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Abstract

The University of Edinburgh made submis-
sions to all 14 language pairs in the news
translation task, with strong performances in
most pairs. We introduce new RNN-variant,
mixed RNN/Transformer ensembles, data se-
lection and weighting, and extensions to back-
translation.

1 Introduction

For the WMT18 news translation task, we were
the only team to make submissions to all 14 lan-
guage pairs. Our submissions built on our strong
results of the WMT16 and WMT17 tasks (Sen-
nrich et al., 2016a, 2017), in that we used neural
machine translation (NMT) with byte-pair encod-
ing (BPE) (Sennrich et al., 2016c), back-translation
(Sennrich et al., 2016b) and deep RNNs (Miceli
Barone et al., 2017). For this year’s submissions
we experimented with new architectures, and new
ways of data handling. In brief, the innovations
that we introduced this year are:

Architecture This year we experimented with
the Transformer architecture (Vaswani et al., 2017),
as implemented by Marian (Junczys-Dowmunt
et al., 2018), as well as introducing a new variant
on the deep RNN architectire (Section 2.3).

Data selection and weighting For some lan-
guage pairs, we experimented with different data
selection schemes, motivated by the introduction
of the noisy ParaCrawl corpora to the task (Section
2.1). We also applied weighting of different cor-
pora to most language pairs, particularly DE↔EN
(Section 3.5).

Extensions to Back-translation For TR↔EN
(Section 3.7) we used copied monolingual data
(Currey et al., 2017a) and iterative back-translation.

In-domain Fine-tuning For RU↔EN (Section
3.6) we fine-tuned using a specially constructed
“in-domain” data set.

2 System Details

In this section we describe the general properties
of our systems, as well as some novel approaches
that we tried this year such as data selection and a
variant on the GRU-based RNN architecture. The
specifics of our submissions for each language pair
are described in Section 3.

2.1 Data and Selection
All our systems were constrained in the sense that
they only used the supplied parallel data (including
ParaCrawl) for training the systems. We also used
the monolingual news crawls to create extra syn-
thetic parallel data by back-translation, for all lan-
guage pairs, and by copying monolingual data for
TR↔EN. During training we generally used news-
dev2016 or newstest2016 for validation, and newst-
est2017 for development testing (i.e. model selec-
tion), except for ZH↔EN, and ET↔EN, where we
used the recent newsdev sets instead.

All parallel data contains a certain amount of
noise, and the problem was exacerbated this year
since the organisers provided a ParaCrawl corpus1

for most language pairs2 as additional training data.
On inspection, we could see that these crawled cor-
pora were quite noisy, including mis-aligned sen-
tence pairs, incorrect language, and garbled encod-
ings. In early experiments, we showed increases
in BLEU from including ParaCrawl in the training
data, for ET→EN and FI→EN, but we decided
to see if we could improve performance further
by applying data filtering. We experimented with
different filtering methods, described below.
1https://paracrawl.eu
2 ParaCrawl corpora was not available for EN↔TR and

EN↔ZH.
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Language Identifier Filtering This was applied
to the CS↔EN and DE↔EN corpora, based on
observations that CzEng, and ParaCrawl both con-
tain sentence pairs in the “wrong” language. For
CS↔EN we applied langid (Lui and Baldwin,
2012) to both sids of the data, removing any sen-
tences whose English side is not labelled as English,
or whose Czech is not labelled as Czech, Slovak or
Slovenian3. For DE↔EN, we just applied langid
to ParaCrawl and retained only those pairs where
each side was identified as the ‘correct’ language
by langid. This reduced the size of the ParaCrawl
corpus from about 36 million sentence pairs to ca.
18 million sentence pairs.

Data Selection with Translation Perplexity
We applied this to ET↔EN and FI↔EN. To per-
form the filtering, we first trained shallow RNN
models in both directions, using all the permit-
ted parallel data except ParaCrawl. We then used
these models to score the ParaCrawl sentence pairs,
normalising by target sentence length, and adding
the scores for forward and reverse models. We
then ranked sentence pairs in ParaCrawl using this
score, and performed a grid search across different
thresholds (from 0 – 100% in 10 point intervals) of
the ParaCrawl data, in addition to the other parallel
data. We trained a shallow RNN system using the
data selected across each of these thresholds, and
tested it on newstest2017 (for FI→EN), or half of
newsdev2018 (for ET→EN).

The results of the filtering are shown in Figure
1. Based on these results, we chose a threshold of
0.3 for ET↔EN (which gives us +0.8 BLEU), but
used the whole of ParaCrawl for FI→EN.

