
Proceedings of the Third Conference on Machine Translation (WMT), Volume 2: Shared Task Papers, pages 535–540
Belgium, Brussels, October 31 - Novermber 1, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/W18-64058

The University of Maryland’s Chinese-English
Neural Machine Translation Systems at WMT18

Weijia Xu and Marine Carpuat
Department of Computer Science

University of Maryland
College Park, MD 20742, USA

weijia@cs.umd.edu, marine@cs.umd.edu

Abstract
This paper describes the University of
Maryland’s submission to the WMT 2018
Chinese↔English news translation tasks.
Our systems are BPE-based self-attentional
Transformer networks with parallel and
backtranslated monolingual training data.
Using ensembling and reranking, we improve
over the Transformer baseline by +1.4 BLEU
for Chinese→English and +3.97 BLEU
for English→Chinese on newstest2017.
Our best systems reach BLEU scores of
24.4 for Chinese→English and 39.0 for
English→Chinese on newstest2018.

1 Introduction

While machine translation between Chinese and
English has long been considered a challenging
task, with performance lagging behind other lan-
guage pairs (Bojar et al., 2017), neural architec-
tures have helped achieve large improvements.
A new state-of-the-art on Chinese→English news
translation was recently obtained (Hassan et al.,
2018) using a deep Transformer model in com-
bination with many other techniques including
Dual Learning (He et al., 2016), joint training of
source-to-target and target-to-source models, and
Deliberation Networks (Xia et al., 2017). The re-
sulting high quality translation comes at the cost
of large models and complex training pipelines,
which make such models difficult to train and de-
ploy with constrained resources.

In this shared task, our goal is to evaluate the
performance of systems inspired by Hassan et al.
(2018) but with fewer and smaller components,
which require less time and memory at training
and decoding time. Our systems are based on a
multi-layer encoder-decoder architecture with at-
tention mechanism. We experiment with differ-
ent network architectures, including single-layer
RNN, deep Stacked RNN as used in Zhou et al.

(2016), and self-attentional Transformer networks
(Vaswani et al., 2017). The best results are ob-
tained with deep Transformer models.

Our best systems reach BLEU scores of 24.4 for
Chinese→English and 39.0 for English→Chinese
on newstest2018. Using a combination of back-
translation (Section 2.2), ensembling, and rerank-
ing (Section 2.3) we improve over the base Trans-
former models by +1.4 BLEU (Chinese→English)
and +3.97 BLEU (English→Chinese) on new-
stest2017. We describe each component of the
system (Section 2), and its contribution for each
language pair (Section 4). We show that the im-
pact of backtranslation and reranking is not sym-
metric in the two translation directions, and that,
compared to oracle scores, the reranker leaves
much room for improvement.

2 Approach

2.1 Neural Machine Translation Models

Currently, state-of-the-art Neural Machine Trans-
lation (NMT) (Bahdanau et al., 2014) is generally
based on a sequence-to-sequence encoder-decoder
model with attention mechanism, which represent
the conditional probability p(y|x) of a target sen-
tence y given a source input x.

This model comprises two components: an en-
coder Θenc and a decoder Θdec. The encoder en-
codes an input sentence x into a sequence or set
of continuous representations, while the decoder
predicts the conditional probability distribution of
the target words given the encoder’s output states.
Θenc and Θdec are trained to maximize the like-
lihood of a parallel training data comprised of N
pairs of source and target sentences:

L(Θ) =
N∑

n=1

T∑

t=1

log p(y
(n)
t |h

(n)
t−1, Attn; Θdec)

(1)
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where

Attn = fattn(fenc(x(n); Θenc), h
(n)
t−1) (2)

h
(n)
t−1 denotes the decoder’s hidden states con-

ditioned on y
(n)
<t , the target words preceding step

t. The attention model fattn computes a weighted
sum over the encoder’s outputs fenc(x(n); Θenc)
where the weights are determined by the “similar-
ity” between each of the encoder’s outputs and the
decoder’s hidden state h

(n)
t−1.

State-of-the-art NMT encoders and decoders in-
clude Stacked RNNs (Zhou et al., 2016), convo-
lutional sequence-to-sequence models (ConvS2S)
(Gehring et al., 2017), and Transformer models
(Vaswani et al., 2017). The ConvS2S and Trans-
former models differ from RNNs in that they
replace the recurrent processing in RNNs with
convolutional representation and self-attention re-
spectively, which enable the parallelization of the
computation and make the encoded representation
less sensitive to the sequence length.

