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Abstract
We describe Vicomtech’s participation in the
WMT 2018 shared task on quality estimation,
for which we submitted minimalist quality es-
timators. The core of our approach is based on
two simple features: lexical translation over-
laps and language model cross-entropy scores.
These features are exploited in two system
variants: uMQE is an unsupervised system,
where the final quality score is obtained by av-
eraging individual feature scores; sMQE is a
supervised variant, where the final score is es-
timated by a Support Vector Regressor trained
on the available annotated datasets. The main
goal of our minimalist approach to quality es-
timation is to provide reliable estimators that
require minimal deployment effort, few re-
sources, and, in the case of uMQE, do not de-
pend on costly data annotation or post-editing.
Our approach was applied to all language pairs
in sentence quality estimation, obtaining com-
petitive results across the board.

1 Introduction

Quality Estimation (QE) refers to the task of es-
timating the quality of machine translation out-
put without access to reference translations (Blatz
et al., 2004), which are not always available for a
given domain or language pair, and are costly to
produce.

Typical approaches are based on supervised ma-
chine learning models using a large array of fea-
tures, as exemplified by the standard QUEST base-
line (Specia et al., 2013), whose base version em-
ploys 17 features that include n-gram language
model perplexity scores, lexical translation prob-
abilities, number of source tokens and average
number of translations per source word, among
others. In recent years, QE models based on neural
network approaches have significantly improved
the state of the art, as shown for instance by the re-
sults obtained in the WMT 2016 and WMT 2017

shared tasks (Kim and Lee, 2016; Kim et al., 2017;
Martins et al., 2017).

Despite recent progress, the vast number of po-
tential domains and language pairs is a challeng-
ing aspect for a practical use of quality estima-
tion systems. First, most approaches to QE rely
on annotated data, typically based on human post-
editing, which are costly to produce. Additionally,
the best performing approaches based on neural
networks (e.g., Kim et al., 2017) require large vol-
umes of parallel training corpora, a resource which
is only available for a small number of language
pairs nowadays.

To tackle these challenges, we designed a mini-
malist approach to quality estimation, to which we
will refer as MQE, based on two features: a lexical
translation overlap measure to model translation
accuracy1 and a measure based on cross-entropy
scores according to a target language model. No
external tools or large computational resources are
needed in this approach, which can be used in the
two variants described below.

uMQE is an unsupervised variant, where the fi-
nal quality score is obtained by averaging indi-
vidual feature scores. The system was designed
to provide reliable estimators in the numerous use
cases where no training data are available to train
supervised QE models. To our knowledge, little
attention has been paid to this type of approaches,
with two main published approaches: Moreau and
Vogel (2012) estimate the quality of machine-
translated output against external sets of n-grams
and evaluate several variants of n-gram similar-
ity, whereas Popovic (2012) proposes an unsuper-
vised method based on the arithmetic combination
of scores provided by language models and IBM1
models, trained on morphemes as well as part-of-
speech tags. On the WMT 2012 datasets, neither

1Also referred to as adequacy.
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approach performed better than the QUEST base-
line. In this paper, we show that our own unsu-
pervised approach can outperform the supervised
baselines, without the use of additional resources
such as part-of-speech taggers or morphological
analysers.

sMQE is a supervised variant, where the final
score is estimated by a Support Vector Regres-
sor trained on the available machine translation
output annotated with HTER scores. The goal
of this approach is to enable a fast deployment
of supervised quality estimators that outperform
other supervised approaches with more complex
setups, such as the QUEST baselines with 17 fea-
tures, while using minimal resources. Contrary to
uMQE, for which only rank correlation is mean-
ingful, the supervised variant can be evaluated on
both ranking and scoring tasks.

The paper is organised as follows: Section 2 de-
scribes the core MQE approach and the computa-
tion of the supervised and unsupervised variants;
Section 3 describes the experimental setup for the
WMT 2018 shared task on sentence quality esti-
mation; Section 4 presents our results on the test
sets in all four language pairs and domains; finally,
Section 5 draws conclusions from this work.