Alignment-based Filtering We applied this to
the DE→EN parallel data, after langid filtering.
We word-aligned all pre-cleaned parallel data with
fastalign (Dyer et al., 2013) and computed the geo-
metric mean of forward and backward alignment
probabilities as a coarse estimate of how good a
translation pair the respective sentence pair is.

All parallel data was sorted in descending order
of this “plausible translation” score, and a neural
system was trained on this data, in this order. In
order to determine a threshold for data filtering,

3 langid identified a significant proportion of the data as these
other two Slavic languages, but on inspecting a sample, they
were found nearly always to be Czech. The issue with langid
is that we just give it the text, without providing any prior
knowledge, when in actual fact there is a strong prior that Cz-
Eng sentences are really Czech and English, by construction
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Figure 1: Result of translation perplexity filtering of
ParaCrawl on 2 language pairs

we monitored the performance on a validation set
(newstest2016) and observed the point where trans-
lation quality started to deteriorate. We used the
translation plausibility score at this point as the
threshold for selecting data for training the final
systems.

2.2 Preprocessing

For most language pairs, our preprocessing setup
consisted of the Moses pipeline (Koehn et al., 2007)
of normalisation, tokenisation and truecasing, fol-
lowed by byte-pair encoding (BPE) (Sennrich et al.,
2016c). We generally applied joint BPE, with the
number of merge operations set on a per-pair basis,
detailed in Section 3. Different pipelines were
used for processing the two languages written in
non-Latin scripts (i.e. Chinese and Russian), also
explained in Section 3. For some language pairs
(those including Czech, Estonian, Finnish and Ger-
man) we used the preprocessed data provided by
the organisers (which is preprocessed up to truecas-
ing), whilst for the others we started with the raw
data.

2.3 Model Architecture

For this submission we considered two types of
sequence-to-sequence architectures: a transformer
(Vaswani et al., 2017) and a deep RNN, specific-
ally the BiDeep GRU encoder-decoder (Miceli Bar-
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one et al., 2017). Both architectures4 are imple-
mented in the Marian open source neural machine
translation framework (Junczys-Dowmunt et al.,
2018). For the transformer architecture we used
the “wmt2017-transformer” setup from the Marian
example collection5.

We extended the RNN with with multi-head and
multi-hop attention. Multi-head attention is similar
to Chen et al. (2018), with an MLP attention mech-
anism using a single tanh hidden layer followed
by one soft-max layer for each attention heads. We
further include an optional projection layer on the
attended context with layer normalisation in order
to avoid increasing the total size of the attended
context.

Let C ∈ RNs×de be the input sentence repres-
entation produced by the encoder, where Ns is the
source sentence length and de is the top-level bid-
irectional encoder state dimension. Let s ∈ Rdd

be an internal decoder state at some step. Then for
source sentence position i we compute a vector of
M attention weights, where M is the number of
attention heads:

W,A ∈ RNs×M

Wi = MLP(Ci, s)

Ai =
exp(Wi)∑
i′ exp(Wi′)

where we assume that exponentiation is applied
element-wise. Then we compute the attended con-
text vector as:

ATT(C, h) = CATM
r=1

(∑

i

PROJr(Ci) · ai,r
)

where CATM
r=1 is vector concatenation over the

attention heads and each PROJr is either the iden-
tity function or a trainable linear layer followed by
layer normalization.

Multi-hop attention is similar to Gehring et al.
(2017), except that we do not use convolutional
layers, but instead we introduce additional attention
hops between the layers of the deep transition GRU
in the decoder. In our implementation multi-head
and multi-hop attention can be combined, in which
case each attention hop is a separate multi-head
attention mechanism.
4 The BiDeep GRU is obtainable using the -best-deep

option.
5https://github.com/marian-nmt/
marian-examples

Let Lt ≥ 2 be the decoder base recurrence depth
andH < Lt be the number of attention hops. Then
the base level of the decoder is defined as:

sj,1 =GRU1 (yj−1, sj−1,Lt)

sj,k =GRUk (ATTk(C, sj,k−1), sj,k−1)

for 1 < k ≤ H + 1

sj,k =GRUk (0, sj,k−1)

for H + 1 < k ≤ Lt

where each ATTk(C, s) is and independent multi-
head attention mechanism with M heads. For a
BiDeep decoder, the higher levels are the same as
in the default Marian implementation of the BiDeep
architecture 6.

