714 en-
gaged with her in any way, including just look-
ing at her. Of the 714, 108 completed our task.
We found that movement of the robot statistically
significantly increased how many people looked
at SARAH (64% of passers-by noticed the still
robot, 88% the moving robot), but not the num-
ber of completed tasks (6.4% in the non-moving
condition, 6.7% in the moving condition). Given
a 30% increase in the number of people who no-
tice SARAH, we expected a similar increase in the
number of people who stop to interact with her.

A closer analysis of our video data indicates that
technical issues with the WoZ interface (which we
plan to address in follow-up experiments) as well
as issues related to SARAH’s communicative be-
havior may be the reason for why the increased
attention did not lead to more successful interac-
tions. First, it seems that SARAH’s intentions
weren’t always clear and, second, several people
in the study acted surprised or scared of SARAH
or embarrassed to interact with her. Both issues
point toward a need for better communicative non-
verbal behaviors to convey the robot’s intentions
and to lessen people’s apprehension.

As with eye gaze, these non-verbal behav-
iors have to be planned and coordinated with the
robot’s natural language utterances. An additional
challenge is that the signals we are exploring are
complex, involving eye gaze, facial expressions,
and different kinds of movement. Furthermore,
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the optimal choice of non-verbal signals and form
or natural language utterance may depend on as-
pects of the environment, such as how busy and
noisy it is or how far away the addressee is. The
NLG system planning these utterances will have to
be able to coordinate diverse types of communica-
tive signals and to adapt to the current situation.

Future work: In our current work, we are study-
ing verbal and non-verbal behaviors that allow the
robot to better signal its wish to interact (e.g. mov-
ing toward the selected addressee, facial expres-
sions to indicate a need for help and a wish to
engage). This exploration is guided by what is
known about human behaviors in similar situa-
tions (Kendon and Ferber, 1973).

3.3 Robot gestures to express mental states

In the first two studies the robot used non-verbal
behaviors that were modeled on human behav-
ior. We now describe a pilot study, conducted
in the wild, that moves toward metaphorical ges-
tures. This study focused on gestures to express
the following mental states of the robot: agree-
ment, disagreement, uncertainty, and excitement.
In humans, facial expressions and head gestures
play an important role in expressing these mental
states. While SARAH can produce different fa-
cial displays, she does not have a movable head.
Based on our intuition, we devised the following
non-verbal behaviors.

agreement Smile and move forward and back-
ward a few inches.

disagreement Frown and rotate side to side by 35
degrees.

uncertainty With a neutral facial expression, turn
away from the addressee by 45 degrees,
briefly pause, then return.

excitement With surprised facial expression, spin
around 360 degrees.

SARAH recruited subjects in a busy hallway
on campus. She instructed subjects to retrieve an
index card with a set of yes/no questions from
a pocket attached to the robot and to ask those
questions. SARAH accompanied her spoken an-
swer either with facial expressions only or with
facial expressions and gestures. At the end of the
scripted interaction, SARAH said “Yay, we com-
pleted the task” and expressed excitement.

SARAH then asked the subjects to complete
a paper survey rating SARAH’s intelligence and

naturalness. In this pilot study, SARAH’s use of
gestures did not have a (statistically significant)
impact on people’s perceptions of her. And, unfor-
tunately, we did not collect data that allows us to
draw conclusions on whether humans interpreted
the gestures as intended.

Interesting research problems that arise are the
design of easy to interpret metaphorical gestures,
how to select which signals to use in a given dia-
log situation, how to coordinate different commu-
nicative signals, and how to transition between and
blend different non-verbal behaviors.

Future work: We are preparing a follow up
study that will evaluate the interpretability of vari-
ants of different gestures more systematically. Our
goal is to create a lexicon of robot behaviors that
can perform different discourse and dialog func-
tions. We are currently focusing on robot move-
ments, but we are also interested in other sig-
nals, like non-speech sounds and visual cues on
the screen that go beyond facial expressions mim-
icking humans.

4 Conclusion

The interactions between humans and robots in
public spaces are situated in an un-controllable
and only partially predictable environment. This
creates challenges for communication. We think
that NLG can contribute to a solution to these chal-
lenges by producing utterances and other commu-
nicative behaviors that are adapted to the situation.
In addition, we argue that these challenges give
rise to research problems that are interesting from
an NLG point of view.

