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Introduction

We are excited to welcome you to this year’s SIGdial Conference, the 19th Annual Meeting of
the Special Interest Group on Discourse and Dialogue. We are pleased to hold the conference in
Melbourne, Australia, on July 12-14th, in close proximity to both ACL 2018 (the 56th Annual Meeting
of the Association for Computational Linguistics) and YRRSDS 2018 (the 14th Young Researchers’
Roundtable on Spoken Dialogue Systems).

The SIGdial conference remains a premier publication venue for research in discourse and dialogue.
This year, the program includes 3 keynote talks, 5 oral presentation sessions, 3 poster sessions including
1 demo session, and a special session entitled “Physically Situated Dialogue.”

We received 111 submissions this year, almost identical to the 113 received in 2017 (which was the 2nd
largest number of submissions to SIGdial in its history). Of the 111 submissions, there were 67 long
papers, 39 short papers, and 5 demo papers. All submissions received at least 3 reviews. We carefully
considered both the numeric ratings and the tenor of the comments, both as written in the reviews and
as submitted in discussions, in making our selections for the program. Overall, the members of the
Program Committee did an excellent job in reviewing the submitted papers. We thank them for their
important role in selecting the accepted papers and for helping to come up with a high quality program
for the conference. In line with the SIGdial tradition, our aim has been to create a balanced program
that accommodates as many favorably rated papers as possible. We accepted 52 papers: 36 long papers,
12 short papers, and 4 demo papers. These numbers give an overall acceptance rate of 47%. The rates
separately for types of papers are 54% for long papers, 31% for short papers, and 80% for demo papers.
After acceptance, 3 papers (2 long and 1 demo) that had also been submitted to other conferences were
withdrawn. Of the long papers, 19 were presented as oral presentations. The remaining long papers and
all the short papers were presented as posters, split across three poster sessions.

This year SIGdial has a special session on the topic “Physically Situated Dialogue”, organized by Sean
Andrist, Stephanie Lukin, Matthew Marge, Jesse Thomason, and Zhou Yu. The special session brings
diverse paper submissions on a topic of growing interest to our technical program, with 7 of the accepted
long papers part of this special session. The special session also features a panel discussion and late-
breaking presentations, allowing for active engagement of the conference participants.

This year’s SIGdial conference runs 3 full days, following the precedent set in 2017. One keynote and
one poster session is held each day, with the remaining time given to oral presentations, demos, and the
special session.

A conference of this scale requires advice, help and enthusiastic participation of many parties and we
have a big ‘thank you’ to say to all of them.

Regarding the program, we thank our three keynote speakers, Mari Ostendorf (University of Washington,
USA), Ingrid Zukerman (Monash University, Australia), and Milica Gasic (University of Cambridge) for
their inspiring talks on socialbots, interpretation in physical settings, and machine learning techniques,
which cover many modern aspects of research in both discourse and dialogue. We also thank the
organizers of the special session who designed the schedule for their accepted papers, and organized
the session with a panel and late-breaking presentations at the venue. We are grateful for their smooth
and efficient coordination with the main conference. We in addition thank Alex Papangelis, Mentoring
Chair for SIGdial 2018, for his dedicated work on the mentoring process. The goal of mentoring is to
assist authors of papers that contain important ideas but lack clarity. In total, 6 of the accepted papers
received mentoring and we would like to thank our mentoring team for their excellent advice and support
to the respective authors.
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We extend special thanks to our Local Chair, Lawrence Cavedon, and his team. SIGdial 2018 would not
have been possible without their effort in arranging the conference venue and accommodations, handling
registration, making banquet arrangements, and numerous preparations for the conference. The student
volunteers for on-site assistance also deserve our sincere appreciation.

Mikio Nakano, our Sponsorship Chair, has conducted the massive task of recruiting and liaising with
our conference sponsors, many of whom continue to contribute year after year. Sponsorships support
valuable aspects of the program, such as lunches, coffees and the conference banquet. We thank
him for his dedicated work and coordination in conference planning. We gratefully acknowledge the
support of our sponsors: (Platinum level) Honda Research Institute Japan, Interactions, and Microsoft
Research; (Gold level) Adobe Research, Amazon, Apple, and Nextremer; (Silver level) Educational
Testing Service (ETS) and Tricom (Beijing) Technology; (Bronze level) Monash University, PolyAI,
and Toshiba Research Europe. We also thank RMIT University for their generous sponsorship as host.

We thank the SIGdial board, especially current and emeritus officers Kallirroi Georgila, Vikram
Ramanarayanan, Ethan Selfridge, Amanda Stent, and Jason Williams, for their advice and support from
beginning to end. We also thank Priscilla Rasmussen at the ACL for tirelessly handling the financial
aspects of sponsorship for SIGdial 2018, and for securing our ISBN.

We once again thank our program committee members for committing their time to help us select a
superb technical program. Finally, we thank all the authors who submitted to the conference and all the
conference participants for making SIGdial 2018 a grand success and for growing the research areas of
discourse and dialogue with their fine work.

Kazunori Komatani
General Chair

Diane Litman and Kai Yu
Program Co-Chairs
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Abstract

This paper introduces zero-shot dialog
generation (ZSDG), as a step towards neu-
ral dialog systems that can instantly gener-
alize to new situations with minimal data.
ZSDG enables an end-to-end generative
dialog system to generalize to a new do-
main for which only a domain descrip-
tion is provided and no training dialogs are
available. Then a novel learning frame-
work, Action Matching, is proposed. This
algorithm can learn a cross-domain em-
bedding space that models the semantics
of dialog responses which, in turn, lets a
neural dialog generation model generalize
to new domains. We evaluate our meth-
ods on a new synthetic dialog dataset, and
an existing human-human dialog dataset.
Results show that our method has supe-
rior performance in learning dialog mod-
els that rapidly adapt their behavior to new
domains and suggests promising future re-
search.1

1 Introduction

The generative end-to-end dialog model (GEDM)
is one of the most powerful methods of learning
dialog agents from raw conversational data in both
chat-oriented and task-oriented domains (Serban
et al., 2016; Wen et al., 2016; Zhao et al.,
2017). Its base model is an encoder-decoder net-
work (Cho et al., 2014) that uses an encoder net-
work to encode the dialog context and generate the
next response via a decoder network. Yet prior
work in GEDMs has overlooked an important is-
sue, i.e. the data scarcity problem. In fact, the data

1Code and data are avaliable at https://github.
com/snakeztc/NeuralDialog-ZSDG

scarcity problem is extremely common in most di-
alog applications due to the wide range of poten-
tial domains that dialog systems can be applied to.
To the best of our knowledge, current GEDMs are
data-hungry and have only been successfully ap-
plied to domains with abundant training material.
This limitation prohibits the possibility of using
the GEDMs for rapid prototyping in new domains
and is only useful for domains with large datasets.

The key idea of this paper lies in developing do-
main descriptions that can capture domain-specific
information and a new type of GEDM model that
can generalize to a new domain based on the do-
main description. Humans exhibit incredible effi-
ciency in achieving this type of adaptation. Imag-
ine that a customer service agent in the shoe de-
partment is transferred to the clothing department.
After reading some relevant instructions and doc-
umentation, this agent can immediately begin to
deal with clothes-related calls without the need
for any example dialogs. We also argue that it is
more efficient and natural for domain experts to
express their knowledge in terms of domain de-
scriptions rather than example dialogs. This is
because creating example dialogs involves writ-
ing down imagined dialog exchanges that can be
shared across multiple domains and are not rele-
vant to the unique proprieties of a specific domain.
However, current state-of-the-art GEDMs are not
designed to incorporate such knowledge and are
therefore incapable of adapting its behavior to un-
seen domains.

This paper introduces the use of zero-shot dia-
log generation (ZSDG) in order to enable GEDMs
to generalize to unseen situations using minimal
dialog data. Building on zero-shot classifica-
tion (Palatucci et al., 2009), we formalize ZSDG
as a learning problem where the training data con-
tains dialog data from source domains along with
domain descriptions from both the source and tar-
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get domains. Then at testing time, ZSDG mod-
els are evaluated on the target domain, where
no training dialogs were available. We approach
ZSDG by first discovering a dialog policy net-
work that can be shared between the source and
target domains. The output from this policy is dis-
tributed vectors which are referred to as latent ac-
tions. Then, in order to transform the latent actions
from any domain back to natural language utter-
ances, a novel Action Matching (AM) algorithm
is proposed that learns a cross-domain latent ac-
tion space that models the semantics of dialog re-
sponses. This in turns enables the GEDM to gen-
erate responses in the target domains even when it
has never observed full dialogs in them.

Finally the proposed methods and baselines are
evaluated on two dialog datasets. The first one is
a new synthetic dialog dataset generated by Sim-
Dial, which was developed for this study. Sim-
Dial enables us to easily generate task-oriented
dialogs in a large number of domains, and pro-
vides a test bed to evaluate different ZSDG ap-
proaches. We further test our methods on a re-
cently released multi-domain human-human cor-
pus (Eric and Manning, 2017b) to validate whether
performance can generalize to real-world conver-
sations. Experimental results show that our meth-
ods are effective in incorporating knowledge from
domain descriptions and achieve strong ZSDG
performance.

2 Related Work

Perhaps the most closely related topic is zero-
shot learning (ZSL) for classification (Larochelle
et al., 2008), which has focused on classifying
unseen labels. A common approach is to repre-
sent the labels as attributes instead of class in-
dexes (Palatucci et al., 2009). As a result, at
test time, the model can first predict the seman-
tic attributes in the input, then make the final
prediction by comparing the predicted attributes
with the candidate labels’ attributes. More re-
cent work (Socher et al., 2013; Romera-Paredes
and Torr, 2015) improved on this idea by learn-
ing parametric models, e.g. neural networks, to
map the label and input data into a joint embed-
ding space and then make predictions. Besides
classification, prior art has explored the notion
of task generalization in robotics, so that a robot
can execute a new task that was not mentioned
in training (Oh et al., 2017; Duan et al., 2017).

In this case, a task is described by a demonstra-
tion or a sequence of instructions, and the system
needs to learn to break down the instructions into
previously learned skills. Also generating out-
of-vocabulary (OOV) words from recurrent neu-
ral networks (RNNs) can be seen as a form of
ZSL, where the OOV words are unseen labels.
Prior work has used delexicalized tags (Zhao et al.,
2017) and copy-mechanism (Gu et al., 2016; Mer-
ity et al., 2016; Elsahar et al., 2018) to enable RNN
output words that are not in its vocabulary.

Finally, ZSL has been applied to individual
components in the dialog system pipeline. Chen
et al. (Chen et al., 2016) developed an intent clas-
sifier that can predict new intent labels that are not
included in the training data. Bapna et al. (Bapna
et al., 2017) extended that idea to the slot-filling
module to track novel slot types. Both papers
leverage a natural language description for the la-
bel (intent or slot-type) in order to learn a seman-
tic embedding of the label space. Then, given any
new labels, the model can still make predictions.
There has also been extensive work on learning
domain-adaptable dialog policy by first training
a dialog policy on previous domains and testing
the policy on a new domain. Gasic et al. (Gasic
and Young, 2014) used the Gaussian Process with
cross-domain kernel functions. The resulting pol-
icy can leverage experience from other domains to
make educated decisions in a new one.

In summary, past ZSL research in the dialog do-
main has mostly focused on the individual mod-
ules in a pipeline-based dialog system. We believe
our proposal is the first step in exploring the notion
of adapting an entire end-to-end dialog system to
new domains for domain generalization.

3 Problem Formulation

We begin by formalizing zero-shot dialog genera-
tion (ZSDG). Generative dialog models take a di-
alog context c as input and then generate the next
response x. ZSDG uses the term domain to de-
scribe the difference between training and testing
data. Let D = Ds

⋃
Dt be a set of domains,

where Ds is a set of source domains, Dt is a set of
target domains and Ds ∩Dt = ∅. During training,
we are given a set of samples {c(n),x(n), d(n)} ∼
psource(c,x, d) drawn from the source domains.
During testing, a ZSDG model will be given a di-
alog context c and a domain d drawn from the
target domains and must generate the correct re-
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sponse x. Moreover, ZSDG assumes that every
domain d has its own domain description φ(d) that
is available at training for both source and target
domains. The primary goal is to learn a generative
dialog model F : C × D → X that can perform
well in a target domain, by relating the unseen tar-
get domain description to the seen descriptions of
the source domains. Our secondary goal is that
F should perform similarly to a model that is de-
signed to operate solely in the source domains. In
short, the problem of ZSDG can be summarized
as:

Train Data: {c,x, d} ∼ psource(c,x, d)

{φ(d)}, d ∈ D
Test Data: {c,x, d} ∼ ptarget(c,x, d)

Goal: F : C ×D → X

4 Proposed Method

4.1 Seed Responses as Domain Descriptions
The design of the domain description φ is a crucial
factor that decides whether robust performance in
the target domains is achievable. This paper pro-
poses seed response (SR) as a general-purpose do-
main description that can readily be applied to dif-
ferent dialog domains. SR needs for the develop-
ers to provide a list of example responses that the
model can generate in this domain. SR’s assump-
tion is that a dialog model can discover analogies
between responses from different domains, so that
its dialog policy trained on source domains can
be reused in the target domain. Without losing
generality, SRd defines φ(d) as {x(i),a(i), d}seed
for domain d, where x is a seed response and
a is its annotations. Annotations are salient fea-
tures that help the system in infer the relationship
amongst responses from different domains. This
may be difficult to achieve using only words in
x, e.g. two domains with distinct word distribu-
tions. For example, in a task-oriented weather
domain, a seed response can be: The weather in
New York is raining and the annotation is a se-
mantic frame that contains domain general dialog
acts and slot arguments, i.e. [Inform, loc=New
York, type=rain]. The number of seed responses
is often much smaller than the number of poten-
tial responses in the domain so it is best for SR
to cover more responses that are unique to this
domain. SRs assume that there is a discourse-
level pattern that can be shared between the source
and target domains, so that a system only needs

sentence-level knowledge to adapt to the target.
This assumption holds in many slot-filling dialog
domains and it is easy to provide utterances in the
target domain that are analogies to the ones from
the source domains.

4.2 Action Matching Encoder-Decoder

Figure 1: An overview of our Action Matching
framework that looks for a latent action space Z
shared by the response, annotation and predicted
latent action from Fe.

Figure 1 shows an overview of the model we
use to tackle ZSDG. The base model is a stan-
dard encoder-decoder F where an encoder Fe
maps c and d into a distributed representation
zc = Fe(c, d) and the decoder Fd generates
the response x given zc. We denote the embed-
ding space that zc resides in as the latent ac-
tion space. We follow the KB-as-an-environment
approach (Zhao and Eskenazi, 2016) where the
generated x include both system verbal utter-
ances and API queries that interface with back-end
databases. This base model has been proven to be
effective in human interactive evaluation for task-
oriented dialogs (Zhao et al., 2017).

We have two high-level goals: (1) learn a cross-
domain F that can be reused in all source domains
and potentially shared with target domains as well.
(2) create a mechanism to incorporate knowledge
from the domain descriptions into F so that it can
generate novel responses when tested on the target
domains. To achieve the first goal, we combine c
and d by appending d as a special word token at
the beginning of every utterance in c. This sim-
ple approach performs well and enables the con-
text encoder to take the domain into account when
processing later word tokens. Also, this context
domain integration can easily scale to dealing with
a large number of domains. Then we encourage F
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to discover reusable dialog policy by training the
same encoder decoder on dialog data generated
from multiple source domains at the same time,
which is a form of multi-task learning (Collobert
and Weston, 2008). We achieve the second goal
by projecting the response x from all domains into
the same latent action space Z. Since x alone may
not be sufficient to infer its semantics, we rely on
their annotations a to learn meaningful semantic
representations. Let zx and za be the projected
latent actions from x and a. Our method encour-
ages zd1x1

≈ zd2x2
when zd1a1

≈ zd2a2
. Moreover, for

a given z from any domain, we ensure that the de-
coder Fd can generate the corresponding response
x by training on both SRd for d ∈ D and source
dialogs.

Specifically, we propose the Action Matching
(AM) training procedure. We first introduce a
recognition network R that can encode x and a
into zx = R(x, d) and za = R(a, d) respectively.
During training, the model receives two types of
data. The first type is domain description data in
the form of {x,a, d}seed for each domain. The
second type of data is source domain dialog data
in the form of {c,x, d}. For the first type of data,
we update the parameters in R and Fd by mini-
mizing the following loss function:

Ldd(Fd,R) =− log pFd(x|R(a, d))
+ λD[R(x, d)‖R(a, d)]

(1)

where λ is a constant hyperparameter and D is a
distance function, e.g. mean square error (MSE),
that measures the closeness of two input vectors.
The first term in Ldd trains the decoder Fd to gen-
erate the response x given za = R(a, d) from all
domains. The second term in Ldd enforces the
recognition network R to encode a response and
its annotation to nearby vectors in the latent action
space from all domains, i.e. zdx ≈ zda for d ∈ D.

Moreover, just optimizing Ldd does not ensure
that the zc predicted by the encoder Fe will be
related to the zx or za encoded by the recognition
networkR. So when we receive the second type of
data (source dialogs), we add a second term to the
standard maximum likelihood objective to train F
andR.

Ldialog(F ,R) =− log pFd(x|Fe(c, d))
+ λD(R(x, d)‖Fe(c, d)) (2)

The second term in Ldialog completes the loop
by encouraging zdc ≈ zdx, which resembles the

regularization term used in variational autoen-
coders (Kingma and Welling, 2013). Assuming
that annotation a provides a domain-agnostic se-
mantic representation of x, then F trained on
source domains can begin to operate in the tar-
get domains as well. During training, our AM
algorithm alternates between these two types of
data and optimizes Ldd or Ldialog accordingly. The
resulting models effectively learn a latent action
space that is shared by the the response annotation
a, response x and predicted latent action based on
c in all domains. AM training is summarized in
Algorithm 1.

Algorithm 1: Action Matching Training

Initialize weights of Fe, Fd,R;
Data = {c,x, d}⋃{x,a, d}seed
while batch ∼ Data do

if batch in the form {c,x, d} then
Backpropagate loss Ldialog

else
Backpropagate loss Ldd

end
end

4.3 Architecture Details

We implement an AMED for later experiments as
follows:

Distance Functions: In this study, we assume
that the latent actions are deterministic distributed
vectors. Thus MSE is used: D(z, ẑ) = 1

L

∑L
l (zl−

ẑl)
2, where L is the dimension size of the latent

actions. Also, Ldialog and Ldd use the same dis-
tance function.

Recognition Networks: we use a bidirectional
GRU-RNN (Cho et al., 2014) as R to obtain
utterance-level embedding. Since both x and a are
sequences of word tokens, we combine them with
the domain tag by appending the domain tag in
the beginning of the original word sequence, i.e.
{x, d} or {a, d} = [d,w1, ...wJ ], where J is the
length of the word sequence. Then the R will en-
code [d,w1, ...wJ ] into hidden outputs in forward
and backward directions, [(

−→
h0,
←−
hJ), ...(

−→
hJ ,
←−
h0)].

We use the concatenation of the last hidden states
from each direction, i.e. zx or za = [

−→
hJ ,
←−
hJ ] as

utterance-level embedding for x or a respectively.
Dialog Encoders: a hierarchical recurrent en-

coder (HRE) is used to encode the dialog con-
text, which handles long contexts better than non-
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Figure 2: Visual illustration of our AM encoder decoder with copy mechanism (Merity et al., 2016).
Note that AM can also be used with RNN decoders without the copy functionality.

hierarchical ones (Li et al., 2015). HRE first
uses an utterance encoder to encode every utter-
ance in the dialog and then uses a discourse-level
LSTM-RNN to encode the dialog context by tak-
ing output from the utterance encoder as input. In-
stead of introducing a new utterance encoder, we
reuse the recognition network R described above
as the utterance encoder, which serves the pur-
pose perfectly. Another advantage is that using
zx predicted by R as input enables the discourse-
level encoder to use knowledge from latent ac-
tions as well. Our discourse-level encoder is a 1-
layer LSTM-RNN (Hochreiter and Schmidhuber,
1997), which takes in a list of output [z1, z2..zK ]
from R and encodes them into [v1, v2, ...vK ],
where K is the number of utterances in the con-
text. The last hidden state vK is used as the pre-
dicted latent action zc.

Response Decoders: we experiment with two
types of LSTM-RNN decoders. The first is an
RNN decoder with an attention mechanism (Lu-
ong et al., 2015), enabling the decoder to dy-
namically look up information from the context.
Specifically, we flatten the dialog context into a se-
quence of words [w11, ...w1J ...wKJ ]. Using out-
put from the R and the discourse-level LSTM-
RNN, each word here is represented by mkj =
hkj +Wvvk. Let the hidden state of the decoder
at step t be st, then our attention mechanism com-
putes the Softmax output via:

αkj,t = softmax(mT
kj tanh(Wαst)) (3)

s̃t =
∑

kj

αkj,tmkj (4)

pvocab(wt|st) = softmax(MLP(st, s̃t)) (5)

The second type is the LSTM-RNN with a copy

mechanism that can directly copy words from the
context as output (Gu et al., 2016). Such a mecha-
nism has already exhibited strong performance in
task-oriented dialogs (Eric and Manning, 2017a)
and is well suited for generating OOV word to-
kens (Elsahar et al., 2018). We implemented the
Pointer Sentinel Mixture Model (PSM) (Merity
et al., 2016) as our copy decoder. PSM defines the
generation of the next word as a mixture of prob-
abilities from either the Softmax output from the
decoder LSTM or the attention Softmax for words
in the context: p(wt|st) = gpvocab(wt|st) + (1 −
g)pptr(wt|st), where g is the mixture weight com-
puted from a sentinel vector u with st.

pptr(wt|st) =
∑

kj∈I(w,x)
αkj,t (6)

g = softmax(uT tanh(Wαsi)) (7)

5 Datasets for ZSDG

Two dialog datasets were used for evaluation.

5.1 SimDial Data

We developed SimDial2, which is a multi-domain
dialog generator that can generate realistic conver-
sations for slot-filling domains with configurable
complexity. See Appendix A.3 for details. Com-
pared to other synthetic dialog corpora used to test
GEDMs, e.g. bAbI (Dodge et al., 2015), SimDial
data is significantly more challenging. First since
SimDial simulates communication noise, the di-
alogs that are generated can be very long (more
than 50 turns) and the simulated agent can carry
out error recovery strategies to correctly infer the
users’ goals. This challenges end-to-end models

2https://github.com/snakeztc/SimDial
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to model long dialog contexts. SimDial also simu-
lates spoken language phenomena, e.g. self-repair,
hesitation. Prior work (Eshghi et al., 2017) has
shown that this type of utterance-level noise dete-
riorates end-to-end dialog system performance.

Data Details

SimDial was used to generate dialogs for 6 do-
mains: restaurant, movie, bus, restaurant-slot,
restaurant-style and weather. For each domain,
900/100/500 dialogs were generated for training,
validation and testing. On average, each dia-
log had 26 utterances and each utterance had
12.8 word tokens. The total vocabulary size was
651. We split the data such that the training
data included dialogs from the restaurant, bus and
weather domains and the test data included the
restaurant, movie, restaurant-slot and restaurant
style domains. This setup evaluates a ZSDG sys-
tem from the following perspectives:

Restaurant (in domain): evaluation on the
restaurant test data checks if a dialog model
is able to maintain its performance on the
source domains. Restaurant-slot (unseen slots):
restaurant-slot has the same slot types and natu-
ral language generation (NLG) templates as the
restaurant domain, but has a completely different
slot vocabulary, i.e. different location names and
cuisine types. Thus this is designed to evaluate a
model that can generalize to unseen slot values.
Restaurant-style (unseen NLG): restaurant-style
has the same slot type and vocabulary as restau-
rant, but its NLG templates are completely differ-
ent, e.g. “which cuisine type?” → “please tell
me what kind of food you prefer”. This part tests
whether a model can learn to adapt to generate
novel utterances with similar semantics. Movie
(new domain): movie has completely different
NLG templates and structure and shares few com-
mon traits with the source domains at the surface
level. Movie is the hardest task in the SimDial
data, which challenges a model to correctly gener-
ate next responses that are semantically different
from the ones in source domains.

Finally, we obtain SRs as domain descriptions
by randomly selecting 100 unique utterances from
each domain. The response annotation is a re-
sponse’s internal semantic frame used by the Sim-
Dial generator. For example, “I believe you said
Boston. Where are you going?” → [implicit-
confirm loc=Boston; request location].

5.2 Stanford Multi-Domain Dialog Data

The second dataset is the Stanford multi-domain
dialog (SMD) dataset (Eric and Manning, 2017b)
of 3031 human-human dialogs in three domains:
weather, navigation and scheduling. One speaker
plays the role of a driver. The other plays the
car’s AI assistant and talks to the driver to com-
plete tasks, e.g. setting directions on a GPS. Av-
erage dialog length is 5.25 utterances; vocabulary
size is 1601. We use SMD to validate whether our
proposed methods generalize to human-generated
dialogs. We generate SR by randomly selecting
150 unique utterances for each domain. An expert
annotates the seed utterances with dialog acts and
entities. For example “All right, I’ve set your next
dentist appointment for 10am. Anything else?”
→ [ack; inform goal event=dentist appointment
time=10am ; request needs]. Finally, in order to
formulate a ZSDG problem, we use a leave-one-
out approach with two domains as source domains
and the third one as the target domain, which re-
sults in 3 possible configurations.

6 Experiments and Results

The baseline models include 1. hierarchical recur-
rent encoder with attention decoder (+Attn) (Ser-
ban et al., 2016). 2. hierarchical recurrent en-
coder with copy decoder (Merity et al., 2016)
(+Copy), which has achieved very good perfor-
mance on task-oriented dialogs (Eric and Man-
ning, 2017a). We then augment both baseline
models with the proposed cross-domain AM train-
ing procedure and denote them as +Attn+AM and
+Copy+AM.

Evaluating generative dialog systems is chal-
lenging since the model can generate free-form re-
sponses. Fortunately, we have access to the inter-
nal semantic frames of the SimDial data, so we
use the automatic measures used in (Zhao et al.,
2017) that employ four metrics to quantify the per-
formance of a task-oriented dialog model. BLEU
is the corpus-level BLEU-4 between the generated
response and the reference ones (Papineni et al.,
2002). Entity F1 checks if a generated response
contains the correct entities (slots) in the reference
response. Act F1 measures whether the generated
responses reflect the dialog acts in the reference
responses, which compensates for BLEU’s limita-
tion of looking for exact word choices. A one-
vs-rest support vector machine (Scholkopf and
Smola, 2001) with bi-gram features is trained to
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tag the dialogs in a response. KB F1 checks all
the key words in a KB query that the system is-
sues to the KB backend. Finally, we introduce
BEAK = 4

√
bleu× ent× act× kb, the geometric

mean of these four scores, to quantify a system’s
overall performance. Meanwhile, since the oracle
dialog acts and KB queries are not provided in the
SMD data (Eric and Manning, 2017b), we only re-
port BLEU and entity F1 results on SMD.

6.1 Main Results

In
domain

+Attn +Copy +Attn
+AM

+Copy
+AM

BLEU 59.1 70.4 67.7 70.1
Entity 69.2 70.5 74.1 79.9
Act 94.7 92.0 94.1 95.1
KB 94.7 96.1 95.2 97.0
BEAK 77.2 81.3 81.9 84.7
Unseen
Slot

+Attn +Copy +Attn
+AM

+Copy
+AM

BLEU 24.9 45.6 47.9 68.5
Entity 56.0 68.0 53.1 74.6
Act 90.9 91.8 86.0 94.5
KB 78.1 89.6 81.0 95.3
BEAK 56.1 71.1 64.8 82.3
Unseen
NLG

+Attn +Copy +Attn
+AM

+Copy
+AM

BLEU 15.8 36.9 43.5 70.1
Entity 61.7 68.9 63.8 72.9
Act 91.5 92.2 89.3 95.2
KB 66.2 94.6 93.1 97.0
BEAK 49.3 65.9 69.3 82.9
New
domain

+Attn +Copy +Attn
+AM

+Copy
+AM

BLEU 13.5 24.6 36.7 54.6
Entity 23.1 40.8 23.3 52.6
Act 82.3 85.5 84.8 88.5
KB 43.5 67.1 67.0 88.2
BEAK 32.5 48.8 46.8 68.8

Table 1: Evaluation results on test dialogs from
SimDial Data. Bold values indicate the best per-
formance.

Table 1 shows results on the SimDial data. Al-
though the standard +Attn model achieves good
performance in the source domains, it doesn’t gen-
eralize to target domains, especially for entity F1
in the unseen-slot domain, BLEU score in the
unseen-NLG domain, and all new domain met-
rics. The +Copy model has better, although still
limited, generalization to target domains. The
main benefit of the +Copy model is its ability
to directly copy and output words from the con-
text, reflected in its strong entity F1 in the un-
seen slot domain. However, +Copy can’t gener-
alize to new domains where utterances are novel,
e.g. the unseen NLG or the new domain. How-
ever, our AM algorithm substantially improves

performance of both decoders (Attn and Copy).
Results show that the proposed AM algorithm is
complementary to decoders with a copy mecha-
nism: HRED+Copy+AM model has the best per-
formance on all target domains. In the easier
unseen-slot and unseen-NLG domains, the result-
ing ZSDG system achieves a BEAK of about 82,
close to the in-domain BEAK performance (84.7).
Even in the new domain (movie), our model
achieves a BEAK of 67.2, 106% relative improve-
ment w.r.t +Attn and 38.8% relative improvement
w.r.t +Copy. Moreover, our AM method also im-
proves performance on in-domain dialogs, sug-
gesting that AM exploits the knowledge encoded
in the domain description and improves the mod-
els’ generalization.

Navigate Oracle +Attn +Copy +Copy
+AM

BLEU 13.4 0.9 5.4 5.9
Entity 19.3 2.6 4.7 14.3
Weather Oracle +Attn +Copy +Copy

+AM
BLEU 18.9 4.8 4.4 8.1
Entity 51.9 0.0 16.3 31.0
Schedule Oracle +Attn +Copy +Copy

+AM
BLEU 20.9 3.0 3.8 7.9
Entity 47.3 0.4 17.1 36.9

Table 2: Evaluation on SMD data. The bold do-
main title is the one that was excluded from train-
ing.

Table 2 summarizes the results on the SMD
data. We also report the oracle performance,
obtained by training +Copy on the full dataset.
The AM algorithm can significantly improve En-
tity F1 and BLEU from the two baseline mod-
els. +Copy+AM also achieves competitive perfor-
mance in terms of Entity F1 compared to the oracle
scores, despite the fact that no target domain data
was used in training.

6.2 Model Analysis

Various types of performance improvement were
also studied. Figure 3 shows the breakdown of the
BLEU score according to the dialog acts of refer-
ence responses. Models with +Copy decoder can
improve performance for all dialog acts except for
the greet act, which occurs at the beginning of a di-
alog. In this case, the +Copy decoder has no con-
text to copy and thus cannot generate any novel
responses. This is one limitation of +Copy de-
coder since in real interactive testing with humans,

7



Type Reference +Attn +Copy +Copy+AM
General Utts See you next time. Goodbye. See you next time. See you next time.
Unseen Slots Do you mean romance

movie?
Do you mean Chinese
food.

Do you mean ro-
mance food?

Do you mean ro-
mance movie?

Unseen Utts Movie 55 is a great
movie.

Bus 12 can take you
there.

Bus 55 can take you
there.

Movie 55 is a great
movie.

Table 3: Three types of responses and generation results (tested on the new movie domain). The text in
bold is the output directly copied from the context by the copy decoder.

each system utterance must be generated from the
model instead of copied from the context. How-
ever, models with AM training learn to generate
novel utterances based on knowledge from the SR,
so +Copy+AM can generate responses at the be-
ginning of a dialog.

Figure 3: Breakdown BLEU scores on the new do-
main test set from SimDial.

A qualitative analysis was conducted to summa-
rize typical responses from these models. Table 3
shows three types of typical situations in the Sim-
Dial data. The first type is general utterance ut-
terances, e.g. “See you next time” that appear in
all domains. All three models correctly generate
them in the ZSDG setting. The second type is ut-
terances with unseen slots. For example, explicit
confirm “Do you mean xx?”. +Attn fails in this
situation since the new slot values are not in its vo-
cabulary. +Copy still performs well since it learns
to copy entity-like words from the context, but the
overall sentence is often incorrect, e.g. “Do you
mean romance food”. The last one is unseen ut-
terance where both +Attn and +Copy fail. The
two baseline models can still generate responses
with correct dialog acts, but the output words are
in the source domains. Only the models trained
with AM are able to infer that “Movie xx is a great
movie” serves a function similar to “Bus xx can
take you there”, and generates responses using the
correct words from the target domain.

Finally we investigate how the the size of SR
affects AM performance. Figure 4 shows results
in the SMD schedule domain. The number of seed

Figure 4: Performance on the schedule domain
from SMD while varying the size of SR.

responses varies from 0 to 200. Performance in
the target domains is positively correlated with the
number of seed responses. We also observe that
the model achieves sufficient SR performance at
100, compared to the ones trained on all of the 200
seed responses. This suggests that the amount of
seeding needed by SR is relatively small, which
shows the practicality of using SR as a domain de-
scription.

7 Conclusion and Future Work

This paper introduces ZSDG, dealing with neu-
ral dialog systems’ domain generalization ability.
We formalize the ZSDG problem and propose an
Action Matching framework that discovers cross-
domain latent actions. We present a new simulated
multi-domain dialog dataset, SimDial, to bench-
mark the ZSDG models. Our assessment validates
the AM framework’s effectiveness and the AM en-
coder decoders perform well in the ZSDG setting.

ZSDG provides promising future research ques-
tions. How can we reduce the annotation cost
of learning the latent alignment between actions
in different domains? How can we create ZSDG
for new domains where the discourse-level pat-
terns are significantly different? What are other
potential domain description formats? In sum-
mary, solving ZSDG is an important step for fu-
ture general-purpose conversational agents.
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A Supplemental Material

A.1 Seed Response Creation Process
We follow the following process to create SR in
a new slot-filling domain. First, we collect seed
responses (including user/system utterances, KB
queries and KB responses) from each source do-
main and annotate them with dialog acts, entity
types and entity values. Then human experts with
knowledge about the target domain can write up
seed responses for the target domain by draw-
ing ideas from the sources. For example, if the
source domain is restaurants and the target do-
main is movies. The source may contain a sys-
tem utterance with its annotation: “I believed you
said Pittsburgh, what kind of food are you inter-
ested in? → [implicit-confirm, loc=Pittsburgh, re-
quest food type]”. Then the expert can come up
with a similar utterance from the target domain,
e.g. “Alright, Pittsburgh. what type of movie do
you like? → [implicit-confirm, loc=Pittsburgh,
request movie type]”. In this way, our proposed
AM training can leverage the annotations to match
these two actions as analogies in the latent ac-
tion space. Another advantage of this process is
that human experts do not have to directly label
whether two utterances from two domains are di-
rect analogies; this could be ambiguous and chal-
lenging. Instead, human experts only create do-
main shareable annotations and leave the difficult
matching problem to our models.

A.2 Model Details
For all experiments, we use a word embedding
with size 200. The recognition network uses bidi-
rectional GRU-RNN with hidden size 256 for each

direction. The discourse-level LSTM-RNN and
the decoder have hidden size 512. The models
are trained with Adam (Kingma and Ba, 2014)
with learning rate 0.001. All weights are ini-
tialized from uniform distribution between +/-
0.08. 30% dropouts are applied at the input
and output of recurrent neural networks (Zaremba
et al., 2014). For decoders with copy mech-
anisms, we also use the pointer loss proposed
in (Merity et al., 2016) which minimizes− log(g+∑

kj∈I(x,c) αkj), where I results in all positions of
output x in the attention context.

A.3 SimDial Details
To generate data, SimDial expects: a domain spec-
ification (DS) and a complexity specification (CS).
DS defines the content of the domain, e.g. restau-
rant or weather and CS defines complexity of di-
alogs for three aspects:

Environmental: the complexity level of the
communication channel, e.g. automatic speech
recognition (ASR) error rate.

Propositional: the complexity level in the
propositional content of user utterances, e.g. the
chance that a user will give multiple slot values in
one utterance.

Interaction: the complexity level in terms of
real-time interaction, e.g. the percentage of self-
repair.

The following is an example dialog generated
for the restaurant domain with all of the above
complexity turned on. The number at the end of
the speaker turn indicates ASR confidence.

Domain: Restaurant
Sys: Welcome to the restaurant recommendation system.
What do you need?
User (0.83): Hello robot. I am looking for a restaurant.
Sys: Which city are you interested in?
User (0.75): I am in San Jose. And Korean. Uhm sorry, I
am interested in Chinese food.
Sys: I believe you said San Jose. I believe you said Chi-
nese.
Sys: QUERY goal: restaurant food-pref: Chinese loca-
tion: San Jose
KB: RET restaurant: 17
Sys: Restaurant 17 is a good choice. What else can I do
for you?
User (0.6): Not done yet. Is that restaurant open now?
Sys: QUERY goal: open restaurant: 17 food-pref: Chi-
nese location: San Jose
KB: RET open: yes
Sys: Yes, it is open right now. What else?
User (0.69): No more questions. Thanks.
Sys: Bye.

Table 4: An example dialog generated from Sim-
Dial.
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Abstract

In cooperative dialogues, identifying the
intent of ones conversation partner and
acting accordingly is of great importance.
While this endeavour is facilitated by
phrasing intentions as directly as possi-
ble, we can observe in human-human com-
munication that a number of factors such
as cultural norms and politeness may re-
sult in expressing one’s intent indirectly.
Therefore, in human-computer communi-
cation we have to anticipate the possibil-
ity of users being indirect and be prepared
to interpret their actual meaning. Further-
more, a dialogue system should be able to
conform to human expectations by adjust-
ing the degree of directness it uses to im-
prove the user experience. To reach those
goals, we propose an approach to differen-
tiate between direct and indirect utterances
and find utterances of the opposite char-
acteristic that express the same intent. In
this endeavour, we employ dialogue vector
models and recurrent neural networks.

1 Introduction

An important part of any conversation is under-
standing the meaning your conversation partner
is trying to convey. If we do not obscure our
intent and phrase it as directly as possible, our
conversation partner will have an easier time to
recognise our goal and cooperate in achieving it.
Thereby, we can enable a successful conversa-
tion. Nevertheless, there are countless instances
in which humans choose to express their mean-
ing indirectly, as evidenced by the work of Searle
(1975) and Feghali (1997), among others. An-
swering the question ‘How is the weather?’ with
‘Let’s rather stay inside.’ gives no concrete in-

formation about the weather conditions, but is
commonly understood. There are several reasons
why humans could choose to express their in-
tent indirectly, such as cultural preferences, po-
liteness, embarrassment, or simply using common
figures of speech such as ‘Can you tell me the
time?’. Considering the frequency of indirectness
in human-human communication, we need to an-
ticipate the use of indirectness in human-computer
communication and enable dialogue systems to
handle it.

In this work, we introduce an approach to ex-
changing utterances with others that express the
same intent in the dialogue but exhibit a differ-
ing level of directness. More concretely, our ap-
proach would replace the second utterance of the
exchange ‘What pizza do you want?’ - ‘I want a
vegetarian pizza.’ with an utterance like ‘I don’t
like meat’. To this end, we employ models that
can estimate the level of directness of an utterance
on the one hand and the degree to which utterances
express the same intent on the other.

Our approach can be applied to solve two chal-
lenges of indirectness for dialogue systems: On
the side of the language analysis, the true intent
of the user needs to be recognised so that the di-
alogue system can react in an appropriate, coop-
erative manner. If the language analysis is able
to not only recognise the user’s intended meaning,
but also when the user is being indirect, this in-
formation can further be utilised by the dialogue
manager, e.g. by scheduling a confirmation if the
user is believed to have used indirectness. Our ap-
proach estimates the level of directness of an ut-
terance as a first step. If the utterance is classi-
fied as indirect, this information can be provided
to the dialogue manager. Furthermore, our ap-
proach exchanges the indirect utterance for a di-
rect counterpart that more accurately reflects the
users intent, thereby facilitating the task of the lan-
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guage analysis. The second area of dialogue sys-
tem that can benefit from taking into account indi-
rectness is the language generation. Studies could
show that under specific circumstances indirect-
ness is preferred not only from human conversa-
tion partners, but also in human-computer interac-
tion (e.g. (Miehle et al., 2016; Pragst et al., 2017)).
Therefore, dialogue systems that can adjust the
level of directness in their output to the user and
their circumstances should be able to provide an
improved user experience. If a certain level of di-
rectness is determined to be desirable with regards
to the current circumstances, our algorithm can de-
termine whether the utterance chosen as system
output possesses the targeted level of directness
and exchange it for a more suitable alternative if
it does not.

In the following, we will discuss related work,
before presenting our general approach and its
concrete implementation. This approach is evalu-
ated in Section 4. Here, we introduce the dialogue
corpus we created to obtain a reliable ground truth
and discuss the results of our evaluation. Finally,
we draw a conclusion in Section 5.

2 Related Work

Allen and Perrault (1980) propose a plan-based
approach to understanding the intention of the
speaker, explicitly mentioning indirect speech acts
as application. Similarly, Briggs and Scheutz
(2013) address both the understanding and the
generation of indirect speech acts. Their approach
combines idiomatic and plan-based approaches.
In plan-based approaches, a planning model that
contains potential goals as well as actions with
pre-and post conditions needs to be defined man-
ually in order to anticipate the user’s plan and
thereby identify the intent of an utterance. Our ap-
proach aims to eliminate the explicit preparation
of the planning model, and instead relies on pat-
terns learned from a large amount of examples.

In our work, we utilise a Dialogue Vector Model
(DVM) (Pragst et al., 2018) to assess whether
two utterances express the same intent in a dia-
logue. A number of different approaches to the
representation of sentences in vector space have
been proposed, e.g. utilising recurrent neural net-
works (Sutskever et al., 2014; Palangi et al., 2016;
Tsunoo et al., 2017), convolutional neural net-
works (Shen et al., 2014; Kalchbrenner et al.,
2014; Hu et al., 2014) and autoencoders (Socher

Previous
Utterance

Current
Utterance

All
Utterances

Evaluate
Directness

Evaluate
Directness

Directness of
Current Utterance

Directness of
Every Utterance

Filter
Utterances

All Utterances of
Opposite Directness

Find Maximal
Similarity

Utterance with
Opposite Directness &

Maximal Similarity

Figure 1: Flow chart of the steps taken to exchange
an utterance with another one that is functionally
similar and of the opposite directness.

et al., 2011). However, those approaches rely on
the words in the sentence only to generate a vector
representation. As a consequence, sentences that
have the same meaning, but do not share the same
words (which is often the case for utterances with
different levels of directness) are not mapped in
the vicinity of each other. In contrast, DVMs map
functionally similar sentences close to each other
and are therefore better suited for our needs.

Skip thought vectors (Kiros et al., 2015) are sen-
tence embeddings that are generated in a similar
manner as word vector representations, and there-
fore similar to dialogue vector models. Rather
than using the words in the sentence itself as ba-
sis to create a vector representation, those vectors
are generated taking into account surrounding sen-
tences. However, this representation is trained on
novels rather than dialogue, as opposed to DVMs,
which focus specifically on dialogue and its pecu-
liarities.

3 Changing the Level of Directness

Our work is concerned with the exchange of utter-
ances for functionally similar ones with differing
levels of directness. We define functional similar-
ity as the degree to which two utterances can be
used interchangeably in a dialogue as they express
the same meaning. Substituting a direct/indirect
utterance with its respective counterpart can be
achieved by performing the following steps:
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Algorithm 1: Pseudocode for exchanging one
utterance for another that is functionally simi-
lar and of the opposite directness.

Data: origU , the utterance to be exchanged
prvU , the utterance occurring previous to origU
allU , the set of all available utterances
DVM, a function that maps an utterance to its
corresponding dialogue vector
evalInd, a function that returns the estimated level of
directness, ranging from one to three
Result: excU , the substitute for origU

origDirectness←− evalInd(prvU, origU);
if origDirectness ≤ 1 then

oppU ←− {u ∈ allU : evalInd(prvU, u) > 1};
else

oppU ←− {u ∈ allU : evalInd(prvU, u) ≤ 1};
excU ←−
argminu∈oppU euclDist(DVM(origU),DVM(u));

1. Determine the level of directness of the utter-
ance.

2. Gather the remaining known utterances that
are of the opposite directness level.

3. From those, choose the utterance that is func-
tionally most similar to the original utterance.

Figure 1 shows this procedure on an abstract level,
while a more detailed pseudo-code is depicted in
Algorithm 1. Two challenges need to be addressed
in order to perform this approach: The first one is
to correctly determine the level of directness of an
utterance, the second one is to identify utterances
that perform a similar semantic functionality in a
dialogue. To solve those challenges, we utilise es-
tablished approaches, namely recurrent neural net-
works (RNN) and dialogue vector models (DVM).
In the following, we take a closer look at how
we apply those approaches to solve the presented
challenges.

To determine which utterances can be ex-
changed without altering the intended meaning,
a suitable similarity measure is needed. In our
work, we utilise DVMs (Pragst et al., 2018) to
that end. DVMs are representations of sentences
as vectors that captures their semantic meaning in
the dialogue context. They are inspired by word
vector models (Mikolov et al., 2013a) and gen-
erated in a similar manner: The mapping of ut-
terances to their vector representations is trained
akin to autoencoding. However, rather than train-
ing against the input utterance itself, utterances are
trained against their adjacent utterances in the in-
put corpus, either using the utterance to predict its

context or using the context to predict the utter-
ance. The resulting vector representation groups
sentences that are used in a similar context and
therefore likely to fulfil the same conversational
function in close vicinity to each other, as could be
shown by Pragst et al. (2018). Therefore, DVMs
are well suited to determine whether utterances
perform a similar function in a dialogue. Our al-
gorithm calculates the euclidean distance between
the dialogue vector representations of two utter-
ances and chooses the utterance with the minimal
distance as the most functionally similar.

For the estimation of the level of directness an
utterance possesses, we choose a supervised learn-
ing approach with a RNN. RNNs are a popular su-
pervised machine learning approach to find com-
plex relationships in large amounts of sequential
data. As indirectness relies on the context of the
conversation, the use of RNNs seems promising
for the estimation the level of directness an ut-
terances possess. The architecture of our RNN
is depicted in Figure 2. It is a time delay net-
work that uses the previous input in addition to
the current one. To obtain a numerical representa-
tion of an utterance that can be used as input to the
network, we utilise word vector models (Mikolov
et al., 2013a) and DVMs (Pragst et al., 2018). The
input for an utterances then consists of its dialogue
vector representation and the sum of the word vec-
tor representations of its words. Furthermore, the
word and dialogue vectors of the previous utter-
ance are provided as recurrent data to reflect the
dialogue context. The target value is given by cor-
pus annotations of the level of directness of the
utterance. As we are trying to solve a classifica-
tion problem, the network is designed to provide
the probability that the utterance belongs to each
of the classes as its result. After training, the net-
work constitutes the core part of the function that
estimates the level directness of an utterance.

4 Evaluation

This section presents the evaluation of the pro-
posed approach. We first introduce a dialogue cor-
pus that is suitable to train the required models and
provides a reliable ground truth to compare the re-
sults of our approach to. Afterwards, the setup of
the evaluation is described and its results presented
and discussed.
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Figure 2: The architecture of the RNN used for the estimation of directness. It is a time-delay network
with a one step delay from the input layer to the hidden layer, which contains ten nodes. The output layer
gives the probability that the input belongs to a class for each of the three classes.

4.1 Dialogue Corpus

Our approach requires a dialogue corpus for sev-
eral task: as a source for alternative utterances, as
training data for the directness classifier, as train-
ing data for the DVM and as ground truth for the
evaluation. To fulfil those tasks, the employed cor-
pus has to meet two requirements: it needs to con-
tain a sufficient amount of examples for function-
ally similar direct and indirect utterances, and the
utterances need to be annotated with their dialogue
act and level of directness.

We considered several existing dialogue cor-
pora, none of which suited our needs. Further-
more, we dismissed the option to collect and anno-
tate a dialogue corpus ourselves, considering the
difficulty to make sure that speakers would use
different levels of directness for the same purpose
without inhibiting the naturalness of the dialogues.
Instead, we decided to generate a suitable dialogue
corpus automatically.

The advantages an automatically generated cor-
pus offers for our work are the certainty that it con-
tains a number of examples for functionally sim-
ilar direct and indirect variants, as well as a de-
pendable ground truth for the evaluation. How-
ever, automatically generated corpora come with
certain limitations. After introducing our dialogue
corpus in the following, we will discuss the po-
tential advantages and limitations of automatically
generated corpora.

4.1.1 Description of the Dialogue Corpus

Our corpus contains dialogues with two different
tasks: ordering pizza and arranging joint cook-
ing. Example dialogues can be found in Fig-
ure 3. The dialogues incorporate typical elements
of human conversation: different courses of the
dialogue, over-answering, misunderstandings as
well as requests for confirmation and corrections,
among others. The example dialogues also show

instances of different wordings for the same pur-
pose, such as several indirect variants of ‘Yes.’,
such as ‘Great.’, ‘I’m looking forward to it.’ and
‘That sounds delicious.’ that can be found across
the dialogues, and the direct ‘I would like to order
pizza.’ in Dialogue 3 that is exchanged for the in-
direct ‘Can I order pizza from you?’ in Dialogue 4.
Additionally, the same utterance can have a differ-
ent level of directness depending on the context: in
Dialogue 1, the utterance ‘I haven’t planned any-
thing.’ as response to ‘Do you have time today?’
is indirect, whereas it is direct as response to ‘Do
you have plans today?’ in Dialogue 2. Overall, the
corpus contains more than 400000 different dia-
logue flows and about four wordings per dialogue
action.

As first step of the corpus generation, we de-
fined a dialogue domain in a similar manner to the
ones often employed by dialogue managers (e.g.
OwlSpeak (Ultes and Minker, 2014)). It contains
all system and user actions foreseen for the di-
alogues, and defines rules about feasible succes-
sions of those. Furthermore, each system and user
action is assigned a number of different utterances
that can be used to express their intent. Each ut-
terance incorporates a level of directness ranging
from one to three, with one being direct (e.g. ‘I
want vegetarian pizza.’) and three indirect (e.g. ‘I
don’t like meat.’). A rating of two is assigned if the
utterance is indirect, but still very close to the di-
rect one, or a common figure of speech (e.g ‘Can I
get vegetarian pizza?’). The directness level de-
pends not only on the utterance itself, but also
on the dialogue context. Therefore, the utterance
‘I have time today.’ receives a rating of three if
the previous utterance was ‘Do you have plans to-
day?’, and a rating of one if the previous utterance
was ‘Do you have time today?’.

In the next step, all dialogue flows are gener-
ated by recursively picking a dialogue action, gen-

14



Dialogue 1

SPEAKER 1: Hello.
SPEAKER 2: Hello.
SPEAKER 1: Do you have time today?
SPEAKER 2: I haven’t planned anything.
SPEAKER 1: How hungry are you?
SPEAKER 2: Just a little.
SPEAKER 1: Would you share some food with
me?
SPEAKER 2: Yes.
SPEAKER 1: Do you have any food preferences?
SPEAKER 2: I like pineapple.
SPEAKER 1: You probably would like pineapple
salad.
SPEAKER 2: Great.
SPEAKER 1: We could cook that together.
SPEAKER 2: I’m looking forward to it.
SPEAKER 1: Byebye.
SPEAKER 2: Byebye.

Dialogue 2

SPEAKER 1: Hello.
SPEAKER 2: Hello.
SPEAKER 1: Do you have plans today?
SPEAKER 2: I haven’t planned anything.
SPEAKER 1: What did you eat today?
SPEAKER 2: Just a little.
SPEAKER 1: Would you share some food with
me?
SPEAKER 2: I don’t need much.
SPEAKER 1: Which food do you like?
SPEAKER 2: I don’t like meat.
SPEAKER 1: You probably would like pineapple
salad.
SPEAKER 2: That sounds delicious.
SPEAKER 1: We could cook that together.
SPEAKER 2: Great.
SPEAKER 1: Byebye.
SPEAKER 2: Byebye.

Dialogue 3

SPEAKER 1: Hello.
SPEAKER 2: I am listening.
SPEAKER 1: I would like to order pizza.
SPEAKER 2: We offer different sizes.
SPEAKER 1: A small one sounds good.
SPEAKER 2: I have noted a small pizza.
SPEAKER 1: Great.
SPEAKER 2: What would you like on top?
SPEAKER 1: I like pineapple.
SPEAKER 2: You’re getting a Hawaiian pizza.
SPEAKER 1: I don’t like meat.
SPEAKER 2: Do you want a salad?
SPEAKER 1: You can’t live just on pizza.
SPEAKER 2: So you want a small vegetarian
pizza with a salad?
SPEAKER 1: That sounds delicious. Byebye.
SPEAKER 2: Byebye.
SPEAKER 1: Byebye.

Dialogue 4

SPEAKER 1: Hello.
SPEAKER 2: Hello. Is there anything I can help
you with?
SPEAKER 1: Can I order pizza from you?
SPEAKER 2: We offer Hawaiian, peperoni and
vegetarian.
SPEAKER 1: I choose peperoni pizza. I love
salad. I’m thinking about a large one.
SPEAKER 2: I have noted a large pepperoni
pizza with a salad.
SPEAKER 1: This is going to be good.
SPEAKER 2: Byebye.
SPEAKER 1: Byebye.

Figure 3: Example dialogues from the automatically generated corpus. The dialogues encompass differ-
ent tasks, over-answering, misunderstandings, confirmations and corrections. Furthermore, they contain
several examples of exchangeable utterances with differing directness levels, as well as examples of the
same utterances changing its level of directness due to the dialogue context.
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erating a list of its possible successors as stated
by the rules in the dialogue domain and repeating
the procedure for each of the successors. If a dia-
logue action does not have successor, the sequence
of dialogue actions that have been chosen to get to
that point are saved as a complete dialogue. The
wording is chosen randomly from the utterances
associated with the respective dialogue action.

4.1.2 Discussion of Automatically Generated
Corpora

The use of automatically generated corpora is
not widely adopted in the research community of
human-computer interaction. Due to their artifi-
cial nature, they have obvious limitations: they
possess less flexibility than natural conversations,
regarding both the dialogue flow and the differ-
ent wordings. As a result, both dialogue flow and
wording are much more predictable for automati-
cally generated corpora and it is highly likely that
machine learning approaches and similar proce-
dures will perform better on generated dialogues
than they would on natural ones. Nevertheless, we
believe that generated dialogues have their bene-
fits: they should not be used to gauge the actual
performance of approaches in an applied spoken
dialogue system, but rather to appraise their po-
tential.

The comparison of natural and automatically
generated dialogue corpora bears parallels to the
discussion regarding laboratory experiments and
field experiments, and their respective advantages
and limitations (as discussed by Berkowitz and
Donnerstein (1982), Harrison and List (2004) and
Falk and Heckman (2009), among others). While
natural dialogues more accurately represent con-
versations in the real world, automatically gener-
ated dialogues offer more control. In particular,
that means specific questions can be tested in a
structured and systematic manner, the generation
ensuring that relevant data is incorporated in the
corpus and irrelevant data that might interfere with
the experiments is excluded, as well as the pres-
ence of a dependable ground truth. Therefore, we
can reliably assess whether an approach is viable
to solve a given task.

Additionally, by being able to provide the com-
plete data set for a smaller scale use case as de-
fined by the dialogue domain, we can get an idea
about the potential performance of an approach
given a large amount of data that approaches the
state of total coverage. While this amount of data

is usually unobtainable for most researchers, large
companies have the resources to collect a suitably
big corpus and are likely already working towards
it. Therefore, it is beneficial to examine the full
potential of a given approach. However, in our
considerations regarding the availability of large
amounts of data we need to take into account that
even large companies typically do not have access
to a large amount of annotated data.

In summary, we believe that automatically gen-
erated dialogues, while not providing us with an
accurate performance measure of an approach in
the real world, can help us to assess its general vi-
ability to solve a specific task and to estimate its
performance given enough data.

4.2 Setup of the Evaluation

For the evaluation of our approach we determine
its accuracy in finding an utterance that shares the
dialogue action with the original utterance and is
of the opposite level of directness. The ground
truth for both criteria is given by the previously
presented dialogue corpus. In addition, we also
evaluate the performance of the trained classifier
and investigate how it influences the overall per-
formance. As the ability of DVM to group utter-
ances that share a dialogue action has already been
shown in (Pragst et al., 2018), it will not be part of
this evaluation.

To investigate the effects of the amount of avail-
able data, we use several DVMs that are trained
on only a fraction of the complete corpus. Corpus
sizes of 0.1, 0.2, 0.4, 0.6, 0.8 and of course the full
corpus are considered. The dialogues that are part
of the reduced corpora are chosen at random.

Another aspect we study is the impact of the
amount of available annotated training data for the
classifier on its performance. As usual, we use
ten-fold cross-validation in our evaluation. How-
ever, instead of only using 90% of the utterances
for training and 10% for testing, we also evalu-
ate our approach using 10% of the utterances for
training and 90% for testing. With this, we want to
investigate how our approach performs given only
a limited amount of annotated data.

Finally, we compare the performance of the
classifier when using only dialogue vectors as in-
put and when using both dialogue vectors and the
sum of word vectors. As DVMs map functionally
similar utterances in close vicinity to each other,
direct and indirect utterances should be hard to
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Figure 4: The mean accuracy and SD achieved by
different classifiers.

distinguish with just the information from those
models. On the other hand, the sum of word vec-
tors might be missing important context informa-
tion for the identification of the directness level.
We believe that the combination of both the sum
of word vectors and dialogue vectors will improve
the performance of the classifier.

The DVMs we utilise in our evaluation as simi-
larity measure and as input to the RNN are trained
on the presented dialogue corpus. The network ad-
ditionally receives the sum of the word vectors of
an utterance, based on the Google News Corpus
model (Mikolov et al., 2013b), as input.

4.3 Results

Overall, our results show that the proposed ap-
proach has a high potential. The best mean ac-
curacy reaches a value of 0.68 , and the classifier
predicts the right class with 0.87 accuracy on av-
erage. In the following, we discuss the results and
their implications in more detail, starting with the
results of the classifier, before assessing the over-
all performance.

4.3.1 Classification of Directness

The baseline performance our classifier should
surpass the prediction of the majority class. With
the given data, such a classifier can achieve an ac-
curacy of 0.5291. Our trained classifier achieves a
significantly better accuracy of 0.8710 (t(203) =
35.366, p < .001) averaged over all test cases.
Even the worst classifier, with an accuracy of
0.6354, performs more than 10% better than
choosing the majority class.
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Figure 5: The mean accuracy and SD achieved by
with different DVMs and Classifiers.

As expected, significant differences exist for the
size of the training set (t(159.425) = −4.008, p <
.001), with a larger training set leading to better re-
sults. Furthermore, adding the linear combination
of the word vectors as input improves the perfor-
mance of the classifier significantly (t(101.347) =
32.434, p < .001). The mean performances can be
seen in Figure 4. The corpus size the DVMs were
trained on does not have a significant impact.

Those results suggest that the amount of la-
belled training data greatly affects the perfor-
mance of a classifier using RNN. If the goal is a
large scale application, the necessary amount of
labelled data might be difficult to achieve. Fu-
ture work should therefore consider the possibility
of unsupervised training approaches or approaches
with better scalability. In addition to a larger
amount of training data, using the sum of word
vectors as additional input greatly improves the
performance. As a number of extensive word vec-
tor models exist for several languages (e.g. (Bo-
janowski et al., 2016)), this data is easily available
irrespective of the scale of the targeted dialogue
domain.

4.3.2 Exchange of Utterances

Our approach for choosing a valid replacement
for an utterance was able to achieves a high ac-
curacy of 0.70 at its best performance. How-
ever, this performance is significantly influenced
by both the accuracy of the classifier for the level
of directness (F (2, 29.090) = 141.564, p < .001)
and the amount of data the DVM was trained on
(F (5, 52.864) = 4.304, p < .003). Depending
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on the quality of the employed components, the
accuracy ranges from 0.41 to 0.70. A graphical
representation can be found in Figure 5.

The results show the high potential of our ap-
proach, but also emphasize the importance of both
a good classifier to estimate the level of direct-
ness and a good measure of the functional sim-
ilarity of utterances. If either component under
performs, the accuracy declines to undesirable lev-
els. DVMs depend on a large amount of data be-
ing available. However, this data does not need to
be annotated. Hence, suitable DVMs for our ap-
proach can be trained with the amount of data usu-
ally available to big companies. Training a good
classifier presents a more severe challenge, as an-
notated data is needed. An unsupervised approach
to the training of a classifier for the level of direct-
ness would therefore be highly beneficial for the
viability of our approach.

4.4 Limitations of the Evaluation

The evaluation of our approach yields promising
results and shows its high potential. However,
we need to take into account that those results
were achieved using an artificially generated cor-
pus. Furthermore, we tested the performance of
our approach in a theoretical setting, not its impact
in an actual application. This section discusses the
limitations of our evaluation.

Natural dialogue possess a greater variability
than automatically generated dialogue, and there-
fore finding reliable patterns in them is a more
difficult task. It is likely that the quality of both
the classifier and the DVMs decreases if they are
trained on a comparable amount of natural dia-
logue data compared to artificially generated data.
We could show in the evaluation that the quality of
the classifier and DVM has a major impact on the
performance of our approach. This implies that
more data is needed for natural dialogues than for
automatically generated dialogues to achieve com-
parable results.

One of the main reasons to use an automatically
generated dialogue corpus was to ensure the pres-
ence of pairs of direct and indirect utterances. This
is important not only for the training of the classi-
fier and DVM, but also to ensure that a suitable
substitute is known. As our approach searches for
a replacement in a set of established utterances,
it can only be successful if the set does contain
a suitable utterance. While the likelihood for the

presence of a suitable substitute increases with the
size of the dialogue corpus, it cannot be guaran-
teed that a replacement is present in natural dia-
logues. When transferring our approach to actual
applications, this might present a challenge. To
address this challenge, the generation of suitable
utterances rather than their identification should be
investigated.

While our evaluation shows what accuracy
our approach can achieve given different circum-
stances, we did not yet investigate what accuracy
it needs to achieve in actual applications to pos-
itively impact the user experience. Without this
information, it is difficult to estimate which level
of accuracy should be targeted and, as a conse-
quence, the amount of training data needed.

5 Conclusion

In this work, we introduced an approach to ex-
change utterances that express the same meaning
in the dialogue, but possess a differing level of di-
rectness. In this endeavour, we utilised supervised
training with RNNs for the estimation of direct-
ness levels, and DVMs as basis for the similarity
measure of the meaning of two utterances in a dia-
logue. A dialogue corpus that provides a sufficient
amount of direct/indirect utterance pairs as well as
annotations of the dialogue act and level of direct-
ness was generated automatically and utilised to
show the high potential of our approach in an eval-
uation.

Although the results seem promising overall,
we identified several challenges that need to be
addressed in future work. The chosen classi-
fier for the level of directness relies on a large
amount of annotated data. Unsupervised learn-
ing approaches will be investigated to eliminate
this need. Our evaluation did not incorporate the
variability of natural dialogues. We will test our
approach on natural dialogues to verify its appli-
cability on more noisy data than an automatically
generated corpus provides. Furthermore, the pres-
ence of direct/indirect pairs in natural dialogue
corpora cannot be guaranteed. It might become
necessary to explore the generation of suitable ut-
terances if we find that natural dialogue data does
not contain a sufficient amount of direct/indirect
utterance pairs. Finally, the integration of our ap-
proach in an actual dialogue systems can confirm
its beneficial effects on the user satisfaction.
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Abstract

Previous work has shown that conversants
adapt to many aspects of their partners’ lan-
guage. Other work has shown that while
every person is unique, they often share
general patterns of behavior. Theories of
personality aim to explain these shared pat-
terns, and studies have shown that many lin-
guistic cues are correlated with personality
traits. We propose an adaptation measure
for adaptive natural language generation
for dialogs that integrates the predictions
of both personality theories and adaptation
theories, that can be applied as a dialog un-
folds, on a turn by turn basis. We show
that our measure meets criteria for valid-
ity, and that adaptation varies according to
corpora and task, speaker, and the set of
features used to model it. We also produce
fine-grained models according to the dialog
segmentation or the speaker, and demon-
strate the decaying trend of adaptation.

1 Introduction

Every person is unique, yet they often share general
patterns of behavior. Theories of personality aim
to explain these patterns in terms of personality
traits, e.g. the Big Five traits of extraversion or
agreeableness. Previous work has shown: (1) the
language that people generate includes linguistic
features that express these personality traits; (2) it is
possible to train models to automatically recognize
a person’s personality from his language; and (3) it
is possible to automatically train models for natural
language generation that express personality traits
(Pennebaker and King, 1999; Mairesse et al., 2007;
Mairesse and Walker, 2011; Gill et al., 2012).

A distinct line of work has shown that people
adapt to one another’s conversational behaviors
and that conversants reliably re-use or mimic many

Speaker (Utterance #): Utterance
F97: okay I’m on pacific avenue and plaza
D98: okay so you just take a right once your out of pacific
lane you go wait no to late to your left.
F98: okay
D99: and I think. it’s right ther- alright so I’m walking
down pacific okay so it’s right before the object it’s right
before the mission and pacific avenue intersection okay
it’s like umm almost brown and kinda like tan colored
F99: is it tan
D100: yeah it’s like two different colors its like dark
brown and orangey kinda like gold color its kinda like
um
F100: okay is it kinda like a vase type of a thing
D101: yeah it has yeah like a vase

Figure 1: Dialog excerpt from the ArtWalk Corpus.

different aspects of their partner’s verbal and non-
verbal behaviors, including lexical and syntactical
traits, accent, speech rate, pause length, etc. (Coup-
land et al., 1988; Willemyns et al., 1997; Brennan
and Clark, 1996; Branigan et al., 2010; Coupland
et al., 1988; Parent and Eskenazi, 2010; Reitter
et al., 2006a; Chartrand and Bargh, 1999; Hu et al.,
2014). Previous work primarily focuses on devel-
oping methods on measuring adaptation in dialog,
and studies have shown that adaptation measures
are correlated with task success (Reitter and Moore,
2007), and that social variables such as power affect
adaptation (Danescu-Niculescu-Mizil et al., 2012).

We posit that it is crucial to enable adaptation
in computer agents in order to make them more
human-like. However, we need models to control
the amount of adaptation in natural language gen-
eration. A primary challenge is that dialogs exhibit
many different types of linguistic features, any or
all of which, in principle, could be adapted. Previ-
ous work has often focused on individual features
when measuring adaptation, and referring expres-
sions have often been the focus, but the conversants
in the dialog in Figure 1 from the ArtWalk Corpus
appear to be adapting to the discourse marker okay
in D98 and F98, the hedge kinda like in F100, and
to the adjectival phrase like a vase in D101.
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Therefore we propose a novel adaptation mea-
sure, Dialog Adaptation Score (DAS), which can
model adaptation on any subset of linguistic fea-
tures and can be applied on a turn by turn basis
to any segment of dialog. Consider the example
shown in Table 1, where the context (prime) is
taken from an actual dialog. A response (target)
with no adaptation makes the utterance stiff (DAS
= 0), and too much adaptation (to all four discourse
markers in prime, DAS = 1) makes the utterance un-
natural. Our hypothesis is that we can learn models
to approximate the appropriate amount of adapta-
tion from the actual human response to the context
(to discourse marker “okay”, DAS = 0.25).

Conversants in dialogs express their own per-
sonality and adapt to their dialog partners simul-
taneously. Our measure of adaptation produces
models for adaptive natural language generation
(NLG) for dialogs that integrates the predictions of
both personality theories and adaptation theories.
NLGs need to operate as a dialog unfolds on a turn-
by-turn basis, thus the requirements for a model
of adaptation for NLG are different than simply
measuring adaptation.