2.4 Training
All our systems are trained with Marian7 (Junczys-
Dowmunt et al., 2018), using Adam (Kingma and
Ba, 2015). To improve training stability and gen-
eralisation, we employed label smoothing (0.1)
(Szegedy et al., 2016), exponential smoothing
(i.e. Polyak averaging) with 0.0001 weight, gradi-
ent clipping and layer normalisation (Ba et al.,
2016). For all pairs except CS↔EN (where it
harmed BLEU) we used dropout (Srivastava et al.,
2014; Gal and Ghahramani, 2016) on the Trans-
former/RNN connections.

3 Submitted Systems

3.1 Chinese↔ English
For ZH↔EN we preprocessed the parallel data,
which consists of NewsCommentary v13, UN data
and CWMT, as follows. We first desegmented all
the Chinese data and resegmented it using Jieba8.
We then removed any sentences that did not con-
tain Chinese characters on the Chinese side, or
contained only Chinese characters on the English
side. We also cleaned up all sentences containing
links, sentences longer than 50 words, as well as
sentences where the amount of tokens on either side
was > 1.3 times the tokens on the other side, fol-
lowing Hassan et al. (2018). After preprocessing
the corpus size was 23.6M sentences. We then
applied BPE using 18,000 merge operations and
we used the top 18,000 BPE segments as vocabu-
lary. We augmented our data with backtranslated
6 The implementation of the multi-head and multi-hop at-
tention architectures is available at: https://github.
com/EdinburghNLP/marian-dev

7https://marian-nmt.github.io
8https://github.com/fxsjy/jieba
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ZH↔EN from Sennrich et al. (2017), which con-
sists of 8.6M sentences for EN→ZH and 19.7M
for ZH→EN.

We trained using the BiDeep architecture with
multi-head attention with 1 hop and 3 heads. We
decoded using an ensemble of 5 L2R systems and
a beam of 12 for EN→ZH and 6 L2R systems and
a beam of 12 for ZH→EN. Due to time constraints,
we were not able to train any of the systems to
convergence.

3.2 Czech↔ English

After preprocessing, language filtering (see Sec-
tions 2.1 and 2.2), and removing any parallel sen-
tences where neither side contains an ASCII letter,
we were left with around 50M sentence pairs. We
then learned a joint BPE model over the source and
target corpora, with 89,500 merge operations, and
applied it using a vocabulary threshold of 50.

For back-translation, we trained shallow RNN
models in both directions without ParaCrawl or the
langid-based corpus cleaning, and used to decode
with a beam size of 5. We back-translated the Eng-
lish 2017 news-crawl, and the Czech news-crawls
from 2016 and 2017, removing lines with more
than 50 tokens, to create additional corpora of ap-
proximately 26.5M sentence for CS→EN and 13M
for EN→CS. Initially we tried simply concatenat-
ing each of these corpora with the natural parallel
data, but this gave poor results for CS→EN, so we
over-sampled the synthetic data 2 times for that pair
to give approximately equal amounts for synthetic
and natural data. For EN→CS, we did not see any
benefit from equalising the synthetic/natural ratio,
so we stuck to using simple concatenation.

For the submitted systems, we trained the
BiDeep RNN models using Marian. In addition
to the default Marian settings, we used layer norm-
alisation, tied embeddings, label smoothing (0.1),
exponential smoothing, no dropout, but we used
multiheaded/multihop attention with 2 heads and
3 hops. We trained on 4 GPUs with a working
memory of 4000MB on each, validating every
2,500 updates. We used exponential smoothing
and took the final smoothed model. We trained
4 left-right (L2R) and 4 right-left (R2L) models
for each language pair, and due to time constraints
we did not train to convergence, stopping each run
after about 250k–350k updates. We decoded using
an ensemble of the 4 L2R systems and a beam of
50, then reranked with the 4 R2L systems. For

both language pairs we normalised probabilities
by target length, raising it to a power of 0.8 for
CS→EN.

3.3 Estonian↔ English

As explained in Section 2.1, we used a filtered
ParaCrawl for this pair, and in common with
CS↔EN we removed any sentence pairs where
either side contained no ascii letter. We trained and
applied a BPE model with 89,500 merge operations
and a vocabulary threshold of 50. We split news-
dev2018 randomly and used one half for validation
and another half for development testing.