In this paper, we have illustrated our position
by describing three studies that explore the gen-
eration of co-verbal communicative behaviors for
non-humanoid robots. This line of research tack-
les the following issues related to the generation
of multimodal utterances. We need to design non-
verbal signals that are mimicking human behav-
ior as well as signals that communicate metaphor-
ically. The robot behaviors are constrained by the
limited motor capabilities of the robot, but they
can also take advantage of expressive options that
are not available to humans. We need techniques
for generating multimodal utterances that coordi-
nate the different non-verbal signals and speech.
And finally, we need to understand how to choose
the most effective set of signals in a given dialog
situation.
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Abstract

Modeling traditional NLG tasks with data-
driven techniques has been a major focus
of research in NLG in the past decade. We
argue that existing modeling techniques
are mostly tailored to textual data and are
not sufficient to make NLG technology
meet the requirements of agents which tar-
get fluid interaction and collaboration in
the real world. We revisit interactive in-
struction giving as a challenge for data-
driven NLG and, based on insights from
previous GIVE challenges, propose that
instruction giving should be addressed in a
setting that involves visual grounding and
spoken language. These basic design de-
cisions will require NLG frameworks that
are capable of monitoring their environ-
ment as well as timing and revising their
verbal output. We believe that these are
core capabilities for making NLG technol-
ogy transferrable to interactive systems.

1 Introduction

The past decade has seen substantial progress in
data-driven methods for natural language gener-
ation (NLG). It is now widely agreed that data-
driven techniques are needed to obtain NLG sys-
tems that are adaptive and human-like (Belz,
2008), domain-independent (Wen et al., 2016),
and – with recent methods from vision & lan-
guage cf. (Bernardi et al., 2016) – suitable for
agents that interact with humans in a physical en-
vironment (such as dialogue systems or robots)
(Kazemzadeh et al., 2014). Despite this progress,
however, data-driven NLG is rarely used in current
real-world interactive systems, where more tradi-
tional (template-based) approaches for generating
verbal output still persist.

In this paper, we argue that existing methods in
data-driven modeling for NLG are heavily tailored
to textual data and, therefore, fail to meet the re-
quirements of dialogue systems, social agents or
robots which target fluid interaction and collabo-
ration in the real world. In the traditional view,
the NLG task is usually framed as follows: given
some non-verbal piece of data as input (e.g. sen-
sor data, a meaning representation, facts from a
knowledge base), the system needs to decide what
to say (do content selection, text or sentence plan-
ning, micro-planning), and how to say it (do lex-
icalization, surface realization), cf. (Reiter and
Dale, 1997). While recent data-driven systems
have mostly overcome previous modular archi-
tectures that assigned these decisions to separate
components in the processing pipeline (Konstas
and Lapata, 2013), they still follow basic assump-
tions related to how the system processes its non-
linguistic input and verbal output:

• static input: NLG systems are usually trained
to map a given input to some written out-
put, meaning that the environment does not
change while the system is producing output

• perfect input: NLG systems are often trained
on perfect representations of an environment
or a knowledge base

• one-shot output: NLG systems do not need
to monitor whether the listener has actually
understood the output, strategies that are fre-
quent in conversation (revision, correction,
installments) do not have to be considered

• no temporal dimension: NLG systems as-
sume that their output is not immediately
consumed, i.e. it does not need to be pack-
aged or timed (e.g. a text is produced as a
whole)
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These assumptions are convenient when fram-
ing NLG tasks as machine learning problems (e.g.
as ranking, classification or sequence-to-sequence
learning), but they are highly problematic for in-
teractive systems. To illustrate this point, we pro-
pose to revisit instruction giving as a challenge for
data-driven NLG in interactive systems: here, a
human instruction follower (IF) and an agent as
the instruction giver (IG) have to achieve a com-
mon goal in a visual environment (e.g. find a route
or treasure, assemble an object). The IG knows
how to complete the task (e.g. where the treasure
is, how the object looks like) but cannot affect the
environment. The IF can affect the environment
and the objects in it, but needs the IG’s instructions
to achieve the goal. In the context of the GIVE
challenge (Byron et al., 2007), this setting has re-
ceived considerable attention in the NLG commu-
nity for some time (Byron et al., 2009; Striegnitz
et al., 2011), but has not been developed further
since then.