Context: okay alright so yeah Im looking at 123 Locust right
now
Linguistic Features:
Discourse markers: okay, alright, so, yeah
Referring expressions: 123 Locust
Syntactic structures: VP->VBP+VP, VP->VBG+PP+ADVB ...

Adaptation
Amount

Response Adapted Fea-
tures

DAS

None it should be some-
where

None 0

Too much okay alright so
yeah it should be
somewhere

okay, alright,
so, yeah

1

Moderate okay I mean it
should be some-
where

okay 0.25

Table 1: Linguistic adaptation example: no adapta-
tion, too much adaptation, and moderate adaptation
(human response from ArtWalk Corpus).

We apply our method to multiple corpora to in-
vestigate how the dialog situation and speaker roles
affect the level and type of adaptation to the other
speaker. We show that:

• Different feature sets and conversational situ-
ations can have different adaptation models;
• Speakers usually adapt more when they have

the initiative;
• The degree of adaptation may vary over the

course of a dialog, and decreases as the adap-
tation window size increases.

2 Method and Overview

Our goal is an algorithm for adaptive natural lan-
guage generation (NLG) that controls the system
output at each step of the dialog. Our first aim
therefore is a measure of dialog adaptation that
can be applied on a turn by turn basis as a dialog
unfolds. For this purpose, previous measures of
dialog adaptation (Stenchikova and Stent, 2007;
Danescu-Niculescu-Mizil et al., 2011) have two
limitations: (1) their calculation require the com-
plete dialog, and (2) they focus on single features
and do not provide a model to control the inter-
action of multiple parameters in a single output,
while our method measures adaptation with respect
to any set of features. We further compare our
method to existing measures in Section 6.

Measures of adaptation focus on prime-target
pairs: (p, t), in which the prime contains linguistic
features that the target may adapt to. While lin-
guistic adaptation occur beyond the next turn, we
simplify the calculation by using a window size of
1 for most experiments: for every utterance in the
dialog (prime), we consider the next utterance by
a different speaker as the target, if any. We show
the decay of adaptation with increasing window
size in a separate experiment. When generating
(p, t) pairs, it is possible to consider only speaker
A adapting to speaker B (target=A), only speaker
B adapting to speaker A (target=B), or both at the
same time (target=Both). In the following defi-
nition, FCi(p) is the count of features in prime
p of the i-th (p, t) pair, n is the total number of
prime-target pairs in which FCi(p) 6= 0, similarly,
FCi(p ∧ t) is the count of features in both prime
p and target t. We define Dialog Adaptation Score
(DAS) as:

DAS =
1

n

n∑

i=1

FCi(p ∧ t)

FCi(p)

Within a feature set, DAS reflects the average
probability that features in prime are adapted in tar-
get across all prime-target pairs in a dialog. Thus
our Dialog Adaptation Score (DAS) models adapta-
tion with respect to feature sets, providing a whole-
dialog adaptation model or a turn-by-turn adapta-
tion model. The strength of DAS is the ability to
model different classes of features related to indi-
vidual differences such as personalities or social
variables of interest such as status.

DAS scores measured using various feature sets
can be used as a vector model to control adaptation
in Natural Language Generation (NLG). Although
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we leave the application of DAS to NLG to future
work, here we describe how we expect to use it.
We consider the use of DAS with three NLG ar-
chitectures: Overgeneration and Rank, Statistical
Parameterized NLG, and Neural NLG.
Overgenerate and Rank. In this approach, differ-
ent modules propose a possibly large set of next ut-
terances in parallel, which are then fed to a (trained)
ranker that outputs the top-ranked utterance. Pre-
vious work on adaptation/alignment in NLG has
made use of this architecture (Brockmann, 2009;
Buschmeier et al., 2010). We can rank the gener-
ated responses based on the distances between their
DAS vectors and learned DAS adaptation model.
The response with the smallest distance is the re-
sponse with the best amount of adaptation. We
can also emphasize specific feature sets by giv-
ing weights to different dimensions of the vector
and calculating weighted distance. For instance, in
order to adapt more to personality and avoid too
much lexical mimicry, one could prioritize related
LIWC features, and adapt by using words from the
same LIWC categories.
Statistical Parameterized NLG. Some NLG en-
gines provide a list of parameters that can be con-
trolled at generation time (Paiva and Evans, 2004;
Lin and Walker, 2017). DAS scores can be used as
generation decision probabilities. A DAS score
of 0.48 for the LIWC feature set indicates that
the probability of adapting to LIWC features in
discourse context (prime) is 0.48. By mapping
DAS scores to generation parameters, the generator
could be directly controlled to exhibit the correct
amount of adaptation for any feature set.
Neural NLG. Recent work in Neural NLG
(NNLG) explores controlling stylistic variation in
outputs using a vector to encode style parameters,
possibly in combination with the use of a context
vector to represent the dialog context (Ficler and
Goldberg, 2017; Oraby et al., 2018). The vector
based probabilities that are represented in the DAS
adaptation model could be encoded into the con-
text vector in NNLG. No other known adaptation
measures could be used in this way.

We hypothesize that different conversational con-
texts may lead to more or less adaptive behavior, so
we apply DAS on four human-human dialog cor-
pora: two task-oriented dialog corpora that were
designed to elicit adaptation (ArtWalk and Walk-
ing Around), one topic-centric spontaneous dialog
corpus (Switchboard), and the MapTask Corpus
used in much previous work. We obtain linguistic

features using fully automatic annotation tools, de-
scribed in Section 4. We learn models of adaptation
from these dialogs on various feature sets. We first
validate the DAS measure by showing that DAS
distinguishes original dialogs from dialogs where
the orders of the turns have been randomized. We
then show how DAS varies as a function of the fea-
ture sets used and the dialog corpora. We also show
how DAS can be used for fine-grained adaptation
by applying DAS to individual dialog segments,
and individual speakers, and illustrating the differ-
ences in adaptation as a function of these variables.
Finally, we show how DAS scores decrease as the
adaptation window size increases.

3 Corpora

We develop models of adaptation using DAS on
the following four corpora.
ArtWalk Corpus (AWC).1 Figure 1 provides a
sample of the Artwalk Corpus (Liu et al., 2016),
a collection of mobile-to-Skype conversations be-
tween friend and stranger dyads performing a real
world-situated task that was designed to elicit adap-
tation behaviors. Every dialog involves a station-
ary director on campus, and a follower downtown.
The director provided directions to help the fol-
lower find 10 public art pieces such as sculptures,
mosaics, or murals in downtown Santa Cruz. The
director had access to Google Earth views of the fol-
lower’s route and a map with locations and pictures
of art pieces. The corpus consists of transcripts of
24 friend and 24 stranger dyads (48 dialogs). In
total, it contains approximately 185,000 words and
23,000 turns, from conversations that ranged from
24 to 55 minutes, or 197 to 691 turns. It includes
referent negotiation, direction-giving, and small
talk (non-task talk).2

Walking Around Corpus (WAC).3 The Walking
Around Corpus (Brennan et al., 2013) consists of
spontaneous spoken dialogs produced by 36 pairs
of people, collected in order to elicit adaptation be-
haviors, as illustrated by Figure 2. In each dialog, a
director navigates a follower using a mobile phone
to 18 destinations on a medium-sized campus. Di-
rectors have access to a digital map marked with

1https://nlds.soe.ucsc.edu/artwalk
2For AWC and WAC, we remove annotations such as

speech overlap, noises (laugh, cough) and indicators for short
pauses, leaving only clean text. If more than one consecutive
dialog turn has the same speaker, we merge them into one
dialog turn.

3https://catalog.ldc.upenn.edu/
ldc2015s08
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Speaker (Utterance #): Utterance
D137: and. you know on the uh other side of the math
building like theres the uh, theres this weird, little con-
crete, structure that is sticking up out of the bricks, dont
make any sense.
F138: uh.
D139: yeah youll see it when you get over there.
F140: okay.
D141: so just keep going and then uh. when you get
around the building make a left. and you should be.
F142: when I get around the Physics building make a
left?
D143: yeah yeah when you get around to the end here.

Figure 2: Dialog excerpt from the Walking Around
Corpus.

target destinations, labels (e.g. “Ship sculpture”),
photos and followers’ real time location. Followers
carry a cell phone with GPS, and a camera in order
to take pictures of the destinations they visit. Each
dialog ranges from 175 to 885 turns. The major dif-
ferences between AWC and WAC are (1) in order
to elicit novel referring expressions and possible
linguistic adaptation, destinations in AWC do not
have provided labels; (2) AWC happens in a more
open world setting (downtown) compared to WAC
(university campus).
Map Task Corpus (MPT).4 The Map Task Cor-
pus (Anderson et al., 1991) is a set of 128 coop-
erative task-oriented dialogs involving two partic-
ipants. Each dialog ranges from 32 to 438 turns.
A director and a follower sit opposite one another.
Each has a paper map which the other cannot see
(the maps are not identical). The director has a
route marked on their map; the follower has no
route. The participants’ goal is to reproduce the
director’s route on the follower’s map. All maps
consist of line drawing landmarks labelled with
their names, such as “parked van”, “east lake”, or
“white mountain”. Figure 3 shows an excerpt from
the Map Task Corpus.
Switchboard Corpus (SWBD).5 Switch-
board (Godfrey et al., 1992) is a collection of
two-speaker telephone conversations from all
areas of the United States. An automatic operator
handled the calls (giving recorded prompts,
selecting and dialing another speaker, introducing
discussion topics and recording the dialog). 70
topics were provided, for example: pets, child
care, music, and buying a car. Each topic has
a corresponding prompt message played to the
first speaker, e.g. “find out what kind of pets the

4http://groups.inf.ed.ac.uk/maptask/
5https://catalog.ldc.upenn.edu/

ldc97s62

Speaker (Utterance #): Utterance
D7: and below the graveyard below the graveyard but
above the carved wooden pole.
F8: oh hang on i don’t have a graveyard.
D9: okay. so you don’t have a graveyard. do you have a
fast flowing river.
F10: fast running creek.
D11: ehm mm don’t know yeah it could be could be.
F12: is that to the right that’ll be to my right to my right.
D13: to your. right uh-huh.
F14: right. so i continue and go below the fast running
creek.
D15: no. go just until you go go below the diamond mine
until just before the fast fast flowing river.

Figure 3: Dialog excerpt from the Map Task Cor-
pus.

Speaker (Utterance #): [Tag] Utterance
B14: [b] Yeah. [sv] Well that’s pretty good if you can do
that. [sd] I know. [sd] I have a daughter who’s ten [sd]
and we haven’t really put much away for her college up to
this point [sd] but, uh, we’re to the point now where our
financial income is enough that we can consider putting
some away
A15: [b] Uh-huh.
B16: [sd] for college [sd] so we are going to be starting a
regular payroll deduction
A17: [%] Um.
B18: [sd] in the fall [sd] and then the money that I will be
making this summer we’ll be putting away for the college
fund.
A19: [ba] Um. Sounds good. [%] Yeah [sd] I guess we’re,
we’re just at the point, uh [sd] my wife worked until we
had a family [sd] and then, you know, now we’re just
going on the one income [sv] so it’s
B20: [b] Uh-huh.
A21: [sv] a lot more interesting trying to, uh [sv] find
some extra payroll deductions is probably the only way
we will be able to, uh, do it. [sd] You know, kind of
enforce the savings.
B22: [b] Uh-huh.

Figure 4: Dialog excerpt from the Switchboard
Dialog Act Corpus.

other caller has.” A subset of 200K utterances of
Switchboard have also been tagged with dialog act
tags (Jurafsky et al., 1997). Each dialog contains
14 to 373 turns. Figure 1 provides an example
of dialog act tags, such as b - Acknowledge
(Backchannel), sv - Statement-opinion, sd -
Statement-non-opinion, and % - Uninterpretable.
We focus on this subset of the corpus.

Dialogs in SWBD have a different style from the
three task-oriented, direction-giving corpora. Fig-
ure 4 illustrates how the SWBD dialogs are often
lopsided: from utterance 14 to 18, speaker B states
his opinion with verbose dialog turns, whereas
speaker A only acknowledges and backchannels;
from utterance 19 to 22, speaker A acts as the
main speaker, whereas speaker B backchannels.
Some theories of discourse define dialog turns as
extending over backchannels, and we posit that this
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would allow us to measure adaptation more faith-
fully, so we utilize the SWBD dialog act tags to
filter turns that only contain backchannels, keep-
ing only dialog turns with tags sd (Statement-non-
opinion), sv (Statement-opinion), and bf (Sum-
marize/reformulate).6 We then merge consecutive
dialog turns from the same speaker.

4 Experimental Setup

We consider the following feature sets: unigram,
bigram, referring expressions, hedges/discourse
markers, and Linguistic Inquiry and Word Count
(LIWC) features. Previous computational work on
measuring linguistic adaptation in textual corpora
have largely focused on lexical and syntactical fea-
tures, which are included as baselines. Referring
expressions and discourse markers are key features
that are commonly studied for adaptation behaviors
in task-oriented dialogs, which are often hand anno-
tated. Here we automatically extract these features
by rules. To model adaptation on the personality
level, we draw features that correlate significantly
with personality ratings from LIWC features. We
hypothesize that our feature sets will demonstrate
different adaptation models.

We lemmatize, POS tag and derive constituency
structures using Stanford CoreNLP (Manning et al.,
2014). We then extract the following linguistic fea-
tures from annotations and raw text. The following
example features are based on D137 in Figure 2.
Unigram Lemma/POS. We use lemma com-
bined with POS tags to distinguish word
senses. E.g., lemmapos building/NN and
lemmapos brick/NNS in D137.
Bigram Lemma. E.g., bigram the-brick
and bigram side-of in D137.
Syntactic Structure. Following Reitter et al.
(2006b), we take all the subtrees from a
constituency parse tree (excluding the leaf
nodes that contain words) as features. E.g.,
syntax VP->VBP+PP and syntax ADJP->
DT+JJ in D137. The difference is that we use
Stanford Parser rather than hand annotations.
Referring Expression. Referring expressions
are usually noun phrases. We start by tak-
ing all constituency subtrees with root NP,
then map the subtrees to their actual phrases
in the text and remove all articles from the
phrase, e.g., referexp little-concrete

6The filtering process removes 48.1% original dialog turns,
but only 12.6% of the words. Filtered dialogs have 3 to 85
dialog turns each.

and referexp math-building in D137.
Hedge/Discourse Marker. Hedges are mitigating
words used to lessen the impact of an utterance,
such as “actually” and “somewhat”. Discourse
markers are words or phrases that manage the flow
and structure of discourse, such as “you know” and
“I mean”. We construct a dictionary of hedges
and discourse markers, and use string matching
to extract features, e.g., hedge you-know and
hedge like in D137.
LIWC. Linguistic Inquiry and Word Count (Pen-
nebaker et al., 2001) is a text analysis program
that counts words in over 80 linguistic (e.g., pro-
nouns, conjunctions), psychological (e.g., anger,
positive emotion), and topical (e.g., leisure, money)
categories. E.g., liwc second-person and
liwc informal in D137. Because DAS fea-
tures are binary, features such as Word Count and
Number of New Lines are excluded.
Personality LIWC. Previous work reports for
each LIWC feature whether it is significantly cor-
related with each Big Five trait (Mairesse et al.,
2007) on conversational data (Mehl et al., 2006).
For each trait, we create feature sets consisting of
such features. See Table 2.

Personality # Example Features

Extraversion 15 Positive Emotion, Swear
Words

Emotional Stability 14 Anger, Articles
Agreeable 16 Assent, Insight
Conscientious 17 Fillers, Nonfluencies
Open to Experience 12 Discrepancy, Tentative

Table 2: Number of LIWC features for each per-
sonality trait and example features.

5 Experiments on Modeling Adaptation

In this section, we apply our DAS measure on the
corpora introduced in Section 3.

5.1 Validity Test: Original vs. Randomized
Dialogs

We first establish that our novel DAS measure is
valid by testing whether it can distinguish dialogs
in their original order vs. dialogs with randomly
scrambled turns (the order of dialog turns are ran-
domized within speakers), inspired by similar ap-
proaches in previous work (Gandhe and Traum,
2008; Ward and Litman, 2007; Barzilay and Lap-
ata, 2005). We calculate DAS scores for original
dialogs and randomized dialogs using target=Both
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# Feature Sets Original Random
A

W
C

48
Unigram + Bigram 0.10 0.07
All but LIWC 0.13 0.10
LIWC 0.48 0.46

W
A

C

36
Unigram + Bigram 0.22 0.19
All but LIWC 0.18 0.16
LIWC 0.55 0.54

M
PT 128

Unigram + Bigram 0.27 0.24
All but LIWC 0.20 0.18
LIWC 0.54 0.54

SW
B

D

1126
Unigram + Bigram 0.18 0.17
All but LIWC 0.20 0.19
LIWC 0.67 0.66

Table 3: Number of dialogs in four corpora, and av-
erage DAS scores of different feature sets for origi-
nal and randomized dialogs. Bold numbers indicate
statistically significant differences (p < 0.0001)
between DAS scores for original and randomized
dialogs in paired t-tests .

(Sec. 2) to obtain overall adaptation scores for both
speakers.

We first test on lexical features (unigram and
bigram) as in previous work. Then we add addi-
tional linguistic features (syntactic structure, refer-
ring expression, and discourse marker). These five
features (see Section 4) are referred to as “all but
LIWC”. Finally, we test DAS validity using the
higher level LIWC features.

We perform paired t-tests on DAS scores for
original dialogs and DAS scores for randomized di-
alogs, pairing every original dialog with its random-
ized dialog. Table 3 shows the number of dialogs in
each corpus, the average DAS scores of all dialogs
within the corpus and p-values of corresponding
t-tests. Although the differences between the av-
erage scores are relatively small, the differences
in almost all paired t-tests are extremely statisti-
cally significant (cells in bold, p < 0.0001). The
paired t-test on MPT using LIWC features shows a
significant difference between the two test groups
(p < 0.05). The original dialog corpora achieve
higher average DAS scores than the randomized
corpora for all 12 original-random pairs. The re-
sults show that DAS measure is sensitive to dialog
turn order, as it should be if it is measuring dialog
coherence and adaptation.

5.2 Adaptation across corpora and across
features

This experiment aims to broadly examine the dif-
ferences in adaptation across different corpora and
feature sets. We first compute DAS on the whole

Row Feature Sets AWC WAC MPT SWBD

1 Lemma/POS 0.14 0.15 0.29 0.28
2 Bigram 0.04 0.04 0.01 0.07
3 Syntax 0.17 0.14 0.11 0.28
4 ReferExp 0.03 0.03 0.01 0.01
5 Hedge 0.17 0.19 0.18 0.25
6 LIWC 0.48 0.55 0.53 0.71
7 Extra 0.40 0.46 0.30 0.58
8 Emot 0.48 0.50 0.38 0.72
9 Agree 0.47 0.51 0.44 0.71
10 Consc 0.38 0.44 0.20 0.55
11 Open 0.44 0.44 0.31 0.73

Table 4: Average DAS scores for each feature set.

dialog level for each feature set from Section 4,
and then calculate the average across the corpus.
We use target=Both (Sec 2) to obtain an overall
measure of adaptation and leave calculating fine-
grained DAS measures to Section 5.3. Table 4
provides results. We will refer to features in row
1 to 6 as “linguistic features” and row 7 to 11 as
“personality features”.

Comparing columns, we first examine the DAS
scores across different corpora. All p-values re-
ported below are from paired t-tests. The two most
similar corpora, the AWC and WAC, show no sig-
nificant difference on linguistic features (p = 0.43).
At the same time, the AWC and WAC do differ
from the other two corpora. This demonstrates
that the DAS reflects real similarities and differ-
ences across corpora. MPT shows lower DAS
scores on all linguistic features except for lemma
(word repetition), where it achieves the highest
DAS score. With respect to personality features,
WAC has significantly higher DAS scores than
AWC (p < 0.05), possibly because of the different
experiment settings: college student participants
are more comfortable around their own campus
than in downtown. MPT shows significantly lower
DAS scores on personality features than AWC and
WAC (p < 0.05). This may be because the MPT
setting is the most constrained of the four corpora:
being fixed in topic and location means dialogs
are less likely to be influenced by environmental
factors or to contain social chit chat. SWBD has
the highest DAS scores in all feature sets except
for referring expression. The higher DAS in non-
referring features could be because the social chit
chat allows more adaptation to occur. In addition,
the dialogs we measure in SWBD are backchannel-
filtered. The lower referring expression (respective
to other SWBD scores) could be because SWBD
does not require the referring expressions necessary

25



for the other three task-related corpora. We posit
that the DAS adaptation models we present can be
used in existing NLG architectures, described in
Sec. 2. The AWC column in Table 4 shows adap-
tation model in the form of a DAS vector obtained
from the ArtWalk Corpus.

Comparing rows, we then examine DAS scores
among different features sets. LIWC has the high-
est DAS score among linguistic features, ranging
from 0.48 to 0.71. While other linguistic fea-
tures are largely content-specific, LIWC consists of
higher level features that cover broader categories,
thus its high DAS scores are expected. The DAS
scores for the lemma feature range from 0.14 to
0.29, followed by Syntactic Structure (0.11 to 0.28),
Hedge (0.17 to 0.25) and Bigram (0.01 to 0.07).
Referring Expression has the lowest DAS score
(0.01 to 0.03), possibly because our automatic ex-
traction of referring expressions creates numerous
subsets of one referring expression. Among per-
sonality features, Emotion Stability, Agreeableness,
and Openness to Experience traits are adapted more
than Extraversion and Conscientiousness. We leave
to future work the question of why these traits have
higher DAS scores.

5.3 Adaptation by Dialog Segment and
Speaker

Our primary goal is to model adaptation at a fine-
grained level in order to provide fine-grained con-
trol of an NLG engine. To that end, we report re-
sults for adaptation models on a per dialog-segment
and per-speaker basis.

Reliable discourse segmentation is notoriously
difficult (Passonneau and Litman, 1996), thus we
heuristically divide each task-oriented dialog into
segments based on number of destinations on the
map: this effectively divides the dialog into sub-
tasks. Since each dialog in SWBD only has one
topic, we divide SWBD into 5 segments.7 We com-
pute DAS for each segment, and take an average
across all dialogs in the corpus for each segment.

We compare all LIWC features vs. extraversion
LIWC features because they provide high DAS
scores across corpora. We also aim to explore the
dynamics between two conversants on the extraver-
sion scale. Figure 5 in Appendix illustrates how
DAS varies as a function of speaker and dialog
segment. In AWC, scores for all LIWC features

7To ensure two way adaptation exists in every segment
(both speaker A adapting to B, and B adapting to A), the
minimum length (number of turns) of each segment is 3. Thus
we only work with dialogs longer than 15 turns in SWBD.

slightly decrease as dialogs progress (Fig. 5(a)),
while extraversion features show a distinct increas-
ing trend with correlation coefficients ranging from
0.7 to 0.86 (Fig. 5(b)), despite being a subset of all
LIWC features.8 Average DAS displays the same
decreasing trend in all and extraversion LIWC fea-
tures for SWBD (Fig. 5(g) and 5(h)). We speculate
that this might be due to the setup of SWBD: as the
dialogs progress, conversants have less to discuss
about the topic and are less interested. We also
calculate per segment adaptation in WAC and MPT,
but their DAS scores do not show overall trends
across the length of the dialog (Fig. 5(c) to 5(f)).

We also explore whether speaker role and ini-
tiative affects adaptation. We use target=Both, tar-
get=D, and target=F to calculate DAS for each
target.9 We hypothesize that directors and follow-
ers adapt differently in task-oriented dialogs. In
all task-oriented corpora (AWC, WAC, and MPT),
we observe generally higher DAS scores with tar-
get=D, indicating that in order to drive the dialogs,
directors adapt more to followers. In SWBD, the
speaker initiating the call (who brings up the discus-
sion topic and may therefore drive the conversation)
generally exhibits more adaptation.

5.4 Adaptation on Different Window Sizes

This experiment aims to examine the trend of DAS
scores as the window size increases. We begin
with a window size of 1 and gradually increase it
to 5. For a window size of n, the target utterance
t is paired with the n-th utterance from a differ-
ent speaker preceding t, if any. For example, in
Figure 1, when window size is 3, target D100 is
paired with prime F97; target D99 does not have
any prime, thus no pair is formed.

Similar to Sec. 5.1, we compare DAS scores be-
tween dialogs in their original order vs. dialogs
with randomly scrambled turns. We hypothesize
that similar to the results of repetition decay mea-
sures (Reitter et al., 2006a; Ward and Litman, 2007;
Pietsch et al., 2012), the DAS scores of original di-
alogs would decrease as the window size increases.
We use target=both to obtain overall adaptation
scores involving both speakers, and calculate DAS
with all but the Personality LIWC feature sets in-
troduced in Sec. 4. We first compute DAS on the
whole dialog level for each window size, and then
calculate the average DAS for each window size

8Using Simple Linear Regression in Weka 3.8.1.
9In task-oriented dialogs, D stands for Director, F for Fol-

lower. In SWBD, D stands for the speaker initiating the call.
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across the corpus.
Results show that DAS scores for the original

dialogs in all corpora decrease as window size in-
creases, while DAS scores for the randomized di-
alogs stay relatively stable. Figure 6 in Appendix
shows plots of average DAS scores on different
window sizes for original and randomized dialogs.
Plots of the AWC and WAC show similar trends.
Experiments with larger window sizes show that
the original and random scores meet at window
size 6 - 7 (with different versions of randomized di-
alogs). In MapTask, the original and random scores
meet at window size 3 - 4. In SWBD, original and
random scores meet at window size 2.

6 Related Work

Recent measures of linguistic adaptation fall into
three categories: probabilistic measures, repeti-
tion decay measures, and document similarity mea-
sures (Xu and Reitter, 2015). Probabilistic mea-
sures compute the probability of a single linguistic
feature appearing in the target after its appearance
in the prime. Some measures in this category focus
more on comparing adaptation amongst features
and do not handle turn by turn adaptation (Church,
2000; Stenchikova and Stent, 2007). Moreover,
these measures produce scores for individual fea-
tures, which need aggregation to reflect overall
adaptivity (Danescu-Niculescu-Mizil et al., 2011,
2012). Document similarity measures calculate the
similarity between prime and target by measuring
the number of features that appear in both prime
and target, normalized by the size of the two text
sets (Wang et al., 2014). Both probabilistic mea-
sures and document similarity measures require the
whole dialog to be complete before calculation.

Repetition decay measures observe the decay
rate of repetition probability of linguistic features.
Previous work has fit the probability of linguistic
feature repetition decrease with the distance be-
tween prime and target in logarithmic decay mod-
els (Reitter et al., 2006a,b; Reitter, 2008), linear
decay models (Ward and Litman, 2007), and expo-
nential decay models (Pietsch et al., 2012).

Previous work on linguistic adaptation in natu-
ral language generation has also attempted to use
adaptation models learned from human conversa-
tions. The alignment-capable microplanner SPUD
prime (Buschmeier et al., 2009, 2010) uses the rep-
etition decay model from Reitter (2008) as part
of the activation functions for linguistic structures.
However, the parameters are not learned from real

data. Repetition decay models do well in statistical
parameterized NLG, but is hard to apply to over-
generate and rank NLG. Isard et al. (2006) apply
a pre-trained n-grams adaptation model to gener-
ate conversations. Hu et al. (2014) explore the
effects of adaptation to various features by human
evaluations, but their generator is not capable of
deciding which features to adapt based on input
context. Dušek and Jurčı́ček (2016) use a seq2seq
model to generate responses adapting to previous
context. They utilize an n-gram match ranker that
promotes outputs with phrase overlap with context.
Our learned adaptation models could serve as a
ranker. In addition to n-grams, DAS could pro-
duce models with any combinations of feature sets,
providing more versatile adaptation behavior.

7 Discussion and Future Work

To obtain models of linguistic adaptation, most
measures could only measure an individual fea-
ture at a time, and need the whole dialog to calcu-
late the measure (Church, 2000; Stenchikova and
Stent, 2007; Danescu-Niculescu-Mizil et al., 2012;
Pietsch et al., 2012; Reitter et al., 2006b; Ward and
Litman, 2007). This paper proposes the Dialog
Adaptation Score (DAS) measure, which can be
applied to NLG because it can be calculated on any
segment of a dialog, and for any feature set.

We first validate our measure by showing that
the average DAS of original dialogs is significantly
higher than randomized dialogs, indicating that it
is sensitive to dialog priming as intended. We then
use DAS to show that feature sets such as LIWC,
Syntactic Structure, and Hedge/Discourse Marker
are adapted more than Bigram and Referring Ex-
pressions. We also demonstrate how we can use
DAS to develop fine-grained models of adaptation:
e.g. DAS applied to model adaptation in extraver-
sion displays a distinct trend compared to all LIWC
features in the task-oriented dialog corpus AWC.
Finally, we show that the degree of adaptation de-
creases as the window size increases. We leave to
future work the implementation and evaluation of
DAS adaptation models in natural language gener-
ation systems.
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(a) AWC all LIWC features (b) AWC extraversion LIWC features

(c) WAC all LIWC features (d) WAC extraversion LIWC features

(e) MPT all LIWC features (f) MPT extraversion LIWC features

(g) SWBD all LIWC features (h) SWBD extraversion LIWC features

Figure 5: Plots of average DAS as the dialogs progress, using all LIWC features vs. extraversion LIWC
features.
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(a) ArtWalk Corpus (b) Walking Around Corpus

(c) MapTask Corpus (d) Filtered Switchboard Corpus

Figure 6: Plots of average DAS on different window sizes (1 to 5) for original dialogs vs. randomized
dialogs, using all feature sets except Personality LIWC.
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Abstract

Dialogue personalization is an important
issue in the field of open-domain chat-
oriented dialogue systems. If these sys-
tems could consider their users’ interests,
user engagement and satisfaction would
be greatly improved. This paper proposes
a neural network-based method for esti-
mating users’ interests from their utter-
ances in chat dialogues to personalize di-
alogue systems’ responses. We introduce
a method for effectively extracting topics
and user interests from utterances and also
propose a pre-training approach that in-
creases learning efficiency. Our experi-
mental results indicate that the proposed
model can estimate user’s interest more
accurately than baseline approaches.

1 Introduction

Chat is a very important part of human com-
munication. In fact, it has been reported that
it makes up about 62% of all conversations
(Koiso et al., 2016). Since chat is also impor-
tant for human-to-machine communication, stud-
ies of dialogue systems that aim to enable open-
domain chat have received much attention in re-
cent years (Ritter et al., 2011; Higashinaka et al.,
2014; Sordoni et al., 2015; Vinyals and Le, 2015;
Zhao et al., 2017). In these studies, dialogue per-
sonalization is an important issue: if such systems
could consider users’ experiences and interests
when engaging them in a conversation, it would
greatly improve user satisfaction. To this end, Hi-
rano et al. extracted predicate-argument structures
(Hirano et al., 2015), Zhang and Chai focused on
conversational entailment (Zhang and Chai, 2009,
2010) and Bang et al. extracted entity relation-
ships (Bang et al., 2015). These studies aimed to

employ users’ utterance histories to generate per-
sonalized responses.

In contrast, this study aims to estimate the user’s
interest in particular topics (e.g., music, fashion,
or health) to personalize the dialogue system’s re-
sponses based on these interests. This would allow
it to focus on topics the user is interested in and
avoid topics they dislike, enhancing user engage-
ment and satisfaction.

This paper therefore proposes a neural network-
based method for estimating users’ interests using
their utterances in chat dialogues. Our method es-
timates their levels of interest not only in topics
that appear in the dialogues, but also in other top-
ics that have not appeared. Even if a user enjoys
talking about the current topic, they will get bored
if the system talks about it endlessly. By gauging
the user’s potential interest in topics that have not
directly appeared in the dialogue, the system can
expand the discussion to other topics before the
user gets bored.

In this study, we use data from human-to-
human dialogues because the current performance
of chat-oriented dialogue systems is not sufficient
for them to talk with humans naturally. We also
use textual dialogue data to avoid speech recog-
nition issues. In addition, to estimate the target
user’s interests independently of the dialogue sys-
tem’s utterances, we only consider their own utter-
ances and ignore those of their dialogue partner.

This paper brings three main contributions, as
follows. 1. We propose a topic-specific sen-
tence attention approach that enables topics and
user interests to be efficiently extracted from ut-
terances. 2. We develop a method for pre-training
our model’s utterance encoder, so it learns what
topics are related to each target user’s utterance.
3. We show experimentally that the proposed sen-
tence attention and pre-training methods can pro-
vide high performance when used together.
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2 Related Work

Many studies related to estimating user interest
from text data have targeted social network
services (SNS), especially Twitter users. For
example, Chen et al. proposed a method of
modeling interest using the frequencies of
words in tweets by the target user and followers
(Chen et al., 2010). Some methods have also been
proposed that consider superordinate concepts
acquired from knowledge bases. For example,
Abel et al. modeled Twitter users using the
appearance frequencies of certain named entities
(e.g., people, events, or music groups), acquired
using OpenCalais 1 (Abel et al., 2011). In addi-
tion, some methods have used categories from
Wikipedia (Michelson and Macskassy, 2010;
Kapanipathi et al., 2014; Zarrinkalam et al., 2015)
or DBPedia (Kapanipathi et al., 2011). Several
methods have also been proposed that use topic
models, such as latent dirichlet allocation (LDA)
(Weng et al., 2010; Bhattacharya et al., 2014;
Han and Lee, 2016). However, it is difficult to
apply such methods directly to dialogue because
they assume that users are posting about subjects
they are interested in. This is a reasonable
assumption for SNS data, but in conversations,
people do not always limit themselves to topics
they are interested in. For instance, people will
play along and discuss subjects the other persons
are interested in, even if they are not interested in
them, as well.

Other studies have attempted to estimate users’
levels of interest (LOI) from dialogues. Schuller
et al. tackled the task of estimating listeners’ in-
terest in a product from dialogues between them
and someone introducing a particular product,
proposing a support vector machine (SVM)-based
method incorporating acoustic and linguistic fea-
tures (Schuller et al., 2006)．In 2010, LOI estima-
tion was selected as a sub-challenge of the INTER-
SPEECH Paralinguistic Challenge (Schuller et al.,
2006), but there the focus was on single-topic
(product) interest estimation from spoken dia-
logue, not open-domain estimation. In addition,
that task considered business dialogues, not chats.

3 Model Architecture

The task considered in this paper is as follows.
Given an utterance set Us = (u1, u2, ..., un) ut-

1http://www.opencalais.com/

Figure 1: Overview of the proposed interest esti-
mation model.

tered by a speaker s during dialogues with other
speakers, we estimate their degrees of interest
Ys = (y1, y2, ..., ym) in topics in a given topic
set T = (t1, t2, ..., tm). Here, the ti correspond
to concrete topics, such as movies or travel while
yi indicates the speaker’s level of interest in ti, on
the three-point scale used for the LOI estimation
task described in the previous section. Using this
scale, the yi can take the values 0 (disinterest, in-
difference and neutrality), 1 (light interest), or 2
(strong interest).

To accurately gauge the speaker’s interest from
their utterances, we believe it is important to ex-
tract the following two types of information effi-
ciently.

• The topic of each utterance

• How interested the speaker is in the topic

Our proposed interest estimation model extracts
this information efficiently and uses a pre-training
method to improve learning. Figure 1 presents
an overview of our neural network model, which
first encodes the word sequence, applies word at-
tention and topic-specific sentence attention, and
finally estimates the degrees of interest Ds =
(dt1 , dt2 , ..., dtm). The proposed pre-training
method is used for the word sequence encoder.
The model is described in detail below.
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3.1 Word Sequence Encoder

The word sequence encoder converts utterances
into fixed-length vectors using a recurrent neural
network (RNN). First, the words in each utterance
are converted into word vectors using Word2vec
(Mikolov et al., 2013), giving word vector se-
quences x = (x1, x2, ..., xl). The RNN encoder
uses a hidden bidirectional-GRU (BiGRU) layer,
which consists of a forward GRU that reads from
x1 to xl in order and a backward GRU that reads
from xl to x1 in reverse order. The forward GRU
computes the forward hidden states

−→
hi as follows.

−→
hi =

−−−→
GRU(xi,

−−→
hi−1) (1)

The backward GRU calculates the backward
hidden states

←−
hi in a similar way. By combining

the outputs of both GRUs, we obtain the objective
hidden state hi:

hi = [
−→
hi :
←−
hi ] (2)

where [:] represents vector concatenation.

3.2 Topic Classification Pre-Training

Estimating the user’s level of interest in each topic
requires first assessing the topic of each utterance.
Since this is not given explicitly, the model must
infer this information from the utterance set and
degrees of interest in each topic, so the learning
difficulty is high. In this study, based on the idea
of pre-training (Erhan et al., 2010), we introduce
a new pre-training method for the sentence topic
classification task to the word sequence encoder.
The important point to note about this task is that
the topic classes involved are identical to those in
the topic set Ys. This helps to reduce the difficulty
of learning to estimate the relationships between
utterances and topics and allows the model to fo-
cus on interest estimation during the main training
phase.

During pre-training, the classification probabil-
ity p for each topic is calculated as follows, based
on the output hl of the BiGRU after inputting the
last word vector xl. (Word attention, as described
in the next section, is not used in pre-training.)

p = softmax(Wchl + bc) (3)

where Wc and bc are parameters for topic classifi-
cation. The cross-entropy is used as the loss func-
tion during pre-training.

3.3 Word Attention

Based on an idea from Yang et al., we also in-
cluded word attention in our model (Yang et al.,
2016). Word attention is based on the idea that all
words do not contribute equally to the desired re-
sult and involves using an attention mechanism to
weight each word differently. The resulting utter-
ance vector z is obtained as follows.

vhi = tanh(Wωhi + bω) (4)

αhi =
exp(vT

hivω)∑
i exp(vT

hivω)
(5)

z =
∑

i

αhihi (6)

where Wω and bω are parameters. Unlike the orig-
inal attention mechanism used in neural transla-
tion (Bahdanau et al., 2015) and neural dialogue
(Shang et al., 2015) models, the word attention
mechanism uses a common parameter, called con-
text vector vω to calculate weight αi for each hid-
den state. vω is a high-level representation for
calculating word importance and, like the model’s
other parameters, is randomly initialized and then
optimized.

3.4 Topic Specific Sentence Attention

Our model uses a word sequence encoder with
word attention to convert the utterance set Us =
(u1, u2, ..., un) into the utterance vector set Zs =
(z1, z2, ..., zn). It then extracts information for es-
timating the level of interest in each topic from Zs,
but, as with word attention, not all utterances con-
tribute equally. Yang et al. proposed a sentence
attention mechanism that takes the same approach
as for word attention, but, since it uses only one
parameter to calculate sentence importance (simi-
lar to the context vector vω for word attention), it
is not capable of topic-specific estimation. This is
because the important utterances in a given utter-
ance set differ from topic to topic. For example, “I
jog every morning” is probably useful for estimat-
ing interest in topics, such as sports or health, but
not in, say, computers or vehicles.

In this study, we therefore propose a new topic-
specific sentence attention approach. The topic
vector vti represents the importance of each sen-
tence for topic ti, and the associated content vector
cti is calculated as follows.

vj = tanh(Wrzj + br) (7)
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αjti =
exp(vT

j vti)∑
j exp(vT

j vti)
(8)

cti =
∑

j

αjtizj (9)

Here, Wr and br are shared, topic-independent pa-
rameters. The topic vector vti is randomly initial-
ized and then optimized during training.

3.5 Interest Estimation
We then use the content vector cjti to compute the
degree of interest dti in topic ti as follows.

dti = tanh(Wticti + bti) + 1 (10)

Here, the parameters Wti and bti estimate the over-
all degree of interest in the topics ti, and it is dif-
ferent for each topic after optimization. Finally,
one is added, so that dti uses the same 0 to 2 range
as the correct values yi.

During training, we use the mean squared error
(MSE) between the correct answer yi and dti as
the loss function:

L =
1

n

n∑

i

(yi − dti)
2 (11)

4 Experiments

We conducted a series of experiments to evaluate
the proposed method’s performance. For these,
we created a dataset based on logs of one-to-one
text chats between human subjects and the results
of questionnaires answered by each subject. We
also tested several baseline methods for compari-
son purposes.

4.1 Datasets
We asked each subject to first fill out a question-
naire about their interests and then engage in text
chats in Japanese with partners they had not previ-
ously been acquainted with. We recruited 163 sub-
jects via the CrowdWorks2 crowd-sourcing site.
The subjects were asked to rate their levels of in-
terest in the 24 topic categories shown in Table
1 using a three-point scale discussed in Section
3. These topics were selected based on the cate-
gories used by Yahoo! Chiebukuro3, a Japanese
question-and-answer site, focusing on topics that
are likely to appear in one-to-one dialogues be-
tween strangers.

2https://crowdworks.jp/
3https://chiebukuro.yahoo.co.jp/

Table 1: Topic Categories
Travel Movies Celebrities
Music Reading Anime / Manga
Games Computers Home Appliances
Beauty Fashion Sports / Exercise
Health School Outdoor Activities

Housing Housekeeping Marriage / Love
Animals Family Cooking / Meal
Vehicles History Politics / Economy

Table 2: Example dialogue (translated by authors)
A 対話を開始します。よろしくお願いしま
す。
Let’s start a conversation. Nice to meet
you.

B はい、よろしくお願いします。
Hi, nice to meet you.

A 何かご趣味はありますか？
What are your hobbies?

B 最近はペット中心の生活になっているの
でペットが趣味になりますね。
Currently, I am living a pet-centered
lifestyle. So, raising pets is my hobby.

A 何を飼ってらっしゃるのですか？
Which pets do you have?

B 猫を飼っています。３匹いるのでにぎや
かですよ。
I have three cats and they are lively.

A 3匹ですか、いいですね！雑種ですか？
Three cats. That sounds great! Are they
mixed breed?

B はい、全部雑種です。手がかからなくて
楽ですね。何か動物は飼っていますか？
Yes, they are all mixed breed cats. They
are low-maintenance and easy to keep. Do
you have any animals?

Each dialogue lasted for one hour and was con-
ducted via Skype instant messaging. We only in-
structed the subjects to “Please try to find things
you and your partner are both interested in and
then try to broaden your conversation about these
subjects.” We gave the subjects no specific instruc-
tions as to the intended content or topics of their
conversations. Table 2 shows an example dialogue
between subject A and B.

All the utterances in the chat data were then
classified by subject. Each data point consisted of
all the data about one subject, namely their chat ut-
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Table 3: Data Statistics
Number of users (data points) 163
Number of dialogues 408
Number of utterances 49029
Avg. number of strong interest topics 11.48
Avg. number of light interest topics 7.30
Avg. number of neutral topics 5.21

terances and questionnaire responses (correspond
to Us and Ys defined in Section 3). The data was
evaluated using 10-fold cross-validation and their
statistics are shown in Table 3.

4.2 Settings

Word2Vec (Mikolov et al., 2013) was trained us-
ing 100 GB of Twitter data with 200 embedding
cells, a minimum word frequency of 10, and a
skip-gram window size of 5.

The word sequence encoder was a single-layer
BiGRU RNN with 200 input cells and 400 out-
put cells. The word and sentence attention layers
had 400 input and output cells while the estimation
layer had 400 input cells and 1 output cell. The
model was trained using Adam (Kingma and Ba,
2015).

During pre-training, we used questions and an-
swers from the Yahoo! Chiebukuro Data (2nd edi-
tion))4) for each topic. All topics were equally
covered, and a total of 770k sentences were used
for training while 2400 sentences (100 for each
topic) were used for testing. After pre-training,
the topic classification accuracy for the test data
was 0.755.

4.3 Evaluation

When using the proposed method as part of a dia-
logue system, it is effective to select the best topic
from those available for the system to generate an
appropriate response. Therefore, in this experi-
ment, each topic was ranked based on the esti-
mated degree of interest dti , and the methods were
evaluated based on whether the topics the user was
interested in should have been ranked higher or the
other topics ranked lower. The rankings were eval-
uated using the normalized discounted cumulative
gain (NDCG), a widely used metric in the field of
information retrieval. This gives values between 0
and 1, with higher values indicating more accurate

4http://www.nii.ac.jp/dsc/idr/yahoo/chiebkr2/Y chiebuku
ro.html

ranking predictions and is calculated as follows.

NDCG@k =
DCGk

IDCGk
(12)

DCGk = reli +
K∑

i=2

reli
log2i

(13)

Here, k is the number of top-ranked objects used
for the NDCG calculation, and reli is the graded
relevance of the result at position i, which was
given by the degree of interest Ys in this experi-
ment. The ideal DCG (IDCG) is the DCG if
the ranking list had been correctly ordered by rel-
evance.

In addition, to evaluate the accuracy of the es-
timated degrees of interest in each topic, we also
calculated the MSEs between the results of each
method and the correct answers.

4.4 Baseline Methods
To evaluate the proposed model, we also con-
ducted experiments using the following three
modified models.

Without Pre-Training 　
To evaluate the effectiveness of topic clas-
sification pre-training, we tested our model
without this step. Instead, the word sequence
encoder was randomly initialized and then
trained. This model was otherwise identical
to the proposed method.

Without Sentence Attention 　
To evaluate the effectiveness of topic-specific
sentence attention, we tried instead using
max-pooling to obtain the content vector.
Again, this model was identical to the pro-
posed method.

Without Pre-Training or Sentence Attention
This model combined the two modifications
mentioned above: it did not use topic classi-
fication pre-training and used max-pooling to
obtain the content vectors, but was otherwise
identical to the proposed method.

We also compared our model’s performance to
those of the following two baseline methods.

Topic Frequency 　
The first baseline was based on a method,
proposed by Abel et al., that identifies the
named entities (such as people, events, or

36



Figure 2: NDCG@k results for all methods, for k
between 1 and 24.

Table 4: Mean Squared Error
Proposed 0.533
Without Pre-Training 0.580
Without Sentence Attention 0.561
Without Pre-Training or 0.568
Sentence Attention
SVR (unigram) 0.597
SVR (unigram + bigram) 0.611

music groups) associated with words in the
user’s tweets using OpenCalais and models
the user’s interests using a named entity fre-
quency vector (Abel et al., 2011). However,
as we used Japanese dialogues, we could not
use OpenCalais, so we instead used the topic
classifier described in Section 3.2. Since this
classifier is trained for classification for sen-
tences and not for words, we employed sen-
tence level topic frequency. The topic fre-
quency was used to gauge the user’s interest,
and the topics were ranked in frequency or-
der.

SVR 　
The second baseline method used support
vector regression (SVR) to estimate the de-
gree of interest. We conducted experiments
using only unigrams, and using both uni-
grams and bigrams. We used the RBF ker-
nel function. The SVR models were trained
for each topic individually and then used to
estimate the degrees of interest.

4.5 Results

Figure 2 shows the NDCG results for the top-
ics ranked in the top k. These indicate that the
proposed method performed better than the other
methods for all values of k. Comparing the per-
formances of the methods that used pre-training
(“Proposed” and “Without Sentence Attention”)
with those of the ones that did not (“Without
Pre-Training” and “Without Pre-Training or Sen-
tence Attention”) indicates that the proposed pre-
training step was effective. On the other hand,
a method that used sentence attention (“Without
Pre-Training”) showed nearly the same results as
one that did not (“Without Pre-Training or Sen-
tence Attention”), although the latter did achieve
higher NDCGs for k ≥ 5. This indicates that
using sentence attention alone does not improve
performance. However, the proposed method per-
formed better than the method without sentence at-
tention, confirming that sentence attention is use-
ful, but only if it is used in conjunction with pre-
training.

Turning now to the SVR-based methods, we
observe that using only unigram features worked
better than using both unigrams and bigrams, al-
though both methods were still inferior to the
neural network-based methods, including the pro-
posed method.

When k = 1, the topic frequency baseline
achieved higher NDCGs than the SVR-based
methods, because it correctly noted that users were
strongly interested in the topics they spoke about
most frequently. However, these results were still
inferior to those of the neural network-based meth-
ods. Furthermore, it presented the worst NDCG
results among all the methods for k ≥ 4, due
to speakers sometimes talking about subjects they
were not interested in, as discussed in Section 2.

Table 4 shows the MSEs between the degree of
interest results for each method and the correct
answers (excluding Topic Frequency, which can-
not output the degree of interest). The proposed
method gave significantly smaller MSE value, in-
dicating that its estimates were the most accurate.
In addition, the “Without Pre-Training” method
showed the lowest performance of all the neural
network-based methods, also indicating that the
proposed sentence attention approach is not effec-
tive without also using pre-training.

37



Figure 3: Visualization of Attention (Proposed)

Figure 4: Visualization of Attention (Without Pre-Training)

4.6 Discussion

The experimental results discussed in the previous
section indicate that it is important to use the pro-
posed pre-training and sentence attention steps to-
gether. To analyze the sentence attention mecha-
nism further, we visualized the sentence weights
αjti given by equation (8) for selected topics and
utterances. Figures 3 and 4 show the sentence

weights with and without pre-training, respec-
tively. Here, darker cells indicate higher αjti val-
ues.

Figure 3 shows that the sentence weights for the
topics corresponding to the actual meaning of the
sentence are high. (1), (2) and (3) are easy-to-
understand examples. The topics related to each
utterance take the highest weights. In addition,

38



utterance (4) includes sports-related words, such
as “baseball” and “rule”, but the weight of the
“Sports / Exercise” topic is not high because the
utterance did not indicate such an interest on the
part of the speaker. Thus, the sentence weights
do not simply reflect the topics of the words, but
also the user’s level of interest in the topic. In-
terestingly, although the utterance (6) refers to the
smartphone game “Pokemon GO”, the weight of
the “Game” topic is not very high, but those of
the “Sports/Exercise” and “Health” topics are both
high. Pokemon GO is interesting to people who
do not usually play games, and this appears to be
reflected in the results. On the other hand, utter-
ance (7) shows high weights for several topics that
intuitively appear to be unrelated to the utterance
itself.

The sentence weights shown in Figure 4 often
do not correspond to the topics or meanings of
the utterances. For example, utterance (5) is not
important for interest estimation and its weights
in Figure 3 are small. However, in Figure 4, all
weights are relatively high. Similarly, utterances
(7) and (8) show high weights for unrelated top-
ics.

The above results confirm that the pre-training
step is important for learning the topic-specific
sentence attention correctly. Without pre-training,
the model must learn the relationships between
utterances and topics by starting from a clean
slate, and the difficulty of this task makes harder
to determine the appropriate results. The ex-
perimental results in the previous section show
that pre-training makes this task easier and im-
proves performance. With proper training, topic-
specific sentence attention then enabled the pro-
posed method to achieve the best performance.

5 Conclusion

In this paper, we have presented a neural network-
based method for estimating users’ levels of in-
terest in a pre-determined list of topics based on
their utterances in chat dialogues. The proposed
method first encodes utterances by using BiGRU
and considering word attention, a set of utterance
vectors was obtained. It then uses these to gener-
ate content vectors corresponding to each topic via
topic-specific sentence attention. Finally, it uses
the content vectors to estimate the user’s degree
of interest in each topic. The utterance encoder
is pre-trained to classify sentences by topic before

the whole model is trained. Our experimental re-
sults showed that the proposed method can esti-
mate degrees of interest in topics more accurately
than baseline methods. In addition, we found that
it was most effecting to use topic-specific sentence
attention and topic classification pre-training in
combination.

In future work, we plan to apply the proposed
method to a dialogue system and conduct dialogue
experiments with human users. Even if we can es-
timate which topics a user is interested in, gener-
ating and selecting concrete utterances remains a
challenging problem. For example, users who are
interested in sports are not equally interested in all
of them: someone may be interested in football
but not in golf, for instance. We therefore plan to
develop an appropriate way of incorporating the
proposed method into such a system.
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Abstract

The role of alignment between interlocu-
tors in second language learning is dif-
ferent to that in fluent conversational di-
alogue. Learners gain linguistic skill
through increased alignment, yet the ex-
tent to which they can align will be con-
strained by their ability. Tutors may use
alignment to teach and encourage the stu-
dent, yet still must push the student and
correct their errors, decreasing alignment.
To understand how learner ability interacts
with alignment, we measure the influence
of ability on lexical priming, an indicator
of alignment. We find that lexical prim-
ing in learner-tutor dialogues differs from
that in conversational and task-based di-
alogues, and we find evidence that align-
ment increases with ability and with word
complexity.

1 Introduction

The Interactive Alignment Model (Pickering and
Garrod, 2004) suggests that successful dialogue
arises from an alignment of representations (in-
cluding phonological, lexical, syntactic and se-
mantic), and therefore of speakers’ situation mod-
els. This model assumes that these aspects of the
speakers’ language will align automatically as the
dialogue progresses and will greatly simplify both
production and comprehension in dialogue.

In a Second Language (L2) learning setting, a
learner will have a more limited scope for align-
ment due to their situational understanding, and
their proficiency will dictate to what extent they
are capable of aligning lexically, syntactically
and semantically (Pickering and Garrod, 2006).
Even once a situational alignment is reached (i.e.
the learner understands the context of their in-

terlocutor’s interaction with them) there remains
the question of the learners receptive vs. pro-
ductive vocabulary knowledge (words they under-
stand when others use them vs. words they can use
themselves), both of which are active in L2 dia-
logues (Takač, 2008) and constrain their scope for
alignment. Student alignment therefore will also
be influenced by the tutor’s strategy; or by how
much of the student’s receptive language the tutor
produces which facilitates the student productive
ability in this context.

We expect that alignment within L2 learner di-
alogue will differ from alignment in fluent dia-
logues due to the different constraints mentioned
above (Costa et al., 2008). We also expect learn-
ers to align to their interlocutor to a compara-
tively greater degree than found in native dialogue.
This is both because of the difficulty of the task
leading to a greater need for alignment (Picker-
ing and Garrod, 2006), and because we know that
an L2 learner’s lexical complexity increases in a
dialogue setting due to the shared context words
within that dialogue, compared to the level at
which they are capable of expressing themselves
in monologue (Robinson, 2011).

In order to find out whether ability affects align-
ment in L2 dialogue, we investigate lexical prim-
ing effects between L2 learner and tutor. Priming
is a mechanism which brings about alignment and
entrainment, and when interlocutors use the same
words, we say they are lexically entrained (Bren-
nan and Clark, 1996). We compare the effects
against two different corpora: task-based (Ander-
son et al., 1991) and conversational (Godfrey et al.,
1992), and between different levels of L2 student
competency. We expect that alignment of tutor to
student and vice versa will be different, and that
the degree of alignment at a higher level of L2
learner competence will be more similar to that of
conversational dialogue than that at a lower level
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(Sinclair et al., 2017). We are interested in the dif-
ference between tutor-to-student (TS) and student-
to-tutor (ST) alignment, as there are various fac-
tors which could contribute to both increased and
decreased alignment to that existing between two
fluent interlocutors (Costa et al., 2008).

1.1 Motivation
By examining alignment differences, we aim to
better understand the relationship between tutor
adaptation and L2 learner production. This under-
standing can inform analysis of “good” tutoring
moves, leading to the creation of either an L2 tu-
toring language model or more informed L2 dia-
logue agent design, which can exploit this knowl-
edge of effective tutor alignment strategy to con-
tribute to improved automated L2 tutoring. The
potential benefits of automated tutoring for L2 di-
alogue1 have already been seen through the suc-
cess of apps such as Duolingo2 bots which allow
the user to engage in instant-messaging style chats
with an agent to learn another language. Adap-
tion of agent to learner however is an ongoing
research task, although outside L2 tutoring, is a
well-explored area (Graesser et al., 2005). Align-
ment, or “more lexical similarity between student
and tutor” has been shown to be more predic-
tive of increased student motivation (Ward et al.,
2011), and agent alignment to students’ goals can
improve student learning (Ai et al., 2010). We
build on previous research by investigating lexi-
cal priming effects for each interlocutor in dia-
logue both within- and between-speaker, and at
different ability levels in L2 dialogue. This adds
the dimension of lexical priming and individual
speaker interactions to the work of Reitter and
Moore (2006) and the inspection of student to tu-
tor, and within-speaker priming to that of Ward
and Litman (2007b). By also making comparisons
across L2 ability levels, we can now analyse prim-
ing effects in terms of L2 acquisition. Similar
work in this area outside the scope of this paper
includes work analysing alignment of expressions
in a task-based dialogue setting (Duplessis et al.,
2017) and the analysis of alignment-capable dia-
logue generation (Buschmeier et al., 2009).

In addition to informing dialogue tutoring agent
design, this work has potential to augment exist-
ing measures of linguistic sophistication predic-

1Also know as Dialogue-based Computer Assisted Lan-
guage Learning (CALL)

2bots.duolingo.com

tion (Vajjala and Meurers, 2016) to better deal
with individual speakers within a dialogue, us-
ing alignment as a predictor of learner ability as
has been suggested by Ward and Litman (2007a).
Dialogue is inherently sparse, particularly when
considering the lexical contribution of a single
speaker. Accordingly, alignment could be a use-
ful predictor of student receptive and productive
knowledge when in combination with lexical com-
plexity of the shared vocabulary.

1.2 Research Questions
We present evidence which strengthens our hy-
pothesis that tutors take advantage of the natural
alignment found in language, in order to better in-
troduce, or ground3 vocabulary to the student; in
other words, scaffolding4 vocabulary from recep-
tive to productive practice in these dialogues.

Our work investigates the following research
questions:

RQ1 How does L2 dialogue differ from task-
based and conversational in terms of align-
ment?
We find ST alignment has the strongest ef-
fect within L2 dialogue.

RQ2 Does alignment correlate with ability in L2
dialogue?
We find priming effects are greater at
higher levels of student ability.

RQ3 Does linguistic sophistication of the lan-
guage used influence alignment of speakers
at different ability levels in L2 dialogue?
We find the more complex the word, the
greater the likelihood of alignment within
L2 dialogue.

2 Corpora

We compare the alignment present within three di-
alogue corpora: L2-tutoring, conversational and
task-based. A summary of the corpora is pre-
sented in Table 1. The Barcelona English Lan-
guage Corpus (BELC) (Muñoz, 2006) was gath-
ered at four different periods over the course of

3Grounding in dialogue consists of the participants estab-
lishing a common basis, or ground, on which their communi-
cation takes place. This can be viewed as a strategy for man-
aging uncertainty and therefore error handling in dialogue
(Skantze, 2007).

4Scaffolding (Wood et al., 1976) provides a metaphor to
the kind of temporary support at successive levels of develop-
ment needed to construct knowledge, or to support learning.
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Corpus Type English Dialogues
BELC L2 tutoring non-native

(levels 1-4)
118

Switchboard conversational fluent 1155
Map Task task-based fluent 128

Table 1: Corpora types and details. Map Task is
referred to in later diagrams as MT, Switchboard
as SB. The levels in BELC indicate increasing
learner ability, with 1 indicating the lowest ability
level and 4 the highest.

three years, with the students involved receiving
approximately one school year of weekly English
tuition between sessions. Table 2 shows a short
20-utterance long extract from a dialogue. The
Switchboard Corpus is conversational dialogue
over telephone between two fluent English speak-
ers (A and B), and MapTask is a task-based dia-
logue where the instruction-Giver (G) directs the
instruction-Follower (F) from a shared start point
to an end point marked on G’s map but which is
unknown to F, who also has access to a similar
map, although some features may only be present
on one of the interlocutors’ copies.

3 Methods

To address RQ1 and RQ2, section 3.1 discusses
how we measure lexical priming so that we can
compare priming effects in different situations.
Section 3.2 discusses the measure we use for word
complexity in order to address RQ3, so that we can
use this as an additional parameter in our model.

3.1 Lexical Convergence

Lexical priming predicts that a given word (target)
occurs more often closely after a potential prime
of the same word than further away. In order to
measure lexical convergence, we count each word
used by the speaker being considered as a potential
prime. Following Ward and Litman (2007b), who
measure the lexical convergence of student to tutor
in physics tutorial dialogues, we only count words
as primes if in WordNet (Miller, 1995), the word
has a non-empty synset5 e.g. if there was a choice
of potential words and the speaker used the same
word as their interlocutor, this can be counted as a
prime, since it was not simply used because it was
the only choice.

Since the learning content of L2 dialogues is the

5This also has the effect of removing function words from
consideration.

Tutor Student
do you have a bedroom for just you ?

yes .
ok .
how many beds are there in your room ?

two .
two beds .

two beds .
ok one for you...

... and his friend algúns amigos .
and a friend that’s good .
hmm what is the room like ?

hmm...
tell me about your room .

my room ?
uhhuh .
describe it .

my room is...
there’s two beds...

...very big...
uhhuh .

Table 2: Example of lexical alignment in BELC
dialogue. room, beds and friend are examples of
lexical alignment from student to tutor and from
tutor to student respectively. Underlined text in-
dicates within-speaker (TT or SS) alignment, and
bold text indicates between-speaker (TS or ST)
alignment (algúns amigos means some friends).

language itself, we group the words into word fam-
ilies, which is a common method used to measure
L2 student vocabulary (Graves et al., 2012). We
do this by lemmatizing6 the words in a text, and
counting lemmas used by the speaker as prime.
Thus, we count the forms want, wants, wanted &
wanting as a single word.

We also distinguish between the speakers when
looking at between-speaker, or comprehension-
production (CP) priming where the speaker first
comprehends the prime (uttered by their inter-
locutor) and then produces the target, and within-
speaker or production-production (PP) priming,
where both the prime and the target are produced
by the same speaker. Since we are also interested
in tutor T behaviour vs. student S in these inter-
actions we map PP priming to TT and SS respec-
tively and CP to TS and ST.

6Using NLTK (Loper and Bird, 2002)
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Lexical Repetition
In our data, each repetition of an occurrence of a
word W at distance n is counted as priming7 where
W has a non-empty synset, and is of the same
word-family as its prime (section 3.1). Each case
where W occurs but is not primed n units before-
hand in the dialogue, is counted as non-priming.
Our goal is to model p̂(prime|target, n), that is
the sampling probability that a prime is present
in the n-th word before target occurs. Without
lexical priming’s effect on the dialogue, we would
assume that

p̂(prime|target, n) = p̂(prime|target).

The distance n between stimulus and target is
counted in words, as this has the advantage over
utterances for capturing within-utterance priming
and is less sensitive to differences in average ut-
terance length between corpora when comparing
priming effects. Words were chosen as the closest
approximate available to time in seconds as mea-
sured in Reitter and Moore (2006). We look for
repetitions within windows of 85 words8.

Generalized Linear Mixed Effects Regression
For the purposes of this study, following Reit-
ter and Moore (2006), we use a Generalized Lin-
ear Mixed Effects Regression Model (GLMM). In
all cases, a word instance t is counted as a rep-
etition at distance d if at d there is a token in
the same word-family as t. To measure speaker-
speaker priming effects, we record both the prime
and target producers at d. GLMMs with a binary
response variable such as ours can be considered a
form of logistic regression.We model the number
of occurrences prime = target|d ≤ n (where n
is window size) of priming being detected9. We
model this as binomial, where the success proba-

7The use of priming is not intended to imply that priming
is the only explanation for lexical repetition

8We chose this window size based on Reitter and Moore
(2006) using an utterance window of 25 and a time window
of 15 seconds. We calculated the average number of words to
occur in the utterance window chosen, and the average num-
ber of words which are spoken in the 15 second window and
chose the average of the two as our window.

9For example, if we were only interested in priming
within a window size of 3 words, In table 2, for the student’s
first use of the word beds we would record 3 data points:
(window:1, target:bed, role:SS, prime=target:0), (window:2,
target:bed, role:ST, prime=target:1), (window:3, target:bed,
role:ST, prime=target:0) indicating there is a prime for our
target beds at distance 2. The number of trials = target words
× window size.

bility depends on the following explanatory vari-
ables: Categorical: corpus choice, priming type
from speaker role, ability level; and Ordinal: word
frequency, as explained in Section 3.2. The model
will produce coefficients βi, one for each explana-
tory variable i. βi expresses the contribution of
i to the probability of the outcome event, in our
case, successful priming, referred to as priming ef-
fect size in the following sections. For example,
the βi estimates allow us to predict the decline of
repetition probability with increasing distance be-
tween prime and target, and the other explanatory
variables we are interested in; we refer to this as
the probability estimates in in subsequent sections.
The model outputs a statistical significance score
for each coefficient, these are reported under each
figure where relevant.

3.2 Complexity Convergence

To capture linguistic complexity within the prim-
ing words, we use Word Occurrence Frequency
(WOF) as a predictor of the relative difficulty of
the words used. We use log(WOF ) to normalise
the deta before using it as a factor in our model.
WOF has been found to predict L2 vocabulary
acquisition rates - the higher frequency of a word,
the more exposure a student has had to it, the
more likely they are to learn it faster (Vermeer,
2001). Word Frequency has also been shown to
act as a reasonable indication of word ‘difficulty’
(Chen and Meurers, 2017). We therefore expect a
negative correlation between learner level and fre-
quency of vocabulary used, given a certain prime
window. We gathered frequency counts from the
Google News Corpus introduced by Mikolov et al.
(2013), for its size and diverse language.

4 Results

4.1 Lexical Convergence Cross Corpora

To find how L2 dialogue differs from task-based
and conversational in terms of alignment (RQ1),
we investigate the priming effects present across
corpora of different speaker roles. Figure 1 shows
that the BELC corpus has a similar asymmetry in
speaker alignment to MT, and that the alignment
of speakers in SB is more symmetrical, mirroring
the speakers’ equal role in the dialogue. This can
be seen in the different priming effects between
speakers in BELC and MT, and the same effects
between speakers in SB. Figure 2 shows the dif-
ferent decay of repetition probability with window
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Figure 1: Priming effects of distance across Corpora for different speaker roles. S:Student, T:Tutor,
F:Follower, G:Giver, A& B:Speaker A& B. AB indicates alignment of A to B. CP: comprehension-
production, or between-speaker priming, PP: production-production, or within-speaker priming. The
results are all significant with (p < 0.0001) except BB within Switchboard, with (p < 0.01).

Figure 2: Decaying probability estimates for window lengths for different speaker roles across corpora.
Formula : lemma occ∼window + role ∗ corpus

size for the different roles for all three corpora.
This shows the same symmetry and asymmetry
of between- and within-speaker repetition decay
probability as Figure 1.

4.2 Lexical Convergence by Level
We investigate priming effects within BELC be-
tween levels to find whether alignment correlates
with ability in L2 dialogue (RQ2). Figure 3 shows
the strong student-tutor priming occurring at each
ability level, and the general increase in priming
effect size as ability level increases for all prim-
ing types. When comparing both Figure 1 and 3,
we see that as ability level increases, BELC prim-
ing effect sizes tend towards those seen in Switch-
Board, particularly those of ST and TS, the ef-
fect size of which also becomes more symmetrical
with ability level, although the imbalance between
SS and TT priming remains similar to that of Map-
Task.

We also examine the model predictions for dif-
ferent window sizes for different conditions. Fig-
ures 4 and 5 describe the relationship between role

and ability level on the probability of seeing a
prime word at different window sizes. Figure 4
shows a sharper decay in the probability of tutor to
student (TS) priming than in student to tutor (ST)
priming. Figure 5 shows that tutor self-priming
is more probable at lower ability levels, and that
ST alignment at lower levels is less likely than at
higher levels of ability.

4.3 Linguistic Complexity Convergence

Exploring the question of whether linguistic so-
phistication of the language used influences align-
ment of speakers at different ability levels in L2
dialogue (RQ3); we find log(WOF ) to have a sig-
nificant negative correlation (p < 0.0001) with
priming effects. Thus the more complex the word
(as measured by a lower WOF ), the greater the
likelihood of alignment. Figure 6 shows the prim-
ing effects of WOF . It shows that priming effects
of WOF are stronger for ST and TT, than for the
other roles, but this difference is less pronounced
at higher levels than it is for lower levels of abil-
ity. The ST shows the most marked difference in
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Figure 3: Priming effect sizes under different
speaker role situations, across levels in BELC. Ef-
fects estimated from separately fitted nested re-
gression models for each subset of BELC split by
level(1-4). The results are all significant (p <
0.0001).

effect between low and high levels, lowest at the
highest ability. Per role, priming effect is gener-
ally smaller at higher ability levels than lower.