The models used for back-translation were shal-
low RNNs trained on the parallel data without
ParaCrawl. We translated the 2017 English news-
crawl to Estonian, and translated all the Estonian
news-crawls to English. We also experimented
with the BigEst Estonian corpus, but did not see any
improvement when using it to produce synthetic
data, nor when we selected 50% of it using Moore-
Lewis selection (Moore and Lewis, 2010) with the
news-crawl data as in-domain. Our final natural
parallel corpus contains approximately 1.2M sen-
tences, and the synthetic corpora are about 2.9M
for EN→ET and 26.5M for ET→EN. To create the
final corpora for training, we combined natural and
synthetic, over-sampling the natural 3-times for
EN→ET and 23-times for the ET→EN. Again we
apply BPE, trained on the Europarl, Rapid and se-
lected Paracrawl corpora, with the same parameters
as before.

Our submitted system was an ensemble of 4
left-right systems, reranked with 4 right-left sys-
tems, with each ensemble consisting of 2 deep
BiDeep RNNs and 2 Transformers. The RNN had
a BiDeep architecture, with layer normalisation,
tied embeddings, label smoothing (0.1), exponen-
tial smoothing, RNN dropout (0.2), source and
target word dropout (0.1) and multihead/multihop
attention with 2 heads and 3 hops. We trained on
4 GPUs with a working memory of 4000MB on
each, validating every 2,500 updates. The RNNs
were not trained to convergence (due to time con-
straints) but stopped after between 300k and 500k
steps. The transformer models used the settings
from Marian examples. without layer normalisa-
tion, with a working memory of 9500MB (on each
of 4 GPUs), validating every 2500 updates, and de-
tecting convergence with a patience of 10. We also
applied source and target word dropout to the trans-
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former models. They generally converged in under
200k updates. As for CS↔EN we used exponen-
tially smoothed models. Decoding is the same as
for CS↔EN, with normalisation by target length.

3.4 Finnish↔ English

For FI↔EN, after pre-processing we removed sen-
tence pairs where either side contains no ascii
characters, then trained and applied a BPE model
with 89,500 merge operations and a vocabulary
threshold of 50. As reported in Section 2.1, we
used the whole of ParaCrawl in our system.

For back-translation, we trained shallow RNN
models in each direction, without ParaCrawl. We
back-translated with a beam size of 5, translating
the English 2017 news-crawl to Finnish, and the
Finnish 2014–2017 news-crawls to English. Before
back-translation, we removed any sentences with
length greater than 50 tokens. For EN→FI, we
combined 3.2M naturally parallel sentence pairs,
over-sampling 5-times, with 14.6M sentences of
synthetic data. For FI→EN, we combined the
same natural corpus (over-sampled 8-times) with a
26.5M corpus of synthetic parallel data.

We created the submitted systems in the same
way as the ET↔EN systems (Section 3.3), and
again we were not able to train the deep RNNs
to convergence. The only difference is that for
EN→FI, we normalise by the target length raised
to a power of 0.5, after running a grid search over
different normalisations on the development set.

3.5 German↔ English

Our efforts focussed on extracting the most use-
ful data from ParaCrawl. After preprocessing and
selection (see Section 2.1, we trained and applied
joint BPE models with 35,000 merge operations,
and a threshold of 50.

To balance the data, we blended the data in a mix
as shown in Table 1, by randomly sampling from
each corpus (without raplacement), resetting (i.e.,
replacing all items at once) each corpus when it
became exhausted, for a total of 40 million sentence
pairs.

Our system was based on the transformer in
Marian examples, and initially we trained several
left-right and right-left systems with tied target em-
beddings (but separate source embeddings). We
used these systems to create ensembles.

For the translation direction EN→DE, we also
trained a single model with a set-up more closely

Corpus %

Back translations1 50%
CommonCrawl 5%
Europarl 15%
News-commentary 10%
ParaCrawl 10%
Rapid 10%

Table 1: Blend of data for training the DE↔EN en-
semble models (40M sentence pairs total).

reflecting the setup described in the wmt2017-
transformer Marian example set-up. For this single
decoder, we tied all embeddings and pooled the
top-ranked 7.5 million sentence pairs from parac-
rawl (according to the translation plausibility score)
with the other training data. Below, this system is
referred to as single transformer.

For the single transformer we used a mix of
approximately 4.6 million parallel sentence pairs
from latest versions of Europarl, CommonCrawl
and News-commentary, oversampled twice, the
7.5 million parallel sentence pairs from ParaCrawl,
filtered as described above, and 10 million back-
translated sentences from NewsCrawl 2016. We
trained a Marian transformer model with standard
settings.

We also ran preliminary experiments with multi-
head and multi-hop GRU architectures on the same
training data except ParaCrawl but we found that
these models tended to underperform the trans-
former by 0.6 − 1.0 BLEU points, therefore we
did not use them for our submission.