2 MQE

Minimally, quality estimation involves determin-
ing the accuracy (or adequacy) of a translation, i.e.
how much of the source information is represented
in the translation, and its fluency, i.e. the correct-
ness of the generated sentence as a target language
sequence. MQE directly models these two aspects,
to the exclusion of any other property of the source
and target sentence pairs. We describe our mea-
sures of accuracy and fluency in turn in the next
sections.

2.1 Accuracy

To measure accuracy, we adapted the approach
in (Etchegoyhen and Azpeitia, 2016), which has
proved highly successful in identifying parallel
sentences in large sets of comparable corpora
(Azpeitia et al., 2017, 2018). Their method is
based on Jaccard similarity (Jaccard, 1901) over
lexical sets, with additional set expansion opera-
tions to address named entities and morphological
variation. We describe their core methodology be-
low and our adaptations for the quality estimation
task.

Let si and sj be two tokenised and truecased
sentences in languages l1 and l2, respectively, Si
and Sj the multisets2 of tokens in si and sj , re-
spectively, Tij the multiset of lexical translations
into l2 for all tokens in Si, and Tji the multiset of
lexical translations into l1 for all tokens in Sj .

Lexical translations are computed from sen-
tences si and sj by retaining the k-best transla-
tions for each word, as determined by the ranking
obtained from the translation probabilities given
by symmetrised IBM2 word alignment models
(Brown et al., 1993).3 The multisets Tij and Tji
that comprise these k-best lexical translations are
then expanded by means of the following opera-
tions:4

1. For each element x in the set difference T ′ij =
Tij − Sj (respectively T ′ji = Tji − Si), and
each element y in Sj (respectively Si), if x
and y share a common prefix of more than
n characters, the prefix is added to both Tij
and Sj (respectively Tji and Si). Longest
common prefix matching is meant to capture
morphological variation via minimal compu-
tation.

2. Numbers and capitalised truecased tokens
not found in the lexical translation tables
are added to the expanded translation mul-
tisets Tij and Tji. This operation addresses
named entities, which are likely to be miss-
ing from translation tables trained on differ-
ent domains.

3. The NULL token is added to the source and
target token multisets, in order to address
words that have covert translations, as indi-
cated by the presence of the NULL element
among their k-best translation options.

With source and target sets as defined above, we
compute translation accuracy between sentence si
and translation sj as in Equation 1:

2We employ multisets instead of sets as in the original
approach, to account for multiple token occurrences, as the
quality estimation task is more likely to be sensitive to miss-
ing occurrences than the alignment task. Multiset intersection
and union are based on positive minimums and maximums,
respectively.

3The actual probabilities are not used beyond determining
the ranking, as in the original approach. We depart from their
implementation by using IBM2 models instead of IBM4, a
change motivated by the similar results we obtained with both
types of models and the faster training of the former.

4The first two are based on the original approach, while
the third was added by us for the experiments reported here.
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acc(si, sj) =
1

2

(
|Tij ∩ Sj |
|Sj |

+
|Tji ∩ Si|
|Si|

)
(1)

Accuracy is thus defined as the mean of the
overlap similarity coefficients obtained between
sentence token sets and expanded lexical transla-
tion sets in both directions.5 Apart from the use
of multisets and the introduction of the NULL el-
ement, the main change to the original metric is
using overlap instead of Jaccard similarity, as the
former provided better results in preliminary ex-
periments.

Although originally meant to identify parallel
sentences in comparable corpora, this simple met-
ric applies naturally to any task involving lexical
translations and provides an efficient method to
model accuracy.

2.2 Fluency
The standard approach to measuring the fluency of
word sequences in a given language is by means
of language models. Although n-gram modelling
has been the dominant approach in the last two
decades, continuous space language models have
become a new standard and have been notably
used for the quality estimation task, providing
improvements in supervised feature-based frame-
works (Shah et al., 2015b). For the experiments
presented here, we nonetheless used n-gram lan-
guage modelling as a first approach, as they pro-
vided the best results overall in preliminary exper-
iments and require comparatively fewer computa-
tional resources to be trained.