Generally, we believe that future approaches to
instruction giving in NLG should extend GIVE
along the following dimensions, in order to enable
transfer of NLG technology to real-world applica-
tions like robots or dialogue systems:

• vision: generating instructions from a low-
level visual representation of the environ-
ment, i.e. without perfect access to visually
present objects and their properties

• spoken language: generating spoken instruc-
tions, such that the IF’s non-verbal actions
can happen concurrently with the IG’s verbal
utterances

• timing and information delivery: going be-
yond traditional NLG approaches focussing
on content selection and/or surface realiza-
tion, and move to real-time incremental pro-
cessing that captures the affordances of spo-
ken language and fluid interaction

In the following, we will show that these points
constitute considerable challenges for the state-of-
the-art in data driven NLG research and outline di-
rections for how they could be addressed.

2 Visual grounding for instructions

A fundamental design decision in GIVE was to use
a virtual environment such that the NLG systems
had access to a perfect symbolic representation of

Figure 1: Instruction example in the BLOCKS
data set (Bisk et al., 2018)

the visually present objects and their properties.
In the meantime, a lot of research in human-robot
interaction has be done on modeling instructions
in more realistic visual environments, though this
community has often focussed on grounding ver-
bal instructions to robot actions, cf. (Chai et al.,
2018). Bisk et al. (2016) have proposed a nice for-
mulation of a move-by-move instruction following
task in an object assembly domain (see Figure 1):
given an image of the current state of an environ-
ment (left image) and a verbal instruction, the task
is to predict the target state of the environment af-
ter executing the instruction (right image). This
move-by-move setting abstracts away from the in-
ternal action representations of a robot and also
from general aspects of planning.

We believe that this set-up is promising for
NLG as well, where the task would be to gener-
ate a verbal instruction that enables the IF to ex-
ecute a particular action or achieve a state change
of the environment, while the system (the IG) is
given the current and the goal state of an environ-
ment as an image. This would be natural exten-
sion of existing language generation systems that
are able to generate descriptions of real-world im-
ages (Bernardi et al., 2016), or referring expres-
sions to objects in real-world images (Yu et al.,
2017). At the same time, it would require systems
to go beyond the commonly used CNN-LSTM ar-
chitecture (Vinyals et al., 2015; Devlin et al., 2015;
Mao et al., 2016; Yu et al., 2017) as these currently
only map visual representations of single images
or objects to verbal output. Instead, a visually
grounded instruction generation system needs to
reason about expressions that relate the current vi-
sual state to a target state, such as place the block
to the right (source state) as the highest block on
the board (target state) in Figure 1.

Conceptually, the problem of generating in-
structions in object assembly domains is simi-
lar to generating relational referring expressions

28



which have been a notorious challenge for refer-
ring expression generation in general (Krahmer
and Van Deemter, 2012). Relational expressions
are also challenging for neural architectures (Hud-
son and Manning, 2018), and grounding (under-
standing) of relational referring expressions has
been addressed in some recent work (Cirik et al.,
2018; Hu et al., 2017) following the idea of mod-
ular networks based on syntactic structures (An-
dreas et al., 2016). However, none of these mod-
els is designed for generating relational structures
in verbal expressions, such as instructions.

3 Spoken language dynamics

From research on situated spoken dialogue, it is
well known that spoken and written language bear
very different affordances. In spoken communi-
cation, listeners react, both non-verbally and ver-
bally, to what speakers are saying, while they are
saying it; and speakers adapt what they are saying,
based on the reactions (or lack thereof) that they
get, while they are speaking. The field of Conver-
sation Analysis (see (Stivers and Sidnell, 2012) for
a recent overview) and, taking up and further de-
veloping some of their ideas, the work of Herbert
(Clark, 1996) has done much to shed light on the
intricate strategies that interactants follow to co-
construct dialogue in this way.

Figure 2 illustrates some prominent strategies
that speakers use to achieve task success in spoken
communication, with an instruction giving exam-
ple taken from our PentoRef data (Zarrieß et al.,
2016). Here, the IF has to assemble an object out
of Pentomino pieces while the IG observes his ac-
tions over a camera feed. During a time span of ap-
proximately 30 seconds, the IG produces 18 short
utterances in total that instruct the IF what to do
next (e.g. turn to the left), confirm the IF’s action
(exactly), or repair what she is currently doing (to
the left, this is to the right). Also, interestingly, the
final step of the instruction (i.e. how to put the tar-
get piece to its target location, image 10-12 in Fig-
ure 2) is left underspecified by the IG as it is obvi-
ous to the IF how to complete the task. This level
of coordination and adaptation between speakers
and listeners is impossible in written communica-
tion where verbal and non-vernal actions cannot
happen concurrently.