ConvS2S uses stacked convolutional represen-
tation to model the dependencies between nearby
words on lower layers, while longer-distance de-
pendencies are modeled through upper layers. In
contrast, the Transformer model captures source
context via self-attention, which allows to attend
to any source word regardless of position, and
therefore has the potential to model long-distance
dependencies more directly.

In addition, the Transformer uses multi-head at-
tention, which lets the model attend to information
from different representation subspaces at differ-
ent positions. The attention function can be inter-
preted as mapping a query and a set of key-value
pairs into an output – the output is generally com-
puted as a weighted sum of the values, and the
weights are computed by a function of the query
and the corresponding key. Instead of computing
a single attention pass, multi-head attention con-
sists of several stacked attention layers in which
the same attention function is applied to differ-
ent transformations of the query, keys and values.
And then the output vectors from the above atten-
tion layers are concatenated together and linearly
transformed, resulting in the final output.

The Transformer model has achieved significant
improvements over RNN-based encoder-decoders
on several NMT tasks (Vaswani et al., 2017), while
RNNs outperform ConvS2S (Hieber et al., 2017).

We therefore only experiment with the Trans-
former and RNN architectures.

2.2 Backtranslating Monolingual Data

We leverage the monolingual data provided in the
shared task using backtranslation (Sennrich et al.,
2016a). For each language pair, we select mono-
lingual corpora from the target language based on
their similarity to the parallel corpus as measured
by cross-entropy difference (Moore and Lewis,
2010). Following the setup from Hassan et al.
(2018), we backtranslate the monolingual data us-
ing a single Transformer model, and then use a
mixture of parallel and backtranslated monolin-
gual data with a proportion of 2:1 for training a
new Transformer model.

2.3 Reranking n-best Hypotheses

In order to improve the translation quality, we
rerank the n-best results using features extracted
from different NMT models (Cherry and Foster,
2012; Neubig et al., 2015; Hassan et al., 2018).

Right-to-left NMT Model Sequence-to-
sequence models generate sequences on a
token-by-token basis, and suffer from the expo-
sure bias problem (Bengio et al., 2015). Exposure
bias refers to the problem that models are trained
using contexts from human generated references
while tested using model-generated contexts,
and thus at test time previous mistakes may be
amplified and lead to subsequent errors. In order
to address this issue, we train a right-to-left (R2L)
NMT model using the same training data but with
inverted target data. Then for each hypothesis
from the n-best list, we invert the hypothesis
sequence and use the perplexity score given by the
right-to-left NMT model as a reranking feature.

Target-to-source NMT Model In order to im-
prove the translation quality in terms of adequacy,
we also use features from target-to-source (T2S)
NMT models for reranking. We use the perplex-
ity score given the translation as input and the
source sentence as reference. The score repre-
sents the conditional probability of the source sen-
tence given the translation, which can be viewed
as an adequacy score. Since we participate in both
Chinese→English and English→Chinese tasks,
we can just use the models trained in the opposite
direction for reranking.
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Reranking Model First we generate n-best
translation hypotheses for each source sentence.
Then we get the perplexity scores for each hypoth-
esis with L2R, R2L, and T2S models. The scores
are treated as features which we use to train a k-
best batch MIRA ranker (Cherry and Foster, 2012)
to find out the optimal weights for reranking.

3 Data and Preprocessing

Parallel Data We use all the parallel data avail-
able for the shared tasks. The training data for
both tasks consists of about 15.8M sentence pairs
from the UN Parallel Corpus, 9M sentence pairs
from the CWMT Corpora, 332K sentence pairs
from the News Commentary Corpus. In addition
to the criteria used in Hassan et al. (2018) to filter
the parallel data, we add a criterion of bad sen-
tences according to the alignment score given by
the fast-align toolkit1. The overall criteria
are the following:

• Duplicate sentence pairs are removed.

• Sentences with characters of other languages
are removed.

• Chinese sentences without Chinese charac-
ters are removed.

• The length of each sentence must be between
3 and 50.

• The length ratio of sentence pairs must not
exceed 1.6.

• Bad sentence pairs according to the align-
ment score are removed.