As a measure of fluency, we take the inverse
of the per word cross-entropy for each machine-
translated sentence. The fluency score is thus com-
puted according to Equation 2, where P (wi) is
short for P (wi|wi−(k−1), . . . , wi−1), i.e. the con-
ditional probability of the i-th word given its k pre-
ceding words in sentence sj of length n.

flc(sj) =
1

− 1
n

n∑
i=1

logP (wi)
(2)

Thus, the higher the cross-entropy, the lower the
fluency score. Although simple, measures com-
puted via n-gram language models, such as cross-
entropy or the monotonically-related perplexity,

5Note that the denominator in a set-based overlap measure
is the smallest of the two sets being compared, which in our
case is always the token set.

have been shown to be reliable indicators of trans-
lation quality estimation (Shah et al., 2015a).

2.3 MQE Variants
For the unsupervised uMQE variant, we assume
that task-related annotated data are not available to
optimise feature weighting,6 and thus simply take
the arithmetic mean of the two scores as our final
quality estimation score. Since the two scores are
not in similar ranges, we perform min/max fea-
ture rescaling on all scores prior to combining the
features. The final quality estimation score for
a source si and translation sj is computed as in
Equation 3, with rescaled features accr and flcr.

uMQE(si, sj) =
accr(si, sj) + flcr(sj)

2
(3)

For the supervised variant, sMQE, we used the
annotated datasets provided for the WMT 2018
QE task and trained a Support Vector Regressor
(SVR) with a Radial Basis Function kernel on the
two features, using the default parameters pro-
vided by the scikit-learn toolkit7 (C=1.0, ε=0.1,
and γ=0.5 for 2 features):

sMQE(si, sj) = SVR([acc(si, sj), f lc(sj)]) (4)

3 Experimental Setup

We submitted results from our two system variants
in all language pairs for sentence-level QE, using
the same models for both variants in each case.
To train the IBM2 and language models, we se-
lected corpora available for the WMT shared tasks
for each specific domain and language pair. For
English-German, in the IT domain, we used the
training data from the WMT 2016 IT translation
task, the WMT 2017 QE task and the WMT 2018
PE task; given the low amounts of data in each in-
dividual corpus, we also merged the data from the
technical manuals of OpenOffice and KDE4 avail-
able in the OPUS repository (Tiedemann, 2012).
For German-English, in the biomedical domain,
we used the UFAL medical corpus8, combined
with the training data from the WMT 2018 QE

6Such datasets were available for the WMT 2018 shared
task, but we opted to ignore them in order to test the uMQE
variant under its intended unsupervised conditions of use.

7http://scikit-learn.org/
8https://ufal.mff.cuni.cz/ufal_

medical_corpus
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LANG DOMAIN MT SYSTEM SPEARMAN RKρ PEARSON RKr MAE RMSE
EN-DE IT SMT UMQE 0.3787 12/15
EN-DE IT SMT UMQE* 0.4042 7/15
EN-DE IT SMT SMQE 0.3993 7/15 0.3969 9/14 0.1855 0.2248
EN-DE IT NMT UMQE 0.3999 10/13
EN-DE IT NMT UMQE* 0.4542 6/13
EN-DE IT NMT SMQE 0.4439 6/13 0.3716 9/12 0.2063 0.2421
DE-EN BIOMED SMT UMQE 0.5694 5/11
DE-EN BIOMED SMT SMQE 0.6003 4/11 0.6521 4/10 0.1182 0.1547
EN-LV BIOMED SMT UMQE 0.3979 3/8
EN-LV BIOMED SMT SMQE 0.4061 2/8 0.4612 2/7 0.1318 0.1767
EN-LV BIOMED NMT UMQE 0.5403 3/7
EN-LV BIOMED NMT SMQE 0.5686 2/7 0.5787 2/6 0.1461 0.1938
EN-CS IT SMT UMQE 0.4196 6/9
EN-CS IT SMT SMQE 0.4219 5/9 0.3904 7/8 0.1638 0.2122

Table 1: Results on the WMT 2018 test sets

task. For English-Latvian, also in the biomed-
ical domain, we used the available EMEA cor-
pus along with the training data from the WMT
2018 QE task and the additional data provided
for this language pair in this year’s QE task. Fi-
nally, for English-Czech in the IT domain, we
used the train-techdoc section of the CzEng17
dataset available for the WMT 2018 translation
task, along with the QE training data and the addi-
tional data provided for the WMT 2018 QE task.