Unfortunately, most research on data-driven
NLG still focusses entirely on written text or typed
utterances, even in the domain of dialogue, as ex-

isting platforms and workflows for data collection
are radically more efficient for text as compared to
speech. Also the GIVE setting used typed com-
munication. An interesting pilot study on a spo-
ken version of the GIVE challenge was carried out
by (Striegnitz et al., 2012) who found that interac-
tions between participants were faster, more nat-
ural and rich of conversational phenomena (e.g.
installments) that cannot be observed in text or
typed chat. Another promising the direction here
is the platform developed by (Manuvinakurike and
DeVault, 2015), which extends the standard pro-
cedure for collecting chat interactions via crowd-
sourcing to spoken dialogue.

4 Monitoring, timing, revision

When facing uncertainty through visual ground-
ing and dynamics through spoken language, NLG
systems will need to address a range of decisions
that, currently, completely fall out of the scope
of research in this area. In the interactive world,
NLG needs to monitor the listener’s reaction in
real-time and be able to quasi-continuously decide
when to produce verbal output and how to poten-
tially revise previous or future output. Thus, in
order to generate fluid instructions as in the inter-
action shown in Figure 2, it is precisely the combi-
nation of when to speak and what to say that mat-
ters: an utterance that is appropriate at a particular
point in time, might already be perceived as inap-
propriate or confusing shortly after.

To the best of our knowledge, aspects of moni-
toring and timing have not been addressed in data-
driven NLG frameworks, though incremental pro-
cessing has been shown to be highly effective in
experimental or rule-based settings, cf. (Skantze
and Hjalmarsson, 2013; Skantze et al., 2014; Buß
and Schlangen, 2010). In the dialogue commu-
nity, specific tasks that involve timing have been
modelled in a data-driven way, such as barge-in
detection (Selfridge et al., 2013), end-of-utterance
detection (Raux and Eskenazi, 2012; Maier et al.,
2017)), or turn-taking (Skantze, 2017) .

Even less work has been carried out on NLG
systems that are able to produce revision, repair
or correction utterances which can be essential
to achieve task success, as shown in Figure 2.
In (Zarrieß and Schlangen, 2016), we have ex-
plored an installment-based approach in a refer-
ring expression generation system for objects in
real-world images, and found that even simple,

29



IG: then you take the green 
W ... top right

IG: and you turn it to the left IG: uh now it's to the right

IG: yes

IG: turn left . yes

IG: a little more


IG: so that it's diagonal

IG: a little more

IG: exactly
 IG: and now put to the left next 
to the T


IG: to the left

IG: this is to the right


IG: yes exactly

IG: like this


IG: exactly

IG: into this spot


IG: now you take the pink 
piece over there ...


1 2 3 4

5 6 7 8

9 10 11 12

Figure 2: Example for task-oriented conversation in shared visual space from (Zarrieß et al., 2016): the
joint task for the IF and IG is to build a puzzle out of Pentomino pieces where the IF can manipulate
pieces on a physical gameboard and the IG sees the outline of the puzzle, observes the IF’s actions in
real-time (over a camera feed) and instructs the IF over headphones; the overall interaction time shown
here is approx. 30 secconds; utterances have been translated to English from German transciptions

hand-crafted strategies for repair and revision very
clearly improve the referential success of the sys-
tem. (Villalba et al., 2017) propose a formal
approach to generating contrastive referring ex-
pressions which is designed for similar scenar-
ios. What is clearly missing to date, however, is
a data-driven NLG framework that encompasses
these various aspects of conversational grounding
and timing in interaction.

5 Conclusion

This paper has discussed the task of interactive
instruction giving from the perspective of data-
driven NLG. We have argued that, if this task is set
up so that it involves visual grounding and spoken
language, it will constitute an interesting and con-
siderable challenge for existing data-driven NLG
frameworks. We believe that addressing this chal-
lenge and coming up with data collections and
modeling methods for it will substantially forward
the state-of-the-art in NLG, and foster transfer of
NLG technology to real-world interactive systems.
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