Figures 7 and 8 show the effects of WOF on
level and role respectively. In Figure 7, lower
log(WOF ) values are indicative of more complex
words. In such cases (see Figure 7, column 1),
the repetition probability is higher for high ability
students, compared to low ability students. This
stands in contrast to higher log(WOF ) values, in-
dicative of less complex words, where the repeti-
tion probability is now lower for high ability stu-
dents compared to low ability students (see Fig-
ure 7, column 6). Figure 8 shows differences in
self-priming and within speaker priming, in that
for both TS and ST, the probability of repetition is
greater for higher frequency words, while for TT
and SS, the probability of repetition is higher for
lower frequency words.

5 Discussion

The three spoken dialogue corpora we investigated
demonstrate a significant effect of distance be-
tween prime and target in lexical repetition, pro-
viding evidence of a lexical priming effect on word
family use. We also found evidence of priming
for each interlocutor in both between-speaker and
within-speaker roles.

ST alignment has the strongest effect within
L2 dialogue. To find how L2 dialogue differs

from our other two corpora in terms of role (RQ1),
we measured the priming effects for Tutors (TT,
TS) and Students (SS, ST) and find it asymmet-
ric in the same manner as for the task-based di-
alogue MT. This is in contrast to the symmetric
effects in the conversational dialogue of SB (Fig-
ure 1). ST alignment also has the greatest prim-
ing effect compared to the other roles in BELC,
which supports our hypothesis that student-to-
tutor alignment is an artefact of both tutor scaf-
folding, and students’ productive range benefiting
from the shared dialogue context.

When considering within-speaker priming, it is
also interesting to note that TT priming has a more
marked effect than SS priming, similar to the rela-
tionship between GG and FF in Map Task. We in-
terpret this similarly to Reitter and Moore’s (2006)
comparison of Map Task and Switchboard, in that
since the task-based or tutoring nature of the di-
alogue is harder, the leading speakers use more
consistent language in order to reduce the cogni-
tive load of the task (tutoring/instruction-giving).

Priming effects are greater at higher levels
of student ability. In order to investigate our
main hypothesis, that ability does affect alignment
(RQ2), we measured priming effects in different
ability levels of L2 tutorial dialogue (Figure 3),
and found that priming effects are greater at higher
levels of student ability, which provides evidence
that as ability increases, dialogues have more in
common with conversational dialogue. We also
measured how role influences these priming ef-
fects (Figures 4 and 5) and hypothesise that the
faster decay of TS repetition probability (Figure 5)
is an indication that the tutor is using the immedi-
ate encouraging backchanneling seen in the repe-
tition in Table 2. We note (Figure 4) that tutor-to-
tutor repetition is more probable at lower levels,
which supports the above hypothesis. Addition-
ally, student-to-tutor repetition probability is more
likely at higher levels which is a good indication
that student ability is higher, since we argue that
they are now able to align to their interlocutor.

The more complex the word, the greater the
likelihood of alignment within L2 dialogue.
Lastly, to find whether linguistic sophistication of
language aligned to is affected by ability (RQ3),
we investigated the influence of word frequency
on alignment within BELC. Figure 7 shows that
at lower log(WOF ) values (which we use to in-
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Figure 4: Decaying repetition probability estimates depending on the increasing distance between prime
and target, contrasting different speaker roles at different levels.
Formula : lemma occ∼window + role ∗ categorical level

Figure 5: Decaying repetition probability estimates depending on the increasing distance between prime
and target, contrasting different speaker roles at different levels.
Formula : lemma occ∼window ∗ role+ categorical level

Figure 6: Word Occurrence Frequency Priming ef-
fects under different selections of role and level
situations in BELC. Each model was separately
fitted on the relevant subset of data to show the
priming effect sizes for Word Occurrence Fre-
quency. (L1:SS, L2:TS and L3:ST are insignifi-
cant, all other results are significant with at least
p < 0.001 and most with p < 0.0001.

dicate more complex words), repetition probabil-
ity is higher in the higher ability levels compared
to the lower levels, and at higher log(WOF ), the
repetition probability of the higher ability levels

is now lower than at the lower levels. This has
interesting implications for using these results as
features for student alignment ability prediction.
This fits with the Interactive Alignment Model
(Pickering and Garrod, 2004), which suggest that
alignment will happen more with greater cogni-
tive load, and (Reitter and Moore, 2006), who
find stronger priming for less frequent syntactic
rules which supports the cognitive-load explana-
tion. The stronger priming effect identified for less
frequent vocabulary also supports this hypothesis.
Figure 6 shows the priming effects are slightly
smaller at higher ability levels. Log(WOF ) has a
negative correlation, meaning there is more likely
to be alignment the lower the WOF . The results
at each level have a similar priming effect distri-
bution over role, with the most marked difference
in priming effect being for ST (Student to Tutor
alignment), which shows a decrease in priming ef-
fect for harder words at higher ability levels. This
provides an interesting first indication that there is
a measurable effect of student leveraging contex-
tual vocabulary to augment their productive reach
in L2 dialogue.
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Figure 7: Decaying repetition probabilities of different log(WOF ) values on probability of word occur-
rence by level. Lower log(WOF ) values correspond to lower frequency, an indication of more complex
words, and higher frequency as less complex words.
Formula : lemma occ∼window + log(WOF ) ∗ categorical level

Figure 8: Decaying repetition probabilities of different log(WOF ) values on probability of word occur-
rence by role. Higher log(WOF ) indicates easier words.
Formula : lemma occ∼window + log(WOF ) ∗ role

6 Conclusions and Future Work

We see these results as an indication that measur-
ing lexical alignment combined with lexical so-
phistication of vocabulary has potential as a pre-
dictor of student competency. We also hypothe-
sise that measurements of ‘good tutoring’ actions
could consist of how and to what extent tutors
adapt interactively to individual students’ needs in
terms of their conversational ability. Tutor self-
priming seems to be an interesting possible feature
for measuring this adaption. We want to further in-
vestigate different measures of alignment and both
lexical and syntactic complexity to inform sys-
tems that aim to automate L2 tutoring. We plan
to consider which speaker introduces the word be-
ing aligned to, in order to better understand the
relationship between productive and receptive vo-
cabulary of the student in dialogue settings. It is
also important to separate the effects of priming
per se from other factors that can influence lexi-
cal convergence, such as differences in vocabulary
and topic specificity. As a first step toward that
goal, we plan to compare lexical convergence in
the original corpus with convergence in matched

baselines of randomly ordered utterances (Dup-
lessis et al., 2017), which will account for vocabu-
lary effects and corpus-specific factors. To explore
more measures of word complexity in addition to
simple WOF, we will further investigate measures
specific to L2 dialogue, such as the English Vo-
cabulary Profile (EVP) (Capel, 2012), with word
lists per CEFR10 level, or measures such as counts
of word sense per word, or whether a word is con-
crete or abstract11, exploiting existing readability
features (Vajjala and Meurers, 2014).
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Abstract

Casual conversation has become a focus
for dialogue applications. Such talk is
ubiquitous and its structure differs from
that found in the task-based interactions
that have been the focus of dialogue sys-
tem design for many years. It is unlikely
that such conversations can be modelled as
an extension of task-based talk. We review
theories of casual conversation, report on
our studies of the structure of casual dia-
logue, and outline challenges we see for
the development of spoken dialog systems
capable of carrying on casual friendly con-
versation in addition to performing well-
defined tasks.

1 Introduction

People talk. Human society depends on spoken (or
written) interaction. Instrumental or task-based
conversation is the medium for practical activi-
ties such as service encounters (shops, doctor’s
appointments), information transfer (lectures), or
planning and execution of business (meetings).
Much daily talk does not seem to contribute to a
clear short-term task, but builds and maintains so-
cial bonds, and is described as ‘interactional’, so-
cial, or casual conversation. Casual conversation
happens in a wide variety of settings, including
‘bus-stop’ conversations between strangers, gos-
sipy tea break chats between workmates, family
and friends ‘hanging out’ at home or in cafes and
bars engaged in Schelgoff’s ‘continuing state of
incipient talk’ (Schegloff and Sacks, 1973), or in-
deed in stretches of smalltalk and chat preceding
or punctuating business interactions. Much re-
search is focused on dyadic task based dialogue
interactions. Early dialogue system researchers
recognised the complexity of dealing with social

talk (Allen et al., 2000), and initial prototypes con-
centrated on practical tasks such as travel book-
ings or logistics (Walker et al., 2001; Allen et al.,
1995). Implementation of artificial task-based di-
alogues is facilitated by a number of factors. In
these tasks, the lexical content of utterances drives
successful completion of the task, conversation
length is governed by task-completion, and par-
ticipants are aware of the goals of the interac-
tion. Such dialogues have been modelled as fi-
nite state and later slot-based systems, first using
hand-written rules and later depending on data-
driven stochastic methods to decide the next ac-
tion. Task-based systems have proven invaluable
in many practical domains. However, dialog tech-
nology is quickly moving beyond short task-based
interactions, and interest is focussing on realistic
artificial dialog for roles such as social compan-
ions, educators, and helpmates. To model and gen-
erate a wider variety of social talk and indeed to
improve the quality and user engagement of task-
oriented interactions, there is a need for under-
standing of social conversation. Stochastic mod-
els require appropriate data. This paper provides
an overview of our recent work in this area, based
on corpus studies of casual conversation. Below
we describe the concept of social talk and previ-
ous work in the area. We then describe our dataset,
annotation and the results of our preliminary anal-
yses, discussing how these may aid the design of
conversational agents.

2 Casual Conversation

Social talk or casual conversation, ‘talk for the
sake of talking’, or ‘phatic communion’ has been
described as an emergent behaviour whenever hu-
mans gather (Malinowski, 1936), and there are
theories which posit that such talk is an ‘unmarked
case’ or base form for human spoken interaction
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(Dunbar, 1998). Examples of such talk include
short conversations when people meet, intermit-
tent talk between workers on topics unrelated to
the job in hand throughout the workday, or longer
dinner table or pub conversations. Subgenres of
casual conversation include smalltalk, gossip, and
conversational narrative. The duration of such in-
teractions can vary from short ‘bus stop’ conver-
sations to ongoing interactions which lapse and
start again over the course of several hours. Re-
searchers have theorized that such talk functions to
build social bonds and avoid unfriendly or threat-
ening silence, as in the phatic component in Jakob-
son’s model of communication (Jakobson, 1960),
distinctions between interactional and instrumen-
tal language (Brown and Yule, 1983), and theories
that language evolved to maintain social cohesion
(Dunbar, 1998). Social talk differs in many ways
from task-based conversations. A chat between a
concierge of an apartment building and a tenant
about football differs in many respects from a cus-
tomer ordering pizza from an employee. In the
chat there is no important information exchanged
which is vital to the success of a short-term task,
the topic could be the weather or football. In the
pizza ordering scenario, information on the type of
pizza and the price are vital to a successful transac-
tion, and the goal – sale of a pizza – is short-term,
achievable within the conversation, and known to
both parties. In the chat, the goal could be de-
scribed as the maintenance of a social relationship
– fulfillment of this goal is a process which ex-
tends past the temporal boundaries of the current
conversation. Casual conversation seems to be
based on avoidance of silence and engagement in
unthreatening but entertaining verbal display and
interaction, as observed by Schneider (Schneider,
1988), who noted ‘idling’ – sequences of repeti-
tions of agreeing tails such as ‘Yes, of course’ or
‘MmHmm’, which seem to keep the conversation
going rather than add any new information. He
proposed a set of maxims peculiar to this genre,
concentrated on the importance of avoiding si-
lence and maintaining politeness. While instru-
mental talk is often dyadic, casual conversation is
very often multiparty. In terms of function, Slade
and Eggins view casual conversation as the space
in which people form and refine their social real-
ity (Eggins and Slade, 2004) citing gossip between
workmates, where participants reaffirm their soli-
darity, and dinner table talk between friends. In

task-based encounters, participants have clear pre-
defined roles (‘customer-salesperson’, ‘teacher-
student’) which can strongly influence the tim-
ing and content of their contributions to the ex-
change. However, in casual talk, all participants
have equal speaker rights and can contribute at any
time (Wilson, 1989) (Cheepen, 1988). The form of
such talk is also different to that of task-based ex-
changes - there is less reliance on question-answer
sequences and more on commentary, storytelling,
and discussion (Thornbury and Slade, 2006; Wil-
son, 1989). Instead of asking each other for infor-
mation, participants seem to collaborate to fill the
floor and avoid uncomfortable silence. Topics are
managed locally – a meeting has an agenda and
chairperson to impose the next topic, while casual
topics are often introduced by means of a state-
ment or comment by a participant which may or
may not be taken up by other participants. Instru-
mental and interactional exchanges differ in dura-
tion; task-based conversations are bounded by task
completion and tend to be short, while casual con-
versation can go on indefinitely. There are a num-
ber of syntactical, lexical, and discourse differ-
ences between (casual) conversation and more for-
mal spoken and written genres (Biber et al., 1999).
Our work explores the architecture of casual talk.

3 The Architecture of Casual Talk

Casual conversation is not a simple sequence of
adjacency pairs, but proceeds in distinct phases.
Laver concentrated on the ‘psychologically crucial
margins of interaction’, conversational openings
and closings in particular, suggesting that small
talk performs a transitional function from initial
silence through stages of greeting, to the business
or ‘meat’ of the interaction, and back to closing
sequences and to leave taking (Laver, 1975). Ven-
tola concentrated on longer conversations, identi-
fying distinct phases. Such conversations often be-
gin with ritualised opening greetings, followed by
approach segments of light uncontroversial small
talk, and in longer conversations leading to more
informative centre phases (consisting of sequential
but overlapping topics), and then back to ritualised
leave-takings (Ventola, 1979). Ventola described
several structural elements or phases (listed be-
low), which could be combined to form conver-
sations ranging from minimal exchanges of greet-
ings to long group interactions such as dinner
party conversations.
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Figure 1: A simplified view of the phases of casual
talk described by Ventola - Greeting, Approach,
Centre, and Leavetaking.

G Greeting.

Ad Address. (“Hello, Mary”)

Id Identification (of self)

Ap Approach. Smalltalk. Direct (ApD) –
asking about interactants themselves, or
indirect (ApI) – talking about immediate
situation (weather, surroundings).

C Centring. Participants fully involved in
conversation, talking at length.

Lt Leave-taking. Signalling desire or need
to end conversation.

Gb Goodbye. Can be short or extended.

In this model, lighter talk in the form of Ap-
proach phases occurs not only at the extremes
of conversations, but can recur between Centring
phases throughout a longer conversation. Figure 1
shows a simplified schematic of the main phases
described by Ventola.

Another model is provided by Slade and Eg-
gins, who contend that casual talk can be seen
as sequences of ‘chat’ and ‘chunk’ elements (Eg-
gins and Slade, 2004, p. 230). Chunks are seg-
ments where (i) ‘one speaker takes the floor and
is allowed to dominate the conversation for an ex-
tended period’, and (ii) the chunk appears to move
through predictable stages – that is, it is generic.
‘Chat’ segments, on the other hand, are highly in-
teractive and appear to be managed locally, un-
folding move by move or turn by turn. In a study

of three hours of conversational data collected dur-
ing work coffee breaks, Slade found that around
fifty percent of all talk was chat, while the rest
comprised longer form chunks from the following
genres: storytelling, observation/comment, opin-
ion, gossip, joke-telling and ridicule. In chat
phases, several participants contribute utterances
with many questions and short comments. Chat
is highly interactive with frequent turn changes,
and often occurs at the start of an interaction.
The conversational floor is shared among the par-
ticipants and no single participant dominates for
extended periods. Chat is often used to ‘break
the ice’ among strangers involved in casual talk
(Laver, 1975). As the conversation progresses,
chat phases are interspersed with chunk phases.
The ‘ownership’ of chunks seems to pass around
the participants in the talk, with chat linking one
chunk to the next (Eggins and Slade, 2004). Figure
2 shows examples drawn from our data of typical
chat and chunk phases in a 5-party conversation.

Both Ventola’s and Slade and Eggins’ models
treat conversation as composed of phases, with
parallels between Ventola’s approach phases and
Slade and Eggins’ chat phases. It is likely that
the various conversational phases are subject to
different norms of turntaking and that phenomena
such as laughter or disfluency may appear in dif-
ferent distributions in different phases. Although
Ventola’s and Slade and Eggins’ respective work
is based on real dialogue in the form of ortho-
graphic transcripts, analyses of longer casual talk
have been largely theoretical or based on qualita-
tive descriptions. Our work aims to expand our
knowledge of the form of these phases so that they
can be modelled for artificial dialogue. In our in-
vestigations, we first segmented our data into chat
and chunk phases to analyse the characteristics of
these two types of talk, and in later work plan to
refine our analysis by further segmenting our data
into Ventola’s phases. Below we outline the lim-
itations of available corpora for work on longer
form multiparty casual talk, describe our dataset,
annotation, and experiments.

4 Corpora used for Casual Conversation
Research

Relevant corpora of human interaction are essen-
tial to understanding different genres of spoken di-
alogue. Dialog corpora have been created of the
same spoken task by different subjects, or of inter-
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Figure 2: Examples of chat (top) and chunk (bottom) phases in two stretches from a 5-party conversation.
Each row denotes the activity of one speaker across 120 seconds. Speech is dark grey, and laughter is
white on a light grey background (silence).The chat frame, taken at the beginning of the conversation,
can be seen to involve shorter contributions from all participants with frequent laughter. The chunk frame
shows longer single speaker stretches.

actions specific to particular domains where lex-
ical content was fundamental to achievement of
a practical goal. Such corpora include informa-
tion gap dialogs such as the HCRC MapTask cor-
pus of dyadic information gap task-based conver-
sations (Anderson et al., 1991) or the LUCID Di-
aPix corpus of ‘spot the difference’ games (Baker
and Hazan, 2011), as well as real or staged meet-
ings (e.g., ICSI and AMI multiparty meeting cor-
pora (Janin et al., 2003; McCowan et al., 2005)) or
genres such as televised political interviews (Beat-
tie, 1983). Because of their task-focused nature,
these data, while spontaneous and conversational,
cannot be considered true casual talk, and results
obtained from their analysis may not generalize to
casual conversations.

There are some corpora of casual talk, including
telephonic corpora (SWITCHBOARD (Godfrey
et al., 1992) and the ESP-C collection of Japanese
telephone conversations (Campbell, 2007)), and
face-to-face talk datasets (e.g., Santa Barbara Cor-
pus (DuBois et al., 2000), and sections of the ICE
corpora (Greenbaum, 1991) and British National
Corpus (BNC-Consortium, 2000)). These corpora
are audio only and thus cannot be used to inform
research on facial expression, gestural or postural
research.

Several multimodal corpora of mostly dyadic
‘first encounters’ have appeared recently, where
strangers are recorded engaged in casual conver-
sation for periods of 5 to 20 minutes or so (Ed-
lund et al., 2010; Aubrey et al., 2013; Paggio et al.,
2010) in several languages including Swedish,
Danish, Finnish, and English. These corpora are
very valuable for the study of dyadic interaction,
particularly at the opening and early stages of in-

teraction. However, the substance of longer casual
conversation beyond these first encounters or ap-
proach stages has not been focused on in the field.

5 Dataset and Annotation

We compiled a dataset of six informal multiparty
conversations, each around an hour long. The
requirements for the data were that participants
could speak freely, that there was no task or topic
imposed by the experimenter, and that recordings
were multimodal so that analyses of visual cues
could be carried out on the same data and used
to build a more comprehensive understanding of
multimodal face-to-face interaction. Suitable con-
versations were drawn from three multimodal cor-
pora, d64, DANS, and TableTalk (Oertel et al.,
2010; Hennig et al., 2014; Campbell, 2008). In
each of these, participants were recorded in casual
conversation in a living room setting or around
a table, with no instructions on topic of type of
conversation to be carried out - participants were
also clearly informed that they could speak or stay
silent as the mood took them. Table 1 shows de-
tails of participant numbers, gender, and conversa-
tion duration for each of the six conversations.

5.1 Data Preparation
The audio recordings included near-field chest or
adjacent microphone recordings for each speaker.
These were found to be unsuitable for automatic
segmentation as there were frequent overlaps and
bleedover from other speakers. The audio files
were segmented manually into speech and si-
lence intervals using Praat (Boersma and Weenink,
2010). The segmentation was carried out at the
intonational phrase level (IP), rather than a more
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Table 1: Source corpora and details for the conver-
sations used in dataset

Corpus Participants Gender Duration (s)
D64 5 2F/3M 4164
DANS 3 1F/2M 4672
DANS 4 1F/3M 4378
DANS 3 2F/1M 3004
TableTalk 4 2F/2M 2072
TableTalk 5 3F/2M 4740

coarse and theory dependent utterance or inter-
pausal unit (IPU) level. Labels covered speech
(SP), silence (SL), coughs (CG), breaths (BR), and
laughter (LG). The speech label was applied to
verbal and non-verbal vocal sounds (except laugh-
ter) to include contributions such as filled pauses,
short utterances such as ‘oh’ or ‘mmhmm’, and
sighs. Laughter was annotated inline with speech.
Annotators worked on 10 second and four-second
Praat windows of the audio. Doubtful cases were
resolved using Elan (Wittenburg et al., 2006) with
the video recordings. Manual segmentation into
speech and silence can be problematic, as humans
listening to speech can miss or indeed imagine the
existence of objectively measured silences of short
duration (Martin, 1970), and are known to have
difficulty recalling disfluencies from audio they
have heard (Deese, 1980). However these results
were based on speakers timing pauses with a stop-
watch in a single hearing. In the current work, us-
ing Praat and Elan, speech could be slowed down
and replayed and, by using the four-second win-
dow, annotators could see silences or more ac-
curately differences in amplitude on the speech
waveform and spectrogram. Although breath is
extremely interesting as a feature of conversation
(Wlodarczak et al., 2015), it was not possible to
annotate breath accurately for all participants and
thus the breath intervals annotated were converted
to silence for the purposes of this study. Simi-
larly, coughs were relabelled as silence for the cur-
rent work. After segmentation, the data were tran-
scribed, and marked into chat and chunk phases as
described below.

5.2 Annotation of Chat and Chunk Phases
Chat and chunk phases were marked using an an-
notation scheme devised from the definitions of
chat and chunk phases given in Slade and Eg-
gins work (Eggins and Slade, 2004; Slade, 2007).

For an initial classification, conversations were di-
vided by first identifying the chunks and consider-
ing everything else chat. In the first instance, this
was done using the first, structural part of Slade
and Eggins’ definition of a chunk as ‘a segment
where one speaker takes the floor and is allowed
to dominate the conversation for an extended pe-
riod’(Eggins and Slade, 2004). The following
guidelines were created to aid in the placing of
chat/chunk boundaries.

Start A chunk starts when a speaker has es-
tablished himself as leading the chunk.

Stop To avoid orphaned sections, a chunk is
ended at the moment the next element
(chunk or chat) starts.

Aborted In cases where a chunk is attempted, but
aborted before it is established, this is
left as chat. In cases where there is a di-
version to another element mid-chunk
and a return later, all three elements are
annotated as though they were single
chunks/stretches of chat.

Overlap When a new chunk begins where a pre-
vious chunk is still tailing off, the new
chunk onset is the marker of interest
and the old chunk is finished at the on-
set of the new one.

Once the chunk was identified, it could be clas-
sified by genre. For annotation, a set of codes for
the various types of chunk and chat was created.
Each code is a hyphen-separated string contain-
ing at least a Type signifier for chat or chunk, an
Ownership label, and optional sub-elements fur-
ther classifying the chunks with reference to Slade
and Eggins taxonomy. A total of 213 chat and 358
chunk phases were identified across the six con-
versations.

6 Results

Our analysis of social talk focuses on a number of
dimensions; chat and chunk duration, laughter and
overlap in chat and chunk phases, distribution of
chat and chunk phases across conversations, and
turntaking/utterance characteristics.

6.1 Chat and Chunk Duration
Preliminary inspection of chat and chunk duration
data showed that the distributions were unimodal
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Figure 3: Boxplots of phase duration in Chat
(grey) vs Chunk (black) in raw and log trans-
formed data

but heavily right skewed. It was decided to use
geometric means to describe central tendencies in
the data. The antilogs of geometric means for du-
ration of chat and chunk phases in the dataset were
28.1 seconds for chat and 34 seconds for chunks.

The chat and chunk phase durations (raw and
log) are contrasted in the boxplots in Fig 3, where
it can be seen that there is considerably more vari-
ance in chat durations.

6.2 Speaker, Gender, and Conversation
Effects

The raw chunk data were checked for speaker de-
pendency using the Kruskal-Wallis rank sum test,
a non-parametric alternative to a one-way analysis
of variance (ANOVA), and no significant differ-
ence in means due to speaker was found (Kruskal-
Wallis chi-squared = 36.467, df = 24, p-value =
0.04941). Wilcoxon Rank Sum tests on chunk du-
ration data showed no significant difference be-
tween duration distributions for chunks owned
by male or female participants (W = 17495, p-
value = 0.1073). Kruskal-Wallis rank sum tests
on chunk duration showed no significant differ-
ence between duration distributions for chunks
from different conversations (Kruskal-Wallis chi-
squared = 9.2077, df = 5, p-value = 0.1011). How-
ever, the Kruskal-Wallis rank sum tests applied to
chat duration showed significant differences be-
tween duration distributions for chats from differ-
ent conversations (Kruskal-Wallis chi-squared =
15.801, df = 5, p-value = 0.007436).

6.3 Laughter Distribution in Chat and
Chunk phases

Comparing the production by all participants in all
conversations, where a participant may produce ei-
ther laughter or speech, laughter accounts for ap-

proximately 9.5% of total duration of speech and
laughter production in chat phases and 4.9% of to-
tal duration of speech and laughter production in
chunk phases.

6.4 Chunk owner vs Others in Chunk
In the chunks overall, the dominant speakers or
chunk owners produced 81.81% (10753.12s) of
total speech and laughter, while non-owners pro-
duced 18.19% (2390.7s).

6.5 Overlap
There is considerable overlapping of speech in the
corpora. For the purposes of this analysis laughter
was treated as silence and overlap considered as
overlapping speech only. Table 2 and Fig 4 show
the occupancy of the conversational floor for all
conversations in chat and chunk phases. The num-
ber of speakers ranges from 0 (global silence), 1
(single speaker), 2 (2 speakers in overlap) to 3+ (3
or more speakers in overlap).

No. Speaking Chat Chunk
0 25.75 22.14
1 61.58 72.27
2 11.88 5.25
3+ 0.73 0.42

Table 2: Floor occupancy (%) in chat and chunk
for all conversations

It can be seen that overlap is twice as com-
mon in chat as in chunk phases, and that silence
is slightly more common in chat phases.

Figure 4: Distribution of the floor in terms of %
duration in chat (left) and in chunk (right) phases.
X-axis shows number of speakers (0,1,2,3+)
speaking concurrently.

6.6 Chat and Chunk Position
Chat predominates for the first 8-10 minutes of
conversations. However, as the conversation de-
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Figure 5: Probability of chunk-chunk transition
(solid) and chunk-chat transition (dotted) as con-
versation elapses (x-axis = time) for the first 30
minutes of conversation

velops, chunks start to occur much more fre-
quently, and the structure is an alternation of
single-speaker chunks interleaved with shorter
chat segments. Figure 5 shows the probability of
a chunk phase being followed by chat or by chunk
as conversation continues. It can be seen that there
is a greater tendency for the conversation to go di-
rectly from chunk to chunk the longer the conver-
sation continues.

6.7 Utterances and Turntaking
We are studying the patterning of speaker contri-
butions in both phases. Overall we have found
that utterances cluster into two groups: short ut-
terances with a mean of around 300ms and longer
utterances with mean around 1.4s. In chunk owner
speech, utterance mean is higher than utterance
means in chat.

We performed a prosodic analysis of phrase fi-
nal intonation in a subset of the data using the
IViE annotation system, finding that falling nu-
clei (H*+L%,!H*+L%) dominated across the data,
and particularly in chunks, with relatively few fall-
rise tones (H*+LH%) and small numbers of other
tunes.

7 Discussion

We have found differences in the distributions of
durations of chat and chunk phases, with chat du-
rations varying more while chunk durations have a
more consistent clustering around the mean. Chat
phase durations tend to be shorter than chunk du-
rations. These findings are not speaker or gender
specific in our preliminary experiments and may
indicate a natural limit for the time one speaker
should dominate a conversation. The dimensions

of chat and chunk durations observed would in-
dicate that social talk should ‘dose’ or package
information to fit chat and chunk segments of
roughly these lengths. In particular, the tendency
towards chunks of around half a minute could help
in the design of narrative or education-delivering
speech applications, by allowing designers to par-
tition content optimally. Both laughter and over-
lap are far more prevalent in chat than in chunk
phases, reflecting their light and interactive na-
ture. Interestingly, the rarity of more than two
speakers talking concurrently was noted in recent
work on turn distribution in multiparty storytelling
(Rühlemann and Gries, 2015) – our results would
seem to show the same phenomenon in casual con-
versation, where it much more likely for a speaker
to be overlapped by one other speaker than by
two or more others. Laughter has previously been
shown to appear more often in social talk than in
meeting data, and to happen more around topic
endings/topic changes [self]. This is consistent
our with observations on chat and chunk phases –
laughter is more common in chat phases – which
provide a ‘buffer’ between single speaker (and
topic) chunks.

Chat is more common at the start of multi-
party conversations. Although our sample size is
small, this observation conforms to descriptions
of casual talk in the literature, and reflects the
structure of ‘first encounter’ recordings. Chunk
phases become more prominent later. The larger
number of chunk phases in the data compared to
Slade’s findings on work break conversations may
be due to the length of the conversations exam-
ined here - we found several instances of sequen-
tial chunks where the long turn passed directly
to another speaker without intervening chat, per-
haps reflecting ‘story swapping’ directly without
need for chat as the conversation evolves. While
the initial extended chat segments can be used to
model ‘getting to know you’ sessions, and will
therefore be useful for familiarisation with a dig-
ital companion, it is clear that we need to model
the chunk heavy central segments of conversation
if we want to create systems which form a longer-
term dialogic relationship with users. As chunks
are generic (narrative, gossip..), it may be fruit-
ful to consider modelling extended casual talk as
a series of ‘mini-dialogs’ of different types mod-
elled on different corpora – how to convincingly
join these sections is an interesting research ques-
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tion.
We have noted that many between speaker

silences (pauses) during chunk owner speech
in chunks are shorter than between speaker si-
lences in chat, probably due to backchannelling in
chunks, this would pose a problem for endpointing
in dialog systems which relied simply on speak-
ing at a certain delay after detection of silence, as
the system would butt in during chat or wait too
long during chunks depending on the time delay
set. The majority of phrase final intonation curves
are the same for chat and chunk reflecting the na-
ture of casual conversation where utterances are
predominantly comments or statements rather than
question/answer pairs, exacerbating the endpoint-
ing/turntaking problem. Knowledge of the type of
phase the dialog is in would allow systems to use
more nuanced endpointing and turntaking mecha-
nisms. A major limitation of the current work is
the scarcity of data. Data for casual conversations
which are longer than 15 minutes are hard to find.
We hope that the current study will encourage the
production of corpora of longer form casual con-
versation. We are currently extending our explo-
rations to dyadic conversations, and also working
on a dialog act annotation scheme for non-task
based talk.

8 Conclusions

There is increasing interest in spoken dialogue
systems that act naturally and perform functions
beyond information search and narrow task-based
exchanges. The design of these new systems needs
to be informed by relevant data and analysis of hu-
man spoken interaction in the domains of interest.
Many of the available multiparty data are based
on meetings or first encounters. While first en-
counters are very relevant to the design of human
machine first encounters, there is a lack of data on
longer human conversations. We hope that the en-
couraging results of our analysis of casual social
talk will help make the case for the creation and
analysis of corpora of longer social dialogues. We
also hope that our further explorations into the ar-
chitecture of longer form conversation will add to
this body of knowledge.
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Abstract

User Simulators are one of the major tools
that enable offline training of task-oriented
dialogue systems. For this task the
Agenda-Based User Simulator (ABUS) is
often used. The ABUS is based on hand-
crafted rules and its output is in seman-
tic form. Issues arise from both properties
such as limited diversity and the inability
to interface a text-level belief tracker. This
paper introduces the Neural User Simu-
lator (NUS) whose behaviour is learned
from a corpus and which generates natu-
ral language, hence needing a less labelled
dataset than simulators generating a se-
mantic output. In comparison to much of
the past work on this topic, which evalu-
ates user simulators on corpus-based met-
rics, we use the NUS to train the policy of
a reinforcement learning based Spoken Di-
alogue System. The NUS is compared to
the ABUS by evaluating the policies that
were trained using the simulators. Cross-
model evaluation is performed i.e. training
on one simulator and testing on the other.
Furthermore, the trained policies are tested
on real users. In both evaluation tasks the
NUS outperformed the ABUS.

1 Introduction

Spoken Dialogue Systems (SDS) allow human-
computer interaction using natural speech. Task-
oriented dialogue systems, the focus of this work,
help users achieve goals such as finding restau-
rants or booking flights (Young et al., 2013).

Teaching a system how to respond appropriately
in a task-oriented setting is non-trivial. In state-of-
the-art systems this dialogue management task is
often formulated as a reinforcement learning (RL)

problem (Young et al., 2013; Roy et al., 2000;
Williams and Young, 2007; Gašić and Young,
2014). In this framework, the system learns by a
trial and error process governed by a reward func-
tion. User Simulators can be used to train the pol-
icy of a dialogue manager (DM) without real user
interactions. Furthermore, they allow an unlimited
number of dialogues to be created with each dia-
logue being faster than a dialogue with a human.

In this paper the Neural User Simulator (NUS)
is introduced which outputs natural language and
whose behaviour is learned from a corpus. The
main component, inspired by (El Asri et al.,
2016), consists of a feature extractor and a neu-
ral network based sequence-to-sequence model
(Sutskever et al., 2014). The sequence-to-
sequence model consists of a recurrent neural net-
work (RNN) encoder that encodes the dialogue
history and a decoder RNN which outputs natural
language. Furthermore, the NUS generates its own
goal and possibly changes it during a dialogue.
This allows the model to be deployed for training
more sophisticated DM policies. To achieve this, a
method is proposed that transforms the goal-labels
of the used dataset (DSTC2) into labels whose be-
haviour can be replicated during deployment.

The NUS is trained on dialogues between real
users and an SDS in a restaurant recommendation
domain. Compared to much of the related work on
user simulation, we use the trained NUS to train
the policy of a reinforcement learning based SDS.
In order to evaluate the NUS, an Agenda-Based
User-Simulator (ABUS) (Schatzmann et al., 2007)
is used to train another policy. The two policies
are compared against each other by using cross-
model evaluation (Schatztmann et al., 2005). This
means to train on one model and to test on the
other. Furthermore, both trained policies are tested
on real users. On both evaluation tasks the NUS
outperforms the ABUS, which is currently one of
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the most popular off-line training tools for rein-
forcement learning based Spoken Dialogue Sys-
tems (Koo et al., 2015; Fatemi et al., 2016; Chen
et al., 2017; Chang et al., 2017; Casanueva et al.,
2018; Weisz et al., 2018; Shah et al., 2018).

The remainder of this paper is organised as fol-
lows. Section 2 briefly describes task-oriented di-
alogue. Section 3 describes the motivation for the
NUS and discusses related work. Section 4 ex-
plains the structure of the NUS, how it is trained
and how it is deployed for training a DM’s policy.
Sections 5 and 6 present the experimental setup
and results. Finally, Section 7 gives conclusions.

2 Task-Oriented Dialogue

A Task-Oriented SDS is typically designed ac-
cording to a structured ontology, which defines
what the system can talk about. In a system rec-
ommending restaurants the ontology defines those
attributes of a restaurant that the user can choose,
called informable slots (e.g. different food types,
areas and price ranges), the attributes that the user
can request, called requestable slots (e.g. phone
number or address) and the restaurants that it has
data about. An attribute is referred to as a slot and
has a corresponding value. Together these are re-
ferred to as a slot-value pair (e.g. area=north).

Using RL the DM is trained to act such that is
maximises the cumulative future reward. The pro-
cess by which the DM chooses its next action is
called its policy. A typical approach to defining
the reward function for a task-oriented SDS is to
apply a small per-turn penalty to encourage short
dialogues and to give a large positive reward at the
end of each successful interaction.

3 Motivation and Related Work

Ideally the DM’s policy would be trained by inter-
acting with real users. Although there are models
that support on-line learning (Gašić et al., 2011),
for the majority of RL algorithms, which require
a lot of interactions, this is impractical. Further-
more, a set of users needs to be recruited every
time a policy is trained. This makes common prac-
tices such as hyper-parameter optimization pro-
hibitively expensive. Thus, it is natural to try to
learn from a dataset which needs to be recorded
only once, but can be used over and over again.

A problem with learning directly from recorded
dialogue corpora is that the state space that was
visited during the collection of the data is limited;

the size of the recorded corpus usually falls short
of the requirements for training a statistical DM.
However, even if the size of the corpus is large
enough the optimal dialogue strategy is likely not
to be contained within it.

A solution is to transform the static corpus into
a dynamic tool: a user simulator. The user simu-
lator (US) is trained on a dialogue corpus to learn
what responses a real user would provide in a
given dialogue context. The US is trained using
supervised learning since the aim is for it to learn
typical user behaviour. For the DM, however, we
want optimal behaviour which is why supervised
learning cannot be used. By interacting with the
SDS, the trained US can be used to train the DM’s
policy. The DM’s policy is optimised using the
feedback given by either the user simulator or a
separate evaluator. Any number of dialogues can
be generated using the US and dialogue strategies
that are not in the recorded corpus can be explored.

Most user-simulators work on the level of user
semantics. These usually consist of a user di-
alogue act (e.g. inform, or request) and a cor-
responding slot-value pair. The first statistical
user simulator (Eckert et al., 1997) used a sim-
ple bi-gram model P (au |am) to predict the next
user act au given the last system act am. It has
the advantage of being purely probabilistic and
domain-independent. However, it does not take
the full dialogue history into account and is not
conditioned on a goal, leading to incoherent user
behaviour throughout a dialogue. Scheffler and
Young (2000, 2001) attempted to overcome goal
inconsistency by proposing a graph-based model.
However, developing the graph structure requires
extensive domain-specific knowledge. Pietquin
and Dutoit (2006) combined features from Shef-
fler and Young’s work with Eckert’s Model, by
conditioning a set of probabilities on an explicit
representation of the user goal and memory. A
Markov Model is also used by Georgila et al.
(2005). It uses a large feature vector to describe
the user’s current state, which helps to compensate
for the Markov assumption. However, the model
is not conditioned on any goal. Therefore, it is
not used to train a dialogue policy since it is im-
possible to determine whether the user goal was
fulfilled. A hidden Markov model was proposed
by Cuayáhuitl et al. (2005), which was also not
used to train a policy. Chandramohan et al. (2011)
cast user simulation as an inverse reinforcement
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learning problem where the user is modelled as
a decision-making agent. The model did not in-
corporate a user goal and was hence not used to
train a policy. The most prominent user model
for policy optimisation is the Agenda-Based User
Simulator (Schatzmann et al., 2007), which repre-
sents the user state elegantly as a stack of neces-
sary user actions, called the agenda. The mecha-
nism that generates the user response and updates
the agenda does not require any data, though it can
be improved using data. The model is conditioned
on a goal for which it has update rules in case the
dialogue system expresses that it cannot fulfil the
goal. El Asri et al. (2016) modelled user simula-
tion as a sequence-to-sequence task. The model
can keep track of the dialogue history and user be-
haviour is learned entirely from data. However,
goal changes were not modelled, even though a
large proportion of dialogues within their dataset
(DSTC2) contains goal changes. Their model out-
performed the ABUS on statistical metrics, which
is not surprising given that it was trained by opti-
mising a statistical metric and the ABUS was not.

The aforementioned work focuses on user sim-
ulation at the semantic level. Multiple issues
arise from this approach. Firstly, annotating the
user-response with the correct semantics is costly.
More data could be collected, if the US were to
output natural language. Secondly, research sug-
gests that the two modules of an SDS perform-
ing Spoken Language Understanding (SLU) and
belief tracking should be jointly trained as a sin-
gle entity (Mrkšić et al., 2017; Sun et al., 2016,
2014; Zilka and Jurcicek, 2015; Ramadan et al.,
2018). In fact in the second Dialogue State Track-
ing Challenge (DSTC2) (Henderson et al., 2014),
the data of which this work uses, systems which
used no external SLU module outperformed all
systems that only used an external SLU Module1.
Training the policy of a DM in a simulated envi-
ronment, when also using a joint system for SLU
and belief tracking is not possible without a US
that produces natural language. Thirdly, a US is
sometimes augmented with an error model which
generates a set of competing hypotheses with as-
sociated confidence scores trying to replicate the
errors of the speech recogniser. When the error
model matches the characteristics of the speech
recogniser more accurately, the SDS performs bet-
ter (Williams, 2008). However, speech recogni-

1The best-performing models used both.

tion errors are badly modelled based on user se-
mantics since they arise (mostly) due to the pho-
netics of the spoken words and not their seman-
tics (Goldwater et al., 2010). Thus, an SDS that is
trained with a natural language based error model
is likely to outperform one trained with a semantic
error model when tested on real users. Sequence-
to-sequence learning for word-level user simula-
tion is performed in (Crook and Marin, 2017),
though the model is not conditioned on any goal
and hence not used for policy optimisation. A
word-level user simulator was also used in (Li
et al., 2017) where it was built by augmenting the
ABUS with a natural language generator.

4 Neural User Simulator

Feature 
History 

Feature  
Extractor 

Request-Vector 
Accepted Venue 

Original Request-Vector 

Sequence to Sequence
Model User Utterance 

Spoken Dialogue  
System 

Goal 
Generator Ontology 

Figure 1: General Architecture of the Neural User
Simulator. The System Output is passed to the
Feature Extractor. It generates a new feature vec-
tor that is appended to the Feature History, which
is passed to the sequence-to-sequence model to
produce the user utterance. At the start of the dia-
logue the Goal Generator generates a goal, which
might change during the course of the dialogue.

An overview of the NUS is given in Figure 1.
At the start of a dialogue a random goal G0 is gen-
erated by the Goal Generator. The possibilities
for G0 are defined by the ontology. In dialogue
turn T , the output of the SDS (daT ) is passed to
the NUS’s Feature Extractor, which generates a
feature vector vT based on daT , the current user
goal, GT , and parts of the dialogue history. This
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vector is appended to the Feature History v1:T =
v1...vT . This sequence is passed to the sequence-
to-sequence model (Fig. 2), which will generate
the user’s length nT utterance uT = w0...wnT .
As in Figure 2, words in uT corresponding to a
slot are replaced by a slot token; a process called
delexicalisation. If the SDS expresses to the NUS
that there is no venue matching the NUS’s con-
straints, the goal will be altered by the Goal Gen-
erator.

4.1 Goal Generator

The Goal Generator generates a random goal
G0 = (C0, R) at the start of the dialogue.
It consists of a set of constraints, C0, which
specify the required venue e.g. (food=Spanish,
area=north) and a number of requests, R, that
specify the information that the NUS wants about
the final venue e.g. the address or the phone
number. The possibilities for Ct and R are de-
fined by the ontology. In DSTC2 Ct can consist
of a maximum of three constraints; food, area
and pricerange. Whether each of the three
is present is independently sampled with a prob-
ability of 0.66, 0.62 and 0.58 respectively. These
probabilities were estimated from the DSTC2 data
set. If no constraint is sampled then the goal is re-
sampled. For each slot in C0 a value (e.g. north
for area) is sampled uniformly from the ontol-
ogy. Similarly, the presence of a request is in-
dependently sampled, followed by re-sampling if
zero requests were chosen.

When training the sequence-to-sequence model,
the Goal Generator is not used, but instead the
goal labels from the DSTC2 dataset are used. In
DSTC2 one goal-label is given to the entire di-
alogue. This goal is always the final goal. If
the user’s goal at the start of the dialogue is
(food=eritrean, area=south), which is changed
to (food=spanish, area=south), due to the non-
existence of an Eritrean restaurant in the south, us-
ing only the final goal is insufficient to model the
dialogue. The final goal can only be used for the
requests as they are not altered during a dialogue.
DSTC2 also provides turn-specific labels. These
contain the constraints and requests expressed by
the user up until and including the current turn.
When training a policy with the NUS, such labels
would not be available as they “predict the future”,
i.e. when the turn-specific constraints change from
(area=south) to (food=eritrean, area=south) it

means that the user will inform the system about
her desire to eat Eritrean food in the current turn.

In related work on user-simulation for which the
DSTC2 dataset was used, the final goal was used
for the entire dialogue (El Asri et al., 2016; Serras
et al., 2017; Liu and Lane, 2017). As stated above,
we do not believe this to be sufficient. The follow-
ing describes how to update the turn-specific con-
straint labels such that their behaviour can be repli-
cated when training a DM’s policy, whilst allow-
ing goal changes to be modelled. The update strat-
egy is illustrated in Table 1 with an example. The
final turn keeps its constraints, from which we it-
erate backwards through the list of DSTC2’s turn-
specific constraints. The constraints of a turn will
be set to the updated constraints of the succeed-
ing turn, besides if the same slot is present with a
different value. In that case the value will be kept.
The behaviour of the updated turn-specific goal-
labels can be replicated when the NUS is used to
train a DM’s policy. In the example, the food type
changed due to the SDS expressing that there is
no restaurant serving Eritrean food in the south.
When deploying the NUS to train a policy, the goal
is updated when the SDS outputs the canthelp
dialogue act.

4.2 Feature Extractor

The Feature Extractor generates the feature vector
that is appended to the sequence of feature vec-
tors, here called Feature History, that is passed to
the sequence-to-sequence model. The input to the
Feature Extractor is the output of the DM and the
current goal Gt. Furthermore, as indicated in Fig-
ure 1, the Feature Extractor keeps track of the cur-
rently accepted venue as well as the current and
initial request-vector, which is explained below.

The feature vector vt = [at rt it ct] is made
up of four sub-vectors. The motivation behind the
way in which these four vectors were designed is
to provide an embedding for the system response
that preserves all necessary value-independent in-
formation.

The first vector, machine-act vector at, encodes
the dialogue acts of the system response and con-
sists of two parts; at =

[
a1t a

2
t

]
. a1t is a binary

representation of the system dialogue acts present
in the input. Its length is thus the number of possi-
ble system dialogue acts. It is binary and not one-
hot since in DSTC2 multiple dialogue acts can be
in the system’s response. a2t is a binary represen-
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Ct Original Updated
C0 (food=eritrean) (area=south, food=eritrean, pricerange=cheap)
C1 (area=south, food=eritrean) (area=south, food=eritrean, pricerange=cheap)
C2 (area=south, food=spanish) (area=south, food=spanish, pricerange=cheap)
C3 (area=south, food=spanish, pricerange=cheap) (area=south, food=spanish, pricerange=cheap)

Table 1: An example of how DSTC2’s turn-specific constraint labels can be transformed such that their
behaviour can be replicated when training a dialogue manager.

tation of the slot if the dialogue act is request
or select and if it is inform or expl-conf
together with a correct slot-value pair for an in-
formable slot. The length is four times the num-
ber of informable slots. a2t is necessary due to
the dependence of the sentence structure on the ex-
act slot mentioned by the system. The utterances
of a user in response to request(food) and
request(area) are often very different.

The second vector, request-vector rt, is a bi-
nary representation of the requests that have not
yet been fulfilled. It’s length is thus the number of
requestable slots. In comparison to the other three
vectors the feature extractor needs to remember it
for the next turn. At the start of the dialogue the
indices corresponding to requests that are in R are
set to 1 and the rest to 0. Whenever the system in-
forms a certain request the corresponding index in
rt is set to 0. When a new venue is proposed rt is
reset to the original request vector, which is why
the Feature Extractor keeps track of it.

The third vector, inconsistency-vector it, repre-
sents the inconsistency between the system’s re-
sponse and Ct. Every time a slot is mentioned by
the system, when describing a venue (inform)
or confirming a slot-value pair (expl-conf or
impl-conf), the indices corresponding to the
slots that have been misunderstood are set to 1.
The length of it is the number of informable slots.
This vector is necessary in order for the NUS to
correct the system.

The fourth vector, ct, is a binary representa-
tion of the slots that are in the constraints Ct. It’s
length is thus the number of informable slots. This
vector is necessary in order for the NUS to be able
to inform about its preferred venue.

4.3 Sequence-To-Sequence Model

The sequence-to-sequence model (Figure 2) con-
sists of an RNN encoder, followed by a fully-
connect layer and an RNN decoder. An RNN can

be defined as:

(ht, st) = RNN (xt, st−1) (1)

At time-step t, an RNN uses an input xt and an
internal state st−1 to produce its output ht and
its new internal state st. A specific RNN-design
is usually defined using matrix multiplications,
element-wise additions and multiplications as well
as element-wise non-linear functions. There are a
plethora of different RNN architectures that could
be used and explored. Given that such exploration
is not the focus of this work a single layer LSTM
(Hochreiter and Schmidhuber, 1997) is used for
both the RNN encoder and decoder. The exact
LSTM version used in this work uses a forget gate
without bias and does not use peep-holes.

The first RNN (shown as white blocks in Fig. 2)
takes one feature vector vt at a time as its input
(xEt = vt). If the current dialogue turn is turn T
then the final output of the RNN encoder is given
by hET , which is passed through a fully-connected
layer (shown as the light-grey block) with linear
activation function:

pT = Wph
E
T + bp (2)

For a certain encoding pT the sequence-to-
sequence model should define a probability dis-
tribution over different sequences. By sampling
from this distribution the NUS can generate a di-
verse set of sentences corresponding to the same
dialogue context. The conditional probability dis-
tribution of a length L sequence is defined as:

P (u |p)=P (w0 |p)
L∏

t=1

P (wt |wt−1...w0,p) (3)

The decoder RNN (shown as dark blocks) will be
used to model P (wt |wt−1...w0,p). It’s input at
each time-step is the concatenation of an embed-
ding wt−1 (we used 1-hot) of the previous word
wt−1 (xDt = [wt−1 p]). For P (w0 |p) a start-
of-sentence (<SOS>) token is used as w−1. The
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Figure 2: Sequence-To-Sequence model of the Neural User Simulator. Here, the NUS is generating
the user response to the third system output. The white, light-grey and dark blocks represent the RNN
encoder, a fully-connected layer and the RNN decoder respectively. The previous output of the decoder
is passed to its input for the next time-step. v3:1 are the first three feature vectors (see Sec. 4.2).

end of the utterance is modelled using an end-of-
sentence (<EOS>) token. When the decoder RNN
generates the end-of-sentence token, the decoding
process is terminated. The output of the decoder
RNN, hDt , is passed through an affine transform
followed by the softmax function, SM, to form
P (wt |wt−1...w0,p). A word wt can be obtained
by either taking the word with the highest proba-
bility or sampling from the distribution:

P (wt | wt−1...w0,p) = SM(Wwh
D
t + bw) (4)

wt ∼ P (wt | wt−1...w0,p) (5)

During training the words are not sampled from
the output distribution, but instead the true words
from the dataset are used. This a common tech-
nique that is often referred to as teacher-forcing,
though it also directly follows from equation 3.

To generate a sequence using an RNN, beam-
search is often used. Using beam-search with n
beams, the words corresponding to the top n prob-
abilities of P (w0 |p) are the first n beams. For
each succeeding wt, the n words corresponding to
the top n probabilities of P (wt |wt−1...w0,p) are
taken for each of the n beams. This is followed
by reducing the number of beams from now n2

down to n, by taking the n beams with the high-
est probability P (wtwt−1...w0 |p). This is a de-
terministic process. However, for the NUS to al-
ways give the same response in the same context is
not realistic. Thus, the NUS cannot cover the full
breadth of user behaviour if beam-search is used.
To solve this issue while keeping the benefit of re-
jecting sequences with low probability, a type of
beam-search with sampling is used. The process
is identical to the above, but n words per beam
are sampled from the probability distribution. The

NUS is now non-deterministic resulting in a di-
verse US. Using 2 beams gave a good trade-off
between reasonable responses and diversity.

4.4 Training

The neural sequence-to-sequence model is trained
to maximize the log probability that it assigns to
the user utterances of the training data set:

L=
N∑

n=1

logP (w0 |p)
Ln∑

t=1

logP (wt |wt−1:0,p) (6)

The network was implemented in Tensorflow
(Abadi et al., 2015) and optimized using Ten-
sorflow’s default setup of the Adam optimizer
(Kingma and Ba, 2015). The LSTM layers and
the fully-connected layer had widths of 100 each
to give a reasonable number of overall parame-
ters. The width was not tuned. The learning rate
was optimised on a held out validation set and no
regularization methods used. The training set was
shuffled at the dialogue turn level.

The manual transcriptions of the DSTC2 train-
ing set (not the ASR output) were used to train the
sequence-to-sequence model. Since the transcrip-
tions were done manually they contained spelling
errors. These were manually corrected to ensure
proper delexicalization. Some dialogues were dis-
carded due to transcriptions errors being too large.
After cleaning the dataset the training set con-
sisted of 1609 dialogues with a total of 11638 dia-
logue turns. The validation set had 505 dialogues
with 3896 dialogue turns. The maximum sequence
length of the delexicalized turns was 22, including
the end of sentence character. The maximum dia-
logue length was 30 turns.
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5 Experimental Setup

The evaluation of user simulators is an ongoing
area of research and a variety of techniques can
be found in the literature. Most papers published
on user simulation evaluate their US using direct
methods. These methods evaluate the US through
a statistical measure of similarity between the out-
puts of the US and a real user on a test set. Mul-
tiple models can outperform the ABUS on these
metrics. However, this is unsurprising since these
user simulators were trained on the same or sim-
ilar metrics. The ABUS was explicitly proposed
as a tool to train the policy of a dialogue manager
and it is still the dominant form of US used for this
task. Therefore, the only fair comparison between
a new US model and the ABUS is to use the in-
direct method of evaluating the policies that were
obtained by training with each US.

5.1 Training

All dialogue policies were trained with the PyDial
toolkit (Ultes et al., 2017), by interacting with ei-
ther the NUS or ABUS. The RL algorithm used is
GP-SARSA (Gašić and Young, 2014) with hyper-
parameters taken from (Casanueva et al., 2017).
The reward function used gives a reward of 20 to a
successfully completed dialogue and of -1 for each
dialogue turn. The maximum dialogue length was
25 turns. The presented metrics are success rate
(SR) and average reward over test dialogues. SR is
the percentage of dialogues for which the system
satisfied both the user’s constraints and requests.
The final goal, after possible goal changes, was
used for this evaluation. When policies are trained
using the NUS, its output is parsed using PyDial’s
regular expression based semantic decoder. The
policies were trained for 4000 dialogues.

5.2 Testing with a simulated user

In Schatzmann et. al (2005) cross-model evalua-
tion is proposed to compare user simulators. First,
the user simulators to be evaluated are used to train
N policy each. Then these policies are tested us-
ing the different user simulators and the results av-
eraged. Schatztmann et al. (2005) showed that a
strategy learned with a good user model still per-
forms well when tested on poor user models. If a
policy performs well on all user simulators and not
just on the one that it was trained on, it indicates
that the US with which it was trained is diverse
and realistic, and thus the policy is likely to per-

form better on real users. For each US five poli-
cies (N = 5), each using a different random seed
for initialisation, are trained. Results are reported
for both the best and the average performance on
1000 test dialogues. The ABUS is programmed to
always mention the new goal after a goal change.
In order to not let this affect our results we im-
plement the same for the NUS by re-sampling a
sentence if the new goal is not mentioned.

5.3 Testing with real users

Though the above test is already more indicative
of policy performance on real users than measur-
ing statistical metrics of user behaviour, a better
test is to test with human users. For the test on hu-
man users, two policies for each US that was used
for training are chosen from the five policies. The
first policy is the one that performed best when
tested on the NUS. The second is the one that per-
formed best when tested on the ABUS. This choice
of policies is motivated by a type of overfitting to
be seen in Sec. 6.1. The evaluation of the trained
dialogue policies in interaction with real users fol-
lows a similar set-up to (Jurčı́ček et al., 2011).
Users are recruited through the Amazon Mechan-
ical Turk (AMT) service. 1000 dialogues (250 per
policy) were gathered. The learnt policies were
incorporated into an SDS pipeline with a commer-
cial ASR system. The AMT users were asked to
find a restaurant that matches certain constraints
and find certain requests. Subjects were randomly
allocated to one of the four analysed systems. Af-
ter each dialogue the users were asked whether
they judged the dialogue to be successful or not
which was then translated to the reward measure.

6 Experimental Results

6.1 Cross-Model Evaluation

Table 2 shows the results of the cross-model eval-
uation after 4000 training dialogues. The policies
trained with the NUS achieved an average success
rate (SR) of 94.0% and of 96.6% when tested on
the ABUS and the NUS, respectively. By compar-
ison, the policies trained with the ABUS achieved
average SRs of 99.5% and 45.5% respectively.
Thus, training with the NUS leads to policies that
can perform well on both USs, which is not the
case for training with the ABUS. Furthermore, the
best SRs when tested on the ABUS are similar at
99.9% (ABUS) and 99.8% (NUS). When tested on
the NUS the best SRs were 71.5% (ABUS) and
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Train. Sim. Eval. Sim.
NUS ABUS

Rew. Suc. Rew. Suc.
NUS-best 13.0 98.0N1 13.3 99.8
ABUS-best 1.53 71.5A1 13.8 99.9A2

NUS-avg 12.4 96.6 11.2 94.0
ABUS-avg -7.6 45.5 13.5 99.5

Table 2: Results for policies trained for 4000 di-
alogues on NUS and ABUS when tested on both
USs for 1000 dialogues. Five policies with differ-
ent initialisations were trained for each US. Both
average and best results are shown.

Train. Sim. Eval. Sim.
NUS ABUS

Rew. Suc. Rew. Suc.
NUS-best 12.2 95.9 13.9 99.9N2

ABUS-best -4.0 54.8 13.2 99.0
NUS-avg 12.0 95.4 12.2 97.3
ABUS-avg -9.48 42.3 12.8 98.4

Table 3: As Table 2 but trained for 1000 dialogues.

98.0% (NUS). This shows that the behaviour of
the Neural User Simulator is realistic and diverse
enough to train policies that can also perform very
well on the Agenda-Based User Simulator.

Of the five policies, for each US, the policy per-
forming best on the NUS was not the best perform-
ing policy on the ABUS. This could indicate that
the policy “overfits” to a particular user simulator.
Overfitting usually manifests itself in worse results
as the model is trained for longer. Five policies
trained on each US for only 1000 dialogues were
also evaluated, the results of which can be seen in
Table 3. After training for 1000 dialogues, the av-
erage SR of the policies trained on the NUS when
tested on the ABUS was 97.3% in comparison to
94.0% after 4000 dialogues. This behaviour was
observed for all five seeds, which indicates that the
policy indeed overfits to the NUS. For the policies
trained with the ABUS this was not observed. This
could indicate that the policy can learn to exploit
some of the shortcomings of the trained NUS.

6.2 Human Evaluation

The results of the human evaluation are shown in
Table 4 for 250 dialogues per policy. In Table 4
policies are marked using an ID (Uα) that trans-
lates to results in Tables 2 and 3. Both policies
trained with the NUS outperformed those trained

Training Simulator Human Evaluation
Rew. Suc.

NUS - N1 13.4 91.8
NUS - N2 13.8 93.4
ABUS - A1 13.3 90.0
ABUS - A2 13.1 88.5

Table 4: Real User Evaluation. Results over 250
dialogues with human users. N1 and A1 per-
formed best on the NUS. N2 and A2 performed
best on the ABUS. Rewards are not comparable to
Table 2 and 3 since all user goals were achievable.

on the ABUS in terms of both reward and suc-
cess rate. The best performing policy trained on
the NUS achieves a 93.4% success rate and 13.8
average rewards whilst the best performing policy
trained with the ABUS achieves only a 90.0% suc-
cess rate and 13.3 average reward. This shows that
the good performance of the NUS on the cross-
model evaluation transfers to real users. Further-
more, the overfitting to a particular US is also ob-
served in the real user evaluation. For not only the
policies trained on the NUS, but also those trained
on the ABUS, the best performing policy was the
policy that performed best on the other US.

7 Conclusion

We introduced the Neural User Simulator (NUS),
which uses the system’s response in its seman-
tic form as input and gives a natural language re-
sponse. It thus needs less labelling of the train-
ing data than User Simulators that generate a re-
sponse in semantic form. It was shown that the
NUS learns realistic user behaviour from a corpus
of recorded dialogues such that it can be used to
optimise the policy of the dialogue manager of a
spoken dialogue system. The NUS was compared
to the Agenda-Based User Simulator by evaluating
policies trained with these user simulators. The
trained policies were compared both by testing
them with simulated users and also with real users.
The NUS excelled on both evaluation tasks.
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Milica Gašić. 2018. Sample efficient deep reinforce-
ment learning for dialogue systems with large action
spaces. arXiv preprint arXiv:1802.03753.

Jason D Williams. 2008. Evaluating user simulations
with the cramér–von mises divergence. Speech com-
munication, 50(10):829–846.

Jason D Williams and Steve Young. 2007. Partially
observable markov decision processes for spoken
dialog systems. Computer Speech & Language,
21(2):393–422.
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Abstract

To provide a better discussion experience
in current argumentative dialogue sys-
tems, it is necessary for the user to feel
motivated to participate, even if the sys-
tem already responds appropriately. In
this paper, we propose a method that
can smoothly introduce argumentative di-
alogue by inserting an initial discourse,
consisting of question-answer pairs con-
cerning personality. The system can in-
duce interest of the users prior to agree-
ment or disagreement during the main dis-
course. By disclosing their interests, the
users will feel familiarity and motivation
to further engage in the argumentative di-
alogue and understand the system’s intent.
To verify the effectiveness of a question-
answer dialogue inserted before the argu-
ment, a subjective experiment was con-
ducted using a text chat interface. The
results suggest that inserting the question-
answer dialogue enhances familiarity and
naturalness. Notably, the results suggest
that women more than men regard the di-
alogue as more natural and the argument
as deepened, following an exchange con-
cerning personality.

1 Introduction

Argumentation is a process of reaching consensus
through premises and rebuttals, and it is an im-
portant skill required in daily life (Scheuer et al.,
2010). Through argumentation, we can not only
reach decisions, but also learn what others think.
Such decision-making and the interchange of
views are one of the most important and advanced
parts of human activities. If an artificial dialogue
system can argue on certain topics with us, this
can both help us to work efficiently and establish
a close relationship with the system.

Recently, there have been some studies con-
cerning argumentative dialogue systems. Hi-
gashinaka et al. developed an argumentative
dialogue system that can discuss certain top-
ics by using large-scale argumentation struc-
tures (Higashinaka et al., 2017). However, this
system could not provide all users with a satisfac-
tory discussion experience, even though it could
appropriately respond to their opinions. One pos-
sible reason for this is that some users are not nec-
essarily motivated to argue on the topics suggested
by the system.

We aim to improve an argumentative dia-
logue system by adding a function to motivate
a user to participate in an argumentative dia-
logue. To increase the user’s motivation to par-
ticipate in the argumentative dialogue, we focus
on small talk. Small talk can help participants
build certain relationships before they enter the
main dialogue (Zhao et al., 2014). In negotia-
tion and counseling, a close relationship between
two humans can improve the performance of cer-
tain tasks (Drolet and Morris, 2000; Kang et al.,
2012). Relationships between a user and system
are important for reaching a consensus though dia-
logue (Katagiri et al., 2013) Thus, it is considered
to be possible for a user to be naturally guided into
an argumentative dialogue by performing small
talk.

In practice, we adopted a question-answering
dialogue, where users are casually asked about
their personal experiences or ideas. This was
implemented by using what we call a personal
database (hereafter PDB), which involves pairs
consisting of a personal question and a corre-
sponding example answer, which are likely to ap-
pear in human-human conversation. When asked
about personal issues, users are expected to feel
interested in the system, and then be induced to
feel open and close to the system. Meanwhile, the
system provides its own answers to the questions
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by using the PDB. From the answers of the user
and the system, users are expected to gain an idea
of what is common and different between them, a
requirement which has been suggested to be im-
portant for humans to be motivated to understand
one another (Uchida et al., 2016).

In this research, we extend the argumentative
dialogue system described in (Higashinaka et al.,
2017) to add a function that can smoothly in-
troduce argumentative dialogue by inserting a
question-answering dialogue using the PDB (here-
inafter referred to as PDB-QA dialogue). It is con-
sidered that users of the proposed system can be
expected to be motivated to partake in the argu-
mentative dialogue, and that they can then partake
in a deep discussion with the system. To verify
the effectiveness of this system, we conducted a
subjective experiment using a text chat interface.

The remainder of this paper is organized as fol-
lows. In Section 2, we describe related work. In
Section 3, we describe our proposed method, in-
cluding how to develop the question-answering di-
alogue and how to integrate this into an existing
argumentative dialogue system. In Section 4, we
describe an experiment we conducted, in which
human subjects expressed their impressions of the
dialogue through a text chat interface. We summa-
rize the paper and discuss future work in Section 5.

2 Related work

Although there is little work on an auto-
mated system that can perform discussion with
users, recently, there has been a great deal of
work aimed at automatically extracting premises
and conclusions from text; argumentation min-
ing has been applied to various data, includ-
ing legal text (Moens et al., 2007), newswire
text (Bal and Saint-Dizier, 2010), opinions in dis-
cussion forums (Rosenthal and McKeown, 2012),
and varied online text (Yanai et al., 2016).

There has been some research concerning the
introduction of a dialogue. Rogers et al. showed
that it became easier for two people to talk
during the first meeting by using an applica-
tion that can share their opinions on a dis-
play (Rogers and Brignull, 2002). Patricia et
al. reported that small talk in an initial dis-
course improved the interaction in a business sit-
uation (Pullin, 2010). Inaguma et al. analyzed
the prosodic features of shared laughter as an ice-
breaker in initial dialogues (Inaguma et al., 2016).

However, it is unclear how to develop an initial di-
alogue for smoothly introducing a discussion.

It is known that people interact with artifi-
cial constructions such as dialogue systems, vir-
tual agents, and robots in the same manner as
they interact with other humans (Reeves and Nass,
1996). Schegloff et al. showed that human conver-
sation usually interleaves the contents of a task-
oriented dialogue with social contents (Schegloff,
1968). Jiang et al. showed that 30% of all ut-
terances of Microsoft Cortana, a well-known task-
oriented dialogue system, consist of social con-
tents (Jiang et al., 2015). It is considered that per-
forming small talk can be natural in argumentative
dialogue systems.

There have been many studies on dialogue
systems that include small talk. Bechberger et
al. developed a dialogue system that conveys
news text and performs small talk related to the
news (Bechberger et al., 2016). Kobori et al.
showed that inserting small talk improved the im-
pressions of an interview system (Kobori et al.,
2016). Bickmore et al. showed that the task suc-
cess rate was improved by constructing a trust re-
lationship using small talk (Bickmore and Cassell,
2005). Tina et al. developed a dialogue sys-
tem that included the function of interacting using
small talk (Klüwer, 2015). We consider that ar-
gumentative dialogues may be performed deeply
since small talk can improve the trust relationship.

Related to the studies dealing with multiple dia-
logue strategies including argumentative and so-
cial dialogues, there are several works concern-
ing hybrid dialogue systems that integrate task-
oriented and chat-oriented dialogue systems. Pa-
paioannou et al. proposed a method to acquire dia-
logue strategies for hybrid systems in a robot using
reinforcement learning (Papaioannou and Lemon,
2017). Yu et al. showed that multiple di-
alogue systems can interact using appropriate
dialogue strategies learned through reinforce-
ment learning (Yu et al., 2017). Akasaka et al.
demonstrated a classification method for input
utterances to select what dialogue systems are
used (Akasaki and Kaji, 2017). However, in ini-
tial dialogue, it is unclear which dialogue strate-
gies can be employed to smoothly introduce an ar-
gumentative dialogue.
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Figure 1: Flow of PDB-QA dialogue. Each part
contains two system utterances and two user utter-
ances. We used questions in an order based on the
similarity between the dialogue topic and question
text.