As the results in Table 2 show, the single trans-
former produces better results than our ensembles.
Even re-ranking of the single transformer output
deteriorates the results, which we attribute to lower
quality of the models used for ensembling and re-
ranking. At this point we do not know whether
the differences in model quality are due to differ-
ences in the tying of parameters, different choices
of other hyperparameters, differences in the train-
ing data used, or a combination of any of these
potential causes.

3.6 Russian↔ English

After preprocessing, we trained a joint BPE model
with 90,000 merge operations, using the same
Latin-Cyrillic transliteration trick as in Sennrich
et al. (2016c). For back-translation we trained
a deep RNN and translated Russian news crawls

403



Pair System BLEU

DE→EN Ensemble of 3 L2R, reranked with ensemble of 2 R2L 43.9

EN→DE
Single transformer 44.4
Single transformer, reranked with ensemble of 2 R2L 43.2
Ensemble of 2 L2R, reranked with ensemble of 2 R2L 41.8

Table 2: WMT18 Results for German↔ English

from 2015–2017, and the English news crawl from
2017 to give about 36M sentences in each direction.

In order to maximize the performance of our sub-
mission systems, we created a pseudo “in-domain”
fine-tuning corpus designed to be representative
of the targeted news domain to a greater extent
than the full parallel corpus. For that purpose, we
concatenated pre-processed sentence pairs from
NewsCommentary v13, CommonCrawl, and Yan-
dex Corpus, excluding the noisy ParaCrawl data
as well as data from the UN Parallel Corpus V1.0
which has little overlap with our target domain. To
ensure that the so assembled corpus is as free of
noise as possible, we furthermore filter out sen-
tence pairs in which the Russian side is not pre-
dominantly composed of Cyrillic characters or the
English side is dominated by non-Latin characters.
Lastly, we combined the so obtained “in-domain”
corpus with an equal amount of back-translated
news data, resulting in two datasets of 2.1M sen-
tence pairs each.

Our final submission included both deep RNN
models (using multi-head and multi-hop attention
with 3 heads and 2 hops) and Transformer models
similar to the Transformer-Base of Vaswani et al.
(2017). For the RNNs, we applied layer normal-
isation, label smoothing (0.1), dropout between
recurrent layers (0.1), exponential smoothing and
tieall embeddings. We applied similar options to
our transformer models.

We trained our models in two stages: 1) Training
on the full parallel corpus and 2) Fine-tuning on the
“in-domain” corpus with a reduced learning rate.
Each of the submitted models was optimized using
the Adam algorithm, with β1 set to 0.9, and β2 set
to 0.98. Learning rate was set to 0.0003 during
the training stage and lowered to 0.00003 during
the fine-tuning stage. Throughout the training, the
learning rate was linearly increased over the initial
16,000 update steps up to the specified value and
gradually degraded thereafter.

Model validation was performed every 5,000

steps, and we terminated training if no BLEU im-
provements are observed after five consecutive val-
idations. For fine-tuning, we initialized our mod-
els with parameters corresponding to the highest
validation-BLEU on the full corpus and train until
convergence, as indicated by early stopping, on the
“fine-tuning” training set. Due to time-constaints,
convergence could not be reached for several of the
ensembled models.

Our final submissions consisted of an ensemble
of 4 deep RNNs for EN→RU and a mixed en-
semble of 2 RNNs and 2 transformers for RU→EN.
All these models were trained independently and
fine-tuned on the “in-domain” set. Improvements
obtained following the fine-tuning step are de-
tailed in Table 3. While our original intention
was to use mixed ensembles for both directions,
our transformer models under-performed on the
EN→RU translation task, which we assume is due
to our hyper-parameter choices. We re-ranked the
translations obtained by our left-right ensemble
with a right-left ensemble of identical design. It
should be noted, however, that we were unable to
identify any significant improvements in terms of
validation-BLEU as a result of the re-ranking. We
also fine-tuned the beam-size and length penalty
hyper-parameters of our ensemble systems on the
corresponding validation sets for which we observe
a small increase in validation-BLEU. Accordingly,
we set the beam size to 20 and length normalisation
parameter to 0.4 for our EN→RU ensemble and to
28 and 1.2 respectively for RU→EN.

3.7 Turkish↔ English

After preprocessing we trained and applied a joint
BPE model with 36,000 merge operations, dis-
carding any sentences longer than 120 tokens. To
produce back-translations we built systems in two
steps: first we trained back-translation systems in
both directions using the parallel data only, and
then we re-trained them on data sets containing
additional 800K back-translated sentences. Back-
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Deep RNN Transformer
Direction base fine-tuned significance base fine-tuned significance

EN→RU 30.25 32.69 p < 0.00001 - - -
RU→EN 35.79 36.5 p < 0.005 35.81 36.96 p < 0.005

Table 3: Impact of in-domain fine-tuning on the RU ↔ EN task. Reported are best validation-BLEU scores
averaged over all single models of the denoted type in the submitted ensemble systems. Statistical significance
was established using a paired, two-tailed t-test.