Table 1 shows the data statistics after filtering,
tokenization, truecasing, and BPE.

Monolingual Data We further augment the
training data with backtranslated monolingual
data. For Chinese→English systems, we select
8M sentences from “News Crawl: articles from
2017” that are most similar to the bilingual data
using cross-entropy difference (Moore and Lewis,
2010). For English→Chinese systems, we select
8M sentences from the XMU Corpus based on the
same criteria.

Tuning and Testing Data The official news-
dev2017 is used as the validation set, and new-
stest2017 is used as the test set.

1https://github.com/clab/fast_align

Preprocessing All corpora are processed con-
sistently. We tokenize the English sentences and
perform truecasing with the Moses scripts (Koehn
et al., 2007). Chinese sentences are segmented
with the Jieba segmenter2. We segment English
and Chinese tokens into subwords via Byte-pair
Encoding (BPE) (Sennrich et al., 2016b). We train
the BPE models for English and Chinese sepa-
rately, and use 32K subwords for each side.

4 Experiments

4.1 Baseline systems
The baseline system is a bidirectional RNN with
attention mechanism as used in Bahdanau et al.
(2014). Our systems are built on Sockeye (Hieber
et al., 2017). We use word embedding size of 1024
and hidden layer size of 1024. We filter out sen-
tences with length larger than 50. We use Adam
optimizer with initial learning rate of 0.0002. We
adopt layer normalization (Ba et al., 2016) and la-
bel smoothing (Szegedy et al., 2016). We tie the
output weight matrix with the target embeddings
(Press and Wolf, 2017). The beam size is set to 10.

The deep RNN is based on Stacked RNNs with
attention (Zhou et al., 2016). We use the same sys-
tem settings as the baseline but set the number of
stack layers to 4.

The Transformer network (Section 2.1) is a
6-layer Transformer model with model size of
1024, feed-forward network size of 4096, and 16
attention heads. We adopt label smoothing and
weight tying, and set the beam size to 10.

Table 2 shows the total number of parame-
ters for each model and the BLEU scores on
Chinese→English and English→Chinese new-
stest2017. Results show that the Transformer
outperforms RNNs in both directions, although
it is not a controlled comparison since the
Transformer has 1.6 times as many parameters
as the deep RNN model. Based on this strong
performance, we select the Transformer as the
base model for further improvements.

4.2 Results on Chinese→English Translation
Table 3 shows the results for the Chinese→English
translation task. We report cased BLEU
computed on detokenized output with the
multi-bleu-detok.pl script. The baseline,
deep RNN, and Transformer models are trained
on the 17.6M bilingual data. We backtranslate

2https://github.com/fxsjy/jieba
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train valid test
Sentences 17577153 17577153 2002 2002 2001 2001
Tokens 392490201 433127957 72494 69775 68360 64012
Types 49475 32102 4593 9911 4913 9171
OOVs – – 104 32 121 25

Table 1: Data sizes for Chinese/English training (train), validation (valid) and test sets respectively. All statistics
are computed after filtering, tokenization, truecasing, and BPE. The Types column shows the number of distinct
tokens in each data set. The OOVs column shows the number of distinct out-of-vocabulary tokens.

System Size C→E E→C
baseline 108.77M 20.99 30.45
deep RNN 165.46M 21.65 31.63
Transformer 259.94M 24.00 34.50

Table 2: BLEU scores for baseline models on
Chinese→English and English→Chinese new-
stest2017. The Size column shows the total number
of parameters.

System BLEU
baseline 20.99
deep RNN 21.65
Transformer 24.00
+synthetic 24.12
+ensemble 24.76
+reranking (L2R, T2S) 25.20
+reranking (L2R, T2S, R2L) 25.37
+beam size from 10 to 30 25.41

Table 3: Chinese→ English Results on newstest2017.
The submitted system is the last one.

the selected 8M monolingual data using the
English→Chinese Transformer model. Training
the Transformer model on the mixed paral-
lel/synthetic data improves the model by +0.1
BLEU. We further train 3 independent Trans-
former models with different random seeds, and
gain +0.6 BLEU score by ensembing. Finally, by
rescoring the n-best lists with L2R, R2L, and T2S
models, we gain +0.6 BLEU score. Increasing the
beam size from 10 to 30 also brings improvements
when reranking. We submit the last system and
get 24.4 BLEU score on the official test set.