3 Proposed method

We propose a method for introducing an argu-
mentative dialogue using the PDB-QA dialogue,
which is a question-answering dialogue concern-
ing personality. We then describe some existing
argumentative dialogue systems. Next, we explain
how to develop an extended argumentative dia-
logue system using the PDB-QA dialogue.

3.1 PDB-QA dialogue by using
question-answering pair about
personality

The PDB consists of personal questions and exam-
ple answers and is used to ask the interlocutor for
detailed information (Tidwell and Walther, 2002).
Such questions may be asked even when the in-
terlocutor is a dialogue system (Nisimura et al.,
2011). In this study, we used the PDB described
in (Sugiyama et al., 2014). This PDB is a large-
scale database of pairs of questions and answers
related to personal information. Questions in-
cluded in the PDB involved various personal ques-
tions, question categories, answer examples, and
topics attached to each question. Based on the
degree of overlap of questions, question-answer
pairs frequently encountered during conversation
are extracted. The PDB includes personal ques-
tions such as “what dishes do you like?” and
“which places have you visited?”

We explain the procedure for generating a PDB-
QA dialogue using this PDB. As shown in Fig-
ure 1, the PDB-QA dialogue consists of several
parts. Each part consists of four utterances: the
system’s question using the PDB, the user’s re-
sponse, the system’s answer, and the user’s re-
sponse to this. To determine the order in which

Figure 2: Architecture of developed dialogue sys-
tem.

to ask multiple questions, we used the similar-
ity between the topic of argument and the ques-
tion text, calculated by Word2vec (Mikolov et al.,
2013). From parts 1 to N, we used questions in
an order starting from the highest similarity, i.e.,
part 1 uses a question with the N-th highest simi-
larity and part N uses another question that has the
highest similarity. This is because it is considered
that approaching the topic gradually is natural as a
dialogue structure. Through this process, we can
perform N parts of the PDB-QA dialogue.

3.2 Argumentative dialogue system

We used the argumentative dialogue system de-
scribed in (Higashinaka et al., 2017). This sys-
tem can generate appropriate argumentative dia-
logue text based on large-scale knowledge struc-
tures, called argumentation structures, which are
constructed manually. An argumentation structure
is represented by a graph structure, composed of
nodes that represent premises and edges represent-
ing support or nonsupport relationships, based on
an extended version of Walton’s model (Walton,
2013).

A user utterance is input into two modules: di-
alogue act estimation and proposition identifica-
tion. The dialogue act estimation module esti-
mates four dialogue-act types: assertion, question,
concession, and retraction. The proposition iden-
tification module determines the argumentation
node that contains the content closest to the input
user utterance. The discussion manager updates
the argumentation structure on the basis of the un-
derstanding result, which checks whether the cor-
responding node is already mentioned. Then the
dialogue manager retrieves premises that can be
used for support or rebuttal based on traversing
along with argumentation structures. The system
outputs a supportive or nonsupportive response to
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Figure 3: Flow in the dialogue manager.

the user’s utterance.

3.3 Integration of argumentation dialogue
system and PDB-QA dialogue

Figure 2 illustrates the architecture of our argu-
mentative dialogue system. The user interacts
with the system through the text chat interface on
the browser. The natural language understand-
ing module has two modules related by the argu-
mentative dialogue system. Note that this mod-
ule is only used in the argument phase described
as follows. The dialogue manager manages two
dialogue states. One is the question-answering
phase, and the other is the argument phase. Fig-
ure 3 illustrates the flow of dialogue managed by
the dialogue manager. First, the dialogue manager
initiates the opening dialogue, such as by asking
the user her name. Then, it begins the question-
answering phase. In this phase, the PDB-QA di-
alogue is performed, as described in Section 3.1.
The PDB-QA dialogue is a predefined question-
answering dialogue, regardless of user utterances.
The answer of the system for a PDB question is
prepared by the experimenter in advance. The
natural language generation module changes the
system response such as adding conjunctions and
changing the end of the sentences using a dialogue
act. Later, the dialogue manager begins the argu-
ment phase. In the argument phase, the utterances
of the system are premises that can be used for
support or rebuttal, and they consist of the results
of the argumentative dialogue system.

Line Speaker Utterance
1 S Do you like trips?
2 U Yes, I do.
3 S I see. I like them too.

I want to go on a trip during the weekend.
4 U I also want to go during the weekend.
5 S Where do you want to go for a trip?
6 U I want to go abroad.
7 S Me too.

I want to go to France if I have the time.
8 U French dishes seem great.
9 S Which is the better place to travel

in Japan, Hokkaido or Okinawa?
10 U I want to go to Okinawa.
11 S You can enjoy unique dishes in Okinawa.
12 U I think goya-champuru (a traditional

Okinawa dish) is delicious.
13 S But Hokkaido also has delicious dishes,

such as Genghis Khan.
14 U I see. Hokkaido has more delicious food.

Figure 4: An example of the dialogue. The topic is
that of which place the better to travel to in Japan:
Hokkaido or Okinawa. Lines 1 ∼ 8 are part of the
PDB question dialogue, and lines 9 ∼ 14 are part
of the argumentative dialogue. Speaker S and U
represent the system and user, respectively.

Figure 4 shows an example of the dialogue we
performed. The topic is as follows: which is the
better place to travel to in Japan: Hokkaido or Ok-
inawa? Lines 1 ∼ 8 are a part of the PDB question
dialogue, and lines 9 ∼ 14 are a part of the argu-
mentative dialogue. Speakers S and U represent
the system and the user, respectively.

4 Experiment

In this section, we describe a subjective experi-
ment to verify the effect of inserting the PDB-QA
dialogue. We compared the subjects’ evaluations
and behavior for two types of dialogue: one with
PDB-QA and the other without it. The hypoth-
esis is that by inserting the PDB-QA dialogue in
advance, users are motivated to partake in the ar-
gumentative dialogue and can then discuss deeply
with the system. To verify this hypothesis, sub-
jects communicated with the argumentative dia-
logue system through a text chat interface on a
browser, and then recorded their impressions in a
questionnaire. We quantitatively evaluated the av-
erage number of words per utterance of the user in
the argument phase. It is expected that the num-
ber of words per user’s utterance in our argumen-
tative dialogue system should be relatively lower
than that in the previous system, because when a
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Figure 5: Screenshot of the text chat interface.

user builds a relationship with the system, the user
expresses own ideas with fewer words.

4.1 Method
4.1.1 Subjects
Thirty-two Japanese adults (16 males and 16 fe-
males, with an average age of 20.3 years) partici-
pated as subjects. Half of the subjects participated
with the PDB condition, and the other half without
it. The ratio of males to females in each condition
was the same. One male with the PDB condition
and two males without were excluded because of
system failures, and the utterances of the remain-
ing 29 people were analyzed.

4.1.2 Apparatus
The experiment was conducted in a space sepa-
rated by curtains. A laptop PC was placed on the
table, and the PC displayed a web browser to show
the text chat interface, as shown in Figure 5. Note
that the dialogue in the experiment was performed
in Japanese. The dialogue text of the interaction
between the system and the subject was displayed
in the middle part of the browser, and a text box for
the subject to input his/her own utterances was dis-
played at the lower part of the browser. Note that
we call the sentence displayed in the interface an
“utterance.” In other words, sentences produced
by the system and input by the user with a key-
board are called the system’s and user’s utterances,
respectively.

4.1.3 Stimuli
In this experiment, we compared two conditions:
with and without the PDB. The condition with
PDB included two phases of dialogue: a question-
answering phase and an argument phase. The con-
dition without PDB included one phase of dia-
logue: the argument phase. In this experiment, the

subject and the system alternately provided utter-
ances. Each pair of such utterances is referred to
as one turn. Both conditions included two turns
of opening dialogue, such as asking the subject’s
name and a greeting. The question-answering
phase consisted of three parts, each of which in-
cluded two turns of dialogue. In total, six turns
of dialogue were performed. The argument phase
contained six turns of dialogue. We prepared five
discussion topics and assigned any of these to the
subject at random: (1) the pros and cons of driving
automobiles, (2) benefits of living in the country-
side vs. living in the city, (3) which is the better
place to travel to in Japan between Hokkaido and
Okinawa, (4) which is the better breakfast between
bread and rice, and (5) which is the better theme
park betweenTokyo Disney Resort and Universal
Studios Japan.

4.1.4 Procedure
This experiment was conducted according to the
following procedure. First, the experimenter gave
a subject the instructions for the experiment. The
contents of the instructions were that the subject
interacts with the system through the text chat in-
terface on the browser, interacts only once, and an-
swers the questionnaire after the dialogue. Next,
the experimenter asked the subject to read the
questionnaire in advance. After that, interaction
was started. After completing the dialogue, the
experimenter asked the subject to answer the ques-
tionnaire.

4.1.5 Measurement
The items of the questionnaire regarding impres-
sions were the same for both conditions, and there
were eleven items in total. These included ques-
tions related to the overall impression of the dia-
logue system, the argumentative dialogue, and the
user’s motivation for conversing with the dialogue
system. The items concerning the impression of
the dialogue consisted of the following five:

Q1 The utterances of the system are correct in
Japanese,

Q2 The dialogue with the system is easy to under-
stand,

Q3 The dialogue with the system is familiar,

Q4 The dialogue with the system has a lot of con-
tent, and

Q5 The dialogue with the system is natural.
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Figure 6: Box plots of the results of the questionnaire.

Figure 7: Box plots of results for the average num-
bers of words and content words (nouns, verbs, ad-
jectives, conjunctions, and interjections) per utter-
ance in the argument phase. We used MeCab to
tokenize Japanese words.

The items concerning the impression of the argu-
ment dialogue were the following two:

Q6 You can deeply discuss the topic of X, and
Q7 You can smoothly enter the argumentative di-

alogue about X,

where X is the actual topic (e.g., which is the better
place to travel to in Japan between Hokkaido and
Okinawa). The items related to motivation for the
dialogue were the following four:

Q8 You want to convey your opinions,
Q9 You want to understand the system’s opinions,
Q10 You feel that the system wants to convey its

opinions, and
Q11 You feel that the system wants to understand

your opinions.

A Likert scale was used to elicit the sub-
jects’ impressions. We used a seven-point scale

that ranged from a value of 1, corresponding
to “strongly disagree,” to 7, corresponding to
“strongly agree.” The midpoint value of 4 corre-
sponded to “undecided.”

We also counted the average number of words
per user utterance and the average number of con-
tent words (nouns, verbs, adjectives, conjunctions,
and interjections) in the argument phase. We
used MeCab to tokenize the words and label the
Japanese parts of speech.

4.2 Result

Figure 6 presents the box plots of the answers to
the questionnaire. A Mann-Whitney U test was
used to compare the scores on the Likert scale. For
Q3, namely “the dialogue with the system is famil-
iar,” the median score for the condition with PDB
was found to be marginally significantly higher
than that for the condition without PDB (W = 143,
p < 0.1). For Q5, namely “the dialogue with
the system is natural,” the median score for the
condition with PDB was found to be significantly
higher than that for the condition without PDB
(W = 149.5, p < 0.05). For other questions, no
significant differences between the two conditions
were detected.

As shown in Figure 6, we did not directly con-
firm an improvement concerning the smooth intro-
duction to the argumentative dialogue by inserting
the PDB-QA dialogue. However, this figure sug-
gests that it is possible for the user to feel that
the dialogue is familiar and more natural when
the PDB-QA dialogue is inserted. This result may
be because the system performs in the manner in
which a human usually does, and a certain rela-
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Figure 8: Box plots of results of the questionnaire
for male users.

Figure 9: Box plots of female results of the ques-
tionnaire for female users.

Figure 10: Box plots of results for male users for
the average number of words and content words per
utterance in the argumentation phase.

Figure 11: Box plots of results for female users for
the average number of words and content words per
utterance in the argumentation phase.

tionship is built between the user and the system.
Thus, it is considered that inserting the PDB-QA
dialogue improves the naturalness of the dialogue
and relationships.

Figure 7 presents the box plots of the average
numbers of words and content words per user ut-
terance. For the average number of words, the me-
dian score for the condition with PDB was found
to be significantly less than that for the condition
without PDB (W = 40, p < 0.01). Concerning
the average number of content words, the median
score for the condition with PDB was also found
to be significantly less than that for the condition
without PDB (W = 40, p < 0.01).

As shown in Figure 7, it was found that the av-
erage numbers of words and content words in the
condition with PDB were significantly less than
those in the condition without PDB. These re-
sults suggest that when the relationship between
the user and the system is not close, the users
may express their opinions using a larger number
of words, to correctly convey their own message;
on the other hand, when the relationship is close,
the users may express their opinions using fewer
words.

In general, it is known that there are some dif-
ferences in purposes of conversation owing to gen-
der differences (Tannen, 2001). In this study, we

suppose that the different purposes of conversation
resulting from gender differences may affect our
results. Therefore, we analyzed the effects of gen-
der. We divided the data by gender, and then plot-
ted each result. In the result for male users, shown
in Figure 8, no significant differences between the
two conditions were detected. On the other hand,
in the result for female users, shown in Figure 9,
we observe some significant differences between
the two conditions. According to this figure, for
Q5, namely “the dialogue with the system is natu-
ral,” the median score for the condition with PDB
was found to be marginally significantly higher
than that for the condition without PDB (W = 49,
p < 0.1). For Q6, namely “you can deeply dis-
cuss the topic,” the median score for the condition
with PDB was also found to be marginally signif-
icantly higher than that for the condition without
PDB (W = 49, p < 0.1). In addition, we compared
males’ and females’ data under the conditions with
and without PDB. As a result, for Q7, namely “you
can smoothly enter the argumentative dialogue,”
the median score with PDB for females was found
to be marginally significantly higher than that with
PDB for males (W = 13.5, p < 0.1). These re-
sults suggest that it is possible that females may
feel that the PDB-QA dialogue inserted before the
argumentative dialogue is more natural, and this
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may lead to the result that females feel the argu-
mentative dialogue is deepened more. Thus, it is
suggested that inserting the PDB-QA dialogue in
our proposed method may be more effective for
females.

In addition, Figures 10 and 11 show the results
for male and female users for words and content
words, respectively. As shown in Figure 10, for
male users, the average number of content words
for the condition with PDB was found to be sig-
nificantly less than that without PDB (W = 7,
p < 0.05). This result may be because of their
degree of motivation, but the actual reason is un-
known. On the other hand, as shown in Figure 11,
for female users, the average numbers of words
and content words with PDB were found to be
marginally significantly less than those without
PDB (W = 14, p < 0.1, W = 15, p < 0.1, respec-
tively). These results suggest that females may use
fewer words when they feel familiarity with the in-
terlocutor.

5 Summary and future work

We proposed a PDB-QA dialogue method to
smoothly introduce an argumentative dialogue.
We conducted an evaluation experiment to ver-
ify the effectiveness of inserting the PDB-QA di-
alogue. The results suggest that the impressions
of the dialogue, such as familiarity and natural-
ness, may be improved by inserting the PDB-QA
dialogue. Specifically, we found that females may
perceive a PDB-QA dialogue inserted before an
argumentative dialogue as more natural, and this
may lead to the result that the argumentative dia-
logue can be deepened. We also found that when
the relationship between the user and the system
is not close, the users may express their opinions
using a larger number of words, whereas when the
relationship is close, the users may express their
opinions with fewer words.

We can improve the performance of the dia-
logue system by adjusting several parameters of
PDB dialogue, which were fixed in the experiment
for the sake of control. For example, we can adjust
how questions are chosen (the degree of similarity
of questions to be selected), the order of questions,
the number of questions, and the amount of infor-
mation to be presented in an answer to a question.
It may be possible to improve the performance if
we select better parameters depending on a user’s
preferences or the context of a conversation.

For further improvement, we can consider ani-
macy, which is another element that may be im-
portant. Animacy describes the characteristic of
being like a living being, in other words, the char-
acteristic of whether a human can relate to mind
and will in an object. We suppose that in a dia-
logue, it is important for the user to feel animacy
toward the interlocutor, because it is important for
the user to recognize the dialogue system as a spe-
cial target with which they can form a certain re-
lationship. As a preliminary experiment, we mea-
sured the psychological indicators for mind per-
ception (Gray et al., 2011). This scale can mea-
sure how much agency (capacity for self-control,
planning, and memory) and experience (capacity
for pleasure, fear, and hunger) the subject feels the
target has. Analyzing how impressions of agency
and experience might affect the answers to the
questionnaire or the behavior of users will be an
important aspect of future work.

In this paper, we compared the conditions with
and without PDB. Comparing the two conditions,
we surmise that at least three factors exist that af-
fect the results: whether utterances are in the form
of a question, whether they contain personal con-
tent, and whether they are related to the topic of
the argumentative dialogue. For the first factor,
we suppose that a question form can explicitly re-
veal common and differing sentiments in the an-
swer to the question. It is considered that this
makes it easy for the user to become interested.
For the second aspect, we suppose that asking a
question concerning personality can make it possi-
ble to construct a certain relationship more easily.
As regards the final point, we feel this prevents
a sudden change of topic. We suppose that this
makes it possible for the user to enter the argu-
mentative dialogue more smoothly. Investigating
the kinds of factors that affect a natural introduc-
tion into the argumentative dialogue will be a topic
of future work.
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Abstract

We examine the efficacy of various
feature–learner combinations for lan-
guage identification in different types of
text-based code-switched interactions –
human-human dialog, human-machine
dialog, as well as monolog – at both the
token and turn levels. In order to examine
the generalization of such methods across
language pairs and datasets, we analyze
ten different datasets of code-switched
text. We extract a variety of character- and
word-based text features and pass them
into multiple learners, including condi-
tional random fields, logistic regressors,
and recurrent neural networks. We further
examine the efficacy of character-level
embedding and GloVe features in im-
proving performance and observe that our
best-performing text system significantly
outperforms the majority vote baseline
across language pairs and datasets.

1 Introduction

Code-switching refers to multilingual speakers’
alternating use of two or more languages or lan-
guage varieties within the context of a single con-
versation or discourse in a manner consistent with
the syntax and phonology of each variety (Mil-
roy and Muysken, 1995; Wei, 2000; MacSwan,
2004; Myers-Scotton, 2006). Increasing global-
ization and the continued rise of multilingual so-
cieties around the world makes research and de-
velopment of automated tools for the processing
of code-switched speech a very relevant and in-
teresting problem for the scientific community.
In our case, an important additional motivating
factor for studying and developing tools to elicit

and process code-switched or crutched1 language
comes from the education domain, specifically
language learning. Recent findings in the litera-
ture suggest that strategic use of code-switching
of bilinguals’ L1 and L2 in instruction serves mul-
tiple pedagogic functions across lexical, cultural,
and cross-linguistic dimensions, and could en-
hance students’ bilingual development and maxi-
mize their learning efficacy (Wheeler, 2008; Jiang
et al., 2014). This seems to be a particularly effec-
tive strategy especially when instructing low profi-
cient language learners (Ahmad and Jusoff, 2009).
Therefore, the understanding of code-switched di-
alog and development of computational tools for
automatically processing code-switched conversa-
tions would provide an important pedagogic aid
for teachers and learners in classrooms, and po-
tentially even enhance learning at scale and per-
sonalized learning.

Automated processing of code-switched text di-
alog poses an interesting, albeit challenging prob-
lem for the scientific community. This is be-
cause the hurdles observed during traditional di-
alog processing tasks such as spoken language
understanding (SLU), natural language generation
(NLG) and dialog management (DM) are exacer-
bated in the case of code-switched text where the
language the speaker is using at any given instant
is not known apriori. Integrating an explicit lan-
guage identification (or LID) step into the process-
ing pipeline can potentially alleviate these issues.
Take for example a use case of designing conver-
sational applications for non-native English lan-
guage learners (ELLs) from multiple native lan-
guage (or L1) backgrounds. Many such learners
tend to “crutch” on their L1 while speaking in the
target language (or L2) that they are learning, es-

1Crutching refers to language learners relying on one
language to fill in gaps in vocabulary or knowledge in the
other (OConnor and Crawford, 2015).

80



pecially if they are low proficiency learners (Little-
wood and Yu, 2011), resulting in mixed-language
speech. In such a case, LID becomes particu-
larly important for SLU and DM, where the dialog
designer/language expert may want the conversa-
tional agent to perform different dialog actions de-
pending on whether the speaker used his/her L1
alone, the L2 alone, or a mixture of both during
the previous turn.

Researchers have made significant progress in
the automated processing of code-switched text
in recent years (Solorio et al., 2014; Bali et al.,
2014; Molina et al., 2016). While Joshi (Joshi,
1982) had already proposed a formal computa-
tional linguistics framework to analyze and parse
code-switched text in the early eighties, it was not
until recently that significant strides were made
in the large-scale analysis of code-switched text.
These have been facilitated by burgeoning mul-
tilingual text corpora (thanks largely to the rise
of social media) and corpus analysis studies (see
for example Solorio et al., 2014; Bali et al., 2014;
Molina et al., 2016), which have in turn facili-
tated advances in automated processing. Particu-
larly relevant to our work is prior art on predicting
code-switch points (Solorio and Liu, 2008) and
language identification (Barman et al., 2014; King
and Abney, 2013). Researchers have made much
progress on LID in code-switched text (tweets, in
particular) thanks to recent workshops dedicated
to the topic (Solorio et al., 2014; Molina et al.,
2016). One of the top-performing systems used
character n-gram, prefix and suffix features, letter
case and special character features and explored
logistic regression and conditional random field
(CRF) learners to achieve the best performance
for Spanish-English codeswitched text (Shirvani
et al., 2016). Yet another successful system lever-
aged bi-directional long short term memory net-
works (BLSTMs) and CRFs (along with word and
character embedding features) on both Spanish-
English and Standard Arabic-Egyptian language
pairs (Samih et al., 2016).

While there is comparatively less work in
the literature on automated analysis of code-
switched speech and dialog, the number of cor-
pora and studies is steadily growing in sev-
eral language pairs – for instance, Mandarin–
English (Li et al., 2012; Lyu et al., 2015),
Cantonese–English (Chan et al., 2005) and Hindi–
English (Dey and Fung, 2014). As far as

dialog is concerned, the Bangor Corpus con-
sists of human-human dialog conversations in
Spanish–English, Welsh–English and Spanish–
Welsh (Donnelly and Deuchar, 2011). More
recently, Ramanarayanan and Suendermann-Oeft
(2017) also proposed a multimodal dialog corpus
of human-machine Hindi–English and Spanish–
English code-switched data. In order to under-
stand how turn-level LID systems for dialog per-
form across different languages and corpora, this
paper explores the efficacy of different text-based
features on multiple human–human and human–
machine dialog corpora of code-switched data in
multiple language pairs. To that end, this pa-
per builds on other recent work that examined
this phenomenon for the Bangor Miami Corpus
of English–Spanish human–human dialog (Rama-
narayanan et al., 2018) and expands it significantly
(note however, that this study does not examine
speech data). To our knowledge, this is the first
such comprehensive exploration of turn-level LID
performance in human-human code-switched text
dialog. With that in mind, the specific contribu-
tions of this paper are to examine:

1. The performance of: (i) a range of text fea-
tures (including word- and character-level
embedding features) for (ii) both word-level
and turn-level LID;

2. How generalizable these features are across
different datasets comprising different lan-
guage pairs and styles of codeswitched text
– human-human dialog, human-machine dia-
log and monolog (tweets);

3. Turn-level LID performance by (i) using
word-level LID followed by aggregation over
the entire turn v.s. (ii) directly training clas-
sifiers at the turn-level.

The rest of this paper is organized as follows:
Section 2 describes the various corpora used for
our turn-level LID experiments. We then elucidate
the various featuresets and learners we explored
in Sections 3 and 4 respectively, followed by de-
tails of the experimental setup in Section 5. Next,
Section 6 presents the results of our LID experi-
ments as well as analyses of performance numbers
across featureset-learner combinations, language
pairs and dataset style. Finally, we conclude with a
discussion of current observations and an outlook
for future work in Section 7.
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2 Data

We used a total of ten code-switched corpora for
our experiments across language pairs and inter-
action type, summarized briefly below. Note that
although some of these corpora contain speech as
well, we only consider the text transcripts for the
purposes of this paper.

• Bangor University in Wales has assem-
bled three corpora of human-human code-
switched dialog2: (i) The Miami corpus of
code-switched English and Spanish, (ii) the
Siarad corpus of English and Welsh, and (iii)
the Patagonia corpus of Spanish and Welsh.

• The SEAME corpus3 comprises approxi-
mately 192 hours of Mandarin-English code-
switching human-human dialog from 156
speakers with associated transcripts (Lyu
et al., 2015). The speakers were gender-
balanced (49.7% female, 50.3% male) and
between 19 and 33 years of age. Over 60% of
the speakers were Singaporean; the rest were
Malaysian.

• The HALEF corpora of code-switched
human-machine dialog comprise English–
Hindi and English–Spanish language pairs.
In each language pair, bilingual human
participants were encouraged to use code-
switched speech as they interacted with a
cloud-based multimodal dialog system to or-
der food and drink from a virtual coffee shop
barista. For more details, see Ramanarayanan
and Suendermann-Oeft (2017).

• Finally, in addition to these dialog corpora,
we also used monolog corpora for compar-
ison – four Twitter datasets used in the 1st

shared task on language identification held at
EMNLP 2016 (Solorio et al., 2014). These
consisted of code-switched tweets in the
following language pairs: English–Spanish,
English–Mandarin, English–Nepalese, and
Modern Standard Arabic–Egyptian Arabic.

The transcripts were processed by performing
whitespace tokenization on each turn, and remov-
ing event descriptions (such as “&=laugh”) and

2http://bangortalk.org.uk/
3https://catalog.ldc.upenn.edu/ldc2015s04 Ta
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unintelligible tokens. For the Twitter datasets, in
order to enable cross-dataset comparison, we nor-
malized the tag sets by creating an “other” class
that included all tokens not belonging to either of
the two relevant languages (NEs, ambiguous to-
kens, etc).

3 Feature Extraction

3.1 Low-Level Text Features
Following earlier work (Shirvani et al., 2016;
Samih et al., 2016), we experimented with the fol-
lowing low-level binary text features that capture
the presence or absence of the following:

• Word n-grams: We used a bag-of-words
representation, trying uni- and bi-grams.

• Character n-grams: The set of unique char-
acter n-grams (1 ≤ n ≤ 4), without crossing
word-boundaries. For example, the word se-
quence “la sal” would produce the following
character n-grams {‘l’, ‘a’, ‘s’, ‘al’, ‘la’, ‘sa’,
‘sal’}.
• Character Prefixes/Suffixes: All affixes

with length ≤ 3. For example, the word
“intricate” would have prefixes {”i”, ”in”,
”int”}, and suffixes {”ate”, ”te”, and ”e”}.
• Dictionary Lookup: We examine whether

each word exists in a dictionary for either
one of the code-switched languages. Dic-
tionaries for English, Spanish, and Welsh,
were sourced from GNU Aspell4. Dictionar-
ies from other languages were not used either
because they were not available or the dictio-
nary’s orthography differed from that used in
our data.

We also extracted turn length (in number of words)
and used that as an additional feature.

3.2 Embedding Features
We also examined the utility of different combina-
tions of the following embedding features:

• word2vec based pre-trained word embed-
dings (Mikolov et al., 2013). These models
are shallow, two-layer neural networks that
represent (embed) words in a continuous vec-
tor space where semantically similar words
are embedded close to each other. In order

4http://aspell.net/

to pre-train word2vec models while analyz-
ing the code-switched corpus of a particular
language pair, we utilized other corpora (if
they existed) for that same language pair (in
other words, we were not able to analyze the
effect of these features for language pairs that
had just one exemplar corpus, like English–
Welsh).

• char2vec based pre-trained character em-
beddings. These features are similar to
word2vec, but are applied at the character
level. In order to generate these embeddings,
we run standard Word2Vec with skip-grams,
except characters take the place of words and
words take the place of sentences, enabling
us to learn character contexts within words.
Jaech et al. (2016) used a similar feature they
termed “char2vec”, which is however dif-
ferent from our implementation; it involves
learning a character-based word vector using
a convolutional neural network.

• GloVe based pre-trained word embeddings
(Pennington et al., 2014). GloVe is an un-
supervised learning algorithm for obtaining
vector representations for words, which cap-
ture linear substructures of interest in the
word vector space. It is a global log bilin-
ear regression model that combines the ad-
vantages of the two major methods: matrix
factorization of global corpus co-occurence
statistics and local context window methods.
As in the word2vec case, to obtain pre-trained
vectors for a corpus in a given language pair,
we used the other corpora for that pair to train
aggregated global word-word co-occurrence
statistics.

• GloVe based pre-trained character embed-
dings. This is the GloVe algorithm applied
at the character level. To our knowledge, our
paper is the first such application of these fea-
tures for language identification.

• No pre-training: In this case, we learned
word and/or character embeddings from
scratch, i.e., we randomly initialized the vec-
tors and trained these embeddings using the
training partition of the data for each cross-
validation fold.
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4 Machine Learning Methods

Following previous work in this area, we exam-
ined the utility of the following learners:

• Logistic Regression: The simplest method
we investigated was just logistic regression
with L2-regularization to generate language
label probabilities using the various combi-
nations of the features described in Section
3.1.

• CRFs: In this case, instead of modeling lan-
guage tagging decisions for each word in-
dependently, we model them jointly using a
conditional random field or CRF (Lafferty
et al., 2001).

• Bidirectional LSTMs: Long short term
memory networks or LSTMS are a special
kind of recurrent neural network that is ca-
pable of learning long-term dependencies
(Hochreiter and Schmidhuber, 1997). They
do so using several gates that control the
proportion of the input to give to the mem-
ory cell, and the proportion from the previ-
ous state to forget5. We implemented the
Stack LSTM architecture first proposed by
Dyer et al. (2015), in which the LSTM is
augmented with a “stack pointer.” While se-
quential LSTMs model sequences from left
to right, Stack LSTMs permit embedding of
a stack of objects that are both added to (us-
ing a push operation) and removed from (us-
ing a pop operation). This allows the Stack
LSTM to work like a stack that maintains
a “summary embedding” of its contents. In
our case, we use this architecture to model a
summary embedding of characters within an
model of word embedding sequences. In ad-
dition to this Stack BiLSTM, following Lam-
ple et al. (2016), we used a combination of
a Stack BiLSTM with a CRF, where instead
of directly using the softmax output from the
Stack BiLSTM, we use a CRF to predict the
final language tag for each word by taking
into account neighboring tags.

An novel feature of our experiments is the ex-
amination of the utility of pre-trained GloVe
and char2vec in improving performance of
the system proposed for named entity recog-
nition in Lample et al. (2016).

5Also see http://colah.github.io/posts/2015-08-
Understanding-LSTMs

5 Experiments

We conducted 10-fold cross-validation experi-
ments for all datasets. For each dataset, we first
extracted the word and character level features de-
scribed in Section 3. We then tried the follow-
ing approaches to predicting one of 3 classes –
English, Spanish or Code-switched – at the turn-
level: (i) Used a CRF to make word-level pre-
dictions, and aggregated them to form a turn-
level prediction; (ii) aggregated the features at the
turn level and try a variety of learners, including
logistic regression and deep neural networks to
make language predictions at the turn level; (iii)
fed word- and character-embedding combinations
(both with and without pre-training) to a Stacked-
BiLSTM-CRF system and made an LID predic-
tion for each turn. We experimented with differ-
ent learner configurations and parameter settings
and summarize the best performing featureset and
learner combination in the Results section. We
used a grid search method to find optimal char-
acter embedding size for each dataset (among val-
ues of 25, 50 and 100). For the Stack-BiLSTM
system, given the large number of architectural
parameters to optimize (number of LSTM layers
and recurrent units, type of optimizer, dropout,
gradient clipping/normalization, minibatch size, to
name a few), we chose to use the choices recom-
mended by Reimers and Gurevych (2017), who
evaluated over 50,000 different setups and found
that some parameters, like pre-trained embeddings
or the last layer of the network, have a large im-
pact on the performance, while other parameters,
like the number of LSTM layers or the number of
recurrent units, are of relatively minor importance.
We set the word-embedding size to 100 and used
25 and 100 recurrent units in the character-level
and word-level BiLSTMs, respectively, following
Lample et al. (2016).

6 Observations and Analysis

Table 2 lists the best performing turn-level LID
systems, including the feature sets and model de-
tails. In each cell of the table, the top value indi-
cates the overall weighted average F1 score, while
the bottom value (in parentheses) indicates the F1
score of the code-switched class. We decided to
list the latter value since this class is easily con-
fusable with the other two, and better F1 scores
for this class might give an insight into which al-
gorithms are better at capturing the characteristics
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System Weighted Average F1 Scores for Each Dataset

Featureset
Machine ENG-SPA ENG-CHI ENG-WEL WEL-SPA ENG-HIN ENG–NEP MSA–EGY
Learner Bangor HALEF Twitter SEAME Twitter Bangor Bangor HALEF Twitter Twitter

Word n-grams, Char n-grams,
Affixes, Length & Dictionary
lookup

Logistic
Regression

0.9525 0.9324 0.8143 0.9931 0.5786 0.9647 0.9706 0.8765 0.8442 0.7556

(0.6820) (0.7576) (0.6839) (0.9937) (0.6272) (0.8531) (0.6762) (0.8235) (0.9023) (0.4511)

Word n-grams, Char n-grams,
Affixes, Length & Dictionary
lookup

CRF ag-
gregated to
turn

0.9696 0.9584 0.8912 0.9977 0.7393 0.9676 0.9800 0.9022 0.9367 0.7280

(0.8381) (0.8874) (0.8247) (0.9979) (0.7457) (0.8639) (0.7982) (0.8553) (0.9568) (0.3216)

Word and Char Embeddings
(both from scratch)

Stacked
Bi-LSTM
+ CRF

0.966 0.9759 0.884 0.999 0.742 0.9606 0.977 0.894 0.932 0.747

(0.8345) (0.9560) (0.8256) (0.9991) (0.7268) (0.8469) (0.7828) (0.8536) (0.9525) (0.4227)

Pre-trained Word Embeddings
(’word2vec’ in blue, otherwise
’GloVe’) and Char Embeddings
(from scratch)

Stacked
Bi-LSTM
+ CRF

0.9671 0.9708 0.8950 0.999 0.7270 — — — — —

(0.8438) (0.9308) (0.8421) (0.9987) (0.7104) — — — — —

2 Pre-trained Word and Char
Embeddings (’word2vec’ in
blue, otherwise ’GloVe’)

Stacked
Bi-LSTM
+ CRF

0.9692 0.976 0.8953 0.999 0.7332 — — — — —

(0.8506) (0.9560) (0.8424) (0.9992) (0.7173) — — — — —

Best-performing turn predic-
tions

Stacked
Bi-LSTM

0.9621 0.9394 0.8587 — 0.6089 0.9485 0.9501 0.8514 0.7906 0.7564

(0.7962) (0.8235) (0.7770) — (0.6821) (0.7869) (0.7277) (0.7889) (0.8710) (0.5280)

Majority Baseline 0.49 0.34 0.38 0.38 0.37 0.79 0.67 0.18 0.61 0.63

Random Baseline 0.38 0.34 0.35 0.35 0.37 0.43 0.41 0.34 0.39 0.40

Best performance on 1st codeswitching challenge — — 0.822 — 0.894 — — — 0.977 0.417

Best performance on 2nd codeswitching challenge — — 0.913 — — — — — — 0.83

Table 2: Weighted average F1 scores obtained by different featureset–learner combinations on each
codeswitching dataset. Notice that datasets are organized first by language pair, and then according to
type of interaction (human-human vs. human-machine vs. Twitter). Each cell of the table contains two
numbers: the overall weighted F1 score on top and the F1 score of the code-switched class in paren-
theses at the bottom. Note that we obtained performance numbers for pre-trained word and character
embeddings only for language pairs with more than one dataset, i.e., ENG-SPA and ENG–CHI. Also
shown for benchmarking purposes are the best tweet-level performance numbers from the 1st and 2nd

codeswitching challenges for some of the Twitter datasets. However, note that this is not a completely
fair comparison, because the train-test partitions in our case are different: we used only the train data
from the 1st code-switching challenge in order to perform 10-fold cross-validation experiments. Also
see the text for more details.

System Weighted Average Token-Level F1 Scores for Each Dataset

Featureset
Machine ENG-SPA ENG-CHI ENG-WEL WEL-SPA ENG-HIN ENG–NEP MSA–EGY
Learner Bangor HALEF Twitter SEAME Twitter Bangor Bangor HALEF Twitter Twitter

Word n-grams, Char n-grams,
Affixes, Length & Dictionary
lookup

CRF 0.9774 0.9772 0.9111 0.9989 0.9513 0.9824 0.9774 0.9343 0.9601 0.5804

Word and Char Embeddings
(both from scratch)

Stacked
Bi-LSTM +
CRF

0.9883 0.9721 0.9394 0.9993 0.9476 0.9820 0.9922 0.9290 0.9579 0.5791

Pre-trained Word Embeddings
(’word2vec’ in blue, otherwise
’GloVe’) and Char Embeddings
(from scratch)

Stacked
Bi-LSTM +
CRF

0.9814 0.9784 0.9437 0.9992 0.9429 — — — — —

Pre-trained Word and Char Em-
beddings (’word2vec’ in blue,
otherwise ’GloVe’)

Stacked
Bi-LSTM +
CRF

0.9819 0.9788 0.9370 0.9993 0.9478 — — — — —

Best performance on 1st codeswitching challenge — — 0.94 — 0.892 — — — 0.959 0.936

Best performance on 2nd codeswitching challenge — — 0.973 — — — — — — 0.876

Table 3: Weighted average F1 scores for token-level predictions after 10-fold crossvalidation. Also
shown for benchmarking purposes are the best token-level performance numbers from the 1st and 2nd

codeswitching challenges. However, note that this is not a fair comparison, because the train-test parti-
tions in our case are different: we used only the train data from the 1st code-switching challenge in order
to perform 10-fold cross-validation experiments. Also see the text for more details.
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of this class. At the outset, we observe that all text
systems significantly outperform the majority vote
baseline (where we assign the language labels of
all turns in the test set to the majority class) and
the random baseline (where the language labels of
all test set turns are assigned at random) by a huge
margin.

One of the primary research questions we
wanted to study (see the penultimate paragraph
of Section 1) was how different featureset-learner
combinations performed across different language
pairs. We see that no particular featureset-learner
combination dominated overall performance-wise,
with results varying depending on the dataset and
language pair in question. Interestingly, in the
case of English–Spanish, where there were 3 dif-
ferent datasets of code-switched text, using pre-
trained word and character embeddings performed
at or above par all other systems. In other words,
in the presence of sufficient amounts of data for
pre-training, using pre-trained embedding-based
systems yields the best results. Even though the
overall F1 score of all embedding-based Stack
Bi-LSTM systems is similar, notice that the F1
score of the code-switched class improves when
we use both pre-trained word and character em-
beddings. This suggests that pretrained charac-
ter embeddings are particularly useful in captur-
ing the characteristics of code-switched language.
While GloVe-based character embeddings were
more useful for the human-human (Bangor) and
monolog (Twitter) datasets, word2vec was better
for the HALEF dataset of human-machine dialog.
For English–Mandarin corpora, on the other hand,
while the embedding–Stack BiLSTM–CRF com-
bination still performed best, using pre-trained
embeddings did not seem to make any significant
additional impact.

Another research question of interest dealt with
whether we obtained a better turn-level LID per-
formance by (i) using word-level LID followed by
aggregation over the entire turn, or (ii) directly
training classifiers at the turn-level. Our results
seem to suggest that the former is better than the
latter across all code-switched text datasets with
one notable exception. In the case of the Modern
Standard Arabic–Egyptian Arabic Twitter dataset,
using a Stacked BiLSTM with embedding features
and a direct softmax layer for turn-level predic-
tions (i.e., without an additional CRF aggregation
step) performed best.

For all other remaining language pairs (each
of which had just one dataset), the simpler CRF
classifier (where predictions were aggregated to a
turn) with a more standard featureset (word and
character n-grams, affixes, turn length and dictio-
nary lookup) yielded the best results. That this
simpler CRF system performed competently even
in the other cases relative to the Stack-BiLSTM
systems suggests that the former is perhaps a bet-
ter choice when one does not have large amounts
of training data, particularly for pre-training. On
a related note, it is also worth pointing out that
unsurprisingly, performance numbers across the
board are influenced by the amount of data in each
dataset, i.e., more data leads to higher F1 scores.

Yet another research question dealt with the per-
formance across datasets for human–human di-
alog vs. human–machine dialog vs. monolog
tweets. We observe, in general, a decrease in
overall weighted F1 score as one moves from
human–human dialog to human–machine dialog
to monolog tweet data. One possible reason for
this is that Twitter data in particular consists of
many “other” non-language tokens (such as named
entities, ambiguous tokens, etc.), which, on re-
moval or non-consideration, might lead to differ-
ent phrase structures in the resulting data6.

The final question we asked was to examine
token-level prediction performance, in order to
benchmark ourselves against prior art in this area.
Table 3 lists these results. We find that perfor-
mance trends in this case roughly mirror those ob-
served at the turn-level.

Performances from the 1st and 2nd Code-
switching Workshop Challenge results are pro-
vided in each table to provide some comparison
with our systems. However, it should be noted
that these comparisons are not exact. Our results
are from 10-fold cross-validation on the training
data used in the Workshop challenge, not on the
held-out test sets. Additionally, because we pulled
the data from Twitter years after the 1st Work-
shop, some of the tweets initially intended for the
dataset were no longer available. For the tweet-
level performance, we report results on three-class

6A big part of the errors made by crowd-sourcing an-
notators who assigned tag labels for the Twitter datasets in-
volve named entities, probably because the annotators do not
take the context into account in an effort to be fast and col-
lect money quickly. The problem is exacerbated in the MSA-
EGY set due to the fact that there is inherently considerable
amount of data overlap due to homographs between the two
varieties of the language (Molina et al., 2016).
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classification (language 1 vs. language 2 vs. code-
switched), whereas the Code-switching Workshop
performances are based on binary classification
(monolingual vs. code-switched). Furthermore,
as mentioned earlier, in order to enable cross-
dataset comparison, we normalized the tag sets
by creating an ”other” class that included all to-
kens not belonging to either of the two relevant
languages (NEs, ambiguous tokens, etc). Taking
these points into consideration, our systems per-
form competitively with the submissions to the
Code-switching Workshop Challenges. The only
exception is in the case of the MSA-EGY dataset,
where while our tweet-level performance is com-
petitive, our token-level performance far underper-
forms the state-of-the-art. We suspect that dataset
imbalance could play a role, as well as the fact that
we didn’t use any external resources for this lan-
guage pair.

7 Discussion and Outlook

We have presented an experimental evaluation of
different text-based featuresets in performing lan-
guage identification (LID) at both the turn and
token levels in code-switched text interactions.
We studied the generalizability of various sys-
tems both across language pair and dataset type—
human–human, human–machine and monolog—
by examining 10 different datasets of code-
switched text. While our best text-based sys-
tems performed either at or above par with the
state of the art in the field, we found that the
use of both pre-trained word and character-based
embedding features, and the latter in particular
(either through char2vec or GloVe), were partic-
ularly useful at capturing the characteristics of
code-switched speech (with the caveat that the fea-
ture extraction process requires sufficient data for
pre-training). We further observed that a perfor-
mance drop depending on the style of interaction,
as we move from human–human dialog to human–
machine dialog to monolog tweets.

Going forward, we will explore a number of po-
tential avenues for improving the performance of
the text-based LID systems. Chief among these is
to investigate strategies for dealing with little or
no code-switched data (or indeed, overall train-
ing data) for a given language pair, and how to
improve the performance of deep learning algo-
rithms for such datasets. In addition, we would
like to perform a deeper error analysis of the al-

gorithms on different featuresets to obtain a bet-
ter understanding of how best to select a feature-
learner combination for the LID task.

Finally, as mentioned earlier, one of the key ex-
citing R&D directions that this work informs is in
building code-switching dialog systems. For in-
stance, integrating an explicit language identifi-
cation step into the spoken language understand-
ing (SLU) could help enhance the system perfor-
mance. Over and above such applications, such
an LID module might also help inform pragmatic
considerations during dialog management and the
language generation module for the generation of
appropriate mixed-language output.
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Abstract

We present a modular, end-to-end dia-
logue system for a situated agent to ad-
dress a multimodal, natural language di-
alogue task in which the agent learns
complex representations of block struc-
ture classes through assertions, demon-
strations, and questioning. The concept
to learn is provided to the user through a
set of positive and negative visual exam-
ples, from which the user determines the
underlying constraints to be provided to
the system in natural language. The sys-
tem in turn asks questions about demon-
strated examples and simulates new exam-
ples to check its knowledge and verify the
user’s description is complete. We find
that this task is non-trivial for users and
generates natural language that is varied
yet understandable by our deep language
understanding architecture.

1 Introduction

Current artificial intelligence systems, even dia-
logue agents, tend to play the role of a tool in real-
world or even simulated tasks. Often the human
user must be given an artificial handicap to create
a situation where the system can play a role as a
collaborator rather than a tool with interface com-
mands simply replaced by natural language equiv-
alents (Brooks et al., 2012). We work towards a
natural language dialogue agent that we hope will
eventually become a collaborator rather than a tool
by focusing on knowledge transfer through natural
language and determining areas where a dialogue
agent’s proactive nature is a benefit to learning. To
this end, we apply deep language understanding
techniques in the situated Blocks World environ-
ment, where a user can teach the system physical,

possibly compositional concepts to aid in devel-
opment of natural language understanding without
significant existing domain knowledge needed.

2 The Structure Learning Task

Many natural language dialogue tasks in a Blocks
World environment focus on querying the envi-
ronment (Winograd, 1971), block placement (Bisk
et al., 2016; She et al., 2014), or training visual
classifiers and grounding perception (Matuszek
et al., 2012; Mast et al., 2016; Perera and Allen,
2015). Reference resolution has also been ex-
tensively studied in this environment and statisti-
cal methods show strong performance in quickly
learning referring expressions (Kennington et al.,
2015). However, our focus is exploring collabora-
tive concept transfer with the goal of having situ-
ated agents learn from natural language dialogue
and physical interaction to become better collabo-
rators. With the goal of the system as a collabora-
tor, we find it is important that the task carried out
be non-trivial for the user. However, more diffi-
cult tasks can have drawbacks – they involve larger
amounts of background knowledge and reasoning,
progress can be difficult to evaluate, and often the
language and concepts learned do not extend eas-
ily to other real world applications.

With these constraints in mind, we use a physi-
cal Bongard problem (Bongard et al., 1970; Weit-
nauer and Ritter, 2012) task for evaluating our sys-
tem in a situated Blocks World environment. The
user is provided with a set of visual examples,
some positive and some negative, and must deter-
mine the constraints on the class of structure that
allows the positive examples (and perhaps others)
while avoiding any negative examples (Figure 1).
By providing only visual clues, we leave the gen-
eration of the constraints entirely up to the user.
The user then begins interacting with the system
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Figure 1: An example of the set of images pro-
vided to a participant for teaching the system a
“U” shape. The user is tasked with explaining
the underlying concept to the system such that the
system correctly identifies the positive examples
while rejecting the negative examples.

to describe the structure. During this time, the sys-
tem is able to ask questions, check its model with
demonstrations, and ask for the user to present ex-
amples. While this problem has been explored in
the context of cognitive architectures (Foundalis,
2006) and reinforcement learning (Ramon et al.,
2007), we are unaware of any prior work in the
context of dialogue systems.

We believe this task addresses a number of is-
sues with previous tasks in evaluating a system
that can learn new concepts and structures. Partic-
ipants typically spent two to three minutes going
over the examples, showing that there was some
thought required to correctly understand the struc-
ture on their part. Furthermore, often the con-
straints users provided were underspecified – they
described what structures would be allowed, but
sometimes failed to provide sufficient restrictions
to avoid the negative examples. The system is then
able to find gaps in the user’s description by pre-
senting examples following the current description
so far – bringing the system’s state in the dialogue
from being solely a student to contributing to the
task in a meaningful way.

In addition, this task can be scaled in diffi-
culty or extended to other domains. Difficulty
scaling can be achieved by using compositional
constraints that build on existing knowledge (e.g.,
“Build a U shape, but make one column taller than
the other”) or by creating more difficult structures
to learn. The task could be adapted to other do-
mains by augmenting the ontology and designing
a new reasoning agent that could integrate asser-

tions into its model, while retaining similar inter-
actions and the domain-generic modules.

2.1 Challenges

One of the primary challenges in this task is the
wide variety of ways in which a user might de-
scribe or teach a class of structures. For ex-
ample, they might describe necessary features or
prohibited features. They may view possibilities
as movement, saying “The columns have a row
between them wherever they move.” They may
present negative examples for the system to avoid.
Some users describe a particular arrangement of
blocks that should or should not appear (e.g.,
“There is never two blocks on top of each other”),
while others describe a more holistic conception
(e.g. “The maximum height is one block”). While
we do not succeed in interpreting all such de-
scription modalities, we believe our current meth-
ods handle a large range of possible explanations
and are amenable to advancements to understand a
greater number of explanation types in the future.

3 Environment and Apparatus

Our system operates in a Blocks World environ-
ment consisting of 6-inch cubes placed on a ta-
ble. Although the cubes have distinct images for
identification and colored sides, we do not use this
information in our current version – blocks can
only be referred to using descriptions of their lo-
cation in the environment. We use two Kinect
2.0’s to detect the blocks, with the separate per-
spective aiding in avoiding issues with occlusion.
On the opposite side of the user is a monitor with a
3D avatar that speaks the system’s generated text
and also has non-verbal communication capabil-
ities such as nodding, pointing, and other more
complex gestures. The environment is calibrated
such that these gestures can point to the location
of a block for communicating about it. The appa-
ratus with the avatar is shown in Figure 2.

The apparatus has no physical means for the
system to move blocks. However, during interac-
tion the system we find it important for the system
to build structures to test its knowledge. To do this,
we generate a 3D image in a virtual representation
of the current environment showing the blocks that
the system wants to place as an example for the
user. This can be sent to a separate tablet such that
an assistant can place the blocks, or displayed on
the screen for the user to evaluate themselves.
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Figure 2: The apparatus and the environment con-
taining the blocks used, with the screen display-
ing the avatar and 3D visualization of the environ-
ment.

User input is currently carried out by keyboard
entry by the user or dictation by an assistant. We
are currently implementing speech recognition to
enable more natural communication. Towards this
end we focus on finite state machine language
models given the nature of assertions our system
understands, but we may have to consider more
flexible corpus-based models in the future, aided
by transcripts of previous trials.

4 System Architecture

The heart of the dialogue management is the
TRIPS architecture (Allen et al., 2001), which
connects a number of components through KQML
message passing (Finin et al., 1994), with
each component augmented with domain-specific
knowledge to varying extents. This dialogue man-
agement component, including parser, a generic
ontology, and an API for interacting with a
domain-specific module is open-source and avail-
able for download 1. As opposed to other dia-
logue management systems like OpenDial (Lison
and Kennington, 2016) or POMDP dialogue sys-
tems (Williams and Young, 2007), this dialogue
management system is primarily suited for col-
laborative tasks where there is little to no knowl-
edge of what dialogue state typically follows from
the previous one – the user can move from state-
ments about goals to assertions to questions in
any order, determined primarily by the speech
act detected in their utterance. For semantic lan-
guage understanding and speech act interpreta-
tion of the user’s utterances, the domain-generic

1https://github.com/wdebeaum/cogent

Figure 3: The TRIPS collaborative problem solv-
ing architecture adapted to this task. Only the Be-
havioral Agent and apparatus are specifically de-
signed for this task – the other components are
adapted only through additions to the ontology.

TRIPS parser (Allen et al., 2008) generates logi-
cal forms and speech act possibilities backed by a
domain-augmented ontology. The relevant speech
act is then determined by the Interpretation Man-
ager (IM), which also fills in remaining context-
dependent references before sending this informa-
tion to the Collaborative Problem Solving Agent
(CPSA). The CPSA facilitates communication be-
tween the parser/IM, Collaborative State Manager
(CSM) and the Behavioral Agent (BA) as Collab-
orative Problem Solving (CPS) Acts. These acts
include adopting, selecting, proposing, and reject-
ing goals, queries to the user or the system, and re-
porting the current status of a given module. The
overall architecture is shown in Figure 3.

4.1 Collaborative State Manager

The Collaborative State Manager stores and re-
sponds to queries regarding the systems goal state
and facilitates decisions based on goal context.
As opposed to the CPSA, the CSM does not
have a notion of dialogue context, but does re-
spond to speech acts that require the system to
generate a response based on the systems state
and knowledge. It also is responsible for gen-
erating the necessary clarification messages to
continue with dialogue, and for managing initia-
tive in mixed-initiative tasks based on a changing
domain-specific environment.

To make these decisions, the CSM is designed
with a combination of domain-independent behav-
ior and domain-specific knowledge supplied at a
broad level. Such knowledge takes the form of
a specification of which types of goals might be
considered goals in their own right (e.g.,teaching
the system a concept, building a structure), and
which are considered subgoals (e.g., showing an
example, adding a constraint to the system’s struc-
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ture model). The goal hierarchy consists of one
or more top-level goals, with sub-goals, queries,
and assertions added as child nodes to create a
tree structure. With this structure, the user and the
system can resolve sub-goals and blocking actions
such as goal failures and rejected goals without
losing the overall goal context. The system works
with the user to ensure that there is a top-level goal
when beginning the dialogue to ensure the proper
context is available for the system, offering possi-
ble top-level goals based on the action or assertion
the user provides.

The CSM uses a light, domain-specific knowl-
edgebase of top-level goals, subgoals, and related
speech acts to infer the users intentions and goals
based on the incoming speech acts. For example,
the statement “The top block must be on the left-
most column” would yield a proposed subgoal in
a structure building task, but should be resolved as
an assertion to be added to the BA’s model during
the structure learning task. If there is no top-level
goal, the system would ask the user about the top-
level goal (e.g.“Are you trying to teach me some-
thing?” in response to an assertion) to establish
one. When the CSM is unable to resolve ambigu-
ity given the information it has, it will generate a
response that indicates the system needs more in-
formation from the user, and will provide possible
solutions such that other modules can generate re-
sponses to try to provide efficient communication.

4.2 Behavioral Agent

The BA is the domain-specific aspect of the sys-
tem dealing with interaction with and reasoning
over the environment. In this system, we also
relegate language generation to this component.
To design a BA in this architecture, one creates
a module that accepts a set of incoming messages,
dealing with goal proposals, requests for execution
status (i.e, finished a task, waiting for the user, or
currently acting), queries about the environment or
model, in addition to a “what-next” message that
serves to provide dialogue initiative to the system.
As the BA receives goals, it determines whether
they are achievable and accepts them, and then
proposes the next goal – for example, a teaching
goal will be responded with a subgoal to describe
an aspect of the structure. As assertions are pro-
cessed, they will be added to the model, rejected if
not understood in context, or clarified with a query
in the case of ambiguous statements.

4.3 Goal Management

The base TRIPS architecture provides some
means for the user to respond to errors through
dialogue, and provides flexibility in goal manage-
ment. For example, if the user wants to continue
the dialogue in a different way, they can reject it by
responding “No” to the BA’s goal proposal, or they
can continue to provide assertions or ask ques-
tions even when the system has proposed the goal.
This flexibility is essential to reduce user frustra-
tion when coming up against obstacles and ensure
that the user feels a sense of control even when the
BA is proactive in dialogue.

5 Constraint Processing

Constraints are processed as assertions that are in-
terpreted as holding generally during the structure
learning process, rather than relying on the iden-
tity of any one particular block or group of blocks.
Therefore, the utterance, “The top block has to be
on the left” may or may not currently be true about
a particular example, but nevertheless should hold
in all positive instances of a structure class.

Constraints can be general properties about the
structures, such as the maximum/minimum height
or width, or they can refer to particular blocks or
groups of blocks. All non-general constraints must
contain a referring expression, which consists of a
referred object or arrangement (i.e., blocks, rows,
columns, or spaces) and optionally a location de-
scription to pick out a particular object. The as-
sertion can assert that such a referent exists in the
structure, constrain a particular feature of the ref-
erent, (e.g., width, height, the number of blocks it
contains), or dictate its location relative to the rest
of the blocks or a particular set of blocks denoted
by another referring expression. We also have lim-
ited support for compositional referents in refer-
ring expressions, picking out certain aspects of a
structure (e.g., “the ends of the row”).

A constraint can be designated as exclusive,
which means that only one instance of a particular
object can have that property (e.g. “Only the left-
most column has more than 2 blocks”). Currently
we take an object-type scoping for this restriction.
In addition, we handle negations at certain scopes,
such as disallowing a particular arrangement (e.g.
“There are no columns of height greater than 2”)
or location (e.g. “There is no block next to a col-
umn”). An example of some utterances under-
stood by the system is shown in Figure 4.
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“The leftmost column’s height is 3 blocks.”
“The height is 3.”
“The height of the leftmost column is less
than the height of the rightmost column.”
“There is a column with at least 3 blocks.”
“There is a space between the top 2 blocks.”
“The bottom row is connected.”
“The top block is always on the left.”
“The top block can be anywhere.”

Figure 4: Examples of understood constraints.

5.1 Constraint Extraction
To extract constraints, we primarily depend upon
the logical form structure of the TRIPS parser,
which allows direct extraction of the types of con-
straints we are interested in due to its argument
structure of concepts. We first determine all re-
ferring expressions by finding mentions of blocks
or arrangements. Then we add any modifiers to
their location. Once the referring expressions are
found, we construct a constraint, which consists
of the subject (the :figure argument in the TRIPS
logical form), the reference object or property (the
:ground argument), and the feature of compari-
son (e.g., height, width, count) or a predicate con-
straining the location of the subject relative to
some reference set. Figure 5 shows an example
of structures extracted from a logical form.

5.2 Constraint Evaluation
When the system is asked to evaluate an exam-
ple or create its own, it evaluates all current con-
straints by finding referents for each referring ex-
pression according to the object type and predi-
cate. Predicates are calculated using predefined
rules, either specifying constraints that apply to
individual blocks or using axis-aligned bounding
boxes. These rules have built-in tolerances of a
half-block width to account for noise or impre-
cise placement. We then calculate the features and
predicates in the constraint for the resolved refer-
ence and return a value for each constraint.

Initial versions of the system primarily built up
constraints from a sequence of user utterances.
When performing Wizard of Oz studies, we found
that an issue with this method is that it can some-
times be difficult for users to formulate and de-
scribe a concise, consistent model without any di-
rection. This can lead to run-on sentences which
are difficult to parse, or, if parsed, difficult to inter-
pret as constraints. We believe one reason for this

is that, while the system provides affirmation at the
end of an utterance entered by keyboard, it does
not give non-verbal or verbal cues of understand-
ing during speech recognition. Therefore, the user
sometimes continues explaining in various ways
looking for a signal that the system understands.

To address this issue, we designed our system to
take a more proactive role in conversation. While
the system still takes a free-form description or
constraint at the beginning of the conversation, it
then begins to ask questions about the structure
class, ask for examples, present examples, and re-
spond to the user’s questions about examples. The
system can choose a feature of the structure that
has not been described (to ensure the user feels
that the system has understood the structure so far)
and generate a query to send to the user. An un-
filled version of the constraint is sent to the CPSA
to aid in resolving the query, and the TRIPS parser
is able to handle user responses fragments to fill
in the constraint. The strategies to generate these
utterances are described in Section 5.3.

The system generates its own examples of struc-
tures given its current knowledge as well. The BA
will generate random arrangements of blocks in
a grid structure until the current constraints have
been satisfied, and then return a new structure as
an example. This allows the user to see the re-
sult of the constraints and refine their constraints,
while also providing more evidence that the sys-
tem is understanding what is being said.

At any time, the user can ask whether a particu-
lar example is correct given the constraints pro-
vided so far. The system enumerates the con-
straints and can then state whether each constraint
is satisfied and why or why not. If there are many
constraints, the system will summarize the posi-
tive constraints (e.g., “The width is right” rather
than “The width is greater than 2”) while focusing
on the negative constraints to avoid long-winded
explanations and provide a more natural response.

5.3 Learning Strategies

We designed the system to follow, with some devi-
ations, a general strategy for learning based on our
initial Wizard of Oz tests (Dahlbäck et al., 1993),
such that the system can build up knowledge in
a way that supports the interactions between dif-
ferent types of knowledge learned throughout an
interaction. The system first asks the user for an
aspect of the structure, discouraging long-winded
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Figure 5: An example of constraint extraction from the TRIPS logical form for the utterance “The left-
most column is taller than the rightmost column”

descriptions that can overwhelm the parser and
tend to be less structured. With a constraint
learned, the system then asks for an example.
While the system cannot currently learn from the
block positions themselves, it uses the example to
generate a pertinent referring expression (e.g., “the
top block”) that can then be used to ask about a
constraint. This query guides the user to thinking
about the structure in a concrete and specific way
to aid in generating descriptions.

Because the system likely has two or more con-
straints at this point, it will then generate an exam-
ple of its own based on its learned constraints and
check for correctness. This allows the user to fo-
cus on aspects that are explicitly disallowed, since
the system’s random generation process often re-
veals when constraints are underspecified. These
learning strategies then continue until the user is
satisfied that the system understands the structure.
A sample dialogue showing the system’s abilities
is given in Figure 6.

6 Wizard of Oz Experiments

Before developing our system, we carried out sev-
eral Wizard of Oz experiments to aid in develop-
ment of the TRIPS parser, ensure that our system
had capabilities suited to the dialogue of a naı̈ve
user, and determine which interaction strategies of
the system would be most effective for learning
and most natural for the user. So far we have con-
ducted 3 tasks each with 3 participants who were
unaware of the details of the project, yielding 90

user utterances. Two of the participants were fa-
miliar with natural language processing research,
while one was not.

User: I want to teach you a mountain shape.
System: Okay. Can you describe an aspect
of the structure?
U: Yes. The rightmost column has 3 blocks.
S: Ok. What is the greatest the height can be?
U: 3.
S: Ok, got it. Can you show me an example?
U: Yes. This is an example.〈shows example〉
S: Okay.
U: Is this right? 〈shows example〉
S: I think so, because the height is less than
or equal to 3 and the right column’s number
is equal to 3.
U: The left column has 2 blocks.
S: Ok.
U: Is this right? 〈shows example〉
S: I don’t think so, because the height is less
than or equal to 3 but the left column’s num-
ber is not equal to 2 even though the right
column’s number is equal to 3.

Figure 6: An example dialogue showing interac-
tion with the system.

To ensure the closest approximation to the ac-
tual system, we used a tablet for the researcher
standing in for the system. Because of the design
of the apparatus where the system generates 3D
images (and presumably diagnostic data), the par-
ticipants believed it was actually the system per-
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forming the dialogue and interpreting the user’s
utterances, and the researcher was simply an assis-
tant. In fact, the tablet served as a method for the
researcher to respond with predetermined phrases,
including acceptances, requests for examples, and
questions about the structure. These phrases were
then sent through the speech generation compo-
nent of the system.

We found several advantages of users believ-
ing that the system was actually engaging in di-
alogue. First, the users used simpler language
than they might have with a person, while still
providing sufficient variation for exploring pos-
sible utterances. Second, users sometimes pro-
vided their own thoughts aside to the researcher,
allowing a specific glimpse into users’ responses
to certain utterances or tasks. For example, once
when the system asked, “How tall can the struc-
ture be?”, the participant said as an aside, “It can
be any height,” and then responded to the system
“At least two blocks.” Finally, we could evaluate
how the dialogue might progress without being in-
terrupted by failures of the system at the parsing or
interpretation level. We processed the Wizard of
Oz dialogues with the TRIPS parser and correctly
parsed 89% of the utterances. 90% of these correct
parses also yielded the correct constraint when in-
terpreted by the current state of the system.

6.1 Description Modalities

We recognized several different description
modalities participants used when describing
the structure without responding to a particular
feature query. When the system asked questions,
typically the user responded directly to the ques-
tion, reducing the utterance complexity. However,
these variations on the expected descriptions
reveal interesting insight into how users generate
representations of the concepts they are provided.

Basic Constraints – “The height of the leftmost
column is greater than 2” – These descriptions are
the simplest to interpret and make up the majority
of user utterances, especially when the system is
proactive in dialogue.

Arrangement Constraint – “The column can
be either second in the row or third in the row.”
Here the definite article conveys that there should
be a single instance of a column, and the ordinal
reference to the row constrains its position – even
though in certain cases a row might be considered
to be a line of blocks only a single block high.

We handle such cases by inferring a sequence of
columns left to right, and then processing ordinal
references to enforce constraints.

Movement Modality – “This top block can
move wherever.” – These descriptions, using
movement as a surrogate for possibility, are
slightly more difficult to interpret, but can often
be handled by our loose interpretation of logical
forms that focuses on referring expressions (“the
top block”) and predicates (“wherever”) without
focusing on the event term of “moving”.

Transformation Modality – “The left block is
a column.” – The difficulty in parsing a constraint
described in this way is that a particular type of ob-
ject (“the left block”) is picked from the structure
with the goal of changing it to another arrange-
ment (“a column”, presumably with more than one
block). This can also be viewed as an explicit
bridge between the current and desired state to ful-
fill the constraints. Currently we encourage users
to describe the structure in a general way – how-
ever, this type of utterance demonstrates an exam-
ple where a specific error or instance applies gen-
erally enough to serve as a constraint.

Procedural/Construction Modality – “No,
you’re missing a row. Subtract by one every time
you go up.” – Here the user is describing the struc-
ture by providing the process for creating it. While
our current system does not understand these types
of utterances, we are working on a similar task in
parallel with this environment that can be lever-
aged to understand this modality (Perera et al.,
2018). The key aspect of understanding this type
of utterance is the compositionality of primitive
concepts, namely a row, its length, and the se-
quence of rows that will presumably be placed by
the agent building the structure.

A common property of these more complex
modalities is the awareness of and reliance on the
composition of primitive concepts, such as ele-
ments, order, and placement, when referring to
more complex concepts such as rows and columns,
which can have multiple attributes and purposes
when describing a structure. We believe that a sys-
tem to interpret these types of expressions and ex-
tend to other domains must therefore have a com-
positional model that allows complex concepts to
be built from primitive concepts that are simpler
to detect or identify. This compositional aspect
of concepts used in communication has both in-
formed the design of the system and inspired this
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task which makes use of such modalities.

6.2 Preliminary Evaluations

Alongside adapting the system to handle our ex-
isting Wizard of Oz dialogues, we have begun pre-
liminary user evaluations, primarily for testing for
robustness and unforeseen methods of communi-
cating constraints to the system. An example dia-
logue with a user is shown in Figure 7.

User: I want to teach you a shape.
System: Okay. Can you tell me something
about the structure?
U: The bottom row must be at least 2.
S: Hmm, I didn’t quite get that.
U: The bottom row has at least 2 blocks.
S: Ok. What is the greatest the width can be?
U: 5.
S: Ok, got it. Can you show me an example?
U: Yes. This is an example. 〈shows example〉
S: Okay. Where can the top block be?
U: The top block is always on the left.
S: Okay.
U: 〈user builds example〉 Is this right?
S: I think so, because the bottom row’s num-
ber is greater than or equal to 2 and the width
is less than or equal to 5 and the top block is
on the left.

Figure 7: A taken from initial runs of the eval-
uation with the autonomous system and a user
unfamiliar with the system.