Corpus # Synth. R # Total

A 800K ×1 1M
B 2.5M ×5 3.5M
C 2.5M + 1M ×5 4.5M

Table 4: Training data sets for TR↔EN systems. Data
sets consist of back-translated and original parallel data
oversampled R times.

translation systems are trained as deep RNN mod-
els described below. The final training sets consist
of 2.5M of synthetic parallel sentence pairs created
from English or Turkish NewsCrawl data sets and
the SETIMES2 data oversampled 5 times (Table 4).
We also experimented with copying monolingual
data (Currey et al., 2017b) by adding additional 1M
examples with source sentences identical to target
sentences randomly selected from the monolingual
data.

Our RNN models used the BiDeep architecture,
and we augmented the models with layer norm-
alisation, skip connections, and parameter tying
between all embeddings and output layer. The
RNN hidden state size was set to 1024, embed-
dings size to 512.

The architecture of transformer models was
close to the Transformer-Base proposed by
Vaswani et al. (2017): encoder and decoder were
composed of 6 layers, and employed 8-head self-
attention. We used dropout between transformer
layers (0.2) as well as in attention (0.05) and feed-
forward layers (0.05). The rest of parameters re-
mained the same as in the RNN models.

Optimization used 4 GPUs with synchronous
training and mini-batch size fitted into 9.5GB of
GPU memory. The learning rate was linearly in-
creased to 0.0004 reaching this value after first
18,000 updates, and then decreased by a square
of the passed updates starting at 24,000 update.
As a stopping criterium we used early stopping
with a patience of 10 based on the word-level

cross-entropy on the newsdev2016 data sets, which
served as a development set. The model was valid-
ated every 5,000 updates, and we kept best models
according to the cross-entropy and BLEU score.

We evaluated systems using models with the
highest BLEU score on the development set. De-
coding was performed by beam search with a beam
size of 12 with length normalisation with value
0.2 for EN→TR and 1.2 for TR→EN based on the
greed search on the development set. Additionally,
as the Turkish language is not supported by the
Moses tokenizer falling back to general English
tokenization rules resulting in suboptimal detoken-
ization, we postprocessed translated Turkish texts
by merging words that contains an apostrophe.

We report results on the newstest2017 and news-
test2018 in Table 59. Our first submitted TR↔EN
systems were ensembles of 6 independently trained
models, reranked with 3 right-left systems (En-
semble ×6 +Rerank R2L ×3). Ensembles consist
of four models trained on corpus B and one model
trained on corpora A and C, while each right-left
model is trained on different corpora A-C. Our fi-
nal systems extended the previous ensemble by 6
additional models from the same training runs that
achieve best cross-entropy (instead of best BLEU)
on the development set10, utilizing 12 left-right
models in total (Ensemble×6×2). For comparison,
we report the results for single systems trained on
different corpora, and there is no significant per-
formance difference among them.

3.8 Overall Performance of Submissions

In Table 6 we show the BLEU scores of our systems
as compared to the top-scoring constrained systems,
giving the BLEU scores from the matrix11 and the

9 For our official submissions we also used n-best lists gen-
erated with the beam size of 20 instead of 30, which may
explain the difference between the official and reported BLEU
scores.

10Models achieving best cross-entropy differ from the models
with highest BLEU for each training run.

11http://matrix.statmt.org
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EN-TR TR-EN
System 2017 2018 2017 2018

Deep RNNA 22.0 18.1 23.8 24.4
Deep RNNB 22.1 18.6 23.9 25.1

TransformerA 23.4 19.1 24.6 25.8
TransformerB 23.1 19.2 25.0 26.7
TransformerC 22.8 19.0 25.2 26.7

+Ensemble ×6 24.0 19.9 26.2 27.6
+Rerank R2L×3 24.4 19.9 26.6 28.2

+Ensemble ×6×2 24.3 19.9 26.3 27.7
+Rerank R2L×3 24.7 20.1 26.5 28.1

Submission 19.5 26.9

Table 5: Results for EN↔TR systems on official WMT
test sets.

human evaluation from the findings paper (Bojar
et al., 2018).