4.3 Results on English→Chinese Translation

Table 4 shows the results for the English→Chinese
translation task. We report character-
based BLEU calculated with the Moses
multi-bleu-detok.pl script. Similar
to the Chinese→English systems, the baseline
systems are trained on the parallel data. Aug-

System BLEU
baseline 30.45
deep RNN 31.63
Transformer 34.50
+synthetic 36.69
+ensemble 38.28
+reranking (L2R, T2S) 38.19
+reranking (L2R, T2S, R2L) 38.42
+beam size from 10 to 30 38.47

Table 4: English→ Chinese Results on newstest2017.
The submitted system is the last one.

menting the training data with the backtranslated
monolingual data improves BLEU by +2.2 points.
The ensemble model improves over the single
best system by +1.6 BLEU. Rescoring with L2R,
R2L, and T2S models brings an improvement of
+0.1 BLEU. We further increase the beam size
from 10 to 30 to gain more from reranking. Our
submitted system outperforms the best system in
WMT17 (Wang et al., 2017) by +2.1 BLEU on
newstest2017 and obtains a BLEU score of 39.0
on the official test set.

We note that the components added to the base-
line Transformer model have an asymmetric im-
pact in the two translation directions. While back-
translation improves the results by +2.2 BLEU
for the English→Chinese task, it doesn’t help as
much for Chinese→English (+0.1). In contrast,
rescoring with L2R, R2L, and T2S models brings
more improvements for Chinese→English (+0.6)
than the other (+0.2). One possible explanation is
that in a parallel corpus sentences originally writ-
ten in language A and sentences translated from
language B to A may have different styles due to
translationese effects (Volansky et al., 2015).

While the original language is not known for all
training documents, it seems reasonable to assume
that the majority of documents are translated from
English into Chinese: the UN corpus is known
to comprise primarily original English documents
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Beam C→E E→C
reranker oracle reranker oracle

10 25.37 28.72 38.42 42.84
30 25.41 30.44 38.47 44.78
100 25.40 33.05 38.38 47.17

Table 5: A comparison of BLEU scores when using
the reranker trained with L2R, R2L, and T2S features
versus the oracle, with varying beam sizes.

(Tolochinsky et al., 2018). For other training data
sources beyond UN, a bilingual Chinese-English
speaker manually inspected a random sample of
100 sentence pairs, and estimated that 87% sen-
tences were originally written in English. This
might explain why rescoring with the T2S models
helps more in the Chinese→English direction than
in the other, and why the English→Chinese sys-
tems benefit more from backtranslated data which
introduces some (machine) translated Chinese to
complement the translation direction observed in
the parallel training data.

4.4 Experiments on Reranking

To estimate an upper-bound for reranking meth-
ods, we build an oracle that returns the translation
in the n-best list that gets the highest BLEU score.

Table 5 shows the comparison of BLEU scores
when using the reranker trained with L2R, R2L,
and T2S features versus the oracle. Increasing the
beam size from 30 to 100 doesn’t improve the re-
sults when using the reranker, but improves the or-
acle scores. This is consistent with prior findings
that beam search only improves translation qual-
ity for narrow beams and deteriorates with larger
beams (Koehn and Knowles, 2017), but differs in
that we rerank the n-best lists instead of adopt-
ing the 1-best results from beam search. The re-
sults also show that better translations according
to BLEU exist in the n-best lists with larger beam
size, but are ranked low by the models.

In addition, we find that the oracle scores are al-
ways higher than the reranker scores, and the gap
increases with beam size. When comparing the
MSR’s best system results (28.46 BLEU achieved
by Combo-4 in Hassan et al. (2018) with the ora-
cle, we find that the oracle score is still higher by
4-5 BLEU. The results show that there is room for
improvement by introducing more useful rescor-
ing features and warrant further investigation.

5 Conclusion

This paper presents the University of Maryland’s
NMT systems for WMT 2018 Chinese↔English
news translation tasks. Our experiments confirm
the benefits of using Transformer networks over
RNN-based architectures. We report performance
gains from incorporating monolingual data, using
ensemble models and reranking with target-to-
source and right-to-left models, although the im-
pact of these techniques depends on the translation
direction. By comparing the oracle and reranking
results, we find that there is potential for further
improvement with more useful rescoring features.
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