Failures of the system are handled by the di-
alogue manager, with unparsable user utterances
causing the system to continue with a question
where the response is easy for the system to han-
dle, such as asking for the maximum height or
width, or by asking the user to rephrase. In initial
trials, users were often able to rephrase constraints
in a way the system could understand. Further-
more, users reported that the difficulty of the task
made dialogue setbacks seem like a complemen-
tary challenge of clearly expressing an idea rather
than an obstacle to an otherwise simple task.

To track development of the system, we will
evaluate according to several metrics along with
user surveys. The first measure will be the num-
ber of positive examples successfully recognized
by the trained system and the number of nega-
tive examples successfully rejected. Next, we plan
to track robustness by determining the number of
cancellations, undos, or restarts by user, as well

as the efficacy of extracting constraints from user
assertions. In addition, a final task which ensures
that communication is two-way will be to reverse
roles and have the system explain the concept to
the user based on what it has learned from prior
interactions with a different user.

7 Conclusion

We believe our system shows promise in the task
of teaching a system new concepts in Blocks
World in an manner extendable to multiple types
of descriptions and with applications to multiple
domains. While our first priority is to handle the
most common description modalities of users to
ensure broader coverage, we also begin the pro-
cess of using this system as a stepping stone for
language understanding and dialogue in other do-
mains by mapping our concepts and predicates
into a database to be used by our collaborators
in this and related projects. With multiple defi-
nitions of features and predicates, we plan to use
these concrete physical representations as proxies
for more abstract and metaphorical reasoning ca-
pabilities to be developed in other systems.

Because the rules and interpretation are hand-
crafted, brittleness can be an issue but is partially
mitigated through dialogue repair. Given the pri-
marily symbolic nature of the system and the dif-
ficulty of specifying composition with statistical
models or neural networks, we focus our efforts
on building rules to understand conceptual com-
position rather than processing utterances using
statistical techniques. However, development of a
broader range of understood constraint modalities
can extend this dialogue system to other domains
that involve a direct or indirect spatial or temporal
component – such as scheduling, building graphi-
cal models, or directing scenes of a movie. Finally,
we believe the compositionality inherent in the
type of communication captured requires back-
ground knowledge about the conceptual structures
we inherently use in discussing complex ideas.
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A Supplemental Material
Concept Lemmas
ABOVE above
HIGHER higher
BELOW below, beneath, under,

underneath
LOWER lower
ADJACENT adjacent (to), next to, beside,

by, contiguous (with), flush
CONNECTED abut, adjoin, connect, touch
TOGETHER together
ON on, on top of
LEVEL level with
TOP-LOC... top
MIDDLE-LOC middle
BOTTOM-LOC bottom
BETWEEN (in) between
CENTER center
LEFT-LOC left, lefthand, leftmost
RIGHT-LOC right, righthand, rightmost
ANYWHERE anywhere

Table 1: The list of predicates understood by the
system, with their concept in the ontology, and
matching lemmas that can resolve to that concept.

Ontological Concept Data Type
ONT::WIDTH-SCALE real+, count
ONT::HEIGHT-SCALE real+, count
ONT::LENGTH-SCALE real+, count
ONT::CENTER point
ONT::LOCATION point
ONT::STARTPOINT point
ONT::ENDPOINT point
ONT::TOP-LOC... point
ONT::BOTTOM-LOC... point
ONT::NUMBER count
ONT::COL-FORMATION column
ONT::ROW-FORMATION row
ONT::DIRECTION vector
ONT::HORIZONTAL (real+)
ONT::VERTICAL (real+)
ONT::LINE (real+)

Table 2: Some of the features generated by the
system for blocks, sets of blocks, and sequences,
listed by their concept in the TRIPS ontology and
the resulting data type. A data type in parentheses
indicates the value is not presented to the user but
is used in comparisons against other sets of blocks.
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Abstract

Speech overlap is a common phenomenon
in natural conversation and in task-
oriented interactions. As human-robot in-
teraction (HRI) becomes more sophisti-
cated, the need to effectively manage turn-
taking and resolve overlap becomes more
important. In this paper, we introduce a
computational model for speech overlap
resolution in embodied artificial agents.
The model identifies when overlap has oc-
curred and uses timing information, di-
alogue history, and the agent’s goals to
generate context-appropriate behavior. We
implement this model in a Nao robot us-
ing the DIARC cognitive robotic architec-
ture. The model is evaluated on a corpus
of task-oriented human dialogue, and we
find that the robot can replicate many of
the most common overlap resolution be-
haviors found in the human data.

1 Introduction

Efficient turn-taking is at the heart of human so-
cial interaction. The need to fluidly and quickly
manage turns-at-talk is essential not only for task-
oriented dialogues but also in everyday conversa-
tion. Speech overlap is also a ubiquitous feature
of natural language dialogue, and serves various
supportive functions that people utilize to man-
age turn-taking (Jefferson, 2004). As spoken di-
alogue systems continue to advance, it is impor-
tant that they support increasingly natural inter-
actions with human interlocuters involving both
turn-taking and overlap resolution.

Research in the field of HRI has generally over-
looked the supportive role of overlap and the ways
in which it affects coordination. However, robots
are envisioned to serve as teammates in complex

domains that involve a great deal of communica-
tion with humans (Fong et al., 2003). This requires
nuanced methods to handle fluid turn-taking and
overlap, especially because the frequency of over-
lap is higher in task-oriented settings involving re-
mote communication (Heldner and Edlund, 2010).

In this work, we present a formal framework
and computational model for overlap identifica-
tion and resolution behavior in embodied, artifi-
cial agents. The present focus is on mechanisms
to allow an agent to handle being overlapped on
its turn. The model is based on empirical work in
a search and rescue domain, and utilizes a variety
of features including overlap timing and dialogue
context to resolve overlap in real-time in a human-
like manner. We implement the model in the DI-
ARC cognitive robotic architecture (Scheutz et al.,
2007) and demonstrate its performance on various
overlap classes from the behavioral data.

2 Related Work

Below we present some of the relevant theoretical
and computational background literature that has
informed our work.

2.1 Turn-Taking and Speech Overlap
There has been a great deal of empirical
work on both turn-taking and overlap phenom-
ena (De Ruiter et al., 2006; Jefferson, 1982,
2004; Levinson and Torreira, 2015; Magyari and
de Ruiter, 2012). Many of these approaches
lend support to the model of turn-taking organi-
zation proposed by Sacks et al. (1974). On this
view, turns-at-talk are separated by a transition-
relevance place (TRP), which is located after a
complete1 segment of speech, and represents a
point at which a speaker change can “legally” oc-
cur. The claim is that people can readily predict

1“Complete” in this sense refers to syntactic, pragmatic,
and prosodic features of the turn in progress.
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the location of a TRP and thus aim to start their
turn around that point. However, since natural lan-
guage is fast-paced and complex, sometimes peo-
ple miss the TRP, resulting in overlap..

Using this model, Jefferson (1986) identified
several types of overlap based on their location
relative to the TRP (before, during, slightly after,
and much after; see Fig. 1). These overlap types
have been systematically examined over the years
and have been shown to capture a large range of
human overlap phenomena (Jefferson, 2004). Im-
portantly, such an account suggests that overlap is
not to be confused with interruption (Drew, 2009).
While interruption implies a kind of intrusion into
the turn, overlap is oftentimes affiliative in nature.
For example, people may start their turn slightly
before their interlocuter has reached a TRP in or-
der to minimize the gap between turns. This is
known as Last-Item overlap, and can be accom-
plished by projecting the end of the first starter’s
turn. The second starter can also come in slightly
after the TRP in order to respond to the content
of the first starter’s prior turn; such late entry is
known as Post-Transition overlap. Additionally,
the second starter can come in mid-turn (far from
the TRP) as a kind of “recognitional” overlap in
order to repair, clarify, or otherwise respond to the
content of the first starter’s turn in progress - this
is known as an Interjacent overlap. Overlap can
also be unintentional, as in Transition-Space over-
lap. This type usually involves simultaneous turn
start-up wherein two people both take the turn at
the TRP. In sum, because overlap is classified into
these functional categories (largely based on tim-
ing), it is possible to identify the function of an
overlap in a particular context as well as the behav-
iors that people use to manage and resolve overlap
(see Gervits and Scheutz (2018)). These proper-
ties make overlap identification and resolution ap-
pealing targets for the design of more natural spo-
ken dialogue systems.

2.2 Speech Overlap in Dialogue Systems

While overlap resolution is important in human
conversation, it has not historically received the
same treatment in dialogue systems. One reason
for this may be that it is seen as interruption, and
thus not worthy of additional study. Many sys-
tems actually ignore overlap altogether, and sim-
ply continue speaking throughout the overlapping
segment (e.g., Allen et al. (1996)). While such

systems may be effective for certain applications
(e.g., train booking), they are not sufficient for di-
alogue with social agents in collaborative task en-
vironments. On top of being less fluid and natural,
these systems also present problems for ground-
ing. If the system produces an utterance in over-
lap, it may not be clear that a person understood or
even heard what was said.

An alternative approach, and a popular one used
by some commercial dialogue systems that handle
overlap, is one wherein the agent responds to over-
lap by simply dropping out (see e.g., Raux et al.
(2006)). Apart from the fact that such a system
may drop its turn when detecting ambient micro-
phone noise, another problem is that it ignores the
supportive benefit that overlap can provide. An ex-
ample of this is a second starter coming in at the
Last-Item position in order to minimize inter-turn
gaps (see Dialog 1 below2). Since these overlaps
are among the most common, it is very inefficient
for a system to abandon an utterance at the Last-
Item point. Since neither of the above-mentioned
approaches can address the challenges at hand, a
more nuanced approach is clearly necessary.

Recently, there have been more advanced at-
tempts at modeling overlap behavior (DeVault
et al., 2009; Selfridge and Heeman, 2010; Zhao
et al., 2015). Many of these approaches involve
incremental parsing to build up a partial under-
standing of the utterance in progress and identify
appropriate points to take the turn (e.g., Skantze
and Hjalmarsson (2010)). Such incremental mod-
els have been used for the generation of col-
laborative completions (Baumann and Schlangen,
2011; DeVault et al., 2009) and feedback (DeVault
et al., 2011; Skantze and Schlangen, 2009) dur-
ing a human’s turn. While these computational
approaches tend to focus on overlapping the hu-
man, it is also important to handle overlap when
the system/agent has been overlapped. Relatively
little work has been done to this end, and there
remain many open questions about how to inter-
pret the function of overlap as well as how to re-
spond. Moreover, overlap management for HRI
is an under-explored area, and one which presents
additional challenges for dealing with situated,
embodied interaction. The present work attempts
to tackle some of these challenges.

2All dialogs in the paper are from human interactions in
the CReST corpus. S represents the Searcher role and D rep-
resents the Director. Overlap is shown in brackets.
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3 Framework Description

As a framework for classifying overlap, we use the
scheme from Gervits and Scheutz (2018) which
includes categories from Eberhard et al. (2010),
Jefferson (1986), and Schegloff (2000) as well as
our own analyses. Included in this framework is
a set of categories for identifying overlap (onset
point, local dialogue history) and overlap manage-
ment behavior. We provide formal definitions of
the various categories of the scheme below, and in
Section 5 we show how a model using this frame-
work was integrated in a robotic architecture.

An utterance in our scheme is represented as
follows: Uagent = SpeechAct(α, β, σ, χ,Ω, π),
where agent can be the human or robot, α rep-
resents the speaker, β represents the recipient, σ
represents the surface form of the utterance, χ
represents the dialogue context, Ω represents a
set of four time intervals corresponding to possi-
ble overlap onset points (see below), and π rep-
resents a boolean priority value (see Section 5.2).
The surface form of an utterance, σ is an or-
dered set of lexical items in the utterance: σ =
{iteminitial, ..., itemfinal}. Dialogue context, χ,
can be realized in various ways, but here we as-
sume it to be a record with at least one field to
represent the previous utterance and one field to
represent the current dialogue sequence. Every ut-
terance also has a speech act type associated with
it to denote the underlying communicative inten-
tion. These include various types of questions, in-
structions, statements, acknowledgments, and oth-
ers from Carletta et al. (1997).

We also include the following components (see
Section 3.2 for more detail): 1) a set of compet-
itive overlap resolution behaviors, C, which in-
clude {Continue, Disfluency, Self-repair}, and 2)
a set of non-competitive overlap resolution behav-
iors, NC, which include {Drop Turn, Single Item,
Wrap Up, Finish Turn}. Operational definitions
for these behaviors can be found in Gervits and
Scheutz (2018).

3.1 Overlap Onset Point

Onset point is the key feature for classifying the
function of an overlap, and refers to the window of
time in which the overlap occurred (see Jefferson
(2004)). There are four types in the scheme (see
Fig. 1), and these are represented as elements of
Ω, where Ω = {ΩTS ,ΩPT ,ΩIJ ,ΩLI}, and each
element is a bounded time interval specifying a

Figure 1: Key overlap onset points.

lower and an upper bound. The first overlap in-
terval, Last-Item (see Dialog 1) refers to overlap
occurring on the last word or lexical item3 before a
TRP. Last-Item overlap is defined in our scheme as
an interval containing the range of time from the
onset to the offset of the final lexical item in the
utterance: ΩLI(Uagent) = [|onset(itemfinal) +
1|, |offset(itemfinal)|]. These values can be ob-
tained from the speech synthesizer or estimated
from syllable count.
1) D: ...one yellow block . per blue b[ox]

S: [o k]ay
Two other overlap types in our scheme are

the Transition-Space (see Dialog 2) and Post-
Transition (see Dialog 3). Transition-Space
overlaps are characterized by simultaneous turn
startup, and occur when overlap is initiated within
a conversational beat (roughly the length of a
spoken syllable) after the first starter began their
turn. While the length of a conversational beat
varies depending on the rate of speech, it has
been estimated to be around 180 ms so this is
the value we have implemented (see Wilson and
Wilson (2005)). Transition space is thus de-
fined as the following interval: ΩTS(Uagent) =
[|onset(iteminitial)|, |len(beat)|], or [1, 180].
2) S: Yes

(0.5)
D: [So is]-
S: A[n d I] just leave that there correct?

The Post-Transition case is similar to
Transition-Space except that here the timing
window is offset by an additional conversational
beat (see Dialog 3. Note that the TRP here
is between the words “sure” and “where”).
The interval is defined in our scheme as:
ΩPT (Uagent) = [|len(beat) + 1|, |2(len(beat))|],
or [181, 360] using 180 ms as the length of a beat.
3) S: Is there a time limit?

3Note that lexical items need not be single words, but may
also be collocations such as “traffic light”.
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D: I’m- I’m not sure whe[re are you?]
S: [o k a y]

The final overlap type is the Interjacent (see Di-
alog 4). This type of overlap occurs when the
second starter comes in during the middle of the
first starter’s turn, i.e., not directly near a TRP.
In our scheme, Interjacent overlap is defined as
an interval specifying a range from the offset of
the Post-Transition window (361 ms) to the on-
set of the Last-Item window: ΩIJ(Uagent) =
[|2(len(beat)) + 1|, |onset(itemfinal)|].
4) D: Okay maybe that was a-

(0.5)
D: like they said th[ e r e w a s ]- [oka]y
S: [it was a pin]k b[o x]

3.2 Overlap Management Behaviors

The overlap management category describes var-
ious ways in which overlap can be resolved4.
We distinguish between non-competitive behav-
iors, which do not involve an intent to take the
turn, and competitive behaviors, which involve a
“fight” for the turn. Non-competitive behaviors
include simply dropping out, or uttering a single
word or lexical item (e.g., “okay”). Wrap Up is a
specific non-competitive behavior which involves
briefly continuing one’s turn (“wrapping up”) af-
ter being overlapped and then stopping at the next
TRP. Wrap Up is performed by a speaker when the
overlap occurs near the end of their planned turn
(within 4 beats, or 720 ms of the TRP). Finish
Turn similarly involves reaching the TRP, but this
behavior only involves a completion of the word or
lexical item on which the overlap occurred (as in
Last-Item). Both are considered non-competitive
because the intent is to relinquish the turn.

In contrast, the competitive behaviors involve
maintaining one’s turn during overlap. One such
behavior is Continue, in which the overlapped
speaker simply continues their turn. This differs
from Wrap Up in that the speaker continues be-
yond the next TRP, and so is not relinquishing the
turn. Other competitive behaviors include disflu-
encies and self-repairs from Lickley (1998), which
are only marked as competitive if they occurred
within two conversational beats of the point of
overlap (following Schegloff (2000)) and no other
behavior was performed. These categories include

4We are not claiming that any of these behaviors are in-
tentionally produced by speakers to manage overlap (though
some may be), but rather that they result from the stochastic
nature of fluid turn-taking.

silent/filled pauses, prolongations, various types of
self-repairs, and combinations of all of these.

4 Collaborative Remote Search Task

Our task domain is a search and rescue scenario
in which human dyads perform a collaborative,
remote search task (CReST) in a physical envi-
ronment (Eberhard et al., 2010). In the task, one
person is designated the director, and sits in front
of a computer monitor that displays a map of the
search environment (see Fig. 2). The other per-
son is the searcher and is physically situated in
the search environment. The two teammates com-
municate with a remote headset and must locate a
variety of colored blocks scattered throughout the
environment within an 8-minute time limit. We
are interested in how people communicate in this
domain so as to inform dialogue and coordination
mechanisms for more natural and effective HRI.

Figure 2: Map of environment from the Collabo-
rative Remote Search Task (CReST).

Language data from 10 dyads performing this
task (2712 utterances and 15194 words) was pre-
viously transcribed and annotated for a number of
features, including: syntax, part-of-speech, utter-
ances, words, disfluencies, conversational moves,
and turns (Gervits et al., 2016a,b). Instances of
overlap in the CReST corpus were also catego-
rized according to their onset point and other fea-
tures. (Gervits and Scheutz, 2018). There were a
total of 541 overlaps in the 10 teams that we ana-
lyzed, with Transition-Space and Last-Item over-
laps being the most frequent (see Table 1).

5 Model Implementation

To demonstrate our proposed model, we imple-
mented it in the natural language pipeline of the
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Table 1: Distribution of overlap onset points in the
CReST corpus.

Overlap onset Frequency
Transition-Space 35%
Post-Transition 15%
Interjacent 15%
Last-Item 35%

DIARC cognitive robotic architecture (Scheutz
et al., 2007). The architecture was integrated in
a SoftBank Robotics Nao robot and evaluated on
the CReST corpus data. Although the CReST
task was intended for a robot to fill the role of
the searcher, we provide examples in which the
robot can fill either role. Currently, we have imple-
mented all of the non-competitive behaviors from
the scheme, and two of the competitive behaviors
(Continue and Repetition). A full implementation
of all the behaviors is ongoing work.

5.1 Dialogue Management in the DIARC
Architecture

The DM in DIARC is a plan-based system that
allows the agent to reason over the effects of ut-
terances and actions based on its goals. Such
a system is capable of not just responding to
human-initiated dialogue, but also initiating its
own speech actions to accomplish goals. The
DM receives utterances from the Natural Lan-
guage Understanding (NLU) component that are
represented using the formalism described above:
Uagent = SpeechAct(α, β, σ, χ,Ω, π). Utter-
ances of this form are also generated by the
DM, and sent to the Natural Language Genera-
tion (NLG) component as output. The flow of di-
alogue is handled in our system through explicit
exchange sequences which are stored in the di-
alogue context, χ. An example of such a se-
quence is: AskY N(A,B) ⇒ ReplyY (B,A) ⇒
Ack(A,B). This represents a sequence involving
a yes-no question, followed by a reply-yes, fol-
lowed by an acknowledgment. A list of known
sequences is provided to the system, and the cur-
rent sequence is represented in a stack called Ex-
changes. The system always prioritizes the lat-
est exchange added, which becomes important for
managing several cases of overlapping speech (see
Section 5.3 for more details).

5.2 Model Configuration

Several additional components are needed to im-
plement the model described above. First, we re-
quire a mechanism to determine whether to com-
pete for the turn or not. This decision is partly
determined by dialogue history (e.g., previous
speaker in the Post-Transition case) but also by
utterance priority. As a result, a boolean priority
value, π, is assigned to every utterance that a sys-
tem running the model produces in a given con-
text, χ: π(Uagent). This represents the urgency of
that utterance at that point in the dialogue, and is
used as a tiebreaker in several of the cases to de-
termine whether to hold the turn or not.

We also need specific behaviors for managing
turn-taking and dialogue context in the face of
overlap. Since the DM in our architecture is a
plan-based system, utterances can be thought of
as (speech) actions performed to achieve a goal
of the agent. As a result, dropping out of a turn
(even when appropriate) should not result in the
utterance being indefinitely abandoned. Thus, we
need a mechanism whereby the system can store a
dropped utterance and produce it later. A ques-
tion then arises about exactly when is appropri-
ate to produce the stored utterance. Our method
for addressing these problems involves storing a
dropped utterance in a priority queue called NL-
Grequests, and removing it from the current Ex-
changes stack. With this method, the system re-
sponds to the exchange that the human’s over-
lapped utterance produces until it is resolved. At
this point, the system will initiate utterances stored
in NLGrequests, in order of priority.

One remaining topic to discuss is how to han-
dle different kinds of feedback in overlap. Given
that acknowledgments come in many varieties de-
pending on context (Allwood et al., 1992), we dis-
tinguish between several different functions of ac-
knowledgments in our system. Specifically, con-
tinuers, sometimes known as backchannel feed-
back, are distinguished from affirmations related
to perception or understanding. This is accom-
plished using the onset point at which these ac-
knowledgments occur. Acknowledgments during
the Interjacent position are treated as continuers so
that the agent does not attempt to drop out, com-
pete for the turn, or add this feedback to the ex-
change. On the other hand, acknowledgments oc-
curring at the Last-Item position are treated dif-
ferently, and are included in the current exchange.
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For identifying acknowledgments, we use a sim-
ple filter that includes several of the most com-
mon feedback words, including “okay”, “yeah”,
“right”, and “mhm”.

5.3 An Algorithm for Overlap Resolution

We now turn to the task of selecting the appro-
priate behavior for detecting and resolving speech
overlap (see Algorithm 1). A key design goal for
the algorithm was speed. It is important that over-
lap is detected, identified, and resolved within a
few hundred milliseconds in order to accommo-
date human expectations.

The algorithm described here operates during
the robot’s turn, checking for an overlapping utter-
ance by the human. Since we are modeling remote
communication, the robot transmits its speech di-
rectly to a headset worn by the human (i.e., it does
not hear its own voice). In this way, we avoid
the problem of disambiguating multiple simulta-
neous speech streams, and allow the robot to parse
the human’s utterance during overlap. For the al-
gorithm, both overlapped utterances, Uhuman and
Urobot, as well as the overlap onset point, are taken
as input. The main flow of the algorithm involves
using this onset point in a switch statement to de-
cide which case to enter, and consequently, which
resolution behavior to perform. The algorithm
output is a behavior that corresponds to the func-
tion of the overlap.

The first step in the procedure, before consid-
ering the various cases, is to check if Urobot is a
Single Item or Wrap Up (see Alg. 1, line 3). We
have found that people do not typically compete
for such utterances, so the robot’s behavior here
is to just finish its turn. Both utterances are then
added to the Exchanges stack in the local dialogue
context, χ.

If Urobot is not a Single Item or Wrap Up, then
the algorithm checks the onset point and goes into
the respective case for each type. Each case is han-
dled in a unique way in order to select the proper
competitive or non-competitive behavior based on
the “function” of that overlap type. For exam-
ple, because Transition-Space overlap is charac-
terized by simultaneous startup, it uses the pri-
ority of the robot’s utterance, π(Urobot), to deter-
mine whether to hold the turn or not (see Alg. 1,
line 7). If priority is low, then it drops the turn;
otherwise it competes for the turn. Post-transition
overlap uses a similar mechanism, but first checks

the previous speaker (see Alg. 1, line 16). This
is done to give the human a chance to respond if
the robot had the prior turn. Likewise, if the hu-
man had the prior turn, the robot is given a chance
to respond, but only if π(Urobot) is high. Inter-
jacent overlap also uses the priority mechanism,
but first checks if Uhuman is a backchannel (see
Alg. 1, line 31); if so, it will continue the turn. Fi-
nally, Last-Item overlap involves finishing the cur-
rent turn and adding both overlapping utterances
to the Exchanges stack. This means that if an ac-
knowledgment occurs in this position, it is treated
as part of the exchange rather than as backchannel
feedback.

In all cases in which a turn is dropped (see e.g.,
Alg. 1, line 8), this involves not just abandoning
Urobot immediately, but also storing it for later in
the NLGrequests priority queue. The system si-
multaneously parses the ongoingUhuman and adds
this to the top of the Exchanges stack.

Competing for the turn (e.g., Alg. 1, line 12) in-
volves producing one of the competitive behaviors
from C, including Continue, Disfluency, and Self-
Repair. Selecting which behavior to employ is a
challenging problem due to its stochastic nature,
and one which remains elusive even in the empir-
ical literature (but see Schegloff (2000) for some
ideas). Our approach is based largely on our anal-
ysis of the CreST corpus, specifically on the fre-
quency of the various overlap management behav-
iors for each overlap type. We use a proportion-
based selection method5 which assigns a probabil-
ity for a behavior to be selected, pb, based on its
frequency (in the corpus) over the sum of the fre-
quency of all behaviors, fi, where |C| is the num-
ber of competitive behaviors:

pb =
fb∑|C|
i=1fi

As an example, we found that for Transition-Space
overlaps, Continues were used 24% of the time in
resolution, and Repetition were used 3% of the
time. Since we only have these two competitive
behaviors currently implemented (|C| = 2), the al-
gorithm will produce a Continue about 89% of the
time and a Repetition about 11% of the time for
Transition-Space overlaps in which it is compet-
ing for the turn. These probabilities vary depend-
ing on the overlap type.

5This is analogous to the fitness proportionate selection
operator for genetic algorithms - see Back (1996)
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6 Evaluation

Below we present the results of a qualitative eval-
uation on the CReST corpus data.

6.1 Results

To evaluate our algorithm, we demonstrate that it
can handle the main classes of overlap observed
in the corpus data6. These include the four main
overlap types (see Fig. 1), the resolution behav-
iors, and the additional features from Section 5.2,
including handling feedback and restarting aban-
doned utterances.

Transition-Space overlap (simultaneous startup)
is handled by using the priority of the robot’s utter-
ance to modulate behavior. If we set π(Urobot) =
low, then it will drop the turn, as the director does
in Dialog 2. On the other hand, if priority is high,
then it will maintain the turn as the searcher does
in the same example with a Continue. We have
also implemented the Repetition behavior, which
the director performs to maintain the turn in Dia-
log 5. The Repetition is maintained until the other
speaker stops talking. Note that, as in the corpus,
these competitive behaviors are not invoked dur-
ing the production of a single word or lexical item.
See Dialog 3 for an example where the searcher
produces “okay” in overlap.
5) D: Can you hold on a second?

D: They’[re- they’re] giving me instructions
S: [y e a h]

Post-transition overlap is characterized by a late
entry by the second starter. The algorithm han-
dles this case by checking the previous speaker
and dropping out if the robot had the prior turn.
Otherwise, it uses priority as a tiebreaker as in
the Transition-Space case. Dialog 6 below shows
an example of prior speaker being used to resolve
overlap. The behavior of the director in this ex-
ample is demonstrative of the algorithm’s perfor-
mance. On the third line, the director says “I’m
not sure” which ends in a TRP. They then contin-
ued their turn with “I - I don’t...” at which point
the searcher overlaps to respond to the previous
utterance and the director drops out mid-turn.
6) S: Do I just take-

D: There’s other things in the box too um .
D: I’m not sure I- [I don’t know what they]-
S: [o k a y . I’m just tak ]ing

6There is an accompanying video showing some of the
algorithm behaviors. It can be found at: https://vimeo.
com/260654351

everything in the box
Interjacent overlap is handled solely through

the use of the priority mechanism to determine
turn-holding or turn-yielding behavior. As demon-
strated above, both of these cases are readily
handled by the algorithm, and only require that
π(Urobot) be reasonably set.

Last-Item overlap is handled by finishing the
turn, and adding Uhuman to the current exchange,
as in Dialog 1. Here, the algorithm replicates the
director’s behavior of finishing the turn and treat-
ing the searcher’s feedback as an acknowledgment
in the current exchange.

Handling different kinds of feedback is another
important component of our approach. In Sec-
tion 5.2 we showed that continuers at the Inter-
jacent point are handled differently than those at
the Last-Item point. In Dialog 7 below, the direc-
tor produces a continuer (“yeah”) at the Interja-
cent point, followed by a “got that” at the last item
position. The continuer is identified by the algo-
rithm as such (and effectively ignored), whereas
the Last-Item acknowledgment is added to the cur-
rent exchange: Stmt(A,B)⇒ Ack(B,A).
7) S: like . um . there’s a green box number

t[wo o]n the st[ a i r ]s
D: [yeah] [got that]

Wrap Up is another class of overlap behavior
that was observed in the corpus. We handle these
cases by checking the remaining length of Urobot

after the overlap onset. If the utterance is within 4
conversational beats (720 ms) of completion then
the robot will simply finish it, as seen in Dialog 8.
Otherwise, resolution is handled based on the time
window in which the overlap occurred.
8) D: ... but was there? O[r was there not?]

S: [ n o::: ]
Finally, resolving the effect of overlap on the

current dialogue sequence represents a common
pattern seen in the corpus. The algorithm handles
this differently depending on whether the robot
held the turn or dropped out. If the robot held the
turn, then Urobot is used as the next element in the
exchange. Otherwise, the robot drops the turn, and
storesUrobot in NLGrequests to be uttered after the
current exchange is complete. An example of this
behavior can be seen in Dialog 9 from the corpus.
Our algorithm behaves as the director in this case.
It drops the “go down” utterance to quickly han-
dle the new Stmt(A,B)⇒ Ack(B,A) exchange
introduced by the searcher in the second line. The
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abandoned utterance is now at the top of the NL-
Grequests stack, so it is restarted once the prior
exchange is complete.
9) D: G[o d o w n ]- [yeah yeah ok]ay

S: [there’s lik]e boxes all ov[er the place]
D: Go down
S: Okay
D: And turn- turn right

6.2 Discussion

We have show that the categories of our formal
framework are robust and can account for much
of human overlap behavior in task-oriented remote
dialogue. This model represents a step towards the
goal of more natural and effective turn-taking for
HRI. A main advantage of our approach is that it
enables robots running the model to manage over-
lap in human-like ways, at human-like timescales,
and at minimal computational cost. By handling
the different kinds of overlap, robots can produce
a wide range of supportive behaviors, including:
maintaining dialogue flow during overlap, allow-
ing people to start their turn early for more ef-
ficient turn transitions, supporting recognitional
overlap during the robot’s turn, dropping out to
allow a human to clarify or respond, prioritizing
urgent messages by holding the turn, and handling
simultaneous startup.

One potential issue is that, with only two of the
competitive turn-holding behaviors implemented,
the current system will tend to produce continues
most of the time when competing for the turn. As
mentioned previously, this can be problematic be-
cause continues present ambiguity in grounding.
We will need to conduct empirical studies using
our model to explore the grounding cost of differ-
ent competitive turn-holding behaviors and estab-
lish which are the most effective. It is likely that
trade offs between model accuracy and usability
will be necessary moving forward. For example,
in order to maintain grounding, the system may
need to prolong its turn-holding behavior until the
human stops talking. This is not necessarily what
we find in the human data, but nevertheless it may
be crucial for a dialogue system.

7 Future Work and Conclusion

7.1 Future Work

While we have demonstrated that our model can
handle various classes of behaviors found in the
corpus, other components of the system still need

to be considered for future evaluation. The com-
ponents described in Section 5.2 such as prior-
ity modulation, feedback handling, delaying aban-
doned utterances, sequence organization (using
the Exchange stack), and behavior selection will
need to be separately evaluated in future work.
Moreover, a comparison of this system with “non-
humanlike” dialogue systems (e.g., Funakoshi
et al. (2010) and Shiwa et al. (2009)) will inform
whether naturalness and responsiveness are desir-
able components in a dialogue system.

The other main direction of future work is ex-
tending the model to produce overlap on a hu-
man’s turn. This will require a fully incremental
system to predict potential turn completion points.
By building up a partial prediction of the utterance
in progress, the system will be able to generate
backchannel feedback, recognitional overlap, col-
laborative completions, and other instances of in-
tentional overlap. It will also be able to engage in
fluid turn-taking to avoid accidental overlap alto-
gether, and to recover quickly when it happens.

7.2 Conclusion

We have introduced a formal framework and com-
putational model for embodied artificial agents
to recover from being overlapped while speak-
ing. The model is informed by extensive empir-
ical work both from the literature as well as from
our own analyses. We have integrated the model
in the DIARC cognitive robotic architecture and
demonstrated how an agent running this model re-
covers from common overlap patterns found in a
human search and rescue domain. The utility of
the model is that it can quickly identify and resolve
overlap in natural and effective ways, and at min-
imal computational cost. This project is a step in
a larger effort to model various aspects of human
dialogue towards the goal of developing genuine
robot teammates that can communicate and coor-
dinate effectively in a variety of complex domains.
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Algorithm 1 Speech Overlap Management
1: procedure MANAGEOVERLAP(Uhuman,Urobot, onset point) . Input: Human and robot utterances

in context χ, where Uagent = SpeechAct(α, β, σ, χ,Ω, π); onset point is the timing of the overlap.
Output: Resolution behavior

2: while robot speaking do
3: if σ(Urobot) = Single Item or length(σ(Urobot)) - onset point < 720 then
4: Finish Turn(Urobot) . Single Item or Wrap Up. Stop at the next TRP
5: Exchanges.push(Urobot, Uhuman)
6: else if onset point ∈ ΩTS then . Transition-space case. 180 ms of start of Urobot

7: if π(Urobot) = low then . Low priority utterance. Non-competitive resolution.
8: Drop Turn(Urobot)
9: NLGrequests.push(Urobot) . Store utterance for later

10: Exchanges.push(Uhuman) . Add human’s utterance to current exchange
11: else . High priority utterance. Maintain turn.
12: Compete(Urobot) . Perform one of the competitive resolution behaviors
13: Exchanges.push(Urobot)
14: end if
15: else if onset point ∈ ΩPT then . Post-transition case. 180-360 ms of start of Urobot

16: if χ(Urobot).previous speaker = robot then . Drop turn to allow for response
17: Drop Turn(Urobot)
18: NLGrequests.push(Urobot)
19: Exchanges.push(Uhuman)
20: else if χ(Urobot).previous speaker = human then . Use priority to determine behavior
21: if π(Urobot) = low then
22: Drop Turn(Urobot)
23: NLGrequests.push(Urobot)
24: Exchanges.push(Uhuman)
25: else
26: Compete(Urobot)
27: Exchanges.push(Urobot)
28: end if
29: end if
30: else if onset point ∈ ΩIJ then . Interjacent case. Mid-turn overlap.
31: if σ(Uhuman) ∈ {Backchannels} then
32: Continue(Urobot) . Allow backchannel feedback
33: Exchanges.push(Urobot)
34: else if π(Urobot) = low then
35: Drop Turn(Urobot)
36: NLGrequests.push(Urobot)
37: Exchanges.push(Uhuman)
38: else
39: Compete(Urobot)
40: Exchanges.push(Urobot)
41: end if
42: else if onset point ∈ ΩLI then . Last-Item case. End of turn.
43: Finish Turn(Urobot)
44: Exchanges.push(Urobot, Uhuman)
45: end if
46: end while
47: end procedure
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Abstract

This paper identifies stylistic differences
in instruction-giving observed in a corpus
of human-robot dialogue. Differences in
verbosity and structure (i.e., single-intent
vs. multi-intent instructions) arose natu-
rally without restrictions or prior guid-
ance on how users should speak with the
robot. Different styles were found to
produce different rates of miscommunica-
tion, and correlations were found between
style differences and individual user varia-
tion, trust, and interaction experience with
the robot. Understanding potential con-
sequences and factors that influence style
can inform design of dialogue systems that
are robust to natural variation from human
users.

1 Introduction

When human users engage in spontaneous lan-
guage use with a dialogue system, a variety of
naturally occurring language is observed. A per-
sistent challenge in the development of dialogue
systems is determining how to handle this diver-
sity. One strategy is to limit diversity and maxi-
mize the system’s natural language understanding
by training users a priori on what language and
syntax is valid. However, these constraints could
potentially yield inefficient interactions, e.g., the
user may incur greater task and cognitive load try-
ing to remember the proper phrasing needed by the
system, worrying whether or not their speech will
be understood if they do not get it exactly right.
A broader approach to dealing with diversity is to
develop more robust systems that can respond ap-
propriately to different styles of language. A set
of dialogue system policies that takes into account
natural stylistic variations in users’ speech would

Dialogue 1: Lower Verbosity
U: take pictures in all four directions

Robot: executing...
Robot: done

Dialogue 2: Higher Verbosity
U: robot face north, take a picture, face south, take

a picture, face east, take a picture
Robot: executing...
Robot: done

Dialogue 3: Minimal Structure Style
U: go through the other door

Robot: executing...
Robot: done

U: take a picture
Robot: image sent

Dialogue 4: Extended Structure Style
U: face your starting position and send a picture

Robot: executing...
Robot: image sent

Figure 1: Dialogues between Users (U) and a
Robot, exemplifying stylistic differences

provide for a more nuanced, adaptable, and user-
focused approach to interaction.

Rather than constrain users or develop a gener-
alized dialogue system that attempts to cover all
variations in the same way, we focus on analytic
understanding of differences in observed language
behavior, as well as possible causes of these differ-
ences and implications of misunderstanding. This
work is a first step towards a more nuanced and
flexible dialogue policy that can be sensitive to in-
dividual and situational differences, and adapt ap-
propriately. This paper introduces a taxonomy of
stylistic differences in instructions that humans is-
sue to robots in a dialogue. The taxonomy consists
of two classes: verbosity and structure. Verbosity
is measured by number of words in an instruction.
Dialogues 1 and 2 in Figure 1 show contrasting
verbosity levels. Structure concerns the number of
intents issued in an instruction: Minimal if it con-
tains a single intent (Dialogue 3 in Figure 1 has
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two Minimal) or Extended if it contains more than
one intent (Dialogue 4). Understanding stylistic
differences can support the development of dia-
logue systems with strategies that tailor system re-
sponses to the user’s style, rather than constrain
the user’s style to the expected input. The taxon-
omy is described in more detail in Section 3.

We observe and analyze these stylistic differ-
ences in a corpus of human-robot direction-giving
dialogue from Marge et al. (2017). These styles
are not unique to this corpus; they emerge in other
human-robot and human-human dialogue, such
as TeamTalk (Marge and Rudnicky, 2011) and
SCARE (Stoia et al., 2008). The corpus contains
60 dialogues from 20 participants (Section 4). The
robot dialogue management in the corpus is con-
trolled by a Wizard-of-Oz experimenter, allowing
for the study of users’ style with a fluent and nat-
uralistic partner (i.e., with an approximation of an
idealized automated system).

In Section 5, we investigate possible conse-
quences and implications of these categorized
styles in this corpus. We examine the relationship
of style and miscommunication frequency, ap-
plying an existing taxonomy for miscommunica-
tion in human-agent conversational dialogue (Hi-
gashinaka et al., 2015a) to this human-robot cor-
pus. We explore the relationship between stylis-
tic differences and other dialogue phenomena de-
scribed in Section 6, specifically whether:
• The rate of miscommunication is related to

verbosity (H1) and structure (H2);
• Latent user differences are related to ver-

bosity (H3) and structure (H4);
• Trust in the robot is related to verbosity (H5)

and structure (H6);
• Time/experience with the robot is related to

verbosity (H7) and structure (H8).
Finally, we speculate about how knowledge of

style, miscommunication, individual differences,
trust, and experience might be leveraged to imple-
ment targeted and personalized dialogue manage-
ment strategies and offer concluding remarks on
future work (Sections 7 and 8).

2 Related Work

A number of human-human direction-giving cor-
pora exist, among them, ArtWalk (Liu et al.,
2016), CReST (Eberhard et al., 2010), SCARE
(Stoia et al., 2008), and SaGA (Lücking et al.,
2010). The majority of existing analyses on these

corpora focus on the vocabulary of referring ex-
pressions and entrainment. While variations in
instruction-giving verbosity and structure are ev-
ident in these human-human interactions, the goal
of this work is to improve human-robot communi-
cation. Humans have different assumptions about
how robots communicate and behave, and may
speak differently to robots than they do to other
humans. We therefore chose a human-robot cor-
pus for our style analysis that uses a Wizard-of-Oz
for dialogue management. This allowed us specif-
ically to isolate the style usage and miscommu-
nication errors of the human partner (because the
Wizard makes very few errors on the robot’s end).

Studies of human-robot automated systems tend
to focus on the miscommunication errors of the
dialogue system (i.e., the robot itself), rather than
the miscommunication or style of the human part-
ner. In conversational agents, the research fo-
cus is also primarily to categorize errors made
by the agent, not the human, including errors in
ASR, surface realization, or appropriateness of
the response (e.g., Higashinaka et al. (2015b);
Paek and Horvitz (2000)). The more generic
task-oriented and agent-based response-level er-
rors from Higashinaka et al. (2015a) map well to
the user miscommunication in the corpus we ex-
amine, including excess/lack of information, non-
understanding, unclear intention, and misunder-
standing. Works that focus specifically on mis-
communication from the user when interacting
with a robot include those categorizing referential
ambiguity and impossible-to-execute commands
(Marge and Rudnicky, 2015). These categories are
common in the data we examine as well.

In this analysis, we predict that trust will have
an effect on stylistic variations. Factors of trust
in co-present and remote human-robot collabora-
tion has been studied with respect to engagement
with the robot, and memory of information from
the robot (Powers et al., 2007).

3 Stylistic Differences

We describe two classes of stylistic differences for
instruction-giving: differences in the verbosity of
an instruction, and in the structure of the instruc-
tion. These styles emerge when decomposing a
high-level plan or intent (e.g., exploring a physical
space) into (potentially, but not necessarily) low-
level instructions (e.g., how to explore the space,
where to move, how to turn).
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3.1 Verbosity

Verbosity is a continuous measure of the number
of words per instruction. Compare the instruction
in Dialogue 1 in Figure 1 “take pictures in all four
directions” (6 words) with the instruction in Di-
alogue 2 “robot face north, take a picture, face
south, take a picture, face east, take a picture” (16
words). Both issue the same plan (with the excep-
tion of a picture towards the west in Dialogue 2),
yet Dialogue 1 condenses the instruction and as-
sumes that the robot can unpack the higher-level
plan. Dialogue 2 is more verbose and low-level,
making reference to individual cardinal directions.
Verbosity alone does not capture all style differ-
ences; additional categorization is needed.

3.2 Structure of Instructions

We define a Minimal instruction as one contain-
ing a single intent (e.g., “turn”, “move”, or “re-
quest image”). A sequence of Minimal instruc-
tions often reveals the higher-level plan of the user.
In Dialogue 3, the user issues a single instruc-
tion “go through the other door” and waits until
the instruction has been completed. Upon receiv-
ing completion feedback from the robot (“execut-
ing” and “done” responses), the next instruction,
“take a picture”, is issued. Compare this with Di-
alogue 4, where the intents “face your starting po-
sition” and “send a picture” are compounded to-
gether and issued at the same time. This is clas-
sified as an Extended intent structure: instructions
that have more than one expressed intent. These
structural definitions were first described in Traum
et al. (2018) to classify the composition of an in-
struction. In this work, we use these definitions to
classify the style of the user.

4 Human-Robot Dialogue Corpus

We examine these styles in a corpus of human-
robot dialogue collected from a collaborative
human-robot task (Marge et al., 2017). The user
and the robot were not co-present. The user in-
structed the robot in three remote, search-and-
navigation tasks: a Training trial and two Main tri-
als (M1 and M2). During Training, users got used
to speaking to the robot. Main trials lasted for 20
minutes each, and users were given concrete goals
for each exploration, including counting particular
objects (e.g., shoes) and making deductions (e.g.,
if the space could be a headquarters environment).

Users spoke instructions into a microphone

while looking at a live 2D-map built from the
robot’s LIDAR scanner. A low bandwidth envi-
ronment was simulated by disabling video stream-
ing; instead, photos could be captured on-demand
from the robot’s front-facing camera. To allow full
natural language use, users were not provided ex-
ample commands to the robot, though they were
provided with a list of the robot’s capabilities
which they could reference throughout the trials.
Well-formed instructions (unambiguous, with a
clear action, end-point, and state) could be exe-
cuted without any additional clarification (e.g., all
dialogues in Figure 1). The robot responded with
status updates to the user to make it known when
an instruction was heard and completed. When
necessary, the robot requested instruction clarifi-
cation. A human Wizard experimenter stood in for
the robot’s speech recognition, natural language
understanding, and language production capabil-
ities, which were guided by a response protocol.

4.1 Corpus Statistics

The corpus contains 3,573 utterances from 20
users, totaling 18,336 words. 1,981 instructions
were issued. The least verbose instruction ob-
served is 1 word (“stop”), and the most verbose is
59 words (mean 7.3, SD 5.8). Of the total instruc-
tions, 1,383 are of the Minimal style, and 598, Ex-
tended. A moderate, positive correlation exists be-
tween higher verbosity and the Extended style in
this corpus (rs(1969) = .613, p < .001)), support-
ing an intuition that more words would be found in
Extended instructions. That this correlation is not
stronger, however, may suggest that the verbosity
metric is insufficient to capture critical elements of
stylistic variation of structure. Number of words
does not completely map onto the complexity or
the “packed” nature of instructions. For example,
the Minimal but highly verbose instruction from
in corpus “continue down the hallway to the first
entrance on the left first doorway on the left” is 16
words, but the Extended instruction “stop. take a
picture” is only 4.

5 Stylistic Differences and
Miscommunication

A user’s utterance is classified as a miscommuni-
cation if the following robot utterance is a request
for clarification or indicates inability to comply;
this occurred at least once in 216 (16%) of the in-
structions in the corpus. We hypothesize that dif-
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ferent instruction styles will differ in their over-
all rates of miscommunication, i.e., that miscom-
munication rates are related to verbosity (H1) and
structure (H2).

If a scarcity of words leads to ambiguity or
missing information, we would predict that ver-
bosity and miscommunication rate would be neg-
atively correlated. However, if more words simply
yield more opportunities for erroneous or contra-
dictory information, then we would predict a pos-
itive correlation between verbosity and miscom-
munication. We assessed this using binary logistic
regression of verbosity on overall miscommunica-
tion presence (H1). Results revealed that miscom-
munication significantly increases with verbosity
(verbosity as a continuous independent variable,
with model χ2 = 55.94, p < .001, with Wald =
56.67, p < .001, Nagelkerke R2 = .06)

If having more intents in a single instruction
leaves more opportunities for mistakes, then we
would predict that greater use of Extended struc-
ture would be positively related to miscommunica-
tion rates. To examine this relationship, we com-
pared overall miscommunication rates and use of
different instruction structures (H2). The over-
all miscommunication rate for Minimal instruc-
tions is 8%, while Extended is 18%; we confirmed
that Extended instructions were significantly more
likely to have miscommunication (structure as a
categorical independent variable, with Chi-square
test, χ2(1, N = 1969) = 40.91, p < .001).

5.1 Miscommunication Types

While overall miscommunication rate differed sig-
nificantly among styles, it would be useful to
understand whether different styles are associ-
ated with different types of miscommunication,
as this may inform what error-handing algo-
rithms the system should favor. Following Hi-
gashinaka et al. (2015a), we categorize miscom-
munication in the corpus according to Response-
level and Environmental-level ontologies. Though
this ontology was designed to categorize errors
made by a virtual agent dialogue system, a num-
ber of categories are applicable to communica-
tive errors committed by human users in situ-
ated dialogues. Figure 2 shows examples of user-
miscommunication errors from the human-robot
corpus and the robot response. Further explana-
tion and expected relationships are below.

Dialogue 5: Response, Missing Information
U: leave the room and go to your left

Robot: How far left should I go?

Dialogue 6: Response, Unclear Instruction
U: go into the center of the first room on your left

and then take a picture at the west north east and south
position
Robot: Can you repeat the positions you’d like photos
from?

Dialogue 7: Environment, Ambiguous Reference
U: can you move forward to take a picture of the

object
Robot: I’m not sure which object you are referring to.
Can you describe it another way?

Dialogue 8: Environment, Impossible Instruction
U: move around the cone into the next room turn

right ninety degrees
Robot: There is not enough space for me to move around
the cone and enter the room ahead. Would you like me
to get as close as possible to the room?

Dialogue 9: Environment, Misunderstand Capabili-
ties

U: okay turn to your right forty five degrees and turn
on video camera
Robot: Our bandwidth will currently not support the
video feed. Would you like me to send a photo?

Figure 2: Dialogues between Users (U) and Robot
with different miscommunications types

Response-level, Missing Information instruc-
tions lack information required for execution (Di-
alogue 5). We expected that lower verbosity in-
structions would be more likely to lead to this type
of miscommunication due to a lack of specificity,
as measured by fewer words, e.g., “turn right” is
missing how many degrees to turn. On the other
hand, we might expect that Extended instructions
would be more likely to lead to this type because
with multiple intent comes a compounding poten-
tial for lack of specificity.

Response-level, Unclear Instructions are un-
clear due to phrasing or order of information pre-
sented (Dialogue 6). More verbose instructions
were expected to be more prone to this type of mis-
communication because more information, mea-
sured as words, has a higher potential to be mis-
construed (e.g., it is unclear if “north east” is
“north” and “east” or “north-east”). However, in-
creased information may provide additional con-
text required for specification, the opposite rela-
tionship. Due to compounding potential, we ex-
pected Extended style would lead to more Unclear
type errors.

Environment-level, Ambiguous Reference in-
structions include an ambiguous referent in the en-
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vironment, potentially due to a lack of common
ground (Dialogue 7). We expected that lower ver-
bosity instructions, with less information (words)
would have more Ambiguous miscommunication
(e.g., “go to the doorway” versus “go to the door-
way furthest from you”). For Extended style, we
hypothesize more Ambiguous type errors due to
compounding potential.

Environment-level, Impossible instructions are
impossible to execute in the physical space in
terms of distance and dimension (Dialogue 8). We
expected that overspecified instructions (higher
verbosity or Extended) might be more likely to be
Impossible (e.g., in the more verbose, Extended
instruction “move up two feet, turn right ninety
degrees, move forward seven feet”, it is not pos-
sible for the robot to move 7 feet after completing
the first two actions).

Environment-level, Misunderstood Capabilities
instructions are those in which the user misunder-
stands the robot’s capabilities (Dialogue 9). We
expect verbosity and structure to affect Misunder-
stood rates much as they affect Impossible mis-
communication rates.

Logistic regression revealed that verbosity does
not significantly correlate with any type of mis-
communication that occurred (χ2 = 4.89, p =
.298). To examine this result in more detail, we
conducted binomial logistic regression on each
miscommunication type separately, asking, e.g.,
does verbosity predict whether the miscommuni-
cation is of the Ambiguous type or not? None of
these results were significant.

With regard to structure, a Chi-square test
showed a non-significant trend, suggesting there
may be a possible influence of structure on mis-
communication type (χ2(4, N = 216) = 8.71, p =
.065). We explored this result in more detail, look-
ing at each miscommunication type separately,
asking, e.g., does structure predict whether the
miscommunication is of the Ambiguous type or
not? Results were significant for Ambiguous mis-
communication type (χ2(1, N = 216) = 4.01, p =
.045) and a trend toward significance for Unclear
miscommunication type (χ2(1, N = 216) = 3.34,
p = .067) With Minimal styles, miscommunica-
tions that arise are more likely to be Ambiguous
type. With Extended styles, miscommunication
that arise may tend to be Unclear type. Counts of
miscommunication types for each structure style
are shown in Figure 3.

M
iss

ing

Unc
lea

r

Ambig
uo

us

Im
po

ssi
ble

Cap
ab

ilit
ies

0

20

40

60 *
49

16

35

4 2

39

8

51

8 4

#
m

is
co

m
m

un
ic

at
io

n

Extended Minimal

Figure 3: Miscommunication types observed in
structures style (* p < 0.05)

6 Factors related to Style Differences

Knowing that stylistic differences are observed
in unconstrained dialogue and the relationship of
these differences to miscommunication rates, it is
important to assess factors of these differences in
the first place. We examine latent individual dif-
ferences, as well as trust and interaction time with
the robot, which may influence style.

6.1 Individual Differences

A broad-use dialogue system can expect to receive
instructions from different individuals. The dia-
logue system must therefore be robust to a range
of individuals who will bring different speaking
styles to the interaction. We hypothesized that in-
dividual users differ in their verbosity (H3) and
structure (H4).

We first examined whether individual user iden-
tity predicted verbosity (H3). The ANOVA as-
sumption of homogeneity of variances was vio-
lated, so a Kruskal-Wallis H test was used, sup-
porting H3 with significant difference in verbosity
across individual participants (χ2(19, N = 1969) =
422.53, p < .001). The most verbose user used an
average of 15 words per instruction, and the least
verbose used an average of 4 words.

Chi-square tests revealed that individual users
also vary in structure (H4; χ2(19, N = 1969) =
511.70, p < .001). Figure 4 graphs the percent-
age of structural style employed by users (sorted
from smallest to largest percent of Extended us-
age). Some users seem to simply prefer the Min-
imal style (Users 1, 2, 3) while other users em-
ployed a majority of Extended (Users 19, 20).
Others are almost evenly split (Users 13, 14, 15).
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Figure 4: Percent distribution of instruction structure between users (sorted smallest to largest Extended)

6.2 Trust in the Robot

User trust in the robot may be a factor in how the
user realizes their instructions, e.g., because the
user may have different levels of confidence in the
robot’s abilities. Users completed the Trust Per-
ception Scale-HRI (Schaefer, 2016) after M1, and
again after M2. The Trust Perception Scale-HRI
is a 40-item scale designed to measure an individ-
ual’s subjective perception of trust in a robot.

We hypothesized that trust in the robot would
be related to verbosity (H5) and structure (H6). If
reported trust is indicative of a user’s comfort with
speaking more with the robot, and/or if trust is in-
dicative of having higher confidence in the robot’s
ability to process many words, then we would pre-
dict a positive relationship between trust and ver-
bosity. On the other hand, if trust scores reflect
confidence that the robot will understand instruc-
tions without need for additional words or expla-
nations, then we would predict a negative relation-
ship between trust and verbosity.

To assess whether and how trust levels are re-
lated to verbosity (H5), we compared trust lev-
els for a trial to the verbosity in that trial (there
were not enough data points to control for individ-
ual user ID in a regression). Spearman correlation
was significant, with higher trust correlating with
greater verbosity (rs(38) = .33, p = .035).

If higher trust scores indicate user confidence
that the robot can understand, parse, and execute
complex instructions, then we predict that more
Extended instructions would be observed. To as-
sess this relationship (H6), trust levels measured
for each trial were compared to the proportion of

Extended instructions used in that trial. Spear-
man correlation revealed a nonsignificant trend for
higher trust to correlate with more use of the Ex-
tended structure (rs(38) = .29, p = .07).

6.3 Time and Experience

As time passes and experience grows, people are
known to interact differently with technology and
with communication partners. We thus hypothe-
size that time/experience with the robot would be
related to verbosity (H7) and structure (H8), i.e., as
the user progresses from Training to M1 and M2,
instruction-giving style may change.

If it is the case that users become more com-
fortable or confident as they gain more experience,
we predict that verbosity should increase over
time/experience (H7). Indeed, verbosity increased
across trials from an average of 6.1 words in Train-
ing, to 7.3 average words in M1, to 8.1 average
words in MP2. A one-way repeated measures
ANOVA was conducted to determine whether ver-
bosity differed by trial (repeated measures analy-
sis effectively controls for user ID). Trial was sig-
nificantly related to verbosity, (F(2,38) = 13.45,
p < .001), and post-hoc LSD t-tests indicated that
each trial had significantly more verbose instruc-
tions than previous trials (Training vs. M1 p =
.003; Training vs. M2 p = .001; M1 vs. M2 p =
.020).

Figure 5 shows the percentage of structural style
in each trial. There is a general upward trend
in use of the Extended style as users engage in
successive trials. A one-way repeated measures
ANOVA was used to determine whether structure
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Figure 5: Percent distribution of instruction struc-
ture between trials (* p < 0.05; ** p < 0.01)

usage differed by trial (H8). Results showed sig-
nificant differences among trials (F(2,38) = 8.26,
p = .001), with post-hoc LSD t-tests revealing
greater Extended structure use in M1 and M2 as
compared to Training (Training vs. M1 p = .014;
Training vs. M2 p = .002). Structural usage be-
tween M1 and M2 was not significantly different
(M1 vs. M2 p = .190).

7 Discussion

7.1 Miscommunication
Styles differ in the overall frequency of miscom-
munication they engender, but these differences
are not consistent across all miscommunication
types. Among miscommunication-producing in-
structions, we found no correlation between ver-
bosity and what type of miscommunication was
produced (H1). Future analyses that look at ad-
ditional linguistic features may help reveal what is
happening at a level of specificity beyond a sim-
ple word count. We can speculate that this may
be because user misunderstandings of the robot or
environment exist regardless of how many words
it takes the user to express these misunderstand-
ings (Impossible, Misunderstood Capabilities), or
because Ambiguous, Unclear, or Missing Infor-
mation miscommunication can result either from
too few words, or from cases where the participant
adds more words and commits more miscommuni-
cation with those words. This raises the question
of what it is that is being added with more ver-
bose instructions, if not clarification information.
Future research can aim to address this.

Our analyses revealed an effect of structure on
miscommunication types (H2). Minimal structure

had a greater tendency to yield Ambiguous mis-
communications. This may be because additional
intents in an instruction offer opportunities to cor-
rect ambiguity in the first intent. For example,
if the robot is told to go through the door and
take a photo of the chair, the robot can use the
presence or absence of a chair to settle any am-
biguity about which door to go through. With-
out the additional intent packed into the instruc-
tion, this would remain ambiguous. Extended
style additionally showed a nonsignificant trend
toward yielding more response-level Unclear mis-
communication types, which may result because
Extended instructions are packed, sequentially-
ordered instructions and thus have the ability to
introduce miscommunication in the order of infor-
mation presented. Missing Information, Impossi-
ble Instructions, and Misunderstood Capabilities
were not significantly related to structure. These
miscommunication types might not arise from the
structural style, but instead stem from a funda-
mental misunderstanding on the user-end. Further
analysis of the content of the instructions, rather
than only the structure, may uncover if content is
a factor.

7.2 Individual Differences

Our analysis revealed that latent differences
among individuals appear to yield differences in
verbosity and structure style (H3 and H4). Fu-
ture analysis may aim to identify these latent dif-
ferences. Possibilities include variations in po-
tential for introspection, personality, perspective-
taking ability, and other differences. Regardless
of the underlying factors that cause individual dif-
ferences, dialogue systems must be robust to a
range of individuals who bring with them differ-
ent stylistic tendencies.

7.3 Varying Degrees of Trust

We found that higher trust was related to higher
verbosity. We speculate that this may be because
when a user trusts in the robot’s competence and
capabilities, they are more likely to feel comfort-
able enough to speak more and be confident that
the robot can parse longer instructions. Users’
propensity for trust was not measured during the
experimental collection, which may be an unob-
served factor in this analysis. Future analysis
will incorporate this additional information about
users’ latent traits.
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If trust is measured in questionnaires, or gauged
by other means, this information could be incorpo-
rated as feedback for the dialogue system to appro-
priately adjust dialogue management strategies; as
the users’ trust in the robot is gauged during an
interaction, the system will know to expect ad-
justments to verbosity and structure, so it can of-
fer more appropriate and tailored responses to the
user’s style. Furthermore, providing feedback that
encourages trust (or discourages it) may be a gen-
tle, minimally obtrusive way of guiding a user to
employ a different style to avoid particular mis-
communication types, if working with a less ro-
bust dialogue system.

7.4 Effect of Interaction Time

Users increased their verbosity (H7) and use of the
Extended style (H8) when progressing from Train-
ing to M1 (and verbosity again when progress-
ing from M1 to M2). We speculate that starting
with lower verbosity and Minimal style during the
Training trial might suggest users initially are hes-
itant or do not have a strong sense for the robot’s
language processing capabilities. Users may be
learning from the training and growing in comfort
level over interaction time and experience with the
robot, and are willing to use more verbose or Ex-
tended instructions in successive trials. Another
possible explanation might be that users face a
more difficult task in the main trials as compared
to training; when pressed for time in a more chal-
lenging task, users may use more words and be
more prone to combine intents together. Future
studies can aim to disentangle these effects.

We observed an increase in Extended style use
between M1 and M2, but it did not reach statistical
significance. This might suggest that any learning
or strategy convergence in terms of structure that
occurred from training to M1 may have mostly set-
tled by M1. It is possible that future work with a
greater sample size will reveal that Extended style
use continues to grow across trials. An under-
standing of interaction time or experience effects
can be incorporated in the dialogue system to bet-
ter support the change of user styles that emerge
with repeated interactions.

8 Conclusion and Future Work

This paper defines two classes of stylistic differ-
ences: verbosity and structure, and examines these
styles in a corpus of human-robot dialogue with

no constraints on how robot-directed instructions
were formulated. We show that stylistic differ-
ences are linked to different rates and types of mis-
communication (H2), that latent individual differ-
ences exist (H3 and H4), and that there is a rela-
tionship between style and trust (H5 and H6), and
style and interaction time (H7 and H8).

By understanding the effects of stylistic differ-
ences used in instruction-giving, we are posed to
implement adjusting dialogue systems to the ex-
pectations of styles to increase user interaction
and system performance. Tapus et al. (2008) has
shown that users prefer a robot that tailors en-
couragement strategies according to users’ person-
ality (introverted or extroverted). Torrey et al.
(2006) found that users prefer robots that tailor
their speech to the human’s level of expertise.
We posit that dialogue systems could similarly be
crafted to support and interact with different ver-
bosity and structural styles. Future dialogue sys-
tems might adjust to the verbosity style by, for ex-
ample, providing system feedback in more or less
verbose styles, which may make the interaction
feel more like a natural conversation. A system
can adjust to the structural style by providing in-
cremental feedback to users issuing Extended in-
structions to capture miscommunications early, as
well as provide feedback that the system under-
stood the compound instruction. The monitoring
of trust and interaction time can be incorporated
as feedback for the dialogue system to offer more
appropriate responses or attentive repair strategies
in advance of miscommunication being made.

This investigation of style warrants further turn-
by-turn analysis to better understand where style
shift occurs during an interaction, and why particu-
lar styles are subject to increased rates of miscom-
munication. A future robot may be able to propose
alternate courses of action for certain miscommu-
nication types (e.g., the suggestion to offer the
user a picture of the room in Dialogue 9). These
propositions may be difficult for other miscommu-
nication styles, which require contextual, environ-
ment information and specification directly from
the user. Future work will investigate these alter-
native suggestions to study if a users’ style would
shift around the alternate action (e.g., reducing
Minimal structure usage for Ambiguous instruc-
tions), or if the user would adapt the alternate ac-
tion into their own style (e.g., continuing to use
Minimal, but not repeating the same mistake).
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Abstract

In this paper, we apply the contribution
model of grounding to a corpus of human-
human peer-mentoring dialogues. From
this analysis, we propose effective turn-
taking strategies for human-robot interac-
tion with a teachable robot. Specifically,
we focus on (1) how robots can encourage
humans to present and (2) how robots can
signal that they are going to begin a new
presentation. We evaluate the strategies
against a corpus of human-robot dialogues
and offer three guidelines for teachable
robots to follow to achieve more human-
like collaborative dialogue.

1 Introduction

Grounding is the process by which two parties co-
ordinate to come to a joint understanding or com-
mon ground in a joint project. This involves as-
suming mutual knowledge, beliefs, and assump-
tions (Clark, 1996). Since humans use grounding
to collaborate in dialogue interactions, robots can
look to human grounding patterns to mimic collab-
oration in a human-like way. In human-robot dia-
logue with a teachable robot, the robot often wants
the human to take initiative in presenting material;
at the same time, the robot wants to ensure that
it can steer the conversation in a natural way. By
analyzing a human-human peer-mentoring corpus,
we identify turn-level grounding patterns that help
achieve these two goals.

First, we observe peer-learning dialogues in a
human-human corpus to model how human teach-
ers and learners signal presentation and under-
standing. In this corpus, both teachers and learn-
ers alternately take the floor to offer presentations.
While one speaker presents, the other speaker ac-
cepts the presentation by displaying evidence of
understanding. Our first goal is to understand how

a speaker signals to the other speaker to take the
floor, such as a teacher encouraging a learner to
present an idea, or a learner asking a question that
leads the teacher to present an explanation.

Second, speakers may need to shift the floor to-
wards themselves during a conversation. For ex-
ample, a teacher may have a plan to offer feedback
on the learner’s work, or a learner may need to ex-
plain a problem that confused them. Therefore,
our second goal is to understand how a speaker
can effectively signal that they are taking the floor.

These two goals are also relevant to human-
robot dialogue with a teachable robot: a robot who
acts as a peer to a student and prompts the stu-
dent to teach them the material (Jacq et al., 2016;
Lubold et al., 2018b). Because humans engage
more deeply with material when they teach it to
someone else (Roscoe and Chi, 2007), we want
a teachable robot to encourage humans to present
material. At the same time, especially when inter-
acting with children, the robot may not always un-
derstand or be able to process the human’s speech
and actions. To handle unexpected, degraded, or
out-of-vocabulary input, the robot will sometimes
need to take the floor and steer the conversation.

In Section 2 of this paper, we discuss re-
lated work. We introduce a human-human peer-
mentoring corpus and detail our annotation pro-
cess in Section 3. In Section 4, we analyze human-
human grounding patterns with respect to the two
goals: encouraging humans to present, and taking
the floor. In Section 5, we introduce and analyze
grounding in a corpus of dialogues with a teach-
able robot. We discuss similarities and differences
in the two corpora in Section 6, and offer sugges-
tions for improving human-robot dialogue.

2 Related Work

The contribution model of Clark and Schaefer
is a widely-used theory of conversational ground-
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ing (Clark and Schaefer, 1989; Clark, 1996). The
model proposes that collaborative conversations
be analyzed in terms of contribution units, where
each contribution consists of a presentation phase
followed by an acceptance phase. In the presen-
tation phase, Speaker A, the presenter, presents a
signal to Speaker B, the acceptor. In the accep-
tance phase, B, the acceptor, acknowledges that
they have understood the signal. This requires
positive evidence of understanding from B. The
speakers signal back and forth until they have re-
ceived closure—a sense of mutual understanding.

Traum (1994, 1999) reformulated the contri-
bution model for real-time use by collaborative
dialogue agents. In this model, the units of
analysis—grounding acts—occur at the utterance
level. In human-robot dialogues, Liu et al. (2013)
found that incorporating an ‘agent-present human-
accept’ dialogue pattern based on the contribu-
tion model into its grounding algorithm led to
improved reference resolution. Graesser et al.
(2014) used a ‘pump-hint-prompt-assertion’ dia-
logue pattern in an intelligent tutoring system,
finding learning outcomes comparable to those of
human tutors.

Turn-taking in human-robot interaction in-
volves understanding the cues that signal when it
is appropriate for a robot to take a turn (Meena
et al., 2014). Integrating factors such as robot
gaze, head movement, parts of speech, and seman-
tics into turn-taking models is an active area of
research (Chao et al., 2011; Andrist et al., 2014;
Johannson and Skantze, 2015), informed by stud-
ies of turn-taking in human-human dialogue (Gra-
vano and Hirschberg, 2011). In human-human in-
teraction, turn-taking behaviors vary considerably
depending on the task. A better understanding of
turn-taking in peer-learning dialogue will help in-
form the design of effective peer-learning robots.