Sentences were tokenised and truecased with
the scripts available in the Moses toolkit (Koehn
et al., 2007), with truecasing models trained on
the data described above. For English-Czech, we
experimented with BPE segmentation (Sennrich
et al., 2016) to overcome data sparseness issues,
training BPE models with a maximum of 30.000
merge operations and segmenting all corpora ac-
cordingly for this language pair.

All IBM2 models were trained with the FASTAL-
IGN toolkit (Dyer et al., 2013), and all language
models are of order 5 trained with the KENLM

toolkit (Heafield, 2011) on the target language
data. For the accuracy metric, minimal prefix
length was set to 4 and k-best translation lists lim-
ited to 4 candidates.

4 Results

The results on the WMT 2018 test sets are shown
in Table 1.9 Overall the results were satisfac-

9In the table, RKρ and RKr indicate the ranking of the sys-
tem among all participants in terms of Spearman and Pearson
correlation, respectively. Note that the official uMQE results
for English-German are based on erroneous submissions and
we submitted the correct version after the deadline via CO-
DALAB to obtain the expected scores. The correct version,
using the same models as for sMQE, is denoted by uMQE*
and we refer to the results of this submission in the discussion
relative to this language pair.

tory for both variants of such a simple minimal-
ist approach. For English-Latvian for instance,
sMQE and uMQE ranked in second and third
place, respectively; for German-English, the two
variants ranked fourth and fifth, respectively. Our
worst results were obtained for English-Czech and
English-German, although for the latter our sys-
tem still ranked in the top half among compet-
ing systems on the ranking task, and, except for
the scoring task in EN-CS, both variants outper-
formed the baselines across the board. The rel-
atively worse results obtained for these two lan-
guage pairs can be tied to data sparseness issues
affecting our simple fluency feature based on n-
gram cross-entropy.

The results obtained by uMQE were overall
slightly lower than those obtained by the super-
vised sMQE variant, although the small number
of features available to train the SVR for the latter
was not expected to lead to major improvements.
Our unsupervised approach gave satisfactory re-
sults, performing significantly better in most cases
than the supervised baseline with 17 features. We
view this as an important result, considering the
vast number of domains and language pairs where
no training data are available to opt for a super-
vised approach.

Even in cases where task-related data exist, the
amount of available parallel corpora in a given lan-
guage pair might not be sufficient to train sophisti-
cated neural quality estimators. In such cases, the
sMQE variant can also provide a reliable alterna-
tive to perform quality estimation under minimal
resources.

The approach is also fairly simple to implement
and deploy, and does not require external tagging
or parsing tools which may not be available for
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many languages. It is thus a highly portable alter-
native which may be the simplest and most effi-
cient option in a significant number of scenarios,
with results that outperform the standard super-
vised baseline across the board.

5 Conclusions

We have described our participation in the WMT
2018 shared task on quality estimation, which in-
cluded both supervised and unsupervised variants
of a minimalist approach to the task. Both vari-
ants are based on two simple measures of accu-
racy, computed from lexical translation overlap,
and fluency, computed from inverse cross-entropy
scores of an n-gram language model.

Our main goal was to evaluate systems that can
be efficiently deployed for the large number of lan-
guage pairs and domains where there are either no
annotated data at all to train a supervised system,
or insufficient amounts of parallel corpora to ade-
quately train the currently best performing neural
quality estimators. Additionally, our approach re-
quires no external tools such as part-of-speech tag-
gers or syntactic parsers, unlike other competing
approaches, and is thus both simpler to deploy and
readily available for languages where such tools
are not available at all.

We view the obtained results as satisfactory,
with both variants outperforming the supervised
baselines overall and being placed among the five
best systems in two of the four language pairs. In
future work, we will evaluate the use of continuous
space language models to address data sparseness
issues in the two language pairs where more com-
plex morphology limits the contribution of an n-
gram-based fluency feature. We will also explore
variants of the accuracy measure and evaluate in
more details the aspects that can be better mod-
elled under the proposed minimalist approach to
quality estimation.
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