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Introduction

BlackboxNLP is the first workshop on analyzing and interpreting neural networks for NLP, hosted by
the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP 2018) in Brussels,
Belgium.

The goal of this workshop is to bring together people who are attempting to peek inside the neural
network black box, taking inspiration from machine learning, psychology, linguistics and neuroscience.
Neural networks have rapidly become a central component in language and speech understanding
systems in the last few years. The improvements in accuracy and performance brought by the
introduction of neural networks has typically come at the cost of our understanding of the system: what
are the representations and computations that the network learns?

We received an impressive number of 76 submissions (including both archival papers and extended
abstracts), suggesting that the issue of interpretability of neural networks is timely and important within
the NLP community. The final program contains three keynote talks, eight oral presentations and 47
posters. We hope this workshop provides a venue for bringing together ideas and stimulate new ways of
building methods and resources for facilitating better analysis and understanding of the inner-dynamics
of neural networks for NLP.

BlackboxNLP would not have been possible without the dedication of its program committee. We would
like to thank them for their invaluable effort in providing high-quality reviews in a very short period
of time and for a higher number of submission originally expected. We are also grateful to our invited
speakers, Leila Wehbe, Graham Neubig and Yoav Goldberg for contributing to our program. Finally,
we are very thankful to our sponsors, Amazon and the Department of Cognitive Science, Johns Hopkins
University for supporting the workshop.

Tal Linzen, Grzegorz Chrupała and Afra Alishahi
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Keynote Talk

Trying to Understand Recurrent Neural Networks for Language Processing.

Yoav Goldberg

Bar Ilan University

Abstract

Recurrent neural networks (RNNs), and in particular LSTM networks, emerge as very capable learners
for sequential data. Thus, my group started using them everywhere, achieving strong results on many
language understanding and modeling tasks. However, little is known about how RNNs represent
sequences, what they actually encode, and what they are capable representing. In this talk, I will
describe some attempts at trying to shed light on the inner-working of RNNs. Particularly, I plan to
describe at least two of the following: a method for comparing what is captured in vector
representations of sentences based on different encoders (Adi et al, ICLR 2017, and more generally the
notion of diagnostic classification), a framework for extracting a finite-state automata from trained
RNNs (Weiss et al, ICML 2018), and a formal difference between the representation capacity of
different RNN variants (Weiss et al, ACL 2018).

Biography of the Speaker

Yoav Goldberg is a Senior Lecturer at Bar Ilan University’s Computer Science Department. Before that,
he was a Research Scientist at Google Research New York. He works on problems related to Natural
Language Processing and Machine Learning. In particular he is interested in syntactic parsing,
structured-prediction models, learning for greedy decoding algorithms, multilingual language
understanding, and cross domain learning. Lately, he is also interested in neural network based methods
for NLP. He recently published a book on the subject.
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Keynote Talk

Learning with Latent Linguistic Structure

Graham Neubig

Carnegie Mellon University

Abstract

Neural networks provide a powerful tool to model language, but also depart from standard methods of
linguistic representation, which usually consist of discrete tag, tree, or graph structures. These structures
are useful for a number of reasons: they are more interpretable, and also can be useful in downstream
tasks. In this talk, I will discuss models that explicitly incorporate these structures as latent variables,
allowing for unsupervised or semi-supervised discovery of interpretable linguistic structure, with
applications to part-of-speech and morphological tagging, as well as syntactic and semantic parsing.

Biography of the Speaker

Graham Neubig is an assistant professor at the Language Technologies Intitute of Carnegie Mellon
University. His work focuses on natural language processing, specifically multi-lingual models that
work in many different languages, and natural language interfaces that allow humans to communicate
with computers in their own language. Much of this work relies on machine learning to create these
systems from data, and he is also active in developing methods and algorithms for machine learning
over natural language data. He publishes regularly in the top venues in natural language processing,
machine learning, and speech, and his work occasionally wins awards such as best papers at EMNLP,
EACL, and WNMT. He is also active in developing open-source software, and is the main developer of
the DyNet neural network toolkit.
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Language representations in human brains and artificial neural networks

Leila Wehbe

Carnegie Mellon University

Abstract

When studying language in the brain, it has become more common to image the brain of humans while
they process naturalistic language stimuli consisting of rich, natural text. To analyse the brain
representation of such complex stimuli, vector representations derived from various NLP methods are
extremely useful as a model of the information being processed in the brain. The recent deep learning
revolution has ignited a lot of interest in using artificial neural networks as a source of high dimensional
vector representation for modeling brain processes. However, these representations are hard to interpret
and the problem becomes increasingly difficult: how do we study complex brain activity – a black box
we want to understand – using hard-to-interpret artificial neural network representations – another black
box we want to understand? In this talk, I will summarize the recent effort in modeling the brain
processing of language, the use of artificial neural networks in this process, and how inferences about
brain processes and about artificial neural network representations can still be made under this setup.

Biography of the Speaker

Leila Wehbe is an assistant professor of Machine Learning at Carnegie Mellon University. Previously,
we was a postdoctoral researcher at the Gallant Lab in the Helen Wills Neuroscience Institute at UC
Berkeley. She obtained her PhD from the Machine Learning Department and the Center for the Neural
Basis of Cognition at Carnegie Mellon University, where she worked with Tom Mitchell. She works on
studying language representations in the brain when subjects engage in naturalistic language tasks.
Specifically, she combines functional neuroimaging with natural language processing and machine
learning tools to build spatiotemporal maps of the information represented in the brain during language
processing.
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