Robot learning companions have the poten-
tial to teach broad populations of learners but an
important challenge is maintaining engagement
and effectiveness over multiple sessions (Kanda
et al., 2004). Social robotic learning companions
can motivate students, encourage them to persist
with a task, and even promote a growth mindset
(Park et al., 2017). Recently, teachable robots
have flipped the traditional teacher-learner roles,
with the goal of improving learning and motiva-
tion (Hood et al., 2015). Most of the these robots
use spoken utterances as output but do not engage
in conversational interaction around the human

partner’s utterances, if any exist. One exception
is a robot that encourages students to think aloud,
finding greater long-term learning gains when stu-
dents articulate their thought process (Ramachan-
dran et al., 2018).

Robots that are physically present have ad-
vantages over virtually-present robots and virtual
agents. For example, in a game-playing setting
with children, a co-present robot companion was
found to be more enjoyable and have greater so-
cial presence than a virtual version of the same
robot (Leite et al., 2008). In a puzzle-solving
setting, students learned more with a co-present
robot tutor than with a virtual version of the same
robot (Leyzberg et al., 2012). A survey by Li
(2015) found that in 73% of human-robot interac-
tion studies surveyed, co-present robots were more
persuasive, received more attention, and were
perceived more positively than virtually-present
robots and virtual agents. There may be trade-
offs to physical presence; in an interview set-
ting, co-present robots were liked better than vir-
tual agents, but participants disclosed less and re-
membered less with the co-present robot (Pow-
ers et al., 2007). Overall, the literature suggests
that physically co-present robots are preferable
for relationship-oriented tasks, for interaction with
children, and for learning.

3 Peer-Mentoring Dialogue Corpus and
Annotation

To develop dialogue strategies for a robot peer-
learner to effectively shift the conversational floor,
we examine the grounding patterns of human peer-
teachers and peer-learners.

Corpus. The human-human peer-mentoring di-
alogue dataset consists of fifty 10-minute conver-
sations, totaling approximately nine hours. Ta-
ble 1 summarizes the conversation durations and

Peer-mentoring corpus statistics Median

Dialogue duration (sec) 596.0
Total turns per dialogue 153.5
Teacher turns per dialogue 76.5
Learner turns per dialogue 76.0
Words per teacher turn 8.0
Words per learner turn 3.0

Table 1: Median duration, number of turns, and
turn length data for the corpus of human-human
peer-mentoring dialogues (N=50).

120



Grounding label Definition Speaker role

Presentation A signal or piece of information offered by the presenter presenter
Probe Questions such as “When are we meeting?”, or a signal made either

without certainty of positive evidence from the other speaker,
such as “You know that assignment...”

Backchannel A short turn to signal understanding, such as “Mm-hmm”, acceptor
“Yeah”, and in some cases, laughter

Uptake The acceptor’s next relevant turn acceptor
Answer A signal to display understanding of the presenter’s probe acceptor
Repetition A signal to confirm understanding acceptor
Paraphrase A signal to confirm understanding acceptor
Closure Evidence of the conclusion of a joint project either

Table 2: Definitions of grounding labels and their associated roles.

turn lengths in this dataset. Audio recordings were
collected of conversations between undergraduate
computer science students as part of a near-peer
mentorship program. The mentees were enrolled
in an introductory computer science course. The
mentors were mid- and upper-level computer sci-
ence students. Mentors had multiple mentees and
met with each mentee individually each week over
the course of a semester to give feedback on com-
pleted programming assignments. Because men-
tors received training on giving effective feedback
and encouraging mentees to reflect on their work,
we assume that all conversations are examples of
effective mentoring. The dataset used in this paper
is part of a ongoing data collection project with
over 250 dialogues.

The audio recordings of the dialogues were
manually transcribed by a commercial transcrip-
tion service. An excerpt below illustrates an inter-
action between a mentor and mentee, who we will
refer to in this paper as ‘teachers’ and ‘learners’
(punctuation is added for clarity).

TEACHER: So then you might have like
a Point2D trunk start which would then
update within that method down below
LEARNER: What do you mean by . . .
TEACHER: So like up here instead of
putting say like public int tx1 you might
write something like—
LEARNER: Oh you mean in uh as a
parameter—
TEACHER: Yeah like just put ‘public
Point2D trunk start’ and then you just
end it
LEARNER: Yeah yeah I got that

Annotation. Our approach to annotation is
motivated by the grounding actions proposed in
Clark’s model of collaborative dialogue (Clark,
1996), and also by the turn-level unit of analy-
sis in Traum’s model (see Section 2). The set of
grounding labels, shown in Table 2, is designed to
be applicable to both human-human and human-
robot corpora. The annotation guidelines and the
annotated data are publicly available 1.

In our annotation model, at any time, one
speaker has the presenter role, and the other is
the acceptor. The roles are associated with a set
of grounding actions, which characterize individ-
ual dialogue turns. Only the presenter’s turns can
be labeled as presentation2. Labels such as up-
take, answer, and backchannel3 typically indicate
shorter signals to confirm understanding, and oc-
cur in turns by the acceptor. Two labels can occur
with both presenters and acceptors: probe and clo-
sure. Each turn is labeled with one or sometimes
two grounding labels.

We manually annotated each dialogue turn
in the peer-mentoring corpus with one or two
grounding labels as well as the identity of the cur-
rent presenter. This annotation was performed by
a single annotator. The counts of each grounding
label for teachers and for learners are shown in Ta-
ble 3. We note that presentation is the most fre-
quent label for teachers, while backchannel is the
most frequent label for learners.

1http://www.ponbarry.com/
PeerLearningDialogueGrounding/

2This differs from Clark’s model, where contributions in
the acceptance phase can also be presentations.

3We consider spoken backchannels to be dialogue turns
to minimize complexity in the human-robot setting, where
we consider all robot utterances to be dialogue turns.
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Grounding label Teacher Learner

presentation 2475 999
probe 517 507
backchannel 957 1793
uptake 356 701
answer 125 357
repetition 12 26
paraphrase 7 16
closure 205 214
TOTAL 4654 4613

Table 3: Grounding label counts for teacher
turns and learner turns in the human-human peer-
mentoring corpus.

4 Peer-Mentoring Dialogue Analysis

To support our goal of designing effective turn-
taking strategies for a teachable robot, we use
the corpus of human-human peer-mentoring dia-
logues to answer two questions: (1) how do hu-
mans encourage their partners to present? and (2)
how do humans signal that they are going to shift
the floor towards themselves? To frame the de-
cision of whether to focus on teacher strategies,
learner strategies, or both, we begin by examining
initiative patterns in the corpus.

4.1 Initiative and presentation

Expecting that perceived initiative is closely re-
lated to the number of presentation turns, we label
each dialogue in the peer-mentoring corpus with
a perceived initiative score from 1 to 5 (1=high
learner-initiative; 5=high teacher-initiative). We
compare the initiative ratings with the count of
each speaker’s presentation turns as a proportion
of their total turns in the dialogue. This is shown
in Figure 1. For learners, the proportion of pre-
sentation turns is highest when they are perceived
to have high initiative. However, teachers present
for roughly the same proportion of turns regard-
less of initiative label. This analysis suggests that
learners might assume greater initiative if they are
encouraged to present.

4.2 Encouraging partner to present

To analyze how one speaker encourages their part-
ner to present, we consider two cases: (a) when
the partner does not currently have the floor, and
(b) when the partner does currently have the floor.

To understand how human mentors and mentees
encourage their partners to present when that part-

Figure 1: (left) Distribution of initiative labels.
(right) Proportion of presentation turns in the con-
versation compared with conversation initiative.

ner does not hold the floor (i.e., to take the floor),
we identify all turns with a presentation label that
are at the start of a floor shift. A floor shift occurs
when a presentation turn shifts the presenter role
from one speaker to the other. We examine what
the partner’s grounding label was in the preced-
ing turn. In other words, if Speaker B has taken
the floor by beginning a presentation, what was
Speaker A’s last grounding action? An annotated
example exchange is shown below.

A: But don’t put it off because it’s a big
project (presentation)
B: I can tell cause it’s broken down into
two parts (uptake/presentation)
A: Mh-mmm (backchannel)

We find that when a speaker takes the floor,
their partner is most frequently presenting in the
preceding turn: 0.554 and 0.618 for teachers and
learners, respectively. The next most frequent
grounding label is probe (see all values in Table 4,
section (a)).

To understand how human mentors and mentees
encourage their partners to present when that part-
ner already has the floor (i.e., to continue pre-
senting), we identify all turns with a presentation
label that are not at the at start of a floor shift. We
examine what the partner’s grounding label was in
the preceding turn. In other words, if Speaker B
already has the floor and then has a presentation
turn, what is Speaker A doing before B’s presenta-
tion that encourages B to continue to present? An
annotated example exchange is shown below.

B: It’ll be the same problems (presenta-
tion)
A: Mh-mmm (backchannel)
B: So you should prepare in the same
way you did last semester (presentation)
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N present. probe backch. uptake ans. clos.

(a) Encourage presentation - at shift in floor
Grounding by T before partner presentation 139 0.554 0.266 0.122 0.000 0.035 0.024
Grounding by L before partner presentation 136 0.618 0.162 0.140 0.015 0.050 0.015

(b) Encourage presentation - no shift in floor
Grounding by T before partner presentation 995 0.089 0.125 0.542 0.181 0.035 0.024
Grounding by L before partner presentation 2453 0.046 0.104 0.604 0.166 0.056 0.015

(c) Signal a shift in floor
Grounding by T at floor shift 136 1.00 0.132 0.007 0.596 0.257 0.007
Grounding by L at floor shift 139 1.00 0.115 0.007 0.547 0.317 0.014

Table 4: Normalized frequencies of grounding turn labels for teachers (T) and learners (L); for (a)
grounding preceding a presentation by partner at a shift in floor, (b) grounding preceding a presentation
by partner, with no shift in floor, and (c) grounding accompanying a presentation at a shift in floor.
Presentations are most frequent for (a), backchannels are most frequent for (b), and uptakes are most
frequent for (c), as indicated by bolded values. Paraphrases and repetitions have values < 0.01 and are
omitted from the table.

When there is no floor shift, we find, unsurpris-
ingly, that the most frequent grounding label pre-
ceding presentation turns is a backchannel: 0.542
of the turns for teachers, 0.604 of the turns for
learners. The next most frequent labels are uptakes
and probes (see all values in Table 4, section (b)).

This data suggests that a robot should consider
presenting or probing to encourage a partner who
does not have the floor to present, and should con-
sider backchannels to encourage a partner who al-
ready has the floor to continue presenting. We
note, however, that the overall label frequencies
are a factor. After considering next-turn probabili-
ties conditioned on the preceding labels, we expect
that probes might be more effective than presenta-
tions at encouraging a partner to take the floor.

4.3 Signaling taking the floor

To understand how human mentors and mentees
naturally take the floor and become the presenter,
we look at the grounding labels of dialogue turns
at shifts in the conversational floor. All floor shifts
begin with a presentation turn; most also have a
second grounding label. If there is no accompany-
ing grounding label, we report the grounding label
of the speaker’s previous turn.

We find that when a speaker takes the floor,
the grounding label most frequently accompany-
ing the presentation label is uptake: 0.596 and
0.547 for teachers and learners, respectively. The
next most frequent grounding labels are answer
and probe (see all values in Table 4, section (c)).
This suggests that a robot that wants to take the

floor might consider an uptake, answer, or probe
in conjunction with their presentation.

5 Comparison with Human-Robot
Dialogue Interaction

To understand if the grounding strategies we ob-
served in the human-human corpus are effective
in human-robot interaction, we perform a prelimi-
nary empirical analysis using dialogue data from a
teachable robot interaction experiment conducted
in a Wizard-of-Oz (WOZ) style. Section 5.1 de-
scribes the dialogue data; Section 5.2 presents our
empirical analysis.

5.1 Human-robot dialogue data
The human-robot dialogue data consists of tran-
scripts from a teachable robot interaction experi-
ment where the robot was operated by a human
Wizard. In this WOZ experiment, human stu-
dents interacted in a learning-by-teaching context
(Ploetzner et al., 1999) with Nico, a social, teach-
able, NAO robot. The human participants were
peer teachers while Nico behaved as a peer learner,
working to solve mathematics word problems.

The human-robot corpus includes dialogue tran-
scripts from twenty college-age participants who
each engaged in four problem-solving dialogues
with Nico in the WOZ experiment (Chaffey et al.,
2018). Table 5 summarizes the dialogue durations
and turn lengths in this human-robot dialogue cor-
pus.

The WOZ experiment aided in the development
of an autonomous version of the teachable robot
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Human-robot corpus statistics Median

Total turns per dialogue 202.5
Human teacher turns per dialogue 101.5
Robot learner turns per dialogue 100.0
Words per human turn 10.0
Words per robot turn 5.0

Table 5: Median number of turns and turn lengths
for the corpus of teachable robot (WOZ experi-
ment) dialogues (N=20).

aimed at middle-school students (Lubold et al.,
2018a,b).

WOZ experiment overview. Participants were
told that their goal was to help Nico solve a set
of mathematics problems. Prior to the interac-
tion, they received worked-out problem solutions.
During the interaction, a tablet user interface dis-
played the problem, highlighting one step at time.
Nico, controlled by the Wizard, took initiative in
leading the dialogue, asking for help about how to
approach the problem sub-parts (e.g., “How do I
figure out how much paint to mix?”). Participants
responded by explaining their reasoning (e.g., “We
want to have six cans of green paint so we mix
three cans of yellow paint and three cans of blue
paint because...”). Nico’s actions included text-
to-speech output, gestures such as scratching its
head, and updates to values in the tablet interface.
Figure 2 shows a student teaching Nico.

Figure 2: Nico, a teachable robot, being taught by
a student.

Wizard behavior. A human Wizard oper-
ated Nico behind the scenes, selecting dialogue
responses and corresponding gesture movements
from a pre-defined set. If necessary, they had
the ability to input additional phrases. If the par-
ticipant did not explain their reasoning, the Wiz-
ard prompted them to try again (e.g., “Could you
explain that better?”). The Wizard was not in-
structed to model specific grounding behaviors.

5.2 Empirical analysis

We analyze the human-robot dialogue transcripts
asking the same questions as in Section 4, but from
the robot perspective: (1) how does the robot en-
courage the human to present, and (2) how does
the robot signal that it is taking the floor?

5.2.1 Encouraging partner to present
Based on our analysis of the human-human dia-
logues, we hypothesize that effective strategies for
a robot to use when encouraging their partner to
present, e.g., to elaborate or to explain, are: pre-
sentation and probe if their partner does not have
floor, and backchannel if their partner already has
the floor.

To evaluate the extent to which the human-robot
dialogues reflect these strategies, we identify the
following robot dialogue phrases (fixed phrases or
templates, available to the Wizard):

• presentation: “Okay, we [perform math oper-
ation]4”, “So now we [perform math opera-
tion]?”

• probe: “How did we get that number?”,
“What do we do next?”, “Could you give me
a hint?”

• backchannel: “Okay”

For each grounding category (presentation,
probe, and backchannel) we manually annotate
50 dialogue exchanges surrounding the queried
phrases. Each exchange is five turns in length.
We label each turn in the exchange with one or
more grounding labels, as we did for the human-
human corpus. For presentations and probes, the
dialogue exchanges are in contexts where the hu-
man partner does not have the floor in the preced-
ing turn. Two examples are shown in Appendix A.
We test if presentations and probes result in the
human partner taking the floor. For backchannels,
the dialogue exchanges are in contexts where the
human partner has the floor in the preceding turn.
We test if backchannels result in the human part-
ner keeping the floor.

Following presentations, 36% of the exchanges
had a presentation in the human’s first turn after
the robot presentation. Following probes, 74%
of the exchanges had a presentation in the hu-
man’s first turn after the robot probe. Following
backchannels, 68% of the exchanges had a pre-
sentation in the human’s first turn after the robot

4{add/subtract/multiply/divide} x {and/from/with/by} y.
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Partner turn Median turn length
is presentation (num words)

Following robot presentation
on the 1st turn 36.0% 13.0
on the 2nd turn 20.0% 19.5

Following robot probe
on the 1st turn 74.0% 25.0
on the 2nd turn 18.0% 30.0

Following robot backchannel
on the 1st turn 68.0% 20.0
on the 2nd turn 20.0% 30.0

Table 6: Success in encouraging human to present in the first turn, or second turn following robot pre-
sentations, probes, and backchannels; median human turn lengths for presentations.

backchannel. Table 6 summarizes this data, re-
ports turn lengths, and reports on occurence of pre-
sentations in the subsequent turn (if the first turn
was not a presentation). Not only are probes more
effective than presentations at getting the human to
present, the subsequent human presentation turns
are also longer.

5.2.2 Taking the floor
Based on our analysis of the human-human dia-
logues, we hypothesize that effective strategies for
a robot to use when taking the floor from their part-
ner are: uptake, answer, and probe.

To evaluate the extent to which the human-robot
dialogues utilize these grounding acts, we iden-
tify four dialogue phrases that the robot uses to
take the floor and steer the conversation. The first
two selected phrases are navigation instructions,
labelled as uptakes. In these, the robot takes the
floor to explicitly steer the conversation towards
the next problem step. We did not find any suit-
able robot phrases at floor shifts that we consid-
ered to be answers. The second two phrases are
questions about the partner’s attitudes towards the
material. These are labelled as probes, and serve
to indirectly steer the conversation away from the
previous topic. The dialogue phrases are as fol-
lows:

• uptake: “Please tap the ‘next’ button for me
so we can move on to the next step”, “Please
press the ‘back’ button”
• probe: “Do you like math?”, “Have you done

problems like this before?”

We manually annotate 45 dialogue exchanges
surrounding each of the queried categories. As

above, we label each turn in the exchange with
one or more grounding labels. Two examples are
shown in Appendix A.

We find that navigation instruction uptakes suc-
ceed in taking the floor immediately in 97.8% of
the exchanges. For the probes about attitudes to-
wards math, we evaluate their success in shifting
the floor by reporting how long the partner contin-
ues answering the question that the robot posed,
and how verbose those answers are (see Table 7).
We find that in 35% of the exchanges, partners
continue to answer the question for only one turn;
in 60% of the exchanges they stay on-topic for two
turns. The average length of these turns is 5.5 and
8.0, respectively.

6 Discussion

In the human-human peer-mentoring dialogue cor-
pus, we find that human speakers encourage part-
ners to take the floor most frequently via presenta-
tions or probes. In the human-robot dialogue cor-
pus, we find that probes are more successful than
presentations in getting partners to take the floor
and also result in longer turn lengths. We note that
our analysis is limited by the set of robot phrases
queried. To more accurately assess the success of
probes versus presentations in human-robot dia-
logue, we would need to annotate all instances of
these two grounding actions in the corpus.

Speakers in the peer-mentoring dialogue cor-
pus encourage partners to keep the floor most fre-
quently by backchanneling. Therefore, it seems
that providing a simple acknowledgement of the
partner’s signal is an effective way to ensure that
they continue to present. In the human-robot
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Partner accepts Median turn length
floor shift (num words)

Following robot instruction about UI navigation
on the 1st turn 97.8% 19.5
on the 2nd turn 0.02% 20.0

Following robot probe about math attitudes
on the 1st turn 35% 5.5
on the 2nd turn 60% 8.0

Table 7: Success in getting human to accept floor shift following robot instructions about user interface
(UI) navigation and probes about math attitudes; median human turn lengths if floor shift is accepted.

dialogue corpus, we find that backchannels are
successful in encouraging a partner to hold the
floor. Partners present within the next two turns
88% of the time. However, we find that the
robot backchannels occur on average in 8.9% of
its total turns in a conversation, whereas learn-
ers in human-human conversations backchannel
for 40.8% of their turns. By incorporating more
backchannels in the robot’s dialogues (see Kawa-
hara et al. (2016)), we could encourage presen-
tations more often, and also make the robot’s di-
alogue more similar to that of human learners.
Backchannels could also take non-verbal form,
such as nodding. However, we should be cau-
tious of using backchannels too liberally if they
are not a result of true understanding, since they
could break down trust between robot and human.

In the human-human corpus, we find that speak-
ers use uptakes, answers, and probes as signals
that they are taking the floor. Uptakes are the
most frequently used grounding label in this re-
gard. This reinforces the idea that speakers take
more initiative when taking the floor because they
must produce a relevant turn without being explic-
itly prompted for it.

In the human-robot dialogue corpus, we find
that uptakes in the form of instructions to the hu-
man partner are successful in shifting the floor.
Due to the nature of the human-robot dialogue, we
could not find instances of the robot using answers
at floor shifts. Instead, the robot used probes to
take the conversation floor. These are less suc-
cessful than instructions in immediately shifting
the floor, but this may be due to the unexpect-
edness of these questions; participants may have
been caught off guard.

To achieve more human-like collaborative dia-
logue, we suggest that teachable robots consider
using the following turn-taking strategies:

• When human partners are not taking initia-
tive, probe partners to encourage them to talk
more and take the floor.

• Backchannel more frequently while human
partners are presenting to encourage partners
to talk more and to better articulate their
thoughts and explanations.

• Use uptakes, answers, and probes to take the
floor. These can be useful when the conversa-
tion has gotten off-course and the robot wants
to steer it to a different topic.

7 Conclusion

To inform turn-taking strategies for teachable
robots, we annotate and analyze grounding pat-
terns in a corpus of human-human peer-mentoring
dialogues and a corpus of human-robot dialogues
(Wizard-controlled). In the human-human dia-
logues, we identify grounding actions that may
encourage dialogue partners to take initiative in
teaching, while steering the conversation naturally.
We find that some of these grounding actions are
present in the corpus of human-robot dialogues,
but that others are absent, or present to a lesser de-
gree. This suggests future research to investigate
whether student outcomes might improve if robot
interactions could be designed to encourage more
human-like collaborative dialogue.

Acknowledgments

The authors wish to thank Tricia Chaffey, Hyeji
Kim, and Emilia Nobrega for their contributions
as well as Nichola Lubold and the anonymous
SIGDIAL reviewers for their thoughtful feedback.
This material is based upon work supported by the
National Science Foundation under Grant No. IIS-
1637947.

126



References
Sean Andrist, Xiang Zhi Tan, Michael Gleicher, and

Bilge Mutlu. 2014. Conversational gaze aversion
for humanlike robots. In HRI ’14 Proceedings of
the 2014 ACM/IEEE International Conference on
Human-Robot Interaction, pages 25–32. ACM.

Tricia Chaffey, Hyeji Kim, Emilia Nobrega, Nichola
Lubold, and Heather Pon-Barry. 2018. Dyadic
stance in natural language communication with a
teachable robot. In HRI ’18 Companion: 2018
ACM/IEEE International Conference on Human-
Robot Interaction Companion, pages 85–86. ACM.

Crystal Chao, Jinhan Lee, Momotaz Begum, and An-
drea L Thomaz. 2011. Simon plays simon says: The
timing of turn-taking in an imitation game. In Pro-
ceedings of RO-MAN, pages 235–240. IEEE.

Herbert H. Clark. 1996. Using Language. Cambridge
University Press.

Herbert H Clark and Edward F Schaefer. 1989.
Contributing to discourse. Cognitive Science,
13(2):259–294.

Arthur C. Graesser, Haiying Li, and Carol Forsyth.
2014. Learning by communicating in natural lan-
guage with conversational agents. Current Direc-
tions in Psychological Science, 23(5):374–380.

Agustı́n Gravano and Julia Hirschberg. 2011. Turn-
taking cues in task-oriented dialogue. Computer
Speech & Language, 25(3):601–634.
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A Supplemental human-robot dialogue examples (annotated)

Example 1: Robot presentation (see 2nd turn)
HUMAN: Correct so what would you be multiplying by? probe
ROBOT: We multiply two-point-five and fifty presentation
HUMAN: Very good so what does that produce? probe
ROBOT: The answer is one-fifty presentation
HUMAN: Very good good job uptake

Example 2: Robot probe (see 2nd turn)
HUMAN: Yes answer
ROBOT: How did we get that number? probe
HUMAN: Sixty times two-point-five is one-fifty answer/presentation
ROBOT: Hmm why did we do that? probe
HUMAN: Because we knew how many miles he goes in one one hour presentation

and we wanted to know how many miles he goes in two hours

Example 3: Robot uptake - navigation instruction (see 2nd turn)
HUMAN: Mh-mmm backchannel
ROBOT: Please tap the next button for me so we can move on to the next step uptake/presentation
HUMAN: Okay now we’re gonna work on your torso uptake/presentation
ROBOT: Hmmm that part seems complicated to me can you explain that again? probe
HUMAN: So we know that with a surface area of six the volume is two presentation

Example 4: Robot probe - attitude question (see 2nd turn)
HUMAN: That is correct presentation
ROBOT: Do you like math? probe
HUMAN: Eh sometimes answer
ROBOT: Was it hard when you first started? probe
HUMAN: Oh yeah it took me a long time to get multiplications right I was a late answer

bloomer
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Abstract

When interacting with robots in a situated
spoken dialogue setting, human dialogue
partners tend to assign anthropomorphic
and social characteristics to those robots.
In this paper, we explore the age and ed-
ucational level that human dialogue part-
ners assign to three different robotic sys-
tems, including an un-embodied spoken
dialogue system. We found that how a
robot speaks is as important to human per-
ceptions as the way the robot looks. Us-
ing the data from our experiment, we de-
rived prosodic, emotional, and linguistic
features from the participants to train and
evaluate a classifier that predicts perceived
intelligence, age, and education level.

1 Introduction

Co-located, face-to-face spoken dialogue is the
primary and basic setting where humans learn
their first language (Fillmore, 1981) partly because
dialogue participants (i.e., caregiver and child) can
denote objects in their shared environment which
is an important developmental step in child lan-
guage acquisition (McCune, 2008). This setting
motivates human-robot interaction tasks where
robots acquire semantic meanings of words, and
where part of the semantic representation of those
words is grounded (Harnad, 1990) somehow in the
physical world (e.g., the semantics of the word red
is grounded in perception of color vision). Lan-
guage grounding for robots has received increased
attention (Bansal et al., 2017) and language learn-
ing is an essential aspect to robots that learn about
their environment and how to interact naturally
with humans.

However, humans who interact with robots
often assign anthropomorphic characteristics to

robots depending on how they perceive those
robots; for example stereotypical gender (Eyssel
and Hegel, 2012), social categorizations (Eyssel
and Kuchenbrandt, 2012) stereotypical roles (Tay
et al., 2014), as well as intelligence, interpretabil-
ity, and sympathy (Novikova et al., 2017). This
has implications for the kinds of tasks that we ask
our robots to do and the settings in which robots
perform those tasks, including tasks where lan-
guage grounding and acquisition is either a di-
rect or indirect goal. It is important not to as-
sume that humans will perceive the robot in the
“correct” way; rather, the age and academic level
appropriateness needs to be monitored, particu-
larly in a grounding and first-language acquisition
task. The obvious follow-up question here is: Do
robots need to acquire language as human chil-
dren do? Certainly, enough functional systems
exist that show how language can be acquired in
many ways. The motivation here, however, is that
those systems could be missing something in the
language acquisition process that children receive
because of the way they are perceived by human
dialogue partners. We cannot tell until we have a
robot that is shown as being perceived as a child
(current work) and use that robot for language
learning tasks (future work).

We hypothesize in this paper that how a robot
looks and acts will not only affect how humans
perceive that robot’s intelligence, but it will also
affect how humans perceive that robot’s age and
academic level. In particular, we explore how hu-
mans perceive three different systems: two em-
bodied robots, and one a spoken dialogue system
(explained in Section 3). We show through an ex-
periment that human perception of robots, particu-
larly in how they perceive the robots’ intelligence,
age, and academic level, is due to how the robot
appears, but also due to how the robot uses speech
to interact.
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2 Related Work

Several areas of research play into this work in-
cluding seminal (Roy and Reiter, 2005) and re-
cent work in grounded semantic learning in var-
ious tasks and settings, notably learning descrip-
tions of the immediate environment (Walter et al.,
2014); navigation (Kollar et al., 2010); nouns, ad-
jectives, and relational spatial descriptions (Ken-
nington and Schlangen, 2015); spatial operations
(Bisk et al., 2018), and verbs (She and Chai,
2016). Previous work has also focused on multi-
modal aspects of human-robot interaction, includ-
ing grounded semantics (Thomason et al., 2016),
engagement (Bohus and Horvitz, 2009), and es-
tablishing common ground (Chai et al., 2014).
Others have explored how robots are perceived
differently by different human age groups such as
the elderly (Kiela et al., 2015), whereas we are fo-
cused on the perceived age of the robot by human
dialogue partners. Moreover, though we do not de-
sign our robots for deliberate affective grounding
(i.e., the coordination effect of building common
understanding of what behaviors can be exhibited,
and how beahvior is interpreted emotionally) as in
Jung (2017), we hypothesize that how our robots
behave effects how they are perceived.

Kiela et al. (2015) compared tutoring sequences
in parent-child and human-robot interactions with
varying verbal and demonstrative behaviors, and
Lyon et al. (2016) brought together several ar-
eas of research relating to language acquisition
in robotics. We differ from this previous work
in that we do not explcitely tell our participants
to interact with the robots as they would a child,
effectively removing the assumption that partici-
pants will treat robots in an age-appropriate way.
Another important difference to their work is that
we opted not to use an anthropomorphically real-
istic child robot because such robots often make
people feel uncomfortable (Eberle, 2009). Our
work is similar in some ways to, but different
from work in paralinguistics where recognition of
age given linguistic features is a common task
(Schuller et al., 2013) in that we are make use of
exra-linguistic features. Our work primarily builds
off of Novikova et al. (2017) who used multimodal
features derived from the human participants to
predict perceived likability and intelligence of a
robot. We use similar multimodal features to pre-
dict the perceived age and academic level. An im-
portant difference to their work is that we designed

Figure 1: The two physical robots in our study:
KOBUKI with a mounted MS Kinect and COZMO.

the experiment with three robots to vary the ap-
pearance and two language settings to vary the be-
havior and linguistic factors of the robots.

3 Experiment
The primary goal of our experiment is to deter-
mine what factors play into how humans perceive
a robot’s age and academic level. We used the
three following robotic systems in our experiment:

• Kobuki Base Robot with a Microsoft Kinect on top (de-
noted as KOBUKI)

• Anki Cozmo robot (denoted as COZMO)

• Non-physical “robot” (i.e., a non-embodied spoken di-
alogue system) which was just a camera and speaker
(denoted as SDS)

Robot Appearance The COZMO has a head and
animated eyes and is noticeably smaller than the
KOBUKI. The robots did not move during the
experiments, though they were clearly activated
(e.g., the KOBUKI had a small light and COZMO’s
eyes were visible and moved at random intervals,
which is the default setting). Figure 1 shows the
KOBUKI and COZMO robots as seen by the partici-
pants. We chose these three robots because they
were available to us and we assume that, based
solely on appearance, participants would perceive
the robots differently. We chose a spoken dialogue
system (SDS) as one of the “robots” because we
wanted to explore how participants perceive a sys-
tem that is unembodied in direct comparison to
embodied systems.

Robot Behavior The COZMO robot has a built-
in speaker with a young-sounding synthetic voice.
We used two adult voices for the KOBUKI and SDS

robots from the Amazon Polly system (the Joey
and Joanna voices) which we played on a small
speaker.1 We vary the language setting of the
robots by assigning each robot one of two pos-
sible settings: high and low. In the high setting,

1https://aws.amazon.com/polly/
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Figure 2: Example puzzle made up of three col-
ored pentomino tiles with a specified name.

the following responses were possible: sure; okay;
yeah; oh; I see; uh huh; (where the robot re-
peats a word spoken by the participant) and any
combination of those responses in a single uttered
response; and for the low setting, the following re-
sponses were possible: yes; okay; uh; (where
the robot repeats a word spoken by the partici-
pant). In the high setting, the robot would pro-
duce responses more often than in the low setting.
These responses are characteristic of different lev-
els of feedback; the high setting contains feed-
back strategies that signaled understanding to the
participant, whereas the low setting only signaled
phonetic receipt. This corresponds to previous
work (Stubbe, 1998) which investigated various
feedback strategies employed in human-human di-
alogue termed neutral minimal responses (corre-
sponding to our low setting) and supportive mini-
mal responses (corresponding to our high setting).

With this setup, there are 6 possible settings:
high and low for each of the three robots. Our hy-
pothesis is that participants will perceive KOBUKI

as older and more intelligent than COZMO overall
(in both high and low settings) despite being less
anthropomorphic, perceive COZMO as very young
in the low setting, and that SDS will be perceived
as older than COZMO in the high setting, but simi-
lar to COZMO in the low setting.

3.1 Task and Participants

The experimenter gave each participant consent
and instruction forms to complete before the ex-
periment. The participant was then given three
colored pentomino puzzle tiles and a sheet of pa-
per with three goal shapes (example in Figure 2),
each composed from the corresponding tiles. The
experimenter instructed the participant to sit at a
table where they would see a robot. Their task
was to explain to the robot how to use the tiles to
construct the three goal shapes and tell the robot
the name of each shape. The experimenter did

Figure 3: Example setting using the KOBUKI

robot. The participants were to show the robot
how to construct the three goal objects on the pa-
per using the corresponding physical tiles. The
additional cameras were used to record audio and
video of the participant.

not specify how to accomplish this task or give ex-
amples of the kinds of things that the robot might
understand. The experimenter then left the room,
leaving the participant with the robot to complete
the task. The robots only responded verbally in the
low/high setting as explained above and their re-
sponses were controlled by the experimenter (i.e.,
in a Wizard-of-Oz paradigm). The robots pro-
duced no physical movement. When the partici-
pant completed each task, they uttered a keyword
(i.e., done), then the experimenter returned and ad-
ministered a questionnaire. This process was fol-
lowed for each of the three robots.

The following aspects of the experiment were
randomly assigned to each participant: the order
of robot presentation, the puzzle tiles and corre-
sponding goal shapes for each robot, the language
setting (i.e., high or low) which remained the same
for all three robot interactions for each partici-
pant, and for KOBUKI and SDS the adult voice
(either Joey or Joanna). We recruited 21 English-
speaking participants (10 Female, 11 Male), most
of whom were students of Boise State University.
The interaction generally took about 30 minutes;
participants received $5 for their participation.

3.2 Data Collection

We recorded the interactions with a camera that
captured the face and a microphone that captured
the speech of each participant. We automatically
transcribed the speech using the Google Speech
API (we manually checked an accented female
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anger 0.02
contempt 0.009
disgust 0.009
fear 0.002
happiness 0.005
neutral 0.909
sadness 0.03
surprise 0.011

anger 0.036
contempt 0.019
disgust 0.018
fear 0.005
happiness 0.831
neutral 0.006
sadness 0.093
surprise 0.006

anger 0.031
contempt 0.182
disgust 0.04
fear 0.000
happiness 0.066
neutral 0.649
sadness 0.027
surprise 0.002

Figure 4: Examples of results as processed by the
MS Emotions API.

voice which achieved an estimated WER of 30.0)
and segmented transcriptions into sentences after
1 second of detected silence, which is a longer
pause duration than the average pause duration
for adult-adult conversation (though adults tend to
take longer pauses when interacting with children
(DePaulo and Coleman, 1986)). This resulted in
video, audio, and transcriptions for each partici-
pant, for each robot interaction. We also collected
58 questionnaires (we had to remove several be-
cause they were missing data; i.e., some partic-
ipants did not answer some of the questionnaire
questions), one for each robot interaction, from
each participant.

4 Data Analysis

Using the data collected from the experiment, we
derived subjective measures from the question-
naires and we derived a number of objective mea-
sures from the video, audio, and transcriptions. In
this section, we explain what methods we used to
derive and analyze those measures.

Emotion Features Using the video feed of the
participants, we extracted an image of the partic-
ipants’ faces every 5 seconds. We used the Mi-
crosoft Emotion API for processing these images
to calculate an average distribution over 8 possi-
ble emotion categories for each image: happiness,
sadness, surprise, anger, fear, contempt, disgust,
and neutral. Figure 4 shows an example of face
snapshots taken from the video in the task setting
and the corresponding distributions over the emo-
tions as produced by the API.

Prosodic Features From the audio, we calcu-
lated the average fundamental frequency of speech
(F0) of the participant over the entire interaction

between the participant and the robot for each
robot setting.

Linguistic Features Using the automatically
transcribed text, we follow directly from Novikova
et al. (2017) to derive several linguistic measures,
with the exception that we did not derive dialogue-
related features because, though our robots were
engaging in a kind of dialogue with the partici-
pants, they weren’t taking the floor in a dialogue
turn; i.e., our robots were only providing feed-
back to signal either phonetic receipt or seman-
tic understanding (low and high settings, respec-
tively). We used the Lexical Complexity Analyser
(Lu, 2009, 2012), which yields several measures,
two of which we leverage here: lexical diversity
(LD) and the mean segmented type-token ratio
(MSTTR), both of which measure diversity of to-
kens; the latter averaging the diversity over seg-
ments of a given length (for all measures, higher
values denote more respective diversity and so-
phistication in the measured text). The Complex-
ity Analyser also produces a lexical sophistica-
tion (LS) measure, also known as lexical rareness
which is the proportion of lexical word types that
are not common (i.e., not the 2,000 most frequent
words in the British National Corpus).

For syntactic variation, we applied the D-Level
Analyser (Lu, 2009) using the D-Level scale (Lu,
2014). This tool builds off of the Stanford Part-
of-Speech Tagger (Toutanova and Manning, 2000)
and the Collins Parser (Collins, 2003) and pro-
duces a scaled analysis. The D-Level scale counts
utterances belonging to one of 8 levels (Levels 0-
7), where lower levels such as 0-1 include simple
or incomplete sentences; the higher the level, the
more complex the syntactic structure. We report
each of these levels along with a mean level.

Godspeed Questionnaire We used the God-
speed Questionnaire (Bartneck et al., 2009) which
consists of 21 pairs of contrasting characteristics
in areas of anthropomorphism (e.g., artificial vs.
lifelike), likability (e.g., unfriendly vs. friendly),
intelligence (e.g., incompetent vs. competent), and
interpretabilitiy (e.g., confusing vs. clear) each
with a 5-point scaling between them. In addition
to those questions, we included the following:

• Have you ever interacted with a robot before
participating in this study?

• If you could give the robot you interacted

133



with a human age, how old would you say
it was?

• What level of education would be appropriate
for the robot you interacted with?

For the question asking about human age, an-
swers could be selected from a set of binned
ranges (under 2 years, 2-5, 6-12, 13-17, 18-24, 25-
34, 35 and older), and for the education question,
answers could be selected from preschool, kinder-
garten, 1-12 (each grade could be selected), under-
graduate, graduate, post-graduate.

4.1 Analysis

In this section, we analyze the results of the data
for the emotional, prosodic, and linguistic mea-
sures. We also provide correlations between those
measures and the Godspeed Questionnaire. At the
end of this section, we provide a discussion of the
overall analysis.

Emotion Analysis The most common emo-
tional response as produced by the MS Emotions
API was neutral for all settings, ranging from 73-
87% (avg 81%). The next most common emotions
were happiness (avg 11.1%), sadness (avg 3.7%),
surprise (2%), and contempt (avg 1%). We show
in Figure 5 the average distribution over those four
emotions for all of our settings. All other emotions
were negligible.

Prosodic Analysis Table 1 shows the the aver-
age F0 scores for each setting. In general, in
the low linguistic setting participants averaged a
higher F0 across all robots. This was the case also
for individual robots. By a wide margin, COZMO

Figure 5: Average emotion (happiness, sadness,
surprise, contempt) values for all settings.

cozmo kobuki noRob all
low 173.39 164.32 158.49 164.32
high 166.86 153.18 153.15 157.73
both 170.28 157.32 155

Table 1: Prosodic analysis: average F0 values for
each setting.

setting LD LS MSTTR
low 0.45 0.32 0.62

high 0.48 0.34 0.64
cozmo 0.46 0.29 0.62
noRob 0.45 0.3 0.63
kobuki 0.46 0.28 0.63

cozmo low 0.46 0.23 0.61
noRob low 0.45 0.26 0.62
kobuki low 0.45 0.26 0.63
cozmo high 0.47 0.27 0.66
noRob high 0.47 0.27 0.63
kobuki high 0.49 0.23 0.64

Table 2: Linguistic analysis: LD, LS, and MSTTR
values for all settings.

averaged a higher F0 than the other two robots un-
der both low and high settings.

Linguistic Analysis Table 2 shows the results of
the linguistic analysis. The LD (lexical diversity)
scores show that, on average, participants used
more LD in the high settings. Figure 6 shows
the results of the D-Level analysis. Level0 (i.e.,
short utterances) was by far the most common
level which accounted for 66% of all utterances
for all participants. The second most common was
Level7, the level representing the most complex
types of utterances. This is no surprise, as Level7
accounts for longer utterances above some thresh-
old; i.e., all utterances of a certain length and com-
plexity or higher fit under Level7. The low set-
ting had a Level7 value of 17%, and the high set-
ting had a Level7 value of 11%. This may seem
surprising, but it follows previous research which
has shown that, when a speaker receives fewer re-
sponses, they draw out their turns, which result
longer utterances (Stubbe, 1998).

Questionnaire Analysis We calculated (Spear-
man) correlations between the prosodic, emo-
tional, and linguistic features, and the question-
naire responses with the low/high settings and the
robot settings. Table 3 shows the results where the
correlation had a strength of 0.5 or higher. Fig-
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Figure 6: Percentage results for
Level0-Level7 for all settings.

Figure 7: Questionnaire re-
sponses (raw scores) for ages.

Figure 8: Questionnaire re-
sponses for academic grades.

ures 7 and 8 respectively show the age groups and
academic years that the participants perceived for
each robot in each setting. Overall, participants
assigned low age and academic level to all robots
when they produced feedback that did not sig-
nal semantic understanding (i.e., the low setting).
They also assigned a lower age and academic level
to COZMO for all settings (with the exception of
one 10th grade assignment).

Our results confirm the Novikova et al. (2017)
result which showed a strong correlation between
F0 and knowledgeable. Interestingly, F0 only cor-
related knowledge with the physical robots and the
SDS robot in the low setting. There is more to the
F0 correlations: F0 in the low setting correlates
with conscious, in the high setting correlates with
natural and human-like, and in the COZMO robot
setting with lifelike. There were some correlations
with age and academic level: LS in the high setting
correlated with the robot being perceived as age
18-24 and when interacting with COZMO, a higher
F0 correlated with a perception of COZMO being
6-12 years old and in the 4th grade. Lexical diver-
sity correlates with sadness and contempt, which
indicates that participants use more diverse lan-
guage (i.e., they continue speaking) when they are
frustrated with the interaction (Stubbe, 1998); par-
ticularly in the high setting when they expect more
from the robots. However, they increase their LS
also in the high setting because they perceive the
robot as more intelligent.

Discussion Taken together, the emotional,
prosodic, and linguistic analyses show that par-
ticipants treated the low setting with a higher
average F0, less linguistic complexity, and a
greater display of happiness in their facial emo-
tions. This is useful knowledge: the way a robot

speaks has an impact on the perception of that
robot by the human users, regardless of whether
or not that robot is embodied. Moreover, despite
the fact that the robots only produced feedback as
the only system behavior, the participants tended
to assign a younger age and academic level to
the COZMO robot. There were subtle differences
in how the participants perceived the KOBUKI

and SDS robots. In general, the participants
seemed to perceive the SDS as being older and as
having a higher academic level in the emotion,
prosodic, and linguistic modalities, though those
differences were small. This leads us to postulate
that anthropomorphic physical features do not
automatically denote intelligence in the same
way as perceived ability to comprehend language.
In general, participants assigned younger ages
and lower academic levels for the low setting,
and higher ones for the high setting. Moreover,
participants generally assigned COZMO lower
ages, including the most for Under 2 years. Of
note is that no participant assigned COZMO an
age of above 6-12 years for either of the low/high
settings. The highest assigned academic level was
undergrad, which was never assigned to COZMO.
The KOBUKI and SDS robots were both variously
assigned comparable older ages and average
academic levels under all settings.

5 Prediction Tasks

Using the measures we derived from the collected
data, we attempted to determine if we could pre-
dict the perceived age and academic level of the
robots. We used the emotional features (happi-
ness, sadness, surprise, anger, fear, contempt, dis-
gust, and neutral), the prosody (F0 average), and
the linguistic features (LS, LD, MSTTR) to predict
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low/high feature correlated feature corr
low (P) F0 avg (Q) knowledgeable 0.65

(Q) conscious 0.53
(Q) friendly 0.55
(Q) intelligent 0.57
(Q) kind 0.55

(L) LS (Q) friendly 0.51
high (P) F0 avg (Q) natural 0.53

(Q) human-like 0.5
(Q) enjoyable 0.51
(Q) nice 0.57
(Q) sensible 0.66

(L) LD (E) sadness 0.68
(E) contempt 0.53

(L) LS (Q) age 18-24 0.56
(Q) meets expect. 0.63
(Q) sensible 0.62
(Q) knowledgeable 0.63
(Q) responsive 0.64

robot feature correlated feature corr
COZMO (P) F0 avg (Q) age 6-12 0.51

(Q) 4th grade 0.53
(Q) lifelike 0.62
(Q) knowledgeable 0.81
(Q) competent 0.64
(Q) intelligent 0.68

(L) MSTTR (E) sadness -0.55
KOBUKI (P) F0 avg (Q) knowledgeable 0.52

(L) MSTTR (Q) age 2-5 -0.53
SDS (P) F0 avg (Q) liked 0.51

Table 3: Spearman correlations between linguistic
(L), prosodic (P), emotional (E), and questionnaire
(Q) measures.

both the age and the academic level as separate
classification tasks. We also predict intelligence,
likability, and interpretability in order to compare
to previous work.

5.1 Predicting the Perceived Age &
Academic Level of Robots

Data & Task For predicting both age and aca-
demic level, we used the 58 data points from the
participants for each interaction with each robot
and applied those points to a 5-fold cross valida-
tion. We used a logistic regression classifier to per-
form the classification using the Python scikitlearn
library. We report accuracy for our metric.

Age We ran the cross validation for two differ-
ent settings when predicting age. In particular, we
varied the labels that could be classified. We con-
ducted a first task which treated all of the 7 pos-
sible outcomes for age as individual labels (i.e.,
under 2 years, 2-5, 6-12, 13-17, 18-24, 25-34, 35
and older) and a second task splitting at age 18
(i.e., younger than 18 is one label; 18 & older is
the other label). The respective random baselines
are 14% and 50%.

age acc
7 labels 22%
2 labels (<, >=18) 87%
academic level acc
14 labels 27%
2 labels (<, >= preschool) 78%

Table 4: Accuracies for predicting age and aca-
demic level.

Academic Levels Similar to age, we ran the
cross validation for two different settings when
predicting for perceived academic level. The first
task treated all of the 14 possible outcomes for
academic level as individual labels (preschool,
kindergarten, 1-11, undergraduate; we leave out
graduate and post-graduate because they were
never selected in the questionnaires, nor was 12th
grade), the second task treated treated preschool
and beyond preschool as a binary classification
task. The respective random baselines are 7% and
50%.

Results The results of this prediction task are in
Table 4. As might be expected, when attempting
to predict using many labels, the classification task
is challenging with so little data. However, the
classifiers beat their respective random baselines.
When classifying for age, the best performing task
was a binary task splitting on 18 years at 87%, ef-
fectively making it a classifier that can determine
if a human user perceives the robot as an adult or
as a minor. The best performing task for the aca-
demic level classification was treating preschool
and above preschool as a binary classifier. Though
the data is sparse, these classifiers give us useful
information: a robot can use these classifiers to de-
termine if they are perceived as an adult by human
dialogue partners, and, more importantly for our
purposes, as a preschool aged child, which is the
age range in which we are interested for language
acquisition tasks.

5.2 Predicting Intelligence, Likability, and
Interpretability

Data & Task To directly compare with
Novikova et al. (2017), we also predicted per-
ceived intelligence, likability, and interpretability
using a ridge regression classifier (which is
optimized to reduced standard error) while con-
sidering only certain subsets of out our feature
set. We evaluated when only considering emo-
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group emot. pros. non-ling. ling. all
like 1.08 0.94 0.94 1.02 0.94
intel 1.95 1.44 1.44 0.84 1.44
interp 0.67 0.7 0.7 0.61 0.7

Table 5: Performance of prediction calculated
with RMSE for likability, intelligence, and inter-
pretability. Bold denotes the smallest RMSE for
a particular feature subset (emotion, prosody, non-
linguistic, linguistic, and all).

tional features, prosody, non-linguistic (in our
case, emotions and prosody), linguistic, and all
combined features. Our metric was root mean
square error (RMSE). We average the RMSE over
a 5-fold cross-validation.

Results Table 5 shows the results of this pre-
diction task. We found that likability is pre-
dicted best by prosody, perceived intelligence is
predicted best by linguistic features, and inter-
pretability is predicted best by also using linguis-
tic features. One big difference between our ex-
periment data and that of previous work is that we
did not consider dialogue features (e.g., number of
turns, speech duration, number of self-repetitions,
etc.), which they termed as non-linguistic fea-
tures. Those features were important in predict-
ing perceived intelligence and interpretability in
their work; here, linguistic and prosodic features
were the most effective in predicting all three hu-
man perceptions of the robots. This confirms the
work of Novikova et al. (2017) that linguistic fea-
tures are a good predictor of interpretability.

6 Discussion & Conclusion

In this paper, we have investigated how human
dialogue partners perceive the age and academic
level of three robotic systems, two of which were
embodied (albeit not particularly anthropomorphi-
cally), and one unembodied spoken dialogue sys-
tem. We collected data from participants as they
interacted with the three robotic systems then de-
rived prosodic, emotional, and linguistic features
from that participant data, and found that those
features correlate with certain age and academic
perceptions of those robots, as well as a num-
ber of other subjective measures from the God-
speed Questionnaire. This work confirms what
previous work has shown: that humans tend to
perceive robots differently depending on different
factors; in our case, varying the look and spo-

ken reposes determined how the human partici-
pants perceived the age and academic levels, as
well as intelligence, likability, and interpretabil-
ity of those robots. We were then able to use
these features to automatically predict perceived
age (i.e., adult or minor), perceived academic level
(i.e., preschool or above) and perceived intelli-
gence, likability, and interpretabilitiy. One im-
portant result of our experiment was that human
dialogue partners perceive the unembodied robot
(i.e., SDS) in similar ways to embodied robots; that
is, the way a robot or system speaks (i.e., in our
case, produces feedback by signaling either pho-
netic receipt or semantic understanding) is as im-
portant to human perceptions of intelligence and
likability as visual characteristics.

We cannot not simply assume that human dia-
logue partners would treat a robot as they would a
child, which is an important aspect of tasks with
realistic first-language acquisition settings. The
work presented here shows that those interacting
with a robot like COZMO will more likely treat
COZMO as a learning child instead of as an adult.
This is an important result because for future work
we plan on using the COZMO robot as a platform
for first language acquisition research, where the
setting will be more similar to first language acqui-
sition in humans than common language ground-
ing tasks. The COZMO robot is an afforable way
for reseachers to couple spoken dialogue systems
with a robotic system; it has a Python SDK which
allows researchers to access its sensors (includ-
ing a color camera) and control its wheel and arm
movements, as well as its speech and animated
face. Our results show that human users generally
like COZMO, find COZMO lifelike, competent, and
intelligent; i.e., COZMO may be treated as a child,
but it has potential to learn.

In future work, we will apply a model of
grounded semantics in a co-located dialogue set-
ting where COZMO can learn the semantics of
words as it interacts with human dialogue partners.
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Abstract

Creating an intelligent conversational sys-
tem that understands vision and language
is one of the ultimate goals in Artificial
Intelligence (AI) (Winograd, 1972). Ex-
tensive research has focused on vision-to-
language generation, however, limited re-
search has touched on combining these
two modalities in a goal-driven dialog con-
text. We propose a multimodal hierar-
chical reinforcement learning framework
that dynamically integrates vision and lan-
guage for task-oriented visual dialog. The
framework jointly learns the multimodal
dialog state representation and the hierar-
chical dialog policy to improve both dia-
log task success and efficiency. We also
propose a new technique, state adaptation,
to integrate context awareness in the dia-
log state representation. We evaluate the
proposed framework and the state adapta-
tion technique in an image guessing game
and achieve promising results.

1 Introduction

The interplay between vision and language has
created a range of interesting applications, in-
cluding image captioning (Karpathy and Fei-
Fei, 2015), visual question generation (VQG)
(Mostafazadeh et al., 2016), visual question an-
swering (VQA) (Antol et al., 2015), and refer-
ence expressions (Hu et al., 2016). Visual dia-
log (Das et al., 2017b) extends the VQA problem
to multi-turn visual-grounded conversations with-
out specific goals. In this paper, we study the
task-oriented visual dialog setting that requires the
agent to learn the multimodal representation and
dialog policy for decision making. We argue that a
task-oriented visual intelligent conversational sys-

tem should not only acquire vision and language
understanding but also make appropriate decisions
efficiently in a situated environment. Specifically,
we designed a 20 images guessing game using the
Visual Dialog dataset (Das et al., 2017a). This
game is the visual analog of the popular 20 ques-
tion game. The agent aims to learn a dialog policy
that can guess the correct image through question
answering using the minimum number of turns.

Previous work on visual dialogs (Das et al.,
2017a,b; Chattopadhyay et al., 2017) focused
mainly on vision-to-language understanding and
generation instead of dialog policy learning. They
let an agent ask a fixed number of questions to
rank the images or let humans make guesses at
the end of the conversations. However, such set-
ting is not realistic in real-world task-oriented ap-
plications, because in task-oriented applications,
not only completing the task successfully is impor-
tant but also completing it efficiently. In addition,
the agent should also be informed of the wrong
guesses, so that it becomes more aware of the vi-
sion context. However, solving such real-world
setting is a challenge. The system needs to handle
the large dynamically updated multimodal state-
action space and also leverage the signals in the
feedback loop coming from different sub-tasks.

We propose a multimodal hierarchical rein-
forcement learning framework that allows learn-
ing visual dialog state tracking and dialog policy
jointly to complete visual dialog tasks efficiently.
The framework we propose takes inspiration from
feudal reinforcement learning (FRL) (Dayan and
Hinton, 1993), where levels of hierarchy within
an agent communicate via explicit goals in a top-
down fashion. In our case, it decomposes the de-
cision into two steps: a first step where a mas-
ter policy selects between verbal task (information
query) and vision task (image retrieval), and a sec-
ond step where a primitive action (question or im-
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age) is chosen from the selected task. Hierarchical
RL that relies on space abstraction, such as FRL,
is useful to address the challenge of large discrete
action space and has been shown to be effective
in dialog systems, especially for large domain dia-
log management(Casanueva et al., 2018). Besides,
we propose a new technique called state adapta-
tion in order to make the multimodal dialog state
more aware of the constantly changing visual con-
text. We demonstrate the efficacy of this technique
through ablation analysis.

2 Related Work

2.1 Visual Dialog

Visual dialog requires the agent to hold a multi-
turn conversation about visual content. Sev-
eral visual dialog tasks have been developed,
including image grounded conversation genera-
tion (Mostafazadeh et al., 2017). Guess What?!
(De Vries et al., 2017) involves locating visual ob-
jects using dialogs. VisDial (Das et al., 2017a) sit-
uates an answer-bot (A-Bot) to answer questions
from a question-bot (Q-Bot) about an image. Das
et al. (2017b) applied reinforcement learning (RL)
to the VisDial task to learn the policies for the
Q/A-Bots to collaboratively rank the correct image
among a set of candidates. However, their Q-Bot
can only ask questions and cannot make guesses.
Chattopadhyay et al. (2017) further evaluated the
pre-trained A-bot in a similar setting to answer
human generated questions. Since humans are
tasked to ask questions, the policy learning of Q-
Bot is not investigated. Finally, (Manuvinakurike
et al., 2017) proposed a incremental dialogue pol-
icy learning method for image guessing. However,
their dialog state only used language information
and did not include visual information. We build
upon prior works and propose a framework that
learns an optimal dialog policy for the Q-Bot to
perform both question selection and image guess-
ing through exploiting multimodal information.

2.2 Reinforcement Learning

RL is a popular approach to learn an optimal dia-
log policy for task-oriented dialog systems (Singh
et al., 2002; Williams and Young, 2007; Georgila
and Traum, 2011; Lee and Eskenazi, 2012; Yu
et al., 2017). The deep Q-Network (DQN) intro-
duced by Mnih et al. (2015) achieved human-level
performance in Atari games based on deep neu-
ral networks. Deep RL was then used to jointly

learn the dialog state tracking and policy optimiza-
tion in an end-to-end manner (Zhao and Eskenazi,
2016). In our framework, we use a DQN to learn
the higher level policy for question selection or
image guessing. Van Hasselt et al. (2016) pro-
posed a double DQN to overcome the overestima-
tion problem in the Q-Learning and Schaul et al.
(2015) suggested prioritized experience replay to
improve the data sampling efficiency for training
DQN. We apply both techniques in our implemen-
tation. One limitation of DQNs is that they can-
not handle unbounded action space, which is often
the case for natural language interaction. He et al.
(2015) proposed Deep Reinforcement Relevance
Network (DRRN) that can handle inherently large
discrete natural language action space. Specifi-
cally, the DRRN takes both the state and natural
language actions as inputs and computes a Q-value
for each state action pair. Thus, we use a DRRN
as our question selection policy to approximate the
value function for any question candidate.

Our work is also related to hierarchical rein-
forcement learning (HRL) which often decom-
poses the problem into several sub-problems and
achieves better learning convergence rate and gen-
eralization compared to flat RL (Sutton et al.,
1999; Dietterich, 2000). HRL has been ap-
plied to dialog management (Lemon et al., 2006;
Cuayáhuitl et al., 2010; Budzianowski et al., 2017)
which decomposes the dialog policy with respect
to system goals or domains. When the system
enters a sub-task, the selected dialog policy will
be used and continue to operate until the sub-
problem is solved, however the terminate condi-
tion for a subproblem has to be predefined. Dif-
ferent from prior work, our proposed architecture
uses hierarchical dialog policy to combine two RL
architectures within a control flow, i.e., DQN and
DRRN, in order to jointly learn multimodal dialog
state representation and dialog policy. Note that
our HRL framework resembles the FRL hierarchy
(Dayan and Hinton, 1993) that exploits space ab-
straction, state sharing and sequential execution.

3 Proposed Framework

Figure 2 shows an overview of the multimodal hi-
erarchical reinforcement learning framework and
the simulated environment. There are four main
modules in the framework. The visual dialog se-
mantic embedding module learns a multimodal
dialog state representation to support the visual

141



Figure 1: The information flow of the multimodal hierarchical reinforcement learning framework

dialog state tracking module with attention sig-
nals. Then the hierarchical policy learning mod-
ule takes the visual dialog state as the input to op-
timize the high-level control policy between ques-
tion selection and image retrieval.

3.1 Visual Dialog Semantic Embedding

This module learns the multimodal representation
for the downstream visual dialog state tracking.
Figure 3 shows the network architecture for pre-
training the visual dialog semantic embedding. A
VGG-19 CNN (Simonyan and Zisserman, 2014)
and a multilayer perceptron (MLP) with L2 nor-
malization are used to encode visual information
(images) as a vector I ∈ Rk. We use a dialog-
conditioned attentive encoder (Lu et al., 2017) to
encode textual information as a vector T ∈ Rk

where k is the joint embedding size. The image
caption(c) is encoded with a LSTM to get a vector
mc and each QA pair (H0, ...,Ht) is encoded sep-
arately with another LSTM as Mh

t ∈ Rd×t where
t is the turn index and d is the LSTM embedding
size. Conditioned on the image caption embed-
ding, the model attends to the dialog history:

zht = wT
a tanh(WhM

h
t + (Wcm

c
t)1

T ) (1)

αh
t = softmax(zht ) (2)

where 1 is a vector with all elements set to 1,
Wh,Wc ∈ Rt×d and wa ∈ Rk are parameters
to be learned. α ∈ Rk is the attention weight
over history. The attended history feature m̂h

t is
the weighted sum of each column of Mh

t with αh
t .

Then m̂h
t is concatenated withmc and encoded via

MLP and l2 norm to get the final textual embed-
ding (T ). We train the network with pairwise rank-
ing loss (Kiros et al., 2014) on cosine similarities
between the textual and visual embedding. The
pretraining step allows the module to have bet-
ter generalization and improve convergence per-
formance in the RL training.

Figure 2: Pretraining scheme of the visual dialog
semantic embedding module

Given the QA pairs from the simulated environ-
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ment, the output of this module can also be used
for the image retrieval sub-task. To verify the qual-
ity of this module, we perform a sanity check on an
image retrieval task, similar to (Das et al., 2017b).
We used the output of the module to rank the 20
images in the game setting. Among 1000 games,
we achieved 96.8% accuracy for recall@1 (the tar-
get image ranked the highest), which means that
this embedding module can provide reliable re-
ward signal in an image retrieval task for the RL
training if given the relevant dialog history.

3.2 Visual Dialog State Tracking

This module utilizes the output from the visual
dialog semantic embedding to formulate the final
dialog state representation. We track three types
of state information, the dialog meta information
(META), the vision belief (V B) and the vision
context (V C). The dialog meta information in-
cludes the number of questions asked, the number
of images guessed and the last action. The vision
belief state is the output of the visual dialog se-
mantic embedding module, which captures the in-
ternal multimodal information of the agent. We
initialize the VB with only the encoding of the im-
age caption and update it with each new incoming
QA pair. The vision context state represents the
visual information of the environment. In order to
make the agent more aware of the dynamic visual
context and which images to attend more, we in-
troduce a new technique called state adaptation as
it updates the vision context state with the atten-
tion scores. The V C is initialized as the average
of image vectors and updated as follows:

αr,t,i = sigmoid(VBr,t · Ir,i) (3)

VCr,t =

∑20
i=1 αr,t,iIr,i∑20

i=1 αi

(4)

where r, t and i refer to episode, dialog turn and
image index. The V C is then adjusted based on
the attention scores (see equation 4). The atten-
tion scores calculated by dot product in the equa-
tion 3 represent the affinity between the current
vision belief state and each image vector. In the
case of wrong guesses (informed by the simula-
tor), we set the attention score for that wrong im-
age to zero. This method is inspired by Tian et al.
(2017) who explicitly weights context vectors by
context-query relevance for encoding dialog con-
text. The question selection sub-task also takes the

vision context state as input and the vision belief
state is used in the image retrieval sub-task.

3.3 Hierarchical Policy Learning

The goal is to learn a dialog policy that makes de-
cisions based on the current visual dialog state,
i.e, asking a question about the image or making a
guess about the image that the user is thinking of.
As the agent is situated in a dynamically chang-
ing vision context to update its internal decision-
making model (approximated by the belief state)
with new dialog exchange, we treat such envi-
ronment as a Partially Observable Markov Deci-
sion Process (POMDP) and solve it using deep re-
inforcement learning. We now describe the key
components:
Dialog State comes from the visual dialog state
tracking module as mentioned in Section 3.2
Policy Learning: Given the above dialog state, we
introduce a hierarchical dialog policy that contains
a high-level control policy and a low-level ques-
tion selection policy. We learn the control policy
with a Double DQN that decides between “ques-
tion” or “guess” at a game step.

If the high-level action is a “question”, then
the control is passed over to the low-level policy,
which needs to select a question. One challenge
is that the list of candidate questions are differ-
ent for every game, and the number of candidate
questions for different images is also different as
well. This prohibits us using a standard DQN
with fixed number of actions. He et al. (2015)
showed that modeling state embedding and action
embedding separately in DRRN has superior per-
formance than per-action DQN as well as other
DQN variants for dealing with natural language
action spaces. Therefore, we use the DRRN to
solve this problem, which computes a matching
score between the shared current vision context
state and the embedding of each question candi-
date. We use a softmax selection strategy as the
exploration policy during the learning stage. The
hierarchical policy learning algorithm is described
in the Appendix Algorithm 1.

If the high-level action is “guess”, then an im-
age is retrieved using cosine distance between
each image vector and the vision belief vector. It
is worth mentioning that although the action space
of the image retrieval sub-task can be incorporated
into a flat DRRN combined with text-based in-
puts,the training is unstable and does not converge
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within this flat RL framework. We suspect this is
due to the sample efficiency problem with large
multimodal action space for which the question
action or guess action typically results in differ-
ent reward signals. Therefore, we did not compare
our proposed method against a flat RL model.
Rewards: The reward function is decomposed as
R = RG + RQ + RI where RG means the final
game reward(win/loss= ±10), RI refers to wrong
guess penalty (-3). We define RQ as the pseudo
reward for the sub-task of question selection as

RQ = At −At−1 (5)

At = sigmoid(VBr,t · Itarget) (6)

where t refers to the dialog turn and affinity scores
(At andAt−1) are the outputs of the sigmoid func-
tion that scales the similarity score (0-1) of the vi-
sion belief state and the target image vector. The
intuition is that different questions provide various
information gains for the agent. The integration of
RQ is a reward shaping (Ng et al., 1999) technique
that aims to provide immediate rewards to make
the RL training more efficient. At each turn, if the
verbal task (question selection) is chosen, the RQ

would serve as immediate reward for training the
DQN and DRRN while if the vision task (image
retrieval) is chosen, only the RI is available for
training DQN. At the end of a game, the reward
function varies based on the primitive action and
the final game result.

3.4 Question Selection
The question selection module selects the best
question in order to acquire relevant information
to update the image belief state. As discussed in
Section 3.3, we used a discriminative approach to
select the next question for the agent by learning
the policy in a DRRN. It leverages the existing
question candidate pool that is constructed differ-
ently with respect to different experiment settings
in Section 4.4. Ideally we would like to generate
realistic questions online towards a specific goal
(Zhang et al., 2017) and we leave this generative
approach for future study.

4 Experiments

We first describe the simulation of the environ-
ment. Then, we talk about different dialog pol-
icy models and implementation details. Finally,
we discuss three different experimental settings to
evaluate the proposed framework.

4.1 Simulator Construction

We constructed a simulator for 20 images guess-
ing game using the VisDial dataset. Each image
corresponds to a dialog consisting of ten rounds
of question answering generated by humans. To
make the task setting meaningful and the training
time manageable, we pre-process and select 1000
sets of games consisting of 20 similar images. The
simulator provides the reward signals and answers
related to the target image. It also tracks the inter-
nal game state. A game is terminated when one
of the three conditions is fulfilled: 1) the agent
guesses the correct answer, 2) the max number of
guesses is reached (three guesses) or 3) the max
number of dialog turns is reached. The agent wins
the game when it guesses the correct image. If
the agent wins the game, it gets a reward of 10,
and if the agent loses the game, it gets a reward
of −10. The agent also receives a −3 penalty for
each wrong guess.

4.2 Policy Models

To evaluate the contribution of each technique in
the multimodal hierarchical framework: the hier-
archical policy, the state adaptation, and the re-
ward shaping, we evaluate five different policy
models and perform ablation analysis. We de-
scribe each model as follows:
- Random Policy (Rnd): The agent randomly se-
lects a question or makes a guess at any step.
- Random Question+DQN (Rnd+DQN): The
agent randomly selects a question but a DQN is
used to optimize the hierarchical decision of mak-
ing a guess or asking a question.
- DRRN+DQN (HRL): Similar to Rnd+ DQN, ex-
cept that a DRRN is used to optimize the question
selection process
- DRRN+DQN+State Apdation (HRL+SA): Simi-
lar to HRL, except incorporating the state adapta-
tion, which is similar to the attention re-weighting
concept in the vision context state.
- DRRN+DQN+State Apdation+Reward Shaping
(HRL+SAR): Similar to HRL+SA, except that re-
ward shaping is applied.

4.3 Implementation Details

The details about data pre-processing and training
hyper-parameters are described in the Appendix.
During the training, the DQN uses the ε-greedy
policy and the DRRN uses the softmax policy for
exploration, where ε is linearly decreased from 1
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to 0.1. The resulting framework was trained up
to 20,000 iterations for Experiment 1 and 95,000
iterations for Experiment 2 and 3, and evaluated at
every 1000 iterations with greedy policy. At each
evaluation we record the performance of different
models with a greedy policy for 100 independent
games. The evaluation metrics are the win rate and
the average number of dialog turns.