In terms of the clustering provided by the or-
ganisers, we were in the top constrained cluster
(i.e. no significant difference was observed
between ours and the best constrained system) for
EN→CS, DE→EN, ET→EN, FI→EN, TR→EN
and EN→TR, i.e. 6/14 language pairs. Neverthe-
less, Table 6 still shows that our systems generally
lag behind the best submitted systems. This is con-
trast to the 2017 shared task, where we achieved
the highest scores in most of the language pairs
where we submitted systems. We hypothesise that
other groups have taken fuller advantage of the
transformer architecture, and also of data weight-
ing and selection. We also suggest that covering all
14 language pairs meant that we had insufficient
time for experimentation on some pairs, and in fact
we were not able to train all models to convergence.

4 Post-Submission Experiments

In this section we present results of some post-
submission experiments, which attempted to
provide more insight into the contribution of dif-
ferent features of our system. We were especially
interested in understanding why our systems tended
to lag behind the performance of the best systems
(in BLEU, at least). Mostly the experiments were
conducted on EN↔{CS,ET,FI}.

The results are given on newstest2017 (devtest)
and newstest2018 (test), except for ET↔EN, where
devtest is half of newsdev2018.

4.1 Effect of Multihead/Multihop Attention

In the deep RNN models in our submissions,
we used the BiDeep architecture, with multi-
head/multihop attention, setting the number of hops
to 3 and heads to 2. In Table 7, we show the effect
of this on 3 different language pairs (both direc-
tions). For these experiments, we use the same
training sets and data preparation as in our system
submissions, but train the deep RNNs with a work-
ing memory of 10GB, validating every 1,000 steps,
and testing for convergence with a patience of 10.
We use exponential smoothing and show the results
on a single smoothed model.

From the results in Table 7 we see that the multi-
head/hop extension has a small positive effect on
BLEU in most language pairs.

4.2 Effect of Vocabulary Size

After looking at the submission results, we ques-
tioned whether smaller vocabularies would have
given better results, especially for transformer mod-
els. Having smaller vocabularies means that the
models have few parameters, and also allow more
words to be fitted into each training mini-batch.

To create a model with a smaller vocabulary, we
follow the preparation steps used for our submis-
sions (in EN↔{CS,ET,FI}), but use 30,000 BPE
merges instead of 89,500. We show the effect both
on the deep RNN model and on the Transformer
model, and additionally we show the effect of tying
all embeddings (i.e. source, target input and target
output) on the Transformer model. The submit-
ted models for these language pairs only have the
target input and output embeddings tied. As in Sec-
tion 4.1 we set the working memory for the deep
RNN to 10GB, and we set the working memory
for transformer training to 9.5GB. We used layer
normalisation for the transformer models (although
this appeared to make little if any difference to the
results). In Table 8 we show the comparison for
RNNs, and in Table 9 we show the same compar-
ison for Transformer models.

Examining the results in Tables 8 and 9, we can
see that the effect of vocabulary size reduction on
RNN models is mixed, whereas the transformer
models have a preference (in BLEU, at least) for
smaller vocabularies. Tying all embeddings does
not seem to help. Further investigation is needed
on the vocabulary size question though, as the rela-
tionship between BPE hyper-parameters and BLEU

is unclear. We note that changes in the vocabulary
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X→ EN EN→X
Ours Top ∆ BLEU ∆ DA Ours Top ∆ BLEU ∆ DA

CS 31.8 33.9 -3.13 -3.9 23.4 26.0 -2.59 -6.6
DE 43.9 48.4 -4.49 -4.5 44.4 48.3 -3.95 -5.6
ET 29.4 30.7 -1.30 -1.9 22.7 23.6 -0.85 -4.6
FI 23.5 24.9 -1.40 -1.2 16.7 18.2 -1.53 -5.5
RU 32.8 34.9 -2.12 -3.5 29.8 34.8 -4.95 -6.0
TR 26.9 28.0 -1.10 -1.1 19.5 20.0 -0.48 0.0
ZH 24.0 29.3 -5.31 -4.3 33.3 43.8 -10.5 -10.0

Table 6: Overall BLEU scores of our systems, compared to the top-scoring constrained systems. We also show the
difference with the direct assessment (DA) score of the best constrained system.

No hop/head 3 hop, 2 head
Pair devtest test devtest test

CS-EN 30.0 30.8 30.6 31.2
EN-CS 23.2 23.0 23.6 23.2
ET-EN 24.8 27.9 25.4 27.2
EN-ET 18.9 21.6 18.8 21.1
FI-EN 31.4 22.6 31.9 23.1
EN-FI 24.4 16.0 25.2 16.2

Table 7: Comparison of performance of deep RNN
models with/without the multihop/multihead exten-
sion.