4.4 Experimental Setting

We conduct three sets of experiments to explore
the effectiveness of the proposed multimodal hi-
erarchical reinforcement learning framework in a
real-world scenario step by step. The first exper-
iment constrains the agent to select among the 10
human generated question-answer pairs. This set-
ting enables us to assess the effectiveness of the
framework in a less error-prone setting. The sec-
ond experiment does not require a human to gen-
erate the answer to emulate a more realistic en-
vironment. Specifically, we enlarge the number of
questions by including 200 human generated ques-
tions for the 20 images, and use a pre-trained vi-
sual question answer model to generate answers
with respect to the target image. In the last exper-
iment, we further automate the process by gener-
ating questions given the 20 images using a pre-
trained visual question generation model. So the
agent does not require any human input with re-
spect to any image for training.

5 Results

We evaluate the models described in Section 4.2
under the settings described in Section 4.4 and re-
port results as following.

5.1 Experiment 1: Human Generated
Question-Answer Pairs

The agent selects the next question among the
10 question-answer pairs human generated and
want to identify the targeted image accurately
and efficiently through natural language conver-
sation. We terminate the dialog after ten turns.
Each model’s performance is shown in Table 1.
HRL+SAR achieves the best win rate with statis-
tical significance. The HRL+SAR policy model
performs much better than methods without hier-
archical control structure and state adaptation. The
learning curves in Figure 4 and 5 reveal that the
HRL+SAR converges faster. We further perform
bootstrap tests by resampling the game results

from each experiment with replacement 1,000
times. Then we calculate the probability of signif-
icance level for the difference of average win rates
or average turn length to check whether the rela-
tive performance improvement from the last base-
line is statistically significant. The result shows
that the question selection (DRRN) and state adap-
tation bring the most significant performance im-
provements (p < 0.01) while reward shaping has
less impact (p < 0.05). We also observe that
the average number of turns with hierarchical pol-
icy learning (HRL) is slightly longer than that of
Rnd+DQN but with less statistically significant
difference. This is probably because this setting
provides the 10 predefined question-answer pairs
with a smaller action space, the DQN model tends
to encourage the agent to make guesses quicker,
while policy models with hierarchical structures
tends to optimize the overall task completion rate.

Win Rate(%) Avg Turn
Random Policy 28.3 5.13
Random Question
+ DQN

42.7 *** 6.68 ***

DRRN + DQN 51.5 *** 6.97 *
DRRN + DQN
+ State adaptation

71.3 *** 7.12

DRRN + DQN
+ State adaptation
+ Reward Shaping

76.3 ** 7.22

***(p < 0.01), **(p < 0.05) and *(p < 0.1)

Table 1: Model Performance in Experiment 1

Figure 3: Learning curves of win rates for five dif-
ferent policy policies in Experiment 1

We find that RL methods (DQN & DRRN) sig-
nificantly improve the win rate as they learn to se-
lect the optimal list of questions to ask. We also
observe that our proposed state adaptation method
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Figure 4: Learning curves of final rewards for five
different dialog policies in Experiment 1

for vision context state helps achieve the largest
performance improvement. The hierarchical con-
trol architecture and the state abstraction shar-
ing (Dietterich, 2000) also improve both learning
speed and agent performance. This aligns with the
observation in Budzianowski et al. (2017).

Moreover, on average, we observe that after
seven turns, the agent was able to select the tar-
get image with a sufficiently high success rate.
We further explore if the proposed hierarchi-
cal framework enables efficient decision-making
when compared to the agent that keeps asking
questions and only makes the guess at the end of
the dialog. We refer to such models as the ora-
cle baselines. For example, the Oracle@7 makes
the guess at the 7th turn based on the previous
dialog history with the correct order of question-
answer pairs in the dataset. The oracle baselines
are strong, since they represent the best perfor-
mance the model can get given the optimal ques-
tion order provided by human.

number of rounds win rate(%)

Oracle
Baselines

7 69.7
8 77.5
9 87.8
10 92.4

Table 2: Oracle baselines Performance

Table 2 shows the performance of the oracle
baselines with various fixed turns. We performed
significance tests between each oracle baseline
and the hierarchical framework. Since our hierar-
chical framework requires on average 7.22 turns to
complete, so we compared it with Oracle@7 and
Oracle@8. We found that the proposed method
outperforms Oracle@7 with p − value < 0.01,
and similar to Oracle@8 (significant difference

(p − value > 0.1). The reason that the hierarchi-
cal framework can outperform Oracle@7 is that
it learns to make a guess whenever the agent is
confident enough, therefore achieving better win
rate. Oracle@8 in general receives more informa-
tion as the dialogs are longer, therefore has an ad-
vantage over the hierarchical method. However,
it still performs similar to the proposed method,
which demonstrates that by learning the hierarchi-
cal decision, it enables the agent to achieve the
goal more efficiently. One thing we need to point
out is that the proposed method also received ex-
tra information about whether the guess is correct
or not from the environment. Oracle baselines do
not have such information, as it can only make a
guess at the end of the dialog. Oracle@9 and @10
are better than the hierarchical framework statis-
tically, because they acquire much more informa-
tion by having longer turns.

5.2 Experiment 2: Questions Generated by
Human and Answers Generated
Automatically

To make the experimental setting more realistic,
we select 200 questions generated by a human
with respect to 20 images provided and create a
user simulator that generates the answers related
to the target image. Here, as the questions space is
larger, we terminate the dialog after 20 turns. We
follow the supervised training scheme discussed
in (Das et al., 2017b) to train the visual question
generation module offline.

Win Rate(%) Avg Turn
Random Policy 15.6 5.67
Random Question
+ DQN

34.8 *** 18.81 ***

DRRN + DQN 48.7 *** 18.78
DRRN + DQN
+ State adaptation

62.4 *** 16.93 **

DRRN + DQN
+ State adaptation
+ Reward Shaping

67.3 ** 16.68

***(p < 0.01), **(p < 0.05) and *(p < 0.1)

Table 3: Model Performance in Experiment 2

Results in Table 3 indicate that HRL+SAR sig-
nificantly outperforms Rnd and Rnd+DQN in both
win rate and average number of dialog turns. The
setting in Experiment 2 is more challenging than
that of Experiment 1, because the visual ques-
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tion module introduces noise that can influence
the policy learning. However, the noise also sim-
ulates the real-world scenario that a user might
have an implicit goal that may change within the
task. A user can also accidentally make errors in
answering the question. The proposed hierarchi-
cal framework (HRL+SAR) with state adaptation
and reward shaping achieves the best win rate and
the least number of dialog turns in this noisy ex-
periment setting. As compared to Experiment 1,
the policy models with hierarchical structures can
both optimize the overall task completion rate and
the dialog turns. We did not report oracle baselines
results, since the oracle order of all the questions
(ideally generated by humans) was not available.

5.3 Experiment 3: Question-Answer Pairs
Generated Automatically

In this setting, both questions and answers are
generated automatically through pre-trained visual
question and answer generation models (Das et al.,
2017b). Such setting enables the agent to play the
guessing game given any image as no human input
of the image is needed. Notice that the answers
should be generated with respect to a target image
for our task setting. In this setting, we also set the
maximum number of dialog turns to be 20.

Win Rate(%) Avg Turn
Random Policy 12.4 5.79
Random Question
+ DQN

18.4 ** 19.43 ***

DRRN + DQN 35.6 *** 19.33
DRRN + DQN
+ State adaptation

44.8 ** 18.84 *

DRRN + DQN
+ State adaptation
+ Reward Shaping

48.3 ** 18.77

***(p < 0.01), **(p < 0.05) and *(p < 0.1)

Table 4: Model Performance in Experiment 3

The results in Table 4 show that the perfor-
mance of the three policies significantly dropped
compared to Experiment 2. Such observation is
expected, as the noise coming from both the vi-
sual question and answer generation module in-
creases the task difficulty. However, the proposed
HRL+SAR is still more resilient to the noise and
achieves a higher win rate and less average num-
ber of turns compared to other baselines. Figure
5 from the Appendix shows that in Experiment 2

the agent tends select relevant questions faster to
ask although the answers can be misleading. On
the other hand, in Experiment 3, the agent reacts
to the generated question and answers slower to
complete the task. The model performance de-
creases when we increase the task difficulty in or-
der to emulate the real-world scenarios. It hints
that there is a possible limitation of using the Vis-
Dial dataset, because the dialog is constructed by
users who casually talk about MS COCO images
(Chen et al., 2015) instead of exchanging with an
explicit contextual goal in the dialog.

6 Discussion and Future Work

We develop a framework for task-oriented visual
dialog systems and demonstrate the efficacy of in-
tegrating multimodal state representation with hi-
erarchical decision learning in an image guessing
game. We also introduce a new technique called
state adaptation to further improve the task per-
formance through integrating context awareness.
We also test the proposed framework in various
noisy settings to simulate real-world scenarios and
achieve robust results.

The proposed framework is practical and ex-
tensible for real-world applications. For exam-
ple, the designed system can act as a fashion
shopping assistant to help customers pick clothes
through strategically inquiring their preferences
while leveraging vision intelligence. In another
application, such as criminology practice, the
agent can communicate with witnesses to identify
suspects from a large face database.

Although games provide a rich domain for mul-
timodal learning research, admittedly it is chal-
lenging to evaluate a multimodal dialog system
due to the data scarcity problem. In future work,
we would like to extend and apply the proposed
framework for human studies in a situated real-
world application, such as a shopping scenario.
We also plan to incorporate domain knowledge
and database interactions into the system frame-
work design, which will make the dialog system
more flexible and effective. Another possible ex-
tension of the framework is to update the off-line
question and answer generation modules with an
online generative version and retrain the module
with reinforcement learning.

147



References
Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-

garet Mitchell, Dhruv Batra, C Lawrence Zitnick,
and Devi Parikh. 2015. Vqa: Visual question an-
swering. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2425–2433.

Pawel Budzianowski, Stefan Ultes, Pei-Hao Su, Nikola
Mrksic, Tsung-Hsien Wen, Inigo Casanueva, Lina
Rojas-Barahona, and Milica Gasic. 2017. Sub-
domain modelling for dialogue management with
hierarchical reinforcement learning. arXiv preprint
arXiv:1706.06210.
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A Data Pre-Processing and Training
Details

After data pre-processing, we had a vocabulary
size of 8,957 and image vector dimension of

4,096. To pre-train the visual dialog semantic em-
bedding, we used the following parameters: the
size of word embedding is 300; the size of LSTMs
is 512; 0.2 dropout rate and the final embedding
size 1024 with MLP and l2 norm. We fixed the
visual dialog semantic embedding during the RL
training. The high-level policy learning module -
Double DQN was trained with the following hy-
perparameters: three MLP layers of sizes 1000,
500 and 50 with tanh activation respectively. For
hyper-parameters of DQN, the behavior network
was updated every 5 steps and the interval for up-
dating the target network is 500. ε-greedy explo-
ration was used for training, where ε is linearly
decreased from 1 to 0.1. The question selection
module - DRRN encodes the context vector and
question vector separately with two MLP layers of
sizes 256 and 128 and dot product was used as the
interaction function. The experience replay buffer
sizes are 25,000 for DQN and 50,000 for DRRN.
Both RL networks were trained through RMSProp
with batch size 64. Bootstrapping and prioritized
replay were also used to facilitate RL training. The
reward discount factor was set to be 0.99.

B Sample Dialog

See Figure 5.

C Hierarchical Policy Learning
Algorithm

See Algorithm 1.
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Figure 5: A successful dialog from Experiment 2 and a failure dialog from Experiment 3

Algorithm 1 Hierarchical Policy Learning
1: Initialize Double DQN(online network parameters θ and target network parameters θ−) and

DRRN(network parameters θ+) with small random weights and corresponding replay memory
EDQN and EDRRN to capacity N.

2: Initialize game simulator and load dictionary.
3: for episode r = 1, ..., M do
4: Restart game simulator.
5: Receive image caption and candidate images from the simulator, and convert them to represen-

tation via pre-trained visual dialog semantic embedding layer, denoted as initial state Sr,0
6: for t = 1, ..., T do
7: sample high-level action from DQN, At ∼ πDQN (Sr,t)
8: if Ar,t = Q(asking a question) then
9: Compute Q(V Ct, q

i) for the list of questions Qr,t using DRRN forward activation and
select the question qr,t with the max Q-value, and keep track the next available question pool Qr,t+1

10: if Ar,t = G (guessing an image) then
11: Select the image gr,t with the smallest cosine distance between an image vector Ii and

current image belief state VBr,t

12: Execute action qr,t or gr,t in the simulator and get the next visual dialog state representation
Sr,t+1 and reward signal Rr,t

13: Store the transition (Sr,t, Ar,t, Sr,t+1, Rr,t) into EDQN and if asking a question, also store
the transition (V Cr,t, qr,t, V Cr,t+1, Rr,t, Qr,t+1) into EDRRN

14: Sample random mini-batch of transitions (Sk, Ak, Sk+1, Rk) from EDQN

15: Set yDQN =

{
Rk if terminal state
Rk + γQDQN (Sk+1, argmaxa′Q(Sk+1, a

′; θ); θ−) if else
16: Sample random mini-batch of transitions (V Cl, ql, V Cl+1, Rl, Ql+1) from EDRRN

17: Set yDRRN =

{
Rl if terminal state
Rl + γmaxa′∈Ql+1

QDRRN (V Cl+1, a
′; θ+) if else

18: Perform gradient steps for DQN with loss ‖ yDQN −QDQN (Sk, Ak; θ) ‖2 with respect to θ
and DRRN with loss ‖ yDRRN −QDRRN (V Cl, ql; θ

+) ‖2 with respect to θ+

19: Replace target parameters θ− ← θ for every N steps.
end for

end for
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Abstract

The utility of collaborative manipulators
for shared tasks is highly dependent on
the speed and accuracy of communication
between the human and the robot. The
run-time of recently developed probabilis-
tic inference models for situated symbol
grounding of natural language instructions
depends on the complexity of the repre-
sentation of the environment in which they
reason. As we move towards more com-
plex bi-directional interactions, tasks, and
environments, we need intelligent percep-
tion models that can selectively infer pre-
cise pose, semantics, and affordances of
the objects when inferring exhaustively
detailed world models is inefficient and
prohibits real-time interaction with these
robots. In this paper we propose a model
of language and perception for the prob-
lem of adapting the configuration of the
robot perception pipeline for tasks where
constructing exhaustively detailed models
of the environment is inefficient and in-
consequential for symbol grounding. We
present experimental results from a syn-
thetic corpus of natural language instruc-
tions for robot manipulation in example
environments. The results demonstrate
that by adapting perception we get signifi-
cant gains in terms of run-time for percep-
tion and situated symbol grounding of the
language instructions without a loss in the
accuracy of the latter.

1 INTRODUCTION

Perception is a critical component of an intelli-
gence architecture that converts raw sensor obser-
vations to a suitable representation for the task

that the robot is to perform. Models of environ-
ments vary significantly depending on the applica-
tion. For example, a robotic manipulator may need
to model the objects in its environment with their
six degree-of-freedom pose for grasping and dex-
terous manipulation tasks, whereas a self-driving
car may need to model the dynamics of the envi-
ronment in addition to domain-specific semantics
such as stop signs, sidewalks and pedestrians etc.
to safely navigate through the environment.

The ability of robots to perform complex tasks
is linked to the richness of the robot’s world
model. As inferring exhaustively detailed world
representations is impractical, it is common to in-
fer representations which are highly specific to the
task that the robot is to perform. However, in
collaborative domains as we move towards more
complex bi-directional interactions, manipulation
tasks, and the environments, it becomes unclear
how to best represent the environment in order to
facilitate planning and reasoning for a wide distri-
bution of tasks. As shown in the Figure 1, mod-
eling the affordance between the chips can and its
lid would be unnecessary for the task of picking up
the mustard sauce bottle and vice versa. Inferring
exhaustively detailed models of all of the objects
in the environment is computationally expensive
and inconsequential for the individual tasks, and
inhibits real-time interaction with these collabora-
tive robots.

The utility of collaborative manipulators is also
highly dependent on the speed and accuracy of
communication between the human operator and
the robot. Natural language interfaces provide in-
tuitive and muti-resolution means to interact with
the robots in shared realms. In this work, we pro-
pose learning a model of language and percep-
tion that can adapt the configurations of the per-
ception pipeline according to the task in order to
infer representations that are necessary and suffi-
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Figure 1: On the left is an image showing the Baxter Research Robot in a cluttered tabletop environment
in the context of collaborative human-robot tasks. A perception system that does not use the context of
the instruction when interpreting the observations would inefficiently construct detailed world model
that is only partially utilized by the symbol grounding algorithm. On the right are the adaptively inferred
representations using our proposed language perception model for the instructions, “pick up the leftmost
blue gear” and “pick up the largest red object” respectively.

cient to facilitate planning and grounding for the
intended task. e.g. the top-right image in the Fig-
ure 1 shows the adaptively inferred world model
pertaining to the instruction “pick up the leftmost
blue gear” which is different than the one inferred
for the instruction “pick up the largest red object”.

2 BACKGROUND

The algorithms and models presented in this paper
span the topics that include robot perception and
natural language understanding for human-robot
interaction. Perception is a central problem in
the the field of situated robotics. Consequently, a
plenty of research has focused on developing rep-
resentations that can faciliate planning and reason-
ing for highly specific situated tasks. These repre-
sentations vary significantly depending on the ap-
plication, from two-dimensional costmaps (Elfes,
1987), volumetric 3D voxel representations (Hor-
nung et al., 2013, 2010), primitive shape based
object approximations (Miller et al., 2003; Hueb-
ner and Kragic, 2008) to more rich representations
that model high level semantic properties (Galindo
et al., 2005; Pronobis and Jensfelt, 2012), 6 DOF
pose of the objects of interest (Hudson et al., 2012)
or affordances between objects (Daniele et al.,
2017). Since inferring exhaustively detailed world
models is impractical, one solution is to design
perception pipelines that infer task relevant world
models (Eppner et al., 2016; Fallon et al., 2014).
Inferring efficient models that can support reason-

ing and planning for a wide distribution of tasks
remains an open research question.

Natural language interfaces provides intutive
and multi-resolution means to interact with the
collaborative robots. Contemporary models
(Tellex et al., 2011; Howard et al., 2014; Boular-
ias et al., 2015; Matuszek et al., 2013) frame the
problem of language understanding as a symbol
grounding problem (Harnad, 1990). Specifically,
of inferring correspondences between the linguis-
tic constituents of the instruction and the symbols
that represent perceived entities in the robot’s en-
vironment such as objects and regions or desired
actions that the robot can take. (Howard et al.,
2014) frames this problem as one of inference in a
probabilistic graphical model called a Distributed
Correspondence Graph (DCG). This model lever-
ages the hierarchical structure of the syntactically
parsed instruction and conditional independence
assumptions across constituents of a discrete sym-
bol space to improve the run-time of probabilis-
tic inference. Other variations include the Hier-
archical DCG (Propp et al., 2015) and Adaptive
DCG (Paul et al., 2016) to further improve the
run-time performance in cluttered environments
with known environment models. Recently, these
models have been used to augment perception and
representations. (Daniele et al., 2017) uses DCG
for supplementing perception with linguistic in-
formation for efficiently inferring kinematic mod-
els of articulated objects. (Duvallet et al., 2014;
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Hemachandra et al., 2015) use DCG to augment
the representations by exploiting information in
language instruction to build priors over the un-
known parts of the world. A limitation of cur-
rent applications of probabilistic graphical models
for natural language symbol grounding is that they
do not consider how to efficiently convert obser-
vations or measurements into sufficiently detailed
representation suitable for inference. We propose
to use DCG for the problem of adapting the per-
ception pipelines for inferring task optimal repre-
sentations.

Our work is most closely related to that of
(Matuszek et al., 2013). Their work presents an
approach for jointly learning the language and
perception models for grounded attribute learn-
ing. Their model infers the subset of objects
based on color and shape which satisfy the at-
tributes described in the natural language descrip-
tion. Similarly, (Hu et al., 2016) proposes deep
learning based approach to directly segment ob-
jects in RGB images that are described by the in-
struction. We differentiate our approach by ex-
panding the diversity and complexity of percep-
tual classifiers, enabling verbs to modify object
representations, and presenting an end-to-end ap-
proach to representation adaptation and symbol
grounding using computationally efficient proba-
bilistic graphical models. In the following sections
we introduce our approach to adapting perception
pipelines, define our experiments, and present re-
sults against a suitable baseline.

3 TECHNICAL APPROACH

We describe the problem of understanding natural
language instructions as one of probabilistic in-
ference where we infer a distribution of symbols
that express the intent of the utterance. The mean-
ing of the instruction is taken in the context of a
symbolic representation (Γ), observations (zt) and
a representation of the language used to describe
the instruction (Λ). A probabilistic inference us-
ing a symbolic representation that is described by
the space of trajectories X (t) that the robot may
take takes the form of equation:

x(t)∗ = arg max
x(t)∈X(t)

p(x(t)|Λ, zt) (1)

Solving this inference problem is computation-
ally intractable when the space of possible trajec-
tories is large. Contemporary approaches (Tellex

et al., 2011; Howard et al., 2014) frame this prob-
lem as a symbol grounding problem, i.e. inferring
the most likely set of groundings (Γs∗) given a
syntactically parsed instruction Λ = {λ1, ..., λm}
and the world model Υ.

Γs∗ = arg max
γ1...γn∈Γs

p(γ1...γn|Λ,Υ) (2)

Here, the world model Υ is a function of the
constructs of the robot’s perception pipeline (P ),
and the raw observations zt.

Υ ≈ f(P, zt) (3)

The groundings Γs are symbols that represent
objects, their semantic properties, regions derived
from the world model, and robot actions and goals
such as grasping the object of interest or navigat-
ing to a specific region in the environment. The set
of all groundings Γs = {γ1, γ2, ..., γn} is called as
the symbol space. Thus the symbol space forms
a finite space of interpretations in which the in-
struction will be grounded. The DCG is a prob-
abilistic graphical model of the form described in
equation 2. The model relates the linguistic com-
ponents λi ∈ Λ to the groundings γj ∈ Γs through
the binary correspondence variables φij ∈ Φ.
DCG facilitates inferring the groundings at a par-
ent phrase in the context of the groundings at its
child phrases Φci. Formally, DCG searches for
the most likely correspondence variables Φ∗ in the
context of the groundings γij , phrases λi, child
correspondences Φci and the world model Υ by
maximizing the product of individual factors.

Φ∗ = arg max
φij∈Φ

|Λ|∏

i=1

|Γs|∏

j=1

p(φij |γij , λi,Φci,Υ) (4)

Inferred correspondence variables Φ∗ represent
the expression of the most likely groundings Γs∗.
The factors in the equation 4 are approximated by
log-linear models Ψ:

Φ∗ = arg max
φij∈Φ

|Λ|∏

i=1

|Γs|∏

j=1

Ψ(φij , γij , λi,Φci,Υ)

(5)
Model training involves learning the log-linear

factors from the labeled data relating phrases
with true groundings. Inference process involves
searching for the set of correspondence variables
that satisfy the above equation. The run-time per-
formance of probabilistic inference with the DCG

153



is positively correlated with the complexity of
the world model Υ. This is because the size of
the symbolic representation Γs increases with the
number of objects in the environment representa-
tion. Recognizing that some objects (and the sym-
bols based on those objects) are inconsequential to
the meaning of the instruction, we consider the op-
timal representation of the environment Υ∗ as one
which is necessary and sufficient to solve equa-
tion 5. Thus we hypothesize that the time to solve
equation 6 will be less than that for the equation 5.

Φ∗ = arg max
φij∈Φ

|Λ|∏

i=1

|Γs|∏

j=1

Ψ(φij , γij , λi,Φci,Υ
∗)

(6)
Typically the environment model Υ is com-

puted by a perception module P from a set of
observations z1:t = {z1 . . . zt}. In cluttered en-
vironments we assume that inferring an exhaus-
tively detailed representation of the world that sat-
isfies all possible instructions is impractical for
real-time human-robot interactions. We propose
using language as mean to guide the generation
of these necessary and sufficient environment rep-
resentations Υ∗ in turn making it a task adaptive
process. Thus we define Υ∗ inferred from a single
observation as:

Υ∗ ≈ f(P, zt,Λ) (7)

where P denotes the perception pipeline of the
robotic intelligence architecture. We adapt DCG
to model the above function by creating a novel
class of symbols called as perceptual symbols ΓP .
Perceptual symbols are tied to their corresponding
elements in the perception pipeline. i.e. to the vi-
sion algorithms. Since this grounding space is in-
dependent of the world model Υ, the random vari-
able used to represent the environment is removed
from equation 5. We add a subscript p to denote
that we are reasoning in the perceptual grounding
space.

Φ∗ = arg max
φij∈Φ

|Λ|∏

i=1

|ΓP |∏

j=1

Ψ(φij , γij , λi,Φci) (8)

Equation 8 represents the proposed model
which we refer to as the language-perception
model (LPM). It infers the symbols that inform
the perception pipeline configurations given a nat-
ural language instruction describing the task. The

space of symbols ΓP describe all possible configu-
rations of the perception pipeline. For example, as
shown in the Figure 1, for the instruction “pick up
the leftmost blue gear”, we may need elements in
our pipeline that can detect blue objects and gears.
Detecting green objects, spherical shapes, or six-
dimensional pose of the chips can object would not
be necessary to generate the symbols necessary for
the robot to perform the instruction.

We assume that the perception pipeline (P ) is
populated with a set of elements E = {E1, ..., En}
such that each subset Ei ∈ E represents a set
of algorithms that are responsible for inferring a
specific property of an object. e.g. a red color-
detection algorithm would be a member of the
color detector family responsible for inferring the
semantic property “color” of the object. While a
six degree-of-freedom (DOF) pose detection al-
gorithm would be a member of the pose detec-
tor family. More generally, E can be defined as:
E = {e1, e2, ..., em}. With these assumptions, we
define our independent perceptual symbols as:

ΓID
P = {γei |ei ∈ E} (9)

We can imagine that these symbols would be
useful to ground simple phrases such as ”the red
object” or ”the ball” etc. where the phrases re-
fer to a single property of the object. In the more
complicated phrases such as ”the red ball” or ”the
blue box” we have a joint expression of proper-
ties. i.e. we are looking for objects which maxi-
mize the joint likelihood p(red, sphere|o). Since
these properties are independent we can infer them
separately for every object ok ∈ O. However, we
can represent the above joint likelihood expression
as p(red, sphere) = p(red)p(sphere|red). In
this case, it allows conditioning the evaluation of
sphere detection on only a subset of objects which
were classified as being red by the red detector. To
add this degree of freedom in the construction of
the perception pipeline, we define additional set of
symbols which we refer to as conditionally depen-
dent perceptual symbols:

ΓCD
P = {γei,ej |ei, ej ∈ E ; i 6= j} (10)

The expression of the symbol γei,ej refers
to running the element ei from the perception
pipeline on the subset of objects which were clas-
sified positive by the element ej . Finally the com-
plete perceptual symbol space is:

ΓP = {ΓID
P ∪ ΓCD

P } (11)

154



4 EXPERIMENTAL DESIGN

Herein with our experiments we demonstrate the
utility of our language perception model for the
task of grounded language understanding of the
manipulation instructions. As shown in Figure 3
the process involves two distinct inferences: Infer-
ring the perceptual groundings given a language
instruction ( eq. 8 ), and inferring high level mo-
tion planning constraints given the language and
the generated world model ( eq. 5 and eq. 6 ). In
this section we describe our assumptions, and de-
fine the distinct symbolic representations used in
our experiments for each of the above tasks. We
then discuss our instruction corpus and the details
of the individual experiments.

Robot and the Environment
For our experiments a Rethink Robotics Baxter
Research Robot is placed behind a table. The
robot is assumed to perceive the environment us-
ing a head-mounted RGB-D sensor. Robot’s work
space is populated using objects from the stan-
dard YCB dataset (Berk Calli, 2017), custom 3D
printed ABS plastic objects, and multicolored rub-
ber blocks. We define the world complexity in
terms of the number of objects present on the table
in the robot’s field of view. The world complexity
ranges from 15 to 20 in our experiments.

Symbolic Representation
The symbolic representation defines the space of
symbols or meanings in which the natural lan-
guage instruction will be grounded or understood.
As mentioned before we define two distinct sets
of symbols in our experiments. ΓP defines the set
of perceptual symbols which are used by the lan-
guage perception model, and ΓS defines the set of
symbols which are used by the symbol grounding
model.

ΓP is a function of the elements E of the per-
ception pipeline. The elements ei ∈ E in our
perception pipeline are selected such that they can
model the robot’s environment with a spectrum of
semantic and metric properties which will be nec-
essary towards performing symbol grounding and
planning for all of the instructions in our corpus.
In our experiment we define E as:

E = {C ∪ G ∪ L ∪ B ∪ R ∪ P} (12)

Here, C is a set of color detectors, G is a set of
geometry detectors, L is a set of object label de-
tectors, B is a set of bounding box detectors, R

is a set of region detectors, and P is a set of pose
detectors.

C = { cdi | i ∈ color}
G = { gdi | i ∈ geometry}
L = { ldi | i ∈ label}
B = { bdi | i ∈ bbox}
R = { rdi | i ∈ region}
P = { pdi | i ∈ pose}

(13)

where color = {red, green, blue, white, yellow, or-
ange}, geometry = {sphere, cylinder, cuboid}, la-
bel = {crackers box, chips can, pudding box, mas-
ter chef can, bleach cleanser, soccer ball, mustard
sauce bottle, sugar packet}, bbox = {non-oriented,
oriented }, region = {left, right, center}, pose = {
3 DOF, 6 DOF }. Given the perception elements
defined in the equation 13, we define the indepen-
dent perceptual groundings ( ΓID

P ) previously de-
fined in equation 9 as follows:

ΓC = {γcdi | cdi ∈ C}
ΓG = {γgdi | gdi ∈ B}
ΓL = {γldi | ldi ∈ L}
ΓB = {γbdi | bdi ∈ B}
ΓR = {γrdi | rdi ∈ R}
ΓP = {γpdi | pdi ∈ P}

(14)

ΓID
P = { ΓC ∪ ΓG ∪ ΓL ∪ ΓB ∪ ΓR ∪ ΓP} (15)

We define the conditionally dependent percep-
tual groundings ( ΓCD

P ) previously defined in equa-
tion 10 as following:

ΓGC = {γ(gdi,cdj) | gdi ∈ G, cdj ∈ C}
ΓLC = {γ(ldi,cdj) | ldi ∈ L, cdj ∈ C}
ΓPC = {γ(pdi,cdj) | pdi ∈ P, cdj ∈ C}
ΓPG = {γ(pdi,gdj) | pdi ∈ P, gdj ∈ G}
ΓPL = {γ(pdi,ldj) | pdi ∈ P, ldj ∈ L}

(16)

ΓCD
P = { ΓGC ∪ ΓLC ∪ ΓPC ∪ ΓPG ∪ ΓPL} (17)

These symbols provide us the ability to selec-
tively infer desired properties in the world. Above
presented independent and conditionally depen-
dent symbols together cover the complete space
of perceptual symbols used by the LPM:

ΓP = {ΓID
P ∪ ΓCD

P } (18)

155



Algorithmic details of the percepion elements
are as follows : A single RGB point cloud is fed
in as a raw sensor observation to the pipeline. A
RANSAC (Fischler and Bolles, 1981) based 3D
plane detection technique is used for segmenting
the table-top and the objects. HSV colorspace is
used for detecting colors. RANSAC based model
fitting algorithms form the core of the geometry
detectors. A 4 layer ( 256 - 128 - 64 - 32 ) feed for-
ward neural network is trained to infer the seman-
tic labels of the objects. It takes in a 32 x 32 RGB
image and infers a distribution over 8 unique YCB
object classes. A PCA based oriented bounding
box estimation algorithm is used to approximate
the 6 DOF pose for the individual objects. Algo-
rithms are implemented using OpenCV and PCL
library (Rusu and Cousins, 2011).

The space of symbols for the symbol ground-
ing model is similar to the representation defined
in (Paul et al., 2016). This space uses symbols
to represent objects in the world model (ΓO), se-
mantic object labels (ΓL), object color(ΓC), object
geometry(ΓG) regions in the world(ΓR), spatial re-
lationships (ΓSR) and finally high level planning
constraints that define the end goal (ΓPC). The
inferred constraints forms an input to a planning
algorithm that can then generate trajectories to ac-
complish the desired task. Thus the complete sym-
bol space for the symbol grounding model is:

ΓS = { ΓO∪ΓL∪,ΓC∪ΓG∪ΓR∪ΓSR∪ΓPC} (19)

Corpus
For training and testing the performance of the
system we generate an instruction corpus using
the linguistic patterns similar to that described in
(Paul et al., 2016). The corpus used in our experi-
ments consists of 100 unique natural language in-
structions. Details of the grammar extracted from
this corpus is described in the appendix. Each
instruction describes a manipulation command to
the robot while referring to the objects of inter-
est using their semantic or metric properties. e.g.
“pick up the green cup” or “pick up the biggest
blue object”. If multiple instances of the same
objects are present in the robot’s work space then
the reference resolution is achieved by using spa-
tial relationships to describe the object of interest.
e.g.“the leftmost blue cube” or “rightmost red ob-
ject” etc.

As shown in Figure 2, the instructions in the
corpus are in the form of syntactically parsed trees.

Figure 2: Syntactically parsed tree for the instruc-
tion ”pick up the leftmost red block”.

Each instruction is generated in the context of a
specific table-top object arrangement. Thus each
instruction is associated with a pair of RGB-D im-
age. A total of 10 unique table-top arrangements
are used to generate the set of 100 instructions.

One copy of the corpora is annotated for train-
ing LPM using (ΓP ) while another for training
the symbol grounding model using (ΓS). The an-
notations for LPM corpus are selected such that
that the perception pipelines configured using the
annotated groundings would generate the optimal
world representations that are necessary and suf-
ficient to support grounding and planning for the
given tasks.

We have instructions with varying complexity
in our corpus. The instruction complexity from
the perception point of view is quantified in terms
of the total number of perceptual groundings ex-
pressed at the root level. e.g. “pick up the ball”
is relatively a simple instruction with only sin-
gle grounding expressed at the root level, while
“pick up the blue cube and put the blue cube near
the crackers box” is a more complicated instruc-
tion having seven groundings expressed at the root
level. This number was found to vary in the range
of one to seven in our corpus.

Experiments and Metrics

We structure our experiments to validate two
claims. The first claim is that adaptively infer-
ring the task optimal representations reduce the
perception run-time by avoiding exhaustively de-
tailed uniform modeling of the world. The sec-
ond claim is that reasoning in the context of these
optimal representations also reduces the inference
run-time of the symbol grounding model. An out-
line of our experiments is illustrated in Figure 3.
In the first experiment, we study the root-level in-
ference accuracy of LPM ( groundings expressed
at the root level of the phrase ) as a function of the
gradual increase in the training fraction. For each
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Figure 3: Comparative Experiments: Boxes in the bottom half denote the baseline framework whereas
the boxes in the top half represent the proposed framework. Filled boxes enclose the variables that are
compared in the experiments.

value of training fraction in the range [ 0.2 , 0.9 ]
increasing with a step of 0.1, we perform 15 vali-
dation experiments. The training data is sampled
randomly for every individual experiment. Addi-
tionally, we perform a leave-one-out cross valida-
tion experiment. We use the inferences generated
by the leave-one-out cross validation experiments
as inputs to drive the adaptive perception for each
instruction.

In the second experiment, we compare the cu-
mulative run-time of LPM inference ( eq. 8 ) and
adaptive perception ( T1+T2 ) against the run-time
for complete perception ( T4 ) - our baseline, for
increasingly complex worlds.

In the third experiment, we compare the infer-
ence time of the symbol grounding model reason-
ing in the context of the adaptively generated op-
timal world models ( T3, eq. 6 ) against the infer-
ence time of the same model but when reasoning
in the context of the complete world models ( T5,
eq. 5 ). We also check whether the planning con-
straints inferred in both cases match the ground
truth or not. Experiments are performed on a sys-
tem running a 2.2 GHz Intel Core i7 CPU with 16
GB RAM.

5 RESULTS

This section presents the results obtained for the
above mentioned three experiments. Specifically,
the learning characteristics of LPM, the impact
of LPM on the perception run-time, and the im-
pact the adaptive representations on the symbol
grounding run-time.

Leftmost graph in the Figure 4 shows the results
of the first experiment. We can see that the infer-
ence accuracy grows as a function of a gradual in-
crease in the training data. A growing trend is an
indicator of the language diversity in the corpus.

Mean inference accuracy starts at 39.25%±5 for k
= 0.2 and it reaches 84% for leave-one-out cross
validation experiment ( k = 0.99 ).

Middle graph in the Figure 4 shows the result
of the second experiment. We can clearly see that
the run-time for complete perception grows with
the world complexity while the run-time of adap-
tive perception stays nearly flat and is significantly
lower in all cases. Since the adaptive perception
run-time varies according to the task, we see big-
ger error bars. The drop in the complete percep-
tion run-time for world complexity of 20 is jus-
tifiable as the run-time of our geometry detection
algorithm was proportional to the size of the indi-
vidual objects, and all of the objects for that exam-
ple world were smaller than other examples.

World T4 ( sec ) T1 + T2 ( sec )
Complexity baseline proposed
15 4.40 ± 0.05 0.96 ± 0.07
16 4.99 ± 0.02 1.33 ± 0.34
17 5.40 ± 0.06 1.11 ± 0.11
18 5.82 ± 0.18 1.51 ± 0.26
20 4.17 ± 0.05 1.11 ± 0.25
Mean 5.03 ± 0.07 1.20 ± 0.21

Table 1: Adaptive perception run-time compared
against complete perception run-time. Deviation
measures are 95% confidence interval values.

Rightmost graph in the Figure 4 shows the result
of the third experiment. It shows that the symbol
grounding run-time when reasoning in the context
of detailed world models( Υ ) grows as a func-
tion of the world complexity. However, it is sig-
nificantly lower when reasoning in the context of
adaptively generated world models ( Υ∗ ) and is
independent of the world complexity.

The achieved run-time gains are meaningful
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Figure 4: Graph on the left shows the LPM inference accuracy as a function of gradual increase in the
training fraction. In the middle is the bar chart comparing the run-time for complete perception ( T4 )
against the cumulative run-time of LPM inference and adaptive perception ( T1 + T2 ). Finally, on the
right is a bar chart comparing the run-time of symbol grounding when reasoning in the context of the
adaptively generated optimal representations ( T3 ) against when reasoning in the context of exhaustively
detailed world models ( T5 ). The error bars indicate 95% confidence intervals.

World T5 ( ms ) T3 ( ms )
complexity baseline proposed
15 167 ± 12 21 ± 2
16 191 ± 16 23 ± 5
17 222 ± 12 22 ± 3
18 245 ± 12 27 ± 4
20 325 ± 10 20 ± 5
Mean 214 ± 12 23 ± 4

Table 2: Per phrase symbol grounding run-time in
ms ( rounded to the nearest integer ) using adaptive
representations compared against the same when
using complete representations. Deviation mea-
sures are 95% confidence interval values.

only if we do not incur a loss in the symbol
grounding accuracy. Table 3 shows the impact of
LPM on SG accuracy and summarizes the gains.

Perception Avg. Avg. SG
Type TP ( sec ) TSG ( ms ) Acc.
Complete 5.03 ± 0.07 214 ± 12 63%
Adaptive 1.20 ± 0.21 23 ± 4 66%
Ratio 4.19 9.30

Table 3: Impact of LPM on average percep-
tion run-time per instruction (TP ), average symbol
grounding run-time per instruction (TSG), and the
symbol grounding accuracy.

6 CONCLUSIONS

Real-time human-robot interaction is critical for
the utility of the collaborative robotic manipula-

tors in shared tasks. In scenarios where inferring
exhaustively detailed models of all the objects is
prohibitive, perception represents a bottleneck that
inhibits real-time interactions with collaborative
robots. Language provides an intuitive and multi-
resolution interface to interact with these robots.
While recent probabilistic frameworks have ad-
vanced our ability to interpret the meaning of com-
plex instructions in cluttered environments, the
problem of how language can channel the interpre-
tation of the raw observations to construct world
models which are necessary and sufficient for the
symbol grounding task is not extensively stud-
ied. Our proposed DCG based Language Percep-
tion Model, demonstrates that we can guide per-
ception using language to construct world mod-
els which are suitable for efficiently interpreting
the instruction. This provides run-time gains in
terms of both perception and symbol grounding,
thereby improving the speed with which collabo-
rative robots can understand and act upon human
instructions. In ongoing and future work we are
exploring how language can aid efficient construc-
tion of global maps for robot navigation and ma-
nipulation by intelligently sampling relevant ob-
servations from a set of observations.
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A Grammar and Lexicon of the Corpus

We list the grammar rules and the lexicon for our
corpus to demonstrate the diversity of the instruc-
tions. Following table lists the words scraped from
the instructions in our corpus. We have a total of
56 unique words.

VB → {pick|put}
RP → {up}
DT → {the|all}
CC → {and}

VBZ → {is}
WDT → {that}

VB → {near|in|on}
PRP → {your}

NN →





cup|pudding|box|cube|
object|ball|master|
chef|can|soccer|
gear|mustard|sauce|bottle|
sugar|packet|block|
cleanser|middle|left|
right|crackers|cheezit|
cleanser|packet|block





NNS →
{

cups|chips|cubes|
objects|balls

}

JJ →
{

blue|green|yellow|
red|white

}

JJS →





nearest|rightmost|leftmost|
farthest|biggest|smallest|
largest|closest





Table 4: The words scraped from the corpus of
annotated examples

Following table lists the grammar rules scraped
from the instructions in our corpus. We have a
total of 23 unique grammar rules.

SBAR → WHNP S

S → VP

VP → VB PRT NP

VP → CC VP VP

VP → VB NP PP

VP → VBZ PP

WHNP → WDT

PRT → RP

PP → IN NP

NP → DT JJ NN

NP → DT NN NN

NP → DT JJS JJ NN

NP → NP PP

NP → DT

NP → DT JJ NNS

NP → DT NN

NP → DT NN NN NN

NP → DT JJ NN NN

NP → DT JJS NN

NP → DT NNS NN

NP → PRP NN

NP → NP SBAR

NP → DT NNS

Table 5: The grammar rules scraped from the cor-
pus of annotated examples
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Abstract

Positive emotion elicitation seeks to im-
prove user’s emotional state through di-
alogue system interaction, where a chat-
based scenario is layered with an im-
plicit goal to address user’s emotional
needs. Standard neural dialogue system
approaches still fall short in this situa-
tion as they tend to generate only short,
generic responses. Learning from expert
actions is critical, as these potentially dif-
fer from standard dialogue acts. In this pa-
per, we propose using a hierarchical neu-
ral network for response generation that is
conditioned on 1) expert’s action, 2) di-
alogue context, and 3) user emotion, en-
coded from user input. We construct a
corpus of interactions between a counselor
and 30 participants following a negative
emotional exposure to learn expert actions
and responses in a positive emotion elici-
tation scenario. Instead of relying on the
expensive, labor intensive, and often am-
biguous human annotations, we unsuper-
visedly cluster the expert’s responses and
use the resulting labels to train the net-
work. Our experiments and evaluation
show that the proposed approach yields
lower perplexity and generates a larger va-
riety of responses.

1 Intoduction

Emotionally intelligent systems has high poten-
tial as assistive technology in various affective
tasks, such as caring for the elderly, low-cost ubiq-
uitous chat therapy, or providing emotional sup-
port in general. Two of the most studied emo-
tional competences for agents are emotion recog-
nition, which allows a system to discern the user’s

emotions and address them in giving a response
(Forbes-Riley and Litman, 2012; Han et al., 2015;
Tielman et al., 2014), and emotion simulation,
which helps convey non-verbal aspects to the user
for a more believable and human-like interaction,
for example to show empathy (Higashinaka et al.,
2008) or personality (Egges et al., 2004). Acosta
and Ward (2011) have attempted to connect the
two competences to build rapport, by recogniz-
ing user’s emotion and reflecting it in the sys-
tem response. Although these competences ad-
dress some of the user’s emotional needs (Picard
and Klein, 2002), they are not sufficient to provide
emotional support in an interaction.

Recently, there has been an increasing inter-
est in eliciting user’s emotional response via di-
alogue system interaction, i.e. emotion elicitation.
Skowron et al. (2013) have studied the impact
of different affective personalities in a text-based
dialogue system, while Hasegawa et al. (2013)
constructed translation-based response generators
with various emotion targets. Despite the positive
results, these approaches have not yet paid atten-
tion to the emotional benefit for the users. Our
work aims to draw on an important overlooked po-
tential of emotion elicitation: its application to im-
prove emotional states, similar to that of emotional
support between humans. This can be achieved
by actively eliciting a more positive emotional va-
lence throughout the interaction, i.e. positive emo-
tion elicitation. This takes form as a chat-oriented
dialogue system interaction that is layered with an
implicit goal to address user’s emotional needs.

With recent advancements in neural network re-
search, end-to-end approaches have been reported
to show promising results for non-goal oriented
dialogue systems (Vinyals and Le, 2015; Serban
et al., 2016; Nio et al., 2016). However, appli-
cation of this approach towards positive emotion
elicitation is still very lacking. Zhou et al. (2017)
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have investigated 6 categories to emotionally color
the response via the internal state of the decoder.
However, this study has not yet considered user’s
emotion in the response generation process, nor
attempted improve emotional experience of user.

Towards positive emotion elicitation, Lubis et
al. (2018) have recently proposed a model that
encodes emotion information from user input and
utilizes it in generating response. However, the re-
sulting system is still limited to short and generic
responses with positive affect, echoing the long
standing lack-of-diversity problem in neural net-
work based response generation (Li et al., 2016).
Furthermore, the reported system has not learn
about positive emotion elicitation strategies from
an expert as the corpus construction relied on
crowd-sourcing workers.

This points to another problem: the lack of data
that shows positive emotion elicitation or emotion
recovery in everyday situations. Learning from
expert responses and actions are essential in such
a scenario as these potentially differ from standard
chat-based scenarios. With scarcity of large-scale
data, additional knowledge from higher level ab-
straction, such as dialogue action labels, may be
highly beneficial. However, such high-level infor-
mation must rely on human annotations, which are
expensive, labor intensive, and often ambiguous.

To answer these challenges, first, we construct
a corpus containing recordings of a professional
counselor and 30 participants in a positive emotion
elicitation scenario. Second, we extract higher
level information from the expert’s responses via
unsupervised clustering and use the resulting la-
bels to train a neural dialogue system. Lastly,
we propose a hierarchical neural dialogue system
which considers 1) expert’s action, 2) dialogue
context, and 3) user emotion, in generating a re-
sponse by encoding them from user input. Our
evaluations show that the proposed method yields
lower perplexity, elicits a positive emotional im-
pact, and generates longer responses that improves
subjective engagement.

2 Corpus Construction: Positive
Emotion Elicitation by an Expert

Even though various affective conversational sce-
narios have been considered (McKeown et al.,
2012; Gratch et al., 2014), there is still a lack of re-
sources that show common emotional problems in
everyday social settings. Furthermore, a great ma-

jority of existing corpora does not involve any pro-
fessional who is an expert in handling emotional
reactions in a conversation.

To fill these gaps, we design our corpus to 1)
contain recordings of spontaneous dyadic interac-
tions before and after a negative emotion exposure,
and 2) involve a professional counselor as an ex-
pert. In each interaction, a negative emotion in-
ducer is shown to the dyad, and the goal of the
expert is to aid emotion processing and elicit a
positive emotional change through the interaction.
From this point, we will refer to this corpus as the
counseling corpus.

2.1 Negative Emotion Inducer
To induce negative emotion, we opt for short video
clips which are a few minutes in length. This
method is well established and has been studied
for several decades (Gross and Levenson, 1995;
Schaefer et al., 2010). One study shows that
amongst a number of techniques, the use of video
clips is the most effective way to induce both pos-
itive and negative emotional states (Westermann
et al., 1996). It also offers easy replication in
constrained environmental settings, such as the
recording room.

However, in contrast to previous works (Schae-
fer and Philippot, 2005), we look for clips that de-
pict real life situations and issues, i.e., non-fiction
and non-films. We select short video clips of
news reports, interviews, and documentary films
as emotion inducers to avoid the unpredictability
of subjective emotional response to fictional clips.
Non-fictional inducer also reflects real everyday
situations better. We ensure that the clips contain
enough information and context to serve as con-
versation topic throughout the recording session.

We target two emotions with negative valence:
anger and sadness. First, we manually selected 34
of videos with varying relevant topics that are pro-
vided freely online. Two human experts are then
asked to rate them in terms of intensity and the in-
duced emotion (sadness or anger). Finally, we se-
lected 20 videos, 10 of each emotion with varied
intensity level where the two human ratings agree.

2.2 Data Collection
We arrange for the dyad to consist of an expert and
a participant, each with a distinct role. The roles
are based on the “social sharing of emotion” sce-
nario, which argues that after an emotional event,
a person is inclined to initiate an interaction which
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centers on the event and their reactions to it (Rime
et al., 1991; Luminet IV et al., 2000). This form of
social sharing is argued to be integral in process-
ing the emotional event (Rime et al., 1991).

In the interactions, the expert plays the part of
the external party who helps facilitate this process
following the emotional response of the partici-
pant. We recruit a professional counselor as the
expert in the recording, an accredited member of
the British Association for Counseling and Psy-
chotherapy with more than 8 years of professional
experience. As participants, we recruit 30 individ-
uals (20 males and 10 females) that speak English
fluently as first or second language.

A session starts with an opening talk as a neu-
tral baseline conversation. Afterwards, we induce
negative emotion by showing an emotion inducer
to the dyad. This is followed by a discussion that
targets at emotional processing and recovery, dur-
ing which the expert is given the objective to facil-
itate the processing of emotional response caused
by the emotion induction, and to elicit a positive
emotional change.

In total, we recorded 60 sessions of interactions,
30 with “anger” inducer and 30 with “sadness”.
The combined duration of all sessions sums up to
23 hours and 41 minutes of material. The audio
and video recordings are transcribed, including a
number of special notations for non-speech sounds
such as laughter, back-channels, and throat noise.

2.3 Emotion Annotation

We follow the circumplex model of affect (Russell,
1980) in annotating emotion occurrences in the
recordings. Two dimensions of emotion are de-
fined: valence and arousal. Valence measures the
positivity or negativity of emotion; e.g., the feeling
of joy is indicated by positive valence while fear
is negative. On the other hand, arousal measures
the activity of emotion; e.g., depression is low in
arousal (passive), while rage is high (active).

For each recording, the participants self report
their emotional state using the FEELtrace system
(Cowie et al., 2000) immediately after the inter-
action. While an annotator is watching a target
person in a recording, he or she is moving a cursor
along a linear scale on an adjacent window to indi-
cate the perceived emotional aspect (e.g., valence
or arousal) of the target. This results in a sequence
of real numbers ranging from -1 to 1 with a con-
stant time interval, called a trace. Statistical anal-

yses of validation experiments have confirmed the
reliability and indicated the precision of the FEEL-
trace system (Cowie et al., 2000).

2.4 Dialogue Triples

Throughout the study and experiments, we uti-
lize the dialogue triple format, i.e. a sequence
of three dialogue turns. It has been previously
utilized for considering dialogue context (Sordoni
et al., 2015), filtering multi-party conversation
(Lasguido et al., 2014), and observing emotion ap-
praisal (Lubis et al., 2017). In this study, we ex-
ploit it to provide both past and future contexts of
an emotion occurrence

We extend and adapt the two-hierarchy view of
dialogue (Serban et al., 2016). We view a dia-
logue D as a sequence of dialogue turns of arbi-
trary length M between two speakers, i.e. D =
{U1, ..., UM}. Each utterance in them-th dialogue
turn is a sequence of tokens of arbitrary length
Nm, i.e. Um = {wm,1, ..., wm,Nm}. In a triple,
D = {U1, U2, U3}, where U1 and U3 are uttered
by speaker A, and U2 by speaker B. In particu-
lar, we are interested in triturns with counselor-
participant-counselor speaker sequence. It is prac-
tical to view U1, U2, and U3 as dialogue context,
query, and response, respectively. U1 and U3 are
the contexts of the emotion occurrence in U2.

We define the end of a dialogue turn as either
1) natural end of the sentence, or 2) turn taking
by the other speaker, whichever comes first. Back
channels in the middle of a speaker’s utterance are
not considered as turn taking since they instead
signal active listening. This also prevents overly
fragmented dialogue turns. The backchannels are
instead appended into the next dialogue turn once
one of the criteria above is met. We extract a total
of 6,064 dialogue triples from the collected data.
All U2 are aligned with self-report emotion anno-
tation by the participants.

3 Recurrent Encoder-Decoder for
Dialogue Systems

A recurrent neural network (RNN) is a neural net-
work variant that can retain information over se-
quential data. In response generation, first, an en-
coder summarizes an input sequence into a vec-
tor representation. An input sequence at time t
is modeled using the information gathered by the
RNN up to time t − 1, contained in the hidden
state ht. Afterwards, a decoder recurrently pre-
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dicts the output sequence conditioned by ht and
its output from the previous time step. This archi-
tecture was previously proposed as neural conver-
sational model in (Vinyals and Le, 2015).

Based on the two-hierarchy view of dia-
logue, the hierarchical recurrent encoder-decoder
(HRED) extends the sequence-to-sequence archi-
tecture (Serban et al., 2016). It consists of three
RNNs. An utterance encoder recurrently pro-
cesses each token in the utterance, encoding it into
a vector respresentation hutt. This information
is then passed on to the dialogue encoder, which
encodes the sequence of dialogue turns into hdlg.
The utterance decoder, or the response generator,
takes hdlg, and then predicts the probability distri-
bution over the tokens in the next utterance.

Recently, the HRED architecture has been ex-
tended to Emo-HRED for the positive emotion
elicitation task, exploiting the hierarchical view of
dialogue to observe the conversational context of
an emotion occurrence (Lubis et al., 2018). Emo-
HRED incorporates an emotion encoder which
predicts user emotional state and passes this in-
formation to the response generation process. The
emotion encoder is placed in the same hierarchy
as the dialogue encoder, capturing emotion infor-
mation at dialogue-turn level hemo and maintain-
ing the emotion context history throughout the di-
alogue. Improved naturalness and a more posi-
tive emotional impact were reported in the eval-
uations of Emo-HRED, however the resulting sys-
tem is still limited to short and generic responses
with positive affect. This echoes the long standing
lack-of-diversity problem in neural network based
response generation (Li et al., 2016), which is also
shared by other models previously discussed.

4 Proposed Method

4.1 Unsupervised Clustering of Counselor
Dialogue

In constructing an emotionally intelligent system,
learning from expert actions and responses are es-
sential. Although statistical learning from raw
data has been shown to be sufficient in some cases,
it might not be so for positive emotion elicitation
task. Due to the absence of large scale data, ad-
ditional knowledge from higher level abstraction,
such as dialogue action labels, may be highly ben-
eficial. We hypothesize that these labels will re-
duce data sparsity by categorizing counselor re-
sponses and emphasizing this information in the

training and generation process.
However, procuring such labels is not a trivial

task. Human annotation is not a practical solu-
tion as it is expensive, time-consuming, and la-
bor intensive. Especially with subjective aspects
such as dialogue act labels, they are often less reli-
able due to low annotator agreement. On the other
hand, training an automatic classifier from data
with standard dialogue act labels will not cover ac-
tions with specific emotion-related intent that are
present in the collected data. For example, em-
pathy towards negative affect (“That’s sad.”) and
positive affect (“I’m happy to hear that.”).

We propose unsupervised clustering of coun-
selor dialogue to obtain dialogue act labels of ex-
pert responses. We collected a total of 6384 coun-
selor utterances from the counseling corpus. We
transform the utterances into vectors by obtain-
ing the embeddings of the words in the utterance
and averaging them. We use a word2vec model
pretrained on 100 billion words of Google News
(Mikolov et al., 2013). The word and utterance
embeddings are of length 300. We then apply two
clustering methods to the vectorized utterances:
K-Means and Dirichlet process Gaussian mixture
model (DPGMM).

With K-means, we perform hierarchical cluster-
ing, starting with an initial K of 8. We perform
K-means clustering the second time on the clus-
ters which are larger than half the full data size.
In contrast, DPGMM is a non-parametric model,
i.e. it attempts to represent the data without prior
definition of the model complexity. We use the
stick-breaking construction for the DPGMM. A
new data point would either join an existing cluster
or start a new cluster following some probabilities.
We use diagonal covariance matrices to compen-
sate for the limited amount of data. Henceforth,
we refer to the result of the clustering as cluster
label.

Cluster Analysis
We visualize the found clusters using T-SNE in
Figure 1. K-Means clustering shows distinct di-
alogue acts characteristic in a number of clus-
ters it found. For example, cluster 0 in Figure
1(a) consists of various utterances signaling ac-
tive listening, such as follow up questions and
short back channels. On the other hand, cluster
2 and 6 contains utterance showing confirmation
or agreement, such as utterances containing the
words “yeah,” “right,” and “yes.” We also obtain
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(a) K-Means clustering.
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(b) K-Means sub-clustering on cluster 5.
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(c) DPGMM clustering.

Figure 1: T-SNE Representation of the clustering results.

smaller clusters for appreciation or thanking and
non-speech sounds, such as laughter and breath-
ing. The rest of the utterances which are relatively
longer are grouped together in a very large cluster
with 4220 members (cluster 5 in Figure 1(a)).

Second clustering on cluster 5 group these ut-
terances into smaller sub-clusters (Figure 1(b)).
“I” is the most frequent word in sub-cluster 0,
and “you” in sub-cluster 1. Some of the actions
from the first clustering are re-discovered during
the second clustering, such as thanking and appre-
ciation in sub-cluster 7, and confirmation in sub-
cluster 6. The largest sub-cluster is sub-cluster 2
with 1324 members which contain longer utter-
ances, a combination of opinion, questions, and
other sentences. In total, we obtained 15 clusters
from K-means clustering.

On the other hand, the DPGMM clustering re-
sults in 13 clusters. DPGMM clustering yield a
similar result, giving one huge cluster for longer
sentences and smaller clusters populated with for
back channel, non-speech sounds, thank you, and
agreement. However, there are several differences
between the results from DPGMM and K-means
that are worth mentioning. First, we notice that the
characteristic of each cluster is less salient com-
pared to that of K-Means; e.g. numerous back
channels can be found in several other clusters.
Second, the class size distribution is more uneven:
there are 6 clusters with less than 100 members,
in contrast to only 1 with K-Means. Third, un-
like K-Means, re-clustering of the biggest cluster
is not possible as it is already represented by one
component in the model.

4.2 Hierarchical Neural Dialogue System
with Multiple Contexts

We propose providing higher level knowledge
about the response to the model, in form of re-
sponse cluster labels (Section 4.1), to aid its re-

sponse generation. We propose a neural dialogue
system which generate response based on mul-
tiple dialogue contexts: 1) dialogue history, 2)
user emotional state, and 3) expert’s action label.
Henceforth we call this model the multi-context
HRED (MC-HRED)

The information flow of the MC-HRED is as
follows. After reading the input sequence Um =
{wm,1, ..., wm,Nm}, the dialogue turn is encoded
into utterance representation hutt.

hutt = huttNm
= f(huttNm−1, wm,Nm). (1)

hutt is then fed into the dialogue encoder to model
the sequence of dialogue turns into dialogue con-
text hdlg.

hdlg = hdlgm = f(hdlgm−1, hutt). (2)

In MC-HRED, the hdlg is then fed into the emo-
tion and action encoders, which will then be used
to encode the emotion context hemo as well as the
expert action label hact.

henc = f(hencm−1, henc), (3)

where enc = {emo, act}.
The generation process of the response, Um+1,

is conditioned by the concatenation of the three
contexts: dialogue history, emotion context, and
the expert action label.

Pθ(wn+1 = v|w≤n) =
exp(g(concat(hdlg, hemo, hact), v))∑
v′ exp(g(concat(hdlg, hemo, hact), v′))

. (4)

Figure 2 shows a schematic view of this ar-
chitecture. For each the emotion and action en-
coders, we consider an RNN with gated recurrent
unit (GRU) cells and sigmoid activation function.
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Figure 2: MC-HRED architecture. Emotion en-
coder is shown in dark blue, and action encoder in
dark yellow. Blue NNs are relating to input, and
yellow NNs to response.

Both encoders are trained together with the rest of
the network. Each encoder has its own target vec-
tor, which is the emotion label of the currently pro-
cessed dialogue turn U emom and expert action label
of the target response Uactm . We modify the defi-
nition of the training cost to incorporate the cross
entropy losses of the emotion and action encoders.

costenc = ((1− U encm ) · log(1− f(henc)))
− (U encm · logf(henc)), (5)

where enc = {emo, act}.
The training cost of the MC-HRED is a linear

interpolation between the response generation er-
ror costutt (i.e. negative log-likelihood of the gen-
erated response) and the prediction errors of the
encoders costemo and costact with weights α and
β which decays after every epoch.

cost = (1− α− β) · costutt
+ α · costemo + β · costact. (6)

The final cost is then propagated to the network
and the parameters are optimized as usual with the
optimizer algorithm.

5 Experimental Set Up

Figure 3 illustrates the experimental set up of this
work. Each of the steps will be explained in this
section. The scope of this study is limited to text
data.

Counseling 
data

Unsupervised 
action label

Counselor 
dialogue 
clustering

SubTle
Pre-

training

Fine-
tuning

Testing

Figure 3: The flow of the experiment.

5.1 Pre-trained model

Previous works have demonstrated the effective-
ness of large scale conversational data in improv-
ing the quality of dialogue systems (Banchs and
Li, 2012; Ameixa et al., 2014; Serban et al., 2016).
In this study, we make use of SubTle (Ameixa
et al., 2014), a large scale conversational corpus
collected from movie subtitles, to learn the syn-
tactic and semantic knowledge for response gen-
eration. The use of movie subtitles is particularly
suitable as they are available in large amounts and
reflecting natural human communication.

In our experiments, we utilize the HRED
trained on the SubTle corpus as our starting model.
We follow the data pre-processing method in (Ser-
ban et al., 2016). The processed SubTle corpus
contained 5,503,741 query-answer pairs in total.
The triple format is forced onto the pairs by treat-
ing the last dialogue turn in the triple as empty.
We select the 10,000 most frequent token from the
combination of SubTle and the counseling data as
system vocabulary. The purpose is twofold: to
help widen the intersection of words between the
two corpora, and to preserve special token from
the counselor corpus such as laughter and other
non-speech sounds.

The model is pre-trained by feeding the Sub-
Tle dataset sequentially into the network until it
converges, taking approximately 2 days to com-
plete. In addition to the model parameters, we also
learn the word embeddings of the tokens. We used
word embeddings with size 300, utterance vectors
of size 600, and dialogue vectors of size 1200.
The parameters are randomly initialized, and then
trained to optimize the log-likelihood of the train-
ing triples using the Adam optimizer.

5.2 Fine-tuning

All the models considered in this study are the re-
sult of fine-tuning the pre-trained model with the
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counseling corpus (Section 2). The triples from
the corpus are fed sequentially into the network.
To investigate the effectiveness of the proposed
methods, we train multiple models with combina-
tions of set ups.

We consider two different models: Emo-HRED
as baseline model and MC-HRED as the proposed
model. Emo-HRED considers only dialogue his-
tory and emotional context during the response
generation, while MC-HRED considers expert ac-
tion context in addition to the dialogue history
and emotional context. For completeness, we
also train a model that only utilized dialogue his-
tory and action context, which we will call Clust-
HRED for convenience.

As emotional context, we encode the self-
report emotion annotation into a one-hot vec-
tor as follows. We first obtain the average va-
lence and arousal values of an utterance. We
then discretize these values respectively into three
classes: positive, neutral, and negative. The in-
tervals for the classes are [−1,−0.07] for nega-
tive, (−0.07, 0.07) for neutral, and [0.07, 1] for
positive. We then encode this class information
into a one-hot vector of length 9, one element
for each of the possible combinations of valence
and arousal classes, i.e. positive-positive, positive-
neutral, neutral-negative, etc. Preliminary experi-
ments showed that on the counselor corpus, this
representation leads to a better performance com-
pared to fixed-length sampling of the emotion
trace.

As action context, we simply encode the cluster
label of U3, obtain as in Section 4.1, into a one-hot
vector. We experimented with two cluster label
sets, one produced by hierarchical K-Means clus-
tering (15 clusters), and one by DPGMM cluster-
ing (13).

To accommodate this additional information
during fine-tuning, we append new randomly ini-
tialized parameters to the utterance decoder. These
parameters are trained exclusively during the fine-
tuning process. All models are fine-tuned selec-
tively. That is, we fix the utterance and dialogue
encoders parameters, and selectively train only the
proposed encoders as well as the decoder. This
has been shown to result in a more stable model
when fine-tuning with a small amount of data (Lu-
bis et al., 2018).

We partitioned the counseling corpus into 50
recording sessions (5053 triples) for training, 5

(503) for validation, and 5 (508) for testing.

6 Evaluation and Analysis

6.1 Perplexity

We calculate model perplexity, which measures
the probability of exactly regenerating the refer-
ence response in a triple. Since the target re-
sponses are assumed to be expert’s response, its
reproduction by the model is desirable. Perplexity
has also been previously recommended for eval-
uating generative dialogue systems (Pietquin and
Hastie, 2013).

We compute the perplexity for each triple and
average it to obtain model perplexity. The model
perplexities are summarized in Table 1. We com-
pute the average test triple length (59.6 tokens),
and group the test triples into two: those with be-
low average length as “short” (294 triples), and
those above as “long” (186). Average perplexi-
ties are shown for the entire test set (all), the short
group, and the long group, separately.

Model Emo. Action Perplexity
all short long

Emo-
HRED Yes No 42.60 35.74 61.17

Clust-
HRED No K-Means 39.57 32.30 57.37

DPGMM 30.57 24.79 42.25
MC-
HRED Yes K-Means 29.57 23.23 38.73

DPGMM 32.04 25.00 42.34

Table 1: Model Perplexity of different architec-
tures.

We obtain model with the lowest perplexity
when emotion and K-Means labels are both uti-
lized in the training and response generation pro-
cess. For all models, the perplexity of long triples
is consistently higher than that of short ones. More
significant improvement is observed on long test
triples.

Looking at the perplexity on all test triples,
interestingly, the two cluster labels are affected
in starkly different ways when combined with
emotion labels: K-Means gain significant im-
provement, while DPGMM slightly suffers. We
found that on long triples, Clust-HRED and MC-
HRED yield similar performances when using the
DPGMM cluster label. In contrast, when using K-
means label, MC-HRED shows further improve-
ment from Clust-HRED.

We separate the test triples based on the aver-
age model perplexity to analyze their properties.
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Aside from triple length, no other significant dif-
ference was observed. This signals that the ability
to capture context is one of the defining character-
istic of a strong model for this task.

6.2 Human Subjective Evaluation

We present human judges with a dialogue triple
and ask them to rate the response in terms of three
criteria: 1) naturalness, which evaluates whether
the response is intelligible, logically follows the
dialogue context, and resembles real human re-
sponse, 2) emotional impact, to measure whether
the response elicits a positive emotional impact
or promotes an emotionally positive conversation,
and 3) engagement, to evaluate whether the pro-
posed response shows involvement in the dia-
logue and promotes longer conversation by invit-
ing more response.

We evaluate Emo-HRED and the best perform-
ing MC-HRED utilizing K-Means clustering la-
bels. We evaluate 100 triples from the full test
set, where each is judged by 20 human evaluators.
Each triple is presented in A-B-A format, the first
two dialogue turns are held fixed according to the
test set, and the last turn is the response generated
by the evaluated model. Evaluators are asked to
judge the responses by stating their agreement to
three statements: 1) A gives a natural response, 2)
A’s response elicits a positive emotional impact in
B, and 3) A’s response in engaging. The agree-
ment is given using a Likert scale, ranging from 1
(strongly disagree) to 5 (strongly agree). Figure 4
summarizes the subjective evaluation result.