BPE 89.5k BPE 30k
Pair devtest test devtest test

CS-EN 30.6 31.2 30.8 31.1
EN-CS 23.6 23.2 23.0 22.9
ET-EN 25.4 27.2 26.1 28.2
EN-ET 18.8 21.1 18.7 21.1
FI-EN 31.9 23.1 31.6 22.8
EN-FI 25.2 16.2 25.5 16.5

Table 8: Effect of reducing vocabulary size for deep
RNN models. We used 89,500 BPE merges for our
submissions, but tried reducing it to 30,000 for post-
submission experiments.

size could have a disproportionate effect on the
translation of rare words (including proper nouns)
which would not necessarily be detected by BLEU.

4.3 Mixed Ensembles

For our submitted systems for FI↔EN and
ET↔EN we used mixed ensembles consisting of
two deep RNNs and two Transformer models. In
this section we examine whether the mix of archi-

tectures in the ensemble is beneficial. We compare
this mixed ensemble with an ensemble of four deep
RNNs.

In Table 10, we show the results. We show the
mean BLEU score of the models in the ensemble,
together with the overal ensemble score. For clarity,
we just show scores on our test set (newstest2018).
The gain in BLEU from ensembling (over the mean
BLEU) is slightly higher in all cases than the cor-
responding gain for the uniform ensemble.

5 Conclusions

We have described Edinburgh’s systems for all 14
language pairs, showing that we can gain improve-
ments by augmenting a GRU-based RNN with
multi-head and multi-hop attention, using mixed
ensembles of deep RNNs and transformers, and
selecting data from the noisy ParaCrawl corpora.
Our systems perform strongly in most language
pairs, except for when we did not manage to train
to convergence.
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Ondřej Bojar, Christian Federmann, Mark Fishel,
Yvette Graham, Barry Haddow, and Philipp Koehn.
2018. Findings of the 2018 conference on ma-
chine translation (WMT18). In Proceedings of the
Third Conference on Machine Translation, Volume
2: Shared Task Papers, Brussels, Belgium. Associ-
ation for Computational Linguistics.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin
Johnson, Wolfgang Macherey, George Foster, Llion
Jones, Mike Schuster, Noam Shazeer, Niki Parmar,
Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser,

Zhifeng Chen, Yonghui Wu, and Macduff Hughes.
2018. The best of both worlds: Combining recent
advances in neural machine translation. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 76–86. Association for Computational
Linguistics.

Anna Currey, Antonio Valerio Miceli Barone, and Ken-
neth Heafield. 2017a. Copied Monolingual Data
Improves Low-Resource Neural Machine Transla-
tion. In Proceedings of the Second Conference on
Machine Translation, Volume 1: Research Papers,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Anna Currey, Antonio Valerio Miceli Barone, and Ken-
neth Heafield. 2017b. Copied monolingual data im-
proves low-resource neural machine translation. In
Proceedings of the Second Conference on Machine
Translation, pages 148–156, Copenhagen, Denmark.
Association for Computational Linguistics.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameter-
ization of ibm model 2. In Proceedings of the
2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 644–648, At-
lanta, Georgia. Association for Computational Lin-
guistics.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent

408



neural networks. In Advances in neural information
processing systems, pages 1019–1027.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017. Convolutional
sequence to sequence learning. arXiv preprint
arXiv:1705.03122.

Hany Hassan, Anthony Aue, Chang Chen, Vishal
Chowdhary, Jonathan Clark, Christian Federmann,
Xuedong Huang, Marcin Junczys-Dowmunt, Will
Lewis, Mu Li, Shujie Liu, Tie-Yan Liu, Renqian
Luo, Arul Menezes, Tao Qin, Frank Seide, Xu Tan,
Fei Tian, Lijun Wu, Shuangzhi Wu, Yingce Xia,
Dongdong Zhang, Zhirui Zhang, and Ming Zhou.
2018. Achieving human parity on automatic chinese
to english news translation.

Marcin Junczys-Dowmunt, Roman Grundkiewicz, To-
masz Dwojak, Hieu Hoang, Kenneth Heafield, Tom
Neckermann, Frank Seide, Ulrich Germann, Al-
ham Fikri Aji, Nikolay Bogoychev, André F. T. Mar-
tins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in c++. In Proceedings of
ACL 2018, System Demonstrations, pages 116–121.
Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. In The Interna-
tional Conference on Learning Representations, San
Diego, California, USA.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Berto-
ldi, Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
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