4.17 3.79 3.924.17 3.8 3.99
3.4

3.6

3.8

4

4.2

naturalness emo_impact engagement

Emo-HRED MC-HRED

Figure 4: Human subjective rvaluation result.

We observe slight improvement on MC-HRED
in the emotional impact and a more notable one
in the engagement metric. On average, the re-
sponses generated by MC-HRED are 2.53 words
longer compared to that of Emo-HRED. From the
ratings, we also found that engagement is moder-
ately correlated with response length, with an av-
erage Pearson r of 0.41. This signals that MC-

HRED is able to produce longer sentences which
results in higher engagement, while still maintain-
ing naturalness and emotional impact. Dialogue
samples comparing the systems responses are in-
cluded in Table 2.

Table 2: Comparison of system responses for two
triples in test set.
U1 oh how do you feel about that one.
U2 yes i heard the story.
U3 (Target) you heard it before.
Emo-HRED right.
MC-HRED it’s a big thing.
U1 are you a student here?
U2 uh yes, actually I just got, er that’s my

lab over there in social computing yes
(laughter).

U3 (Target) oh really. so you’ve been watching us
going by.

Emo-HRED oh okay.
MC-HRED (laughter) it’s nice to meet you.

7 Conclusion

We construct a corpus containing recordings of a
counselor and 30 participants following a negative
emotional exposure to learn expert responses in a
positive emotion elicitation scenario. We unsuper-
visedly cluster the expert’s responses and use the
resulting labels to train a dialogue system. We pro-
posed a novel hierarchical neural architecture for
response generation that is conditioned on 1) ex-
pert’s action, 2) dialogue context, and 3) user emo-
tion, encoded from user input.

The objective evaluation we conducted show
that the proposed model yields lower perplexity on
a held-out test set. Subsequent human subjective
evaluation shows that MC-HRED is able to pro-
duce longer sentences which improve engagement
while still maintaining response naturalness and
emotional impact. In the future, we would like to
consider emotional impact explicitly for the emo-
tion elicitation in lieu of a data-driven approach of
positive emotion elicitation. We would also like
to consider other modalitiesm such as speech, for
a richer emotion encoding. We acknowledge that
evaluation through real user interaction needs to
be carried in the future to test the system in a more
realistic scenario.
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Abstract

We present a model which predicts how
individual users of a dialog system under-
stand and produce utterances based on user
groups. In contrast to previous work, these
user groups are not specified beforehand,
but learned in training. We evaluate on two
referring expression (RE) generation tasks;
our experiments show that our model can
identify user groups and learn how to most
effectively talk to them, and can dynam-
ically assign unseen users to the correct
groups as they interact with the system.

1 Introduction

People vary widely both in their linguistic prefer-
ences when producing language and in their abil-
ity to understand specific natural-language expres-
sions, depending on what they know about the do-
main, their age and cognitive capacity, and many
other factors. It has long been recognized that ef-
fective NLG systems should therefore adapt to the
current user, in order to generate language which
works well for them. This adaptation needs to
address all levels of the NLG pipeline, including
discourse planning (Paris, 1988), sentence plan-
ning (Walker et al., 2007), and RE generation (Ja-
narthanam and Lemon, 2014), and depends on
many features of the user, including level of ex-
pertise and language proficiency, age, and gender.

Existing techniques for adapting the output of
an NLG system have shortcomings which limit
their practical usefulness. Some systems need
user-specific information in training (Ferreira and
Paraboni, 2014) and therefore cannot generalize to
unseen users. Other systems assume that each user
in the training data is annotated with their group,
which allows them to learn a model from the data of
each group. However, hand-designed user groups

may not reflect the true variability of the data, and
may therefore inhibit the system’s ability to flexibly
adapt to new users.

In this paper, we present a user adaptation model
for NLG systems which induces user groups from
training data in which these groups were not anno-
tated. At training time, we probabilistically assign
users to groups and learn the language preferences
for each group. At evaluation time, we assume
that our system has a chance to interact with each
new user repeatedly – e.g., in the context of a dia-
logue system. It will then calculate an increasingly
accurate estimate of the user’s group membership
based on observable behavior, and use it to gen-
erate utterances that are suitable to the user’s true
group.

We evaluate our model on two tasks involving
the generation of referring expressions (RE). First,
we predict the use of spatial relations in human-
like REs in the GRE3D domain (Viethen and Dale,
2010) using a log-linear production model in the
spirit of Ferreira and Paraboni (2014). Second, we
predict the comprehension of generated REs, in
a synthetic dataset based on data from the GIVE
Challenge domain (Striegnitz et al., 2011) with the
log-linear comprehension model of Engonopoulos
et al. (2013). In both cases, we show that our model
discovers user groups in the training data and in-
fers the group of unseen users with high confidence
after only a few interactions during testing. In the
GRE3D domain, our system outperformed a strong
baseline which used demographic information for
the users.

2 Related Work

Differences between individual users have a sub-
stantial impact on language comprehension. Fac-
tors that play a role include level of expertise and
spatial ability (Benyon and Murray, 1993); age
(Häuser et al., 2017); gender (Dräger and Koller,
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2012); or language proficiency (Koller et al., 2010).

Individual differences are also reflected in the
way people produce language. Viethen and Dale
(2008) present a corpus study of human-produced
REs (GRE3D3) for simple visual scenes, where
they note two clearly distinguishable groups of
speakers, one that always uses a spatial relation
and one that never does. Ferreira and Paraboni
(2014) show that a model using speaker-specific
information outperforms a generic model in predict-
ing the attributes used by a speaker when producing
an RE. However, their system needs to have seen
the particular speaker in training, while our system
can dynamically adapt to unseen users. Ferreira
and Paraboni (2017) also demonstrate that splitting
speakers in predefined groups and training each
group separately improves the human likeness of
REs compared to training individual user models.

The ability to adapt to the comprehension and
production preferences of a user is especially im-
portant in the context of a dialog system, where
there are multiple chances of interacting with the
same user. Some methods adapt to dialog system
users by explicitly modeling the users’ knowledge
state. An early example is Paris (1988); she selects
a discourse plan for a user, depending on their level
of domain knowledge ranging between novice and
expert, but provides no mechanism for inferring the
group to which the user belongs. Rosenblum and
Moore (1993) try to infer what knowledge a user
possesses during dialogue, based on the questions
they ask. Janarthanam and Lemon (2014) adapt
to unseen users by using reinforcement learning
with simulated users to make a system able to ad-
just to the level of the user’s knowledge. They use
five predefined groups from which they generate
the simulated users’ behavior, but do not assign
real users to these groups. Our system makes no
assumptions about the user’s knowledge and does
not need to train with simulated users, or use any
kind of information-seeking moves; we instead rely
on the groups that are discovered in training and
dynamically assign new, unseen users, based only
on their observable behavior in the dialog.

Another example of a user-adapting dialog com-
ponent is SPaRKy (Walker et al., 2007), a trainable
sentence planner that can tailor sentence plans to
individual users’ preferences. This requires train-
ing on separate data for each user; in contrast to
this, we leverage the similarities between users and
can take advantage of the full training data.

3 Log-linear models for NLG in dialog

We start with a basic model of the way in which
people produce and comprehend language. In order
to generalize over production and comprehension,
we will simply say that a human language user
exhibits a certain behavior b among a range of pos-
sible behaviors, in response to a stimulus s. The
behavior of a speaker is the utterance b they pro-
duce in order to achieve a communicative goal s;
the behavior of a listener is the meaning b which
they assign to the utterance s they hear.

Given this terminology, we define a basic log-
linear model (Berger et al., 1996) of language use
as follows:

P (b|s; ρ) = exp(ρ · φ(b, s))∑
b′ exp(ρ · φ(b′, s))

(1)

where ρ is a real-valued parameter vector of length
n and φ(b, s) is a vector of real-valued feature func-
tions f1, ..., fn over behaviors and stimuli. The pa-
rameters can be trained by maximum-likelihood
estimation from a corpus of observations (b, s). In
addition to maximum-likelihood training it is pos-
sible to include some prior probability distribution,
which expresses our belief about the probability of
any parameter vector and which is generally used
for regularization. The latter case is referred to as a
posteriori training, which selects the value of ρ that
maximizes the product of the parameter probability
and the probability of the data.

In this paper, we focus on the use of such models
in the context of the NLG module of a dialogue
system, and more specifically on the generation of
referring expressions (REs). Using (1) as a compre-
hension model, Engonopoulos et al. (2013) devel-
oped an RE generation model in which the stimulus
s = (r, c) consists of an RE r and a visual context
c of the GIVE Challenge (Striegnitz et al., 2011), as
illustrated in Fig. 1. The behavior is the object b in
the visual scene to which the user will resolve the
RE. Thus for instance, when we consider the RE
r =“the blue button” in the context of Fig. 1, the
log-linear model may assign a higher probability to
the button on the right than to the one in the back-
ground. Engonopoulos and Koller (2014) develop
an algorithm for generating the RE r which maxi-
mizes P (b∗|s; ρ), where b∗ is the intended referent
in this setting.

Conversely, log-linear models can also be used to
directly capture how a human speaker would refer
to an object in a given scene. In this case, the stim-
ulus s = (a, c) consists of the target object a and
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Figure 1: A visual scene and a system-generated
instruction from the GIVE challenge.

the visual context c, and the behavior b is the RE.
We follow Ferreira and Paraboni (2014) in training
individual models for the different attributes which
can be used in the RE (e.g., that a is a button; that
it is blue; that the RE contains a binary relation
such as “to the right of”), such that we can simply
represent b as a binary choice b ∈ {1,−1} between
whether a particular attribute should be used in the
RE or not. We can then implement an analog of
Ferreira’s model in terms of (1) by using feature
functions φ(b, a, c) = b · φ′(a, c), where φ′(a, c)
corresponds to their context features, which do not
capture any speaker-specific information.

4 Log-linear models with user groups

As discussed above, a user-agnostic model such
as (1) does not do justice to the variability of lan-
guage comprehension and production across dif-
ferent speakers and listeners. We will therefore
extend it to a model which distinguishes different
user groups. We will not try to model why1 users
behave differently. Instead our model sorts users
into groups simply based on the way in which they
respond to stimuli, in the sense of Section 3, and
implements this by giving each group g its own
parameter vector ρ(g). As a theoretical example,
Group 1 might contain users who reliably compre-
hend REs which use colors (“the green button”),
whereas Group 2 might contain users who more
easily understand relational REs (“the button next
to the lamp”). These groups are then discovered at
training time.

When our trained NLG system starts interacting
with an unseen user u, it will infer the group to
which u belongs based on u’s observed responses
to previous stimuli. Thus as the dialogue with u
unfolds, the system will have an increasingly pre-

1E.g., in the sense of explicitly modeling sociolects or the
difference between novice system users vs. experts.

σ(π) σ(ρ)

π ρ(g)

g

b(d) s(d)

1 ≤ g ≤ K

u ∈ U

d ∈ D(u)

Figure 2: Plate diagram for the user group model.

cise estimate of the group to which u belongs, and
will thus be able to generate language which is
increasingly well-tailored to this particular user.

4.1 Generative story
We assume training data D = {(bi, si, ui)}i which
contains stimuli si together with the behaviors bi
which the users ui exhibited in response to si. We
write D(u) = {(bu1 , su1), . . . (buN , suN )} for the data
points for each user u.

The generative story we use is illustrated in
Fig. 2; observable variables are shaded gray, unob-
served variables and parameters to be set in training
are shaded white and externally set hyperparame-
ters have no circle around them. Arrows indicate
which variables and parameters influence the prob-
ability distribution of other variables.

We assume that each user belongs to a group
g ∈ {1, . . . ,K}, where the number K of groups
is fixed beforehand based on, e.g., held out data.
A group g is assigned to u at random from the
distribution

P (g|π) = exp(πg)∑K
g′=1 exp(πg′)

(2)

Here π ∈ RK is a vector of weights, which defines
how probable each group is a-priori.

We replace the single parameter vector ρ of (1)
with group-specific parameters vectors ρ(g), thus
obtaining a potentially different log-linear model
P
(
b|s; ρ(g)

)
for each group. After assigning a

group, our model generates responses bu1 , . . . , b
u
N at

random from P
(
b|s; ρ(g)

)
, based on the group spe-

cific parameter vector and the stimuli su1 , . . . , s
u
N .

This accounts for the generation of the data.
We model the parameter vectors π ∈ RK , and

ρ(g) ∈ Rn for every 1 ≤ g ≤ K as drawn from
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P (D; θ) =


∏

u∈U

K∑

g=1

P (g|π) ·
∏

d∈D(u)

P
(
bd|sd; ρ(g)

)

 ·


N

(
π|0, σ(π)

)
·
K∏

g=1

N
(
ρ(g)|0, σ(ρ)

)

(3)

L(θ) =
∑

u∈U
log

K∑

g=1

P (g|π) ·
∏

d∈D(u)

P
(
bd|sd; ρ(g)

)
(4)

AL(θ) =
∑

u∈U

K∑

g=1


P

(
g|D(u); θ(i−1)

)
·


logP (g|π) +

∑

d∈Du

logP
(
bd|sd; ρ(g)

)



 (5)

normal distributions N (0, σ(π)), and N (0, σ(ρ)),
which are centered at 0 with externally given vari-
ances and no covariance between parameters. This
has the effect of making parameter choices close
to zero more probable. Consequently, our models
are unlikely to contain large weights for features
that only occurred a few times or which are only
helpful for a few examples. This should reduce the
risk of overfitting the training set.

The equation for the full probability of the data
and a specific parameter setting is given in (3).
The left bracket contains the likelihood of the data,
while the right bracket contains the prior probabil-
ity of the parameters.

4.2 Predicting user behavior
Once we have set values θ = (π, ρ(1), . . . , ρ(K))
for all the parameters, we want to predict what
behavior b a user u will exhibit in response to a
stimulus s. If we encounter a completely new user
u, the prior user group distribution from (2) gives
the probability that this user belongs to each group.
We combine this with the group-specific log-linear
behavior models to obtain the distribution:

P (b|s; θ) =
K∑

g=1

P
(
b|s; ρ(g)

)
· P (g|π) (6)

Thus, we have a group-aware replacement for (1).
Furthermore, in the interactive setting of a dia-

logue system, we may have multiple opportunities
to interact with the same user u. We can then de-
velop a more precise estimate of u’s group based
on their responses to previous stimuli. Say that
we have made the previous observations D(u) =
{〈s1, b1〉, . . . , 〈sN , bN 〉} for user u. Then we can
use Bayes’ theorem to calculate a posterior esti-
mate for u’s group membership:

P
(
g|D(u); θ

)
∝ P

(
D(u)|ρ(g)

)
· P (g|π) (7)

This posterior balances whether a group is
likely in general against whether members of that
group behave as u does. We can use Pu(g) =
P
(
g|D(u); θ

)
as our new estimate for the group

membership probabilities for u and replace (6)
with:

P
(
b|s,D(u); θ

)
=

K∑

g=1

P
(
b|s; ρ(g)

)
· Pu(g) (8)

for the next interaction with u.
An NLG system can therefore adapt to each new

user over time. Before the first interaction with u, it
has no specific information about u and models u’s
behavior based on (6). As the system interacts with
u repeatedly, it collects observationsD(u) about u’s
behavior. This allows it to calculate an increasingly
accurate posterior Pu(g) = P

(
g|D(u); θ

)
of u’s

group membership, and thus generate utterances
which are more and more suitable to u using (8).

5 Training

So far we have not discussed how to find settings
for the parameters θ = π, ρ(1), . . . , ρ(K), which
define our probability model. The key challenge for
training is the fact that we want to be able to train
while treating the assignment of users to groups as
unobserved.

We will use a maximum a posteriori estimate
for θ, i.e., the setting which maximizes (3) when
D is our training set. We will first discuss how to
pick parameters to maximize only the left part of
(3), i.e., the data likelihood, since this is the part
that involves unobserved variables. We will then
discuss handling the parameter prior in section 5.2.

5.1 Expectation Maximization
Gradient descent based methods (Nocedal and
Wright, 2006) exist for finding the parameter set-
tings which maximize the likelihood for log-linear
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models, under the conditions that all relevant vari-
ables are observed in the training data. If group
assignments were given, gradient computations,
and therefore gradient based maximization, would
be straightforward for our model. One algorithm
specifically designed to solve maximization prob-
lems with unknown variables by reducing them to
the case where all variables are observed, is the
expectation maximization (EM) algorithm (Neal
and Hinton, 1999). Instead of maximizing the data
likelihood from (3) directly, EM equivalently max-
imizes the log-likelihood, given in (4). It helps
us deal with unobserved variables by introducing
“pseudo-observations” based on the expected fre-
quency of the unobserved variables.

EM is an iterative algorithm which produces a
sequence of parameter settings θ(1), . . . , θ(n). Each
will achieve a larger value for (4). Each new set-
ting is generated in two steps: (1) an lower bound
on the log-likelhood is generate and (2) the new
parameter setting is found by optimizing this lower
bound. To find the lower bound we compute the
probability for every possible value the unobserved
variables could have had, based on the observed
variables and the parameter setting θ(i−1) from the
last iteration step. Then the lower bound essentially
assumes that each assignment was seen with a fre-
quency equal to these probabilities - these are the
“pseudo-observations”.

In our model the unobserved variables are the
assignments of users to groups. The probability of
seeing each user u assigned to a group, given all
the data D(u) and the model parameters from the
last iteration θ(i−1), is simply the posterior group
membership probability P

(
g|D(u); θ(i−1)

)
. The

lower bound is then given by (5). This is the sum
of the log probabilities of the data points under
each group model, weighted by P

(
g|D(u); θ(i−1)

)
.

We can now use gradient descent techniques to
optimize this lower bound.

5.1.1 Maximizing the Lower Bound
To fully implement EM we need a way to maximize
(5). This can be achieved with gradient based meth-
ods such as L-BFGS (Nocedal and Wright, 2006).
Here the gradient refers to the vector of all partial
derivatives of the function with respect to each di-
mension of θ. We therefore need to calculate these
partial derivatives.

There are existing implementations of the gradi-
ent computations our base model such as in En-
gonopoulos et al. (2013). The gradients of (5)

for each of the ρ(g) is simply the gradient for
the base model on each datapoint d weighted by
P
(
g|D(u); θ(i−1)

)
if d ∈ Du, i.e., the probability

that the user u from which the datapoint originates
belongs to group g. We can therefore compute the
gradients needed for each ρ(g) by using implemen-
tations developed for the base model.

We also need gradients for the parameters in π,
which are only used in our extended model. We
can use the rules for computing derivatives to find,
for each dimension g:

∂UL(θ)
∂πg

=
∑

u∈U
Pu(g)−

exp (πg)∑K
g′=1 exp

(
πg′
)

where Pu(g) = P
(
g|D(u); θ(i−1)

)
. Using these

gradients we can use L-BFGS to maximize the
lower bound and implement the EM iteration.

5.2 Handling the Parameter Prior
So far we have discussed maximization only for the
likelihood without accounting for the prior prob-
abilities for every parameter. To obtain our full
training objective we add the log of the right hand
side of (3):

log


N

(
π|0, σ(π)

)
·
K∏

g=1

N
(
ρ(g)|0, σ(ρ)

)



i.e., the parameter prior, to (4) and (5). The gradi-
ent contribution from these priors can be computed
with standard techniques.

5.3 Training Iteration
We can now implement an EM loop, which maxi-
mizes (3) as follows: we randomly pick an initial
value θ(0) for all parameters. Then we repeatedly
compute the P

(
g|D(u); θ(i−1)

)
values and maxi-

mize the lower bound using L-BFGS to find θ(i).
This EM iteration is guaranteed to eventually con-
verge towards a local optimum of our objective
function. Once change in the objective falls below
a pre-defined threshold, we keep the final θ setting.

For our implementation we make a small im-
provement to the approach: L-BFGS is itself an
iterative algorithm and instead of running it until
convergence every time we need to find a new θ(i),
we only let it take a few steps. Even if we just
took a single L-BFGS step in each iteration, we
would still obtain a correct algorithm (Neal and
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Hinton, 1999) and this has the advantage that we
do not spend time trying to find a θ(i) which is
a good fit for the likely poor group assignments
P
(
g|D(u); θ(i−1)

)
we obtain from early parameter

estimates.

6 Evaluation

Our model can be used in any component of a di-
alog system for which a prediction of the user’s
behavior is needed. In this work, we evaluate it in
two NLG-related prediction tasks: RE production
and RE comprehension. In both cases we evaluate
the ability of our model to predict the user’s be-
havior given a stimulus. We expect our user-group
model to gradually improve its prediction accuracy
compared to a generic baseline without user groups
as it sees more observations from a given user.

In all experiments described below we set the
prior variances σγ = 1.0 and σπ = 0.3 after trying
out values between 0.1 and 10 on the training data
of the comprehension experiment.

6.1 RE production

Task The task of RE generation can be split in
two steps: attribute selection, the selection of the
visual attributes to be used in the RE such as color,
size, relation to other objects and surface real-
ization, the generation of a full natural language
expression. We focus here on attribute selection:
given a visual scene and a target object, we want to
predict the set of attributes of the target object that
a human speaker would use in order to describe
it. Here we treat attribute selection in terms of
individual classification decisions on whether to
use each attribute, as described in Section 3. More
specifically, we focus on predicting whether the
speaker will use a spatial relation to another object
(“landmark”). Our motivation for choosing this
attribute stems from the fact that previous authors
(Viethen and Dale, 2008; Ferreira and Paraboni,
2014) have found substantial variation between dif-
ferent users with respect to their preference towards
using spatial relations.

Data We use the GRE3D3 dataset of human-
produced REs (Viethen and Dale, 2010), which
contains 630 descriptions for 10 scenes collected
from 63 users, each describing the same target ob-
ject in each scene. 35% of the descriptions in this
corpus use a spatial relation. An example of such a
scene can be seen in Fig. 3.

Figure 3: A sample scene with a human-produced
RE from the GRE3D3 dataset.

Models We use two baselines for comparison:

Basic: The state-of-the-art model on this task
with this dataset, under the assumption that users
are seen in training, is presented in Ferreira and
Paraboni (2014). They define context features such
as type of relation between the target object and its
landmark, number of object of the same color or
size, etc., then train an SVM classifier to predict
the use of each attribute. We recast their model in
terms of a log-linear model with the same features,
to make it fit with the setup of Section 3.

Basic++: Ferreira and Paraboni (2014) also take
speaker features into account. We do not use
speaker identity and the speaker’s attribute fre-
quency vector, because we only evaluate on unseen
users. We do use their other speaker features (age,
gender), together with Basic’s context features; this
gives us a strong baseline which is aware of manu-
ally annotated user group characteristics.

We compare these baselines to our Group model
for values of K between 1 and 10, using the exact
same features as Basic. We do not use the speaker
features of Basic++, because we do not want to
rely on manually annotated groups. Note that our
results are not directly comparable with those of
Ferreira and Paraboni (2014), because of a different
training-test split: their model requires having seen
speakers in training, while we explicitly want to test
our model’s ability to generalize to unseen users.

Experimental setup We evaluate using cross-
validation, splitting the folds so that all speakers
we see in testing are previously unseen in training.
We use 9 folds in order to have folds of the same
size (each containing 70 descriptions coming from
7 speakers). At each iteration we train on 8 folds
and test on the 9th. At test time, we process each
test instance iteratively: we first predict for each
instance whether the user uwould use a spatial rela-
tion or not and test our prediction; we then add the
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Figure 4: F1 scores on test data for values of K
between 1 and 10 in the production experiment.

actual observation from the corpus to the set D(u)

of observations for this particular user, in order to
update our estimate about their group membership.

Results Figure 4 shows the test F1-score (micro-
averaged over all folds) as we increase the num-
ber of groups, compared to the baselines. For our
Group models, these are averaged over all inter-
actions with the user. Our model gets F1-scores
between 0.69 and 0.76 for all values ofK > 1, out-
performing both Basic (0.22) and Basic++ (0.23).

In order to take a closer look at our model’s be-
havior, we also show the accuracy of our model as
it observes more instances at test time. We com-
pare the model with K = 3 groups against the two
baselines. Figure 5 shows that the group model’s
F1-score increases dramatically after the first two
observations and then stays high throughout the
test phase, always outperforming both baselines
by at least 0.37 F1-score points after the first ob-
servation. The baseline models of course are not
expected to improve with time; fluctuations are due
to differences between the visual scenes. In the
same figure, we plot the evolution of the entropy
of the group model’s posterior distribution over the
groups (see (7)). As expected, the model is highly
uncertain at the beginning of the test phase about
which group the user belongs to, then gets more
and more certain as the set D(u) of observations
from that user grows.

6.2 RE comprehension
Task Our next task is to predict the referent to
which a user will resolve an RE in the context
of a visual scene. Our model is given a stimulus
s = (r, c) consisting of an instruction containing an
RE r and a visual context c and outputs a probabil-
ity distribution over all possible referents b. Such a
model can be used by a probabilistic RE generator
to select an RE which is highly likely to be cor-
rectly understood by the user or predict potential

Figure 5: F1-score evolution with increasing num-
ber of observations from the user in the production
experiment.

misunderstandings (see Section 3).

Data We use the GIVE-2.5 corpus for training
and the GIVE-2 corpus for testing our model (the
same used by Engonopoulos et al. (2013)). These
contain recorded observations of dialog systems
giving instructions to users who play a game in a
3D environment. Each instruction contains an RE
r, which is recorded in the data together with the vi-
sual context c at the time the instruction was given.
The object b which the user understood as the ref-
erent of the RE is inferred by the immediately sub-
sequent action of the user. In total, we extracted
2927 observations by 403 users from GIVE-25 and
5074 observations by 563 users from GIVE-2.

Experimental setup We follow the training
method described in Section 3. At test time, we
present the observations from each user in the or-
der they occur in the test data; for each stimulus,
we ask our models to predict the referent a which
the user understood to be the referent of the RE,
and compare with the recorded observation. We
subsequently add the recorded observation to the
dataset for the user and continue.

Models As a baseline, we use the Basic model
described in Section 3, with the features of the
“semantic” model of Engonopoulos et al. (2013).
Those features capture information about the ob-
jects in the visual scene (e.g. salience) and some
basic semantic properties of the RE (e.g. color, po-
sition). We use those features for our Group model
as well, and evaluate for K between 1 and 10.

Results on GIVE data Basic had a test accu-
racy of 72.70%, which was almost identical with
the accuracy of our best Group model for K = 6
(72.78%). This indicates that our group model does
not differentiate between users. Indeed, after train-
ing, the 6-group model assigns 81% prior probabil-
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ity to one of the groups, and effectively gets stuck
with this assignment while testing; the mean en-
tropy of the posterior group distribution only falls
from an initial 1.1 to 0.7 after 10 observations.

We speculate that the reason behind this is that
the features we use are not sensitive enough to cap-
ture the differences between the users in this data.
Since our model relies completely on observable
behavior, it also relies on the ability of the features
to make relevant distinctions between users.

Results on synthetic data In order to test this
hypothesis, we made a synthetic dataset based on
the GIVE datasets with 1000 instances from 100
users, in the following way: for each user, we ran-
domly selected 10 scenes from GIVE-2, and re-
placed the target the user selected, so that half of
the users always select the target with the highest
visual salience, and the other half always select the
one with the lowest. Our aim was to test whether
our model is capable of identifying groups when
they are clearly present in the data and exhibit dif-
ferences which our features are able to capture.

We evaluated the same models in a 2-fold cross-
validation. Figure 6 shows the prediction accuracy
for Basic and the Group models for K from 1 to
10. All models for K > 1 clearly outperform
the baseline model: the 2-group model gets 62.3%
vs 28.6% averaged over all test examples, while
adding more than two groups does not further im-
prove the accuracy. We also show in Figure 7 the
evolution of the accuracy asD(u) grows: the Group
model with K = 2 reaches a 64% testing accuracy
after seeing two observations from the same user.
In the same figure, the entropy of the posterior dis-
tribution over groups (see production experiment)
falls towards zero as D(u) grows. These results
show that our model is capable of correctly assign-
ing a user to the group they belong to, once the
features are adequate for distinguishing between
different user behaviors.

6.3 Discussion

Our model was shown to be successful in discover-
ing groups of users with respect to their behavior,
within datasets which present discernible user vari-
ation. In particular, if all listeners are influenced
in a similar way by e.g. the visual salience of an
object, then the group model cannot learn different
weights for the visual salience feature; if this hap-
pens for all available features, there are effectively
no groups for our model to discover.

Figure 6: Prediction accuracies in the comprehen-
sion experiment with synthetic data.

Figure 7: Accuracy evolution with increasing num-
ber of observations from the user in the comprehen-
sion experiment with synthetic data.

Once the groups have been discovered, our
model can then very quickly distinguish between
them at test time. This is reflected in the steep
performance improvement even after the first user
observation in both the real data experiment in 6.1
and the synthetic data experiment in 6.2.

7 Conclusion

We have presented a probabilistic model for NLG
which predicts the behavior of individual users of
a dialog system by dynamically assigning them to
user groups, which were discovered during train-
ing2. We showed for two separate NLG-related
tasks, RE production and RE comprehension, how
our model, after being trained with data that is not
annotated with user groups, can quickly adapt to un-
seen users as it gets more observations from them
in the course of a dialog and makes increasingly
accurate predictions about their behavior.

Although in this work we apply our model to
tasks related to NLG, nothing hinges on this choice;
it can also be applied to any other dialog-related
prediction task where user variation plays a role. In
the future, we will also try to apply the basic prin-
ciples of our user group approach to more sophisti-
cated underlying models, such as neural networks.

2Our code and data is available in https://bit.ly/
2jIu1Vm
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Abstract

Natural language generators for task-
oriented dialogue must effectively realize
system dialogue actions and their asso-
ciated semantics. In many applications,
it is also desirable for generators to con-
trol the style of an utterance. To date,
work on task-oriented neural generation
has primarily focused on semantic fidelity
rather than achieving stylistic goals, while
work on style has been done in contexts
where it is difficult to measure content
preservation. Here we present three dif-
ferent sequence-to-sequence models and
carefully test how well they disentangle
content and style. We use a statistical gen-
erator, PERSONAGE, to synthesize a new
corpus of over 88,000 restaurant domain
utterances whose style varies according to
models of personality, giving us total con-
trol over both the semantic content and the
stylistic variation in the training data. We
then vary the amount of explicit stylistic
supervision given to the three models. We
show that our most explicit model can si-
multaneously achieve high fidelity to both
semantic and stylistic goals: this model
adds a context vector of 36 stylistic param-
eters as input to the hidden state of the en-
coder at each time step, showing the ben-
efits of explicit stylistic supervision, even
when the amount of training data is large.

1 Introduction

The primary aim of natural language generators
(NLGs) for task-oriented dialogue is to effectively
realize system dialogue actions and their associ-
ated content parameters. This requires training
data that allows the NLG to learn how to map

semantic representations for system dialogue acts
to one or more possible outputs (see Figure 1,
(Novikova et al., 2016)). Because neural gener-
ators often make semantic errors such as delet-
ing, repeating or hallucinating content, to date
previous work on task-oriented neural generation
has primarily focused on faithfully rendering the
meaning of the system’s dialogue act (Dusek and
Jurcı́cek, 2016b; Lampouras and Vlachos, 2016;
Mei et al., 2015; Wen et al., 2015).

INFORM(NAME[THE EAGLE], EATTYPE[COFFEE SHOP],
FOOD[ENGLISH], PRICERANGE[HIGH], CUSTOMER-
RATING[AVERAGE], AREA[CITY CENTRE], FAMI-
LYFRIENDLY[YES], NEAR[BURGER KING])
The three star coffee shop, The Eagle, located near Burger
King, gives families a high priced option for English food
in the city centre.
Let’s see what we can find on The Eagle. Right, The Eagle
is a coffee shop with a somewhat average rating. The Eagle
is kid friendly, also it’s an English restaurant and expensive,
also it is near Burger King in the city centre, you see?

Figure 1: Dialogue Act Meaning Representation
(MR) with content parameters and outputs

However, in many applications it is also desir-
able for generators to control the style of an ut-
terance independently of its content. For exam-
ple, in Figure 1, the first output uses more for-
mal language and complex syntactic structures,
as one might see in written language, while the
other uses simpler syntax and pragmatic markers
characteristic of oral language (Biber, 1991). In
this paper, we create several different sequence-
to-sequence models and compare how well they
can disentangle content and style. Controlling the
style of the output requires disentangling the con-
tent from the style, but previous neural models
aimed at achieving stylistic goals have not focused
on task-oriented dialogue where specific semantic
attributes and values must be communicated (as
per the MR in Figure 1), and where semantic fi-
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Personalities Realization

MEANING NAME[FITZBILLIES], EATTYPE[PUB], FOOD[ITALIAN], PRICERANGE[MODERATE],
REPRESENTATION
(MR)

CUSTOMER RATING[DECENT], AREA[RIVERSIDE], FAMILYFRIENDLY[NO],NEAR[’THE SOR-
RENTO’]

NO-AGG/
NO-PRAG

Fitzbillies is a pub. Fitzbillies has a decent rating. Fitzbillies is moderately priced. Fitzbillies is in
riverside. Fitzbillies is an Italian restaurant. Fitzbillies is not family friendly. Fitzbillies is near The
Sorrento.

AGREEABLE Let’s see what we can find on Fitzbillies. I see, well it is a pub with a decent rating, also it is an Italian
restaurant in riverside and moderately priced near The Sorrento, also it isn’t family friendly, you see?

DISAGREEABLE I mean, everybody knows that moderately priced Fitzbillies is in riverside with a decent rating. It’s near
The Sorrento. It isn’t family friendly. It is an Italian place. It is a pub.

CONSCIENTIOUS Let’s see what we can find on Fitzbillies. I see, well it is a pub with a decent rating, it isn’t kid friendly
and it’s moderately priced near The Sorrento and an Italian restaurant in riverside.

UNCONSCIENTIOUS Oh god yeah, I don’t know. Fitzbillies is a pub with a decent rating, also it is moderately priced near
The Sorrento and an Italian place in riverside and it isn’t kid friendly.

EXTRAVERT Basically, Fitzbillies is an Italian place near The Sorrento and actually moderately priced in riverside, it
has a decent rating, it isn’t kid friendly and it’s a pub, you know.

Table 1: Sample neural model output realizations for the same MR for PERSONAGE’s personalities

delity can be precisely measured.1

One of the main challenges is the lack of paral-
lel corpora realizing the same content with differ-
ent styles. Thus we create a large, novel parallel
corpus with specific style parameters and specific
semantics, by using an existing statistical genera-
tor, PERSONAGE (Mairesse and Walker, 2010), to
synthesize over 88,000 utterances in the restaurant
domain that vary in style according to psycholin-
guistic models of personality.2 PERSONAGE can
generate a very large number of stylistic variations
for any given dialogue act, thus yielding, to our
knowledge, the largest style-varied NLG training
corpus in existence. The strength of this new cor-
pus is that: (1) we can use the PERSONAGE gener-
ator to generate as much training data as we want;
(2) it allows us to systematically vary a specific
set of stylistic parameters and the network archi-
tectures; (3) it allows us to systematically test the
ability of different models to generate outputs that
faithfully realize both the style and content of the
training data.3

We develop novel neural models that vary the
amount of explicit stylistic supervision given to
the network, and we explore, for the first time,
explicit control of multiple interacting stylistic
parameters. We show that the no-supervision
(NO-SUP) model, a baseline sequence-to-sequence
model (Sutskever et al., 2014; Dusek and Jurcı́cek,
2016b), produces semantically correct outputs, but

1We leave a detailed review of related work to Section 6.
2Our stylistic variation for NLG corpus is available at:

nlds.soe.ucsc.edu/stylistic-variation-nlg
3 Section 4 quantifies the naturalness of PERSONAGE out-

puts.

eliminates much of the stylistic variation that it
saw in the training data. MODEL TOKEN provides
minimal supervision by allocating a latent variable
in the encoding as a label for each style, similar to
the use of language labels in machine translation
(Johnson et al., 2017). This model learns to gen-
erate coherent and stylistically varied output with-
out explicit exposure to language rules, but makes
more semantic errors. MODEL CONTEXT adds
another layer to provide an additional encoding
of individual stylistic parameters to the network.
We show that it performs best on both measures
of semantic fidelity and stylistic variation. The
results suggest that neural architectures can ben-
efit from explicit stylistic supervision, even with a
large training set.

2 Corpus Creation

We aim to systematically create a corpus that can
be used to test how different neural architectures
affect the ability of the trained model to disentan-
gle style from content, and faithfully produce se-
mantically correct utterances that vary style. We
use PERSONAGE, an existing statistical generator:
due to space, we briefly explain how it works,
referring the interested reader to Mairesse and
Walker (2010, 2011) for details.

PERSONAGE requires as input: (1) a meaning
representation (MR) of a dialogue act and its con-
tent parameters, and (2) a parameter file that tells
it how frequently to use each of its stylistic pa-
rameters. Sample model outputs are shown in the
second row of Figure 1 and in Table 1, illustrating
some stylistic variations PERSONAGE produces.

To generate our novel corpus, we utilize the
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MRs from the E2E Generation Challenge.4 The
MR in Figure 1 illustrates all 8 available attributes.
We added a dictionary entry for each attribute to
PERSONAGE so that it can express that attribute.5

These dictionary entries are syntactic representa-
tions for very simple sentences: the NO-AGG/NO-
PRAG row of Table 1 shows a sample realization
of each attribute in its own sentence based on its
dictionary entry.

Number of Attributes in MR
Dataset 3 4 5 6 7 8
TRAIN 0.13 0.30 0.29 0.22 0.06 0.01
TEST 0.02 0.04 0.06 0.15 0.35 0.37

Table 2: Percentage of the MRs in training and
test in terms of number of attributes in the MR

We took advantage of the setup of the E2E Gen-
eration Challenge and used their MRs, exactly du-
plicating their split between training, dev and test
MRs, because they ensured that the dev and test
MRs had not been seen in training. The frequen-
cies of longer utterances (more attribute MRs)
vary across train and test, with actual distribu-
tions in Table 2, showing how the test set was
designed to be challenging, while the test set in
Wen et al. (2015) averages less than 2 attributes
per MR (Nayak et al., 2017). We combine their
dev and training MRs resulting in 3784 unique
MRs in the training set, and generate 17,771 ref-
erence utterances per personality for a training set
size of 88,855 utterances. The test set consists of
278 unique MRs and we generate 5 references per
personality for a test size of 1,390 utterances.

The experiments are based on two types of pa-
rameters provided with PERSONAGE: aggregation
parameters and pragmatic parameters.6 The NO-
AGG/NO-PRAG row of Table 1 shows what PER-
SONAGE would output if it did not use any of its
stylistic parameters. The top half of Table 3 illus-
trates the aggregation parameters: these parame-
ters control how the NLG combines attributes into
sentences, e.g., whether it tries to create complex
sentences by combining attributes into phrases and

4http://www.macs.hw.ac.uk/
InteractionLab/E2E/

5PERSONAGE supports a one-to-many mapping from at-
tributes to elementary syntactic structures for expressing that
attribute, but here we use only one dictionary entry. PERSON-
AGE also allows for discourse relations such as justification or
contrast to hold between content items, but the E2E MRs do
not include such relations.

6We disable parameters related to content selection, syn-
tactic template selection and lexical choice.

Attribute Example
AGGREGATION OPERATIONS

PERIOD X serves Y. It is in Z.
“WITH” CUE X is in Y, with Z.
CONJUNCTION X is Y and it is Z. & X is Y, it is Z.
ALL MERGE X is Y, W and Z & X is Y in Z
“ALSO” CUE X has Y, also it has Z.

PRAGMATIC MARKERS
ACK DEFINITIVE right, ok
ACK JUSTIFICATION I see, well
ACK YEAH yeah
CONFIRMATION let’s see what we can find on X,

let’s see ....., did you say X?
INITIAL REJECTION mmm, I’m not sure, I don’t know.
COMPETENCE MIT. come on, obviously, everybody

knows that
FILLED PAUSE STATIVE err, I mean, mmhm
DOWN KIND OF kind of
DOWN LIKE like
DOWN AROUND around
EXCLAIM !
INDICATE SURPRISE oh
GENERAL SOFTENER sort of, somewhat, quite, rather
DOWN SUBORD I think that, I guess
EMPHASIZER really, basically, actually, just
EMPH YOU KNOW you know
EXPLETIVES oh god, damn, oh gosh, darn
IN GROUP MARKER pal, mate, buddy, friend
TAG QUESTION alright?, you see? ok?

Table 3: Aggregation and Pragmatic Operations

what types of combination operations it uses. The
pragmatic operators are shown in the second half
of Table 3. Each parameter value can be set to
high, low, or don’t care.

To use PERSONAGE to create training data map-
ping the same MR to multiple personality-based
variants, we set values for all of the parame-
ters in Table 3 using the stylistic models defined
by Mairesse and Walker (2010) for the following
Big Five personality traits: agreeable, disagree-
able, conscientiousness, unconscientiousness, and
extravert. Figure 2 shows that each personality
produces data that represents a stylistically dis-
tinct distribution. These models are probabilistic
and specified values are automatically broadened
within a range, thus each model can produce 10’s
of variations for each MR. Note that while each
personality type distribution can be characterized
by a single stylistic label (the personality), Fig-
ure 2 illustrates that each distribution is character-
ized by multiple interacting stylistic parameters.

Each parameter modifies the linguistic structure
in order to create distributionally different subcor-
pora. To see the effect of each personality us-
ing a different set of aggregation operators, cross-
reference the aggregation operations in Table 3
with an examination of the outputs in Table 1. The
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(a) Aggregation Operations

(b) Pragmatic Markers

Figure 2: Frequency of the Top 2 most frequent
Aggregation and Pragmatic Markers in Train

simplest choice for aggregation does not combine
attributes at all: this is represented by the PERIOD

operator, which, if used persistently, results in an
output with each content item in its own sentence
as in the NO-AGG/NO-PRAG row, or the content
being realized over multiple sentences as in the
DISAGREEABLE row (5 sentences). However, if
the other aggregation operations have a high value,
PERSONAGE prefers to combine simple sentences
into complex ones whenever it can, e.g., the EX-
TRAVERT personality example in Table 1 com-
bines all the attributes into a single sentence by
repeated use of the ALL MERGE and CONJUNC-
TION operations. The CONSCIENTIOUS row in Ta-
ble 1 illustrates the use of the WITH-CUE aggre-
gation operation, e.g., with a decent rating. Both
the AGREEABLE and CONSCIENTIOUS rows in Ta-
ble 1 provide examples of the ALSO-CUE aggre-
gation operation. In PERSONAGE, the aggrega-
tion operations are defined as syntactic operations
on the dictionary entry’s syntactic tree. Thus to
mimic these operations correctly, the neural model

must derive latent representations that function as
though they also operate on syntactic trees.

The pragmatic operators in the second half of
Table 3 are intended to achieve particular prag-
matic effects in the generated outputs: for exam-
ple the use of a hedge such as sort of softens a
claim and affects perceptions of friendliness and
politeness (Brown and Levinson, 1987), while the
exaggeration associated with emphasizers like ac-
tually, basically, really influences perceptions of
extraversion and enthusiasm (Oberlander and Gill,
2004; Dewaele and Furnham, 1999). In PERSON-
AGE, the pragmatic parameters are attached to the
syntactic tree at insertion points defined by syn-
tactic constraints, e.g., EMPHASIZERS are adverbs
that can occur sentence initially or before a scalar
adjective. Each personality model uses a variety
of pragmatic parameters. Figure 2 shows how
these markers distribute differently across person-
ality models, with examples in Table 1.

3 Model Architectures

Our neural generation models build on the open-
source sequence-to-sequence (seq2seq) TGen sys-
tem (Dusek and Jurcı́cek, 2016a)7, implemented
in Tensorflow (Abadi et al., 2016). The system is
based on seq2seq generation with attention (Bah-
danau et al., 2014; Sutskever et al., 2014), and uses
a sequence of LSTMs (Hochreiter and Schmidhu-
ber, 1997) for the encoder and decoder, combined
with beam-search and reranking for output tuning.

The input to TGen are dialogue acts for each
system action (such as inform) and a set of at-
tribute slots (such as rating) and their values (such
as high for attribute rating). The system inte-
grates sentence planning and surface realization
into a single step to produce natural language out-
puts. To preprocess the corpus of MR/utterance
pairs, attributes that take on proper-noun values
are delexicalized during training i.e., name and
near. During the generation phase on the test set,
a post-processing step re-lexicalizes the outputs.
The MRs (and resultant embeddings) are sorted
internally by dialogue act tag and attribute name.

The models are designed to systematically test
the effects of increasing the level of supervision,
with novel architectural additions to accommodate
these changes. We use the default parameter set-
tings from TGen (Dusek and Jurcı́cek, 2016a) with
batch size 20 and beam size 10, and use 2,000

7https://github.com/UFAL-DSG/tgen
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training instances for parameter tuning to set the
number of training epochs and learning rate. Fig-
ure 3 summarizes the architectures.

Figure 3: Neural Network Model Architecture

MODEL NOSUPERVISION. The simplest model
follows the baseline TGen architecture (Dusek and
Jurcı́cek, 2016b), with training using all 88K utter-
ances in a single pool for up to 14 epochs based on
loss monitoring for the decoder and reranker.
MODEL TOKEN. The second model adds a token
of additional supervision by introducing a new di-
alogue act, convert, to encode personality, inspired
by the use of a language token for machine trans-
lation (Johnson et al., 2017). Unlike other work
that uses a single token to control generator output
(Fan et al., 2017; Hu et al., 2017), the personality
token encodes a constellation of different parame-
ters that define the style of the matching reference.
Uniquely here, the model attempts to simultane-
ously control multiple style variables that may in-
teract in different ways. Again, we monitor loss
on the validation set and training continues for up
to 14 epochs for the decoder and reranker.
MODEL CONTEXT. The most complex model in-
troduces a context vector, as shown at the top right
of Figure 3. The vector explicitly encodes a set of
36 style parameters from Table 3. The parameters
for each reference text are encoded as a boolean
vector, and a feed-forward network is added as a
context encoder, taking the vector as input to the
hidden state of the encoder and making the param-
eters available at every time step to a multiplica-
tive attention unit. The activations of the fully
connected nodes are represented as an additional

time step of the encoder of the seq2seq architec-
ture (Sutskever et al., 2014). The attention (Bah-
danau et al., 2014) is computed over all of the en-
coder states and the hidden state of the fully con-
nected network. Again, we set the learning rate,
alpha decay, and maximum training epochs (up to
20) based on loss monitoring on the validation set.

4 Quantitative Results

Here, we present results on controlling stylistic
variation while maintaining semantic fidelity.

4.1 Evaluating Semantic Quality
It is widely agreed that new evaluation metrics
are needed for NLG (Langkilde-Geary, 2002; Belz
and Reiter, 2006; Bangalore et al., 2000; Novikova
et al., 2017a). We first present automated met-
rics used in NLG to measure how well model out-
puts compare to PERSONAGE input, then intro-
duce novel metrics designed to fill the gap left by
current evaluation metrics.
Automatic Metrics. The automatic evaluation
uses the E2E generation challenge script.8 Ta-
ble 4 summarizes the results for BLEU (n-gram
precision), NIST (weighted n-gram precision),
METEOR (n-grams with synonym recall), and
ROUGE (n-gram recall). Although the differences
in metrics are small, MODEL CONTEXT shows a
slight improvement across all of the metrics.

Model BLEU NIST METEOR ROUGE L
NOSUP 0.2774 4.2859 0.3488 0.4567
TOKEN 0.3464 4.9285 0.3648 0.5016
CONTEXT 0.3766 5.3437 0.3964 0.5255

Table 4: Automated Metric Evaluation

Deletions, Repetitions, and Substitutions. Auto-
mated evaluation metrics are not informative about
the quality of the outputs, and penalize models for
introducing stylistic variation. We thus develop
new scripts to automatically evaluate the types
common types of neural generation errors: dele-
tions (failing to realize a value), repeats (repeating
a value), and substitutions (mentioning an attribute
with an incorrect value).

Table 5 shows ratios for the number of dele-
tions, repeats, and substitutions for each model for
the test set of 1,390 total realizations (278 unique
MRs, each realized once for each of the 5 person-
alities). The error counts are split by personal-
ity, and normalized by the number of unique MRs

8https://github.com/tuetschek/
e2e-metrics
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(278). Smaller ratios are preferable, indicating
fewer errors. Note that because MODEL NOSUP

does not encode a personality parameter, the error
values are the same across each personality (aver-
ages across the full test set).

The table shows that MODEL NOSUP makes
very few semantic errors (we show later that this
is at the cost of limited stylistic variation). Across
all error types, MODEL CONTEXT makes signif-
icantly fewer errors than MODEL TOKEN, sug-
gesting that its additional explicit parameters help
avoid semantic errors. The last row quantifies
whether some personalities are harder to model: it
shows that across all models, DISAGREEABLE and
EXTRAVERT have the most errors, while CONSCI-
ENTIOUS has the fewest.

Model AGREE CONSC DISAG EXTRA UNCON

DELETIONS
NOSUP 0.01 0.01 0.01 0.01 0.01
TOKEN 0.27 0.22 0.87 0.74 0.31
CONTEXT 0.08 0.01 0.14 0.08 0.01

REPETITIONS
NOSUP 0.00 0.00 0.00 0.00 0.00
TOKEN 0.29 0.12 0.81 0.46 0.28
CONTEXT 0.02 0.00 0.14 0.00 0.00

SUBSTITUTIONS
NOSUP 0.10 0.10 0.10 0.10 0.10
TOKEN 0.34 0.41 0.22 0.35 0.29
CONTEXT 0.03 0.03 0.00 0.00 0.03
All 0.68 0.35 1.96 1.29 0.61

Table 5: Ratio of Model Errors by Personality

4.2 Evaluating Stylistic Variation

Here we characterize the fidelity of stylistic varia-
tion across different model outputs.
Entropy. Shannon text entropy quantifies the
amount of variation in the output produced by each
model. We calculate entropy as −∑

x∈S
freq
total ∗

log2(
freq
total ), where S is the set of unique words in

all outputs generated by the model, freq is the
frequency of a term, and total counts the num-
ber of terms in all references. Table 6 shows
that the training data has the highest entropy, but
MODEL CONTEXT performs the best at preserv-
ing the variation seen in the training data. Row
NOSUP shows that MODEL NOSUP makes the
fewest semantic errors, but produces the least var-
ied output. MODEL CONTEXT, informed by the
explicit stylistic context encoding, makes compa-
rably few semantic errors, while producing stylis-
tically varied output with high entropy.

Pragmatic Marker Usage. To measure whether

Model 1-grams 1-2grams 1-3grams
PERSONAGETRAIN 5.97 7.95 9.34
NOSUP 5.38 6.90 7.87
TOKEN 5.67 7.35 8.47
CONTEXT 5.70 7.42 8.58

Table 6: Shannon Text Entropy

the trained models faithfully reproduce the prag-
matic markers for each personality, we count each
pragmatic marker in Table 3 in the output, aver-
age the counts and compute the Pearson correla-
tion between the PERSONAGE references and the
outputs for each model and personality. See Table
7 (all correlations significant with p ≤ 0.001).

Model AGREE CONSC DISAG EXTRA UNCON
NOSUP 0.05 0.59 -0.07 -0.06 -0.11
TOKEN 0.35 0.66 0.31 0.57 0.53
CONTEXT 0.28 0.67 0.40 0.76 0.63

Table 7: Correlations between PERSONAGE and
models for pragmatic markers in Table 3

Table 7 shows that MODEL CONTEXT has the
highest correlation with the training data, for all
personalities (except AGREEABLE, with signifi-
cant margins, and CONSCIENTIOUS, which is the
easiest personality to model, with a margin of
0.01). While MODEL NOSUP shows positive cor-
relation with AGREEABLE and CONSCIENTIOUS,
it shows negative correlation with the PERSON-
AGE inputs for DISAGREEABLE, EXTRAVERT,
and UNCONSCIENTIOUS. The pragmatic marker
distributions for PERSONAGE train in Figure
2 indicates that the CONSCIENTIOUS personal-
ity most frequently uses acknowledgement-justify
(i.e., “well”, “i see”), and request confirmation
(i.e., “did you say X?”), which are less complex
to introduce into a realization since they often lie
at the beginning or end of a sentence, allowing the
simple MODEL NOSUP to learn them.9

Aggregation. To measure the ability of each
model to aggregate, we average the counts of each
aggregation operation for each model and person-
ality and compute the Pearson correlation between
the output and the PERSONAGE training data.

The correlations in Table 8 (all significant
with p ≤ 0.001) show that MODEL CONTEXT

has a higher correlation with PERSONAGE than
the two simpler models (except for DISAGREE-

9We verified that there is not a high correlation between
every set of pragmatic markers: different personalities do not
correlate, e.g., -0.078 for PERSONAGE DISAGREEABLE and
MODEL TOKEN AGREEABLE.
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Model AGREE CONSC DISAG EXTRA UNCON
NOSUP 0.78 0.80 0.13 0.42 0.69
TOKEN 0.74 0.74 0.57 0.56 0.60
CONTEXT 0.83 0.83 0.55 0.66 0.70

Table 8: Correlations between PERSONAGE and
models for aggregation operations in Table 3

ABLE, where MODEL TOKEN is higher by 0.02).
Here, MODEL NOSUP actually frequently out-
performs the more informed MODEL TOKEN.
Note that all personalities use aggregation, even
thought not all personalities use pragmatic mark-
ers, and so even without a special personality to-
ken, MODEL NOSUP is able to faithfully repro-
duce aggregation operations. In fact, since the
correlations are frequently higher than those for
MODEL TOKEN, we hypothesize that is able to
more accurately focus on aggregation (common to
all personalities) than stylistic differences, which
MODEL TOKEN is able to produce.

5 Qualitative Analysis

Here, we present two evaluations aimed at quali-
tative analysis of our outputs.
Crowdsourcing Personality Judgements.
Based on our quantitative results, we select
MODEL CONTEXT as the best-performing model
and conduct an evaluation to test if humans
can distinguish the personalities exhibited. We
randomly select a set of 10 unique MRs from
the PERSONAGE training data along with their
corresponding reference texts for each person-
ality (50 items in total), and 30 unique MRs
MODEL CONTEXT outputs (150 items in to-
tal).10 We construct a HIT on Mechanical Turk,
presenting a single output (either PERSONAGE

or MODEL CONTEXT), and ask 5 Turkers to
label the output using the Ten Item Personality
Inventory (TIPI) (Gosling et al., 2003). The TIPI
is a ten-item measure of the Big Five personality
dimensions, consisting of two items for each
of the five dimensions, one that matches the
dimension, and one that is the reverse of it, and
a scale that ranges from 1 (disagree strongly) to
7 (agree strongly). To qualify Turkers for the
task, we ask that they first complete a TIPI on
themselves, to help ensure that they understand it.

Table 9 presents results as aggregated counts
for the number of times at least 3 out of the 5

10Note that we use fewer PERSONAGE references simply to
validate that our personalities are distinguishable in training,
but will more rigorously evaluate our model in future work.

PERSONAGE MODEL CONTEXT
Person. Ratio

Correct
Avg.
Rating

Nat.
Rating

Ratio
Correct

Avg.
Rating

Nat.
Rating

AGREE 0.60 4.04 5.22 0.50 4.04 4.69
DISAGR 0.80 4.76 4.24 0.63 4.03 4.39
CONSC 1.00 5.08 5.60 0.97 5.19 5.18
UNCON 0.70 4.34 4.36 0.17 3.31 4.58
EXTRA 0.90 5.34 5.22 0.80 4.76 4.61

Table 9: Percentage of Correct Items and Average
Ratings and Naturalness Scores for Each Person-
ality (PERSONAGE vs. MODEL CONTEXT)

Turkers rated the matching item for that person-
ality higher than the reverse item (Ratio Correct),
the average rating the correct item received (range
between 1-7), and an average “naturalness” score
for the output (also rated 1-7). From the table, we
can see that for PERSONAGE training data, all of
the personalities have a correct ratio that is higher
than 0.5. The MODEL CONTEXT outputs exhibit
the same trend except for UNCONSCIENTIOUS and
AGREEABLE, where the correct ratio is only 0.17
and 0.50, respectively (they also have the lowest
correct ratio for the original PERSONAGE data).

Table 9 also presents results for naturalness for
both the reference and generated utterances, show-
ing that both achieve decent scores for naturalness
(on a scale of 1-7). While human utterances would
probably be judged more natural, it is not at all
clear that similar experiments could be done with
human generated utterances, where it is difficult to
enforce the same amount of experimental control.

Generalizing to Multiple Personalities. A final
experiment explores whether the models learn ad-
ditional stylistic generalizations not seen in train-
ing. We train a version of MODEL TOKEN,
as before on instances with single personalities,
but such that it can be used to generate output
with a combination of two personalities. The
experiment uses the original training data for
MODEL TOKEN, but uses an expanded test set
where the MR includes two personality CONVERT

tags. We pair each personality with all personali-
ties except its exact opposite.

Sample outputs are given in Table 10 for the
DISAGREEABLE personality, which is one of the
most distinct in terms of aggregation and prag-
matic marker insertion, along with occurrence
counts (frequency shown scaled down by 100) of
the operations that it does most frequently: specif-
ically, period aggregation and expletive pragmatic
markers. Rows 1-2 shows the counts and an exam-
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Persona Period
Agg.

Explet
Prag.

Example

1 DISAG 5.71 2.26 Browns Cambridge is damn mod-
erately priced, also it’s in city cen-
tre. It is a pub. It is an italian place.
It is near Adriatic. It is damn fam-
ily friendly.

2 CONSC 0.60 0.02 Let’s see what we can find on
Browns Cambridge. I see, well it is
a pub, also it is moderately priced,
an italian restaurant near Adriatic
and family friendly in city centre.

3 DISAG+
CONSC

3.81 0.84 Browns Cambridge is an italian
place and moderately priced. It is
near Adriatic. It is kid friendly. It
is a pub. It is in riverside.

Table 10: Multiple-Personality Generation Out-
put based on DISAGREEABLE

ple of each personality on its own. The combined
personality output is shown in Row 3. We can see
from the table that while CONSCIENTIOUS on its
own realizes the content in two sentences, period
aggregation is much more prevalent in the DIS-
AGREEABLE + CONSCIENTIOUS example, with
the same content being realized in 5 sentences.
Also, we see that some of the expletives origi-
nally in DISAGREEABLE are dropped in the com-
bined output. This suggests that the model learns
a combined representation unlike what it has seen
in train, which we will explore in future work.

6 Related Work and Conclusion

The restaurant domain has long been a testbed for
conversational agents with much earlier work on
NLG (Howcroft et al., 2013; Stent et al., 2004;
Devillers et al., 2004; Gašic et al., 2008; Mairesse
et al., 2010; Higashinaka et al., 2007), so it is
not surprising that recent work using neural gen-
eration methods has also focused on the restau-
rant domain (Wen et al., 2015; Mei et al., 2015;
Dusek and Jurcı́cek, 2016b; Lampouras and Vla-
chos, 2016; Juraska et al., 2018). The restaurant
domain is ideal for testing generation models be-
cause sentences can range from extremely simple
to more complex forms that exhibit discourse rela-
tions such as justification or contrast (Stent et al.,
2004). Most recent work focuses on achieving se-
mantic fidelity for simpler syntactic structures, al-
though there has also been a focus on crowdsourc-
ing or harvesting training data that exhibits more
stylistic variation (Novikova et al., 2017; Nayak
et al., 2017; Oraby et al., 2017).

Most previous work on neural stylistic gener-
ation has been carried out in the framework of
“style transfer”: this work is hampered by the

lack of parallel corpora, the difficulty of evaluat-
ing content preservation (semantic fidelity), and
the challenges with measuring whether the outputs
realize a particular style. Previous experiments
attempt to control the sentiment and verb tense
of generated movie review sentences (Hu et al.,
2017), the content preservation and style transfer
of news headlines and product review sentences
(Fu et al., 2018), multiple automatically extracted
style attributes along with sentiment and sentence
theme for movie reviews (Ficler and Goldberg,
2017), sentiment, fluency and semantic equiva-
lence (Shen et al., 2017), utterance length and
topic (Fan et al., 2017), and the personality of cus-
tomer care utterances in dialogue (Herzig et al.,
2017). However, to our knowledge, no previous
work evaluates simultaneous achievement of mul-
tiple targets as we do. Recent work introduces a
large parallel corpus that varies on the formality
dimension, and introduces several novel evalua-
tion metrics, including a custom trained model for
measuring semantic fidelity (Rao and Tetreault).

Other work has also used context representa-
tions, but not in the way that we do here. In gen-
eral, these have been used to incorporate a repre-
sentation of the prior dialogue into response gen-
eration. Sordoni et al. (2015) propose a basic ap-
proach where they incorporate previous utterances
as a bag of words model and use a feed-forward
neural network to inject a fixed sized context vec-
tor into the LSTM cell of the encoder. Ghosh et al.
(2016) proposed a modified LSTM cell with an ad-
ditional gate that incorporates the previous context
as input during encoding. Our context representa-
tion encodes stylistic parameters.

This paper evaluates the ability of different neu-
ral architectures to faithfully render the semantic
content of an utterance while simultaneously ex-
hibiting stylistic variations characteristic of Big
Five personalities. We created a novel parallel
training corpus of over 88,000 meaning represen-
tations in the restaurant domain, and matched ref-
erence outputs by using an existing statistical nat-
ural language generator, PERSONAGE (Mairesse
and Walker, 2010). We design three neural mod-
els that systematically increase the stylistic en-
codings given to the network, and show that
MODEL CONTEXT benefits from the greatest ex-
plicit stylistic supervision, producing outputs that
both preserve semantic fidelity and exhibit distin-
guishable personality styles.
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Abstract

Natural language generation (NLG) is
an important component in spoken dia-
log systems (SDSs). A model for NLG
involves sequence to sequence learning.
State-of-the-art NLG models are built us-
ing recurrent neural network (RNN) based
sequence to sequence models (Dušek and
Jurcicek, 2016a). Convolutional sequence
to sequence based models have been used
in the domain of machine translation but
their application as natural language gen-
erators in dialogue systems is still unex-
plored. In this work, we propose a novel
approach to NLG using convolutional neu-
ral network (CNN) based sequence to se-
quence learning. CNN-based approach al-
lows to build a hierarchical model which
encapsulates dependencies between words
via shorter path unlike RNNs. In con-
trast to recurrent models, convolutional
approach allows for efficient utilization of
computational resources by parallelizing
computations over all elements, and eases
the learning process by applying constant
number of nonlinearities. We also pro-
pose to use CNN-based reranker for ob-
taining responses having semantic corre-
spondence with input dialogue acts. The
proposed model is capable of entrainment.
Studies using a standard dataset shows the
effectiveness of the proposed CNN-based
approach to NLG.

1 Introduction

In task-specific spoken dialogue systems (SDS),
the function of natural language generation (NLG)
components is to generate natural language re-
sponse from a dialogue act (DA) (Young et al.,
2009). DA is a meaning representation specify-
ing actions along with various attributes and their

values. NLG plays a very important role in real-
izing the overall quality of the SDS. Entrainment
to users way of speaking is essential for generat-
ing more natural and high quality natural language
responses. Most of the approaches for incorpo-
rating entrainment are rule-based models. Recent
advances have been in the direction of develop-
ing a fully trainable context aware NLG model
(Dušek and Jurcicek, 2016a). However, all these
approaches are based on recurrent sequence to se-
quence architecture.

Convolutional neural networks are largely un-
explored in the domain of NLG for SDS inspite
of having several advantages (Waibel et al., 1989;
LeCun and Bengio, 1995). Recurrent networks de-
pend on the computations of previous time step
and thus inhibits parallelization within a sequence.
Convolutional networks on the other hand, allows
parallelization within a sequence resulting in ef-
ficient use of GPUs and other computational re-
sources (Gehring et al., 2017). Multi-block (multi-
layer) convolutional networks enable controlling
the upper bound on the effective context size and
form a hierarchical structure. In contrast to the
sequential structure of RNNs, hierarchical struc-
ture provides shorter paths for modeling long-
range dependencies. Recurrent networks apply
variable number of nonlinearities to the inputs,
whereas convolutional networks apply fixed num-
ber of nonlinearities which simplifies the learning
(Gehring et al., 2017).

In this paper, we present a novel approach
of using convolutional sequence to sequence
model (ConvSeq2Seq) for the task of NLG. Con-
vSeq2Seq generator is an encoder decoder model
where convolutional neural networks (CNNs) are
used to build both encoder and decoder states. It
uses multi-step attention mechanism. In the de-
coding phase, beam search is implemented and n-
best natural language responses are chosen. The
n-best beam search responses from ConvSeq2Seq
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generator may have some missing and/or irrele-
vant information. To address this, we propose to
rank the n-best outputs from ConvSeq2Seq gener-
ator using convolutional reranker (CNN reranker).
CNN reranker implements one dimensional con-
volution on beam search responses and generates
binary vectors. These binary vectors are used
to penalize the responses having missing and/or
irrelevant information. We evaluate our model
on the Alex Context natural language generation
(NLG) dataset of Dušek and Jurcicek (2016a) and
demonstrate that our model outperforms the RNN-
based model of Dušek and Jurcicek (2016a) (TGen
model) in automatic metrics. Training time of pro-
posed model is observed to be significantly lower
than TGen model. The main contributions of this
work are (i) ConvSeq2Seq generator for NLG and
(ii) CNN-based reranker for ranking n-best beam
search responses for obtaining semantically appro-
priate responses with respect to input DA.

The rest of this paper is organized as follows.
Section 2 gives a brief review of different ap-
proaches to NLG. In Section 3, proposed convolu-
tional natural language generator (ConvSeq2Seq)
is described along with CNN reranker. The ex-
perimental studies are presented in Section 4 and
conclusions are given in Section 5.

2 Related Work

Natural language generation (NLG) task is divided
into two phases: sentence planning and surface re-
alization. Sentence planning generates intermedi-
ate structure such as dependency trees or templates
modeling the input semantic symbols. Surface re-
alization phase converts the intermediate structure
into the final natural language response.

Conventional approaches to NLG are rule based
approaches (Stent et al., 2004; Walker et al.,
2002). Most recent NLG approaches include se-
quence to sequence RNN models (Wen et al.,
2015a,b; Dušek and Jurcicek, 2016b,a). Sequence
to sequence learning is to map the input sequence
to a fixed sized vector using one RNN, and then to
map the vector to the target sequence with another
RNN. In (Wen et al., 2015a), a sequence to se-
quence RNN model is used with some decay factor
to avoid vanishing gradient problem. The n-best
outputs generated by the model are ranked using a
CNN-based reranker. The model also uses a back-
ward sequence to sequence RNN reranker to fur-
ther improve the performance. Model proposed by

Wen et al. (2015b) is a statistical language gener-
ator based on a semantically controlled long-short
term memory (LSTM) structure. The LSTM gen-
erator can learn from unaligned data by jointly op-
timizing sentence planning and surface realization
using a simple cross entropy training criterion, and
language variation can be easily achieved by sam-
pling from output candidates.

Model proposed by Dušek and Jurcicek (2016b)
serves as a sequence to sequence generation model
for SDS which doesn’t take into account the con-
text. The model uses single layer sequence to se-
quence RNN encoder decoder architecture along
with attention mechanism to generate n-best out-
put utterances. It then uses RNN reranker to rank
the n-best outputs of generator to get the utterance
which best describes the input DA. The model can
also be used to generate deep syntax trees which
can be converted to output utterance using a sur-
face realization mechanism. This model is context
unaware because it takes into account only the in-
put DA and no preceding user utterance(s). This
leads to generation of very rigid responses and also
inhibits flexible interactions. Context awareness
adapts/entrains to the user’s way of speaking and
thereby generates responses of high quality and
naturalness. The semantic meaning which is re-
quired to be given in response to a query is very
well modelled if context awareness is taken into
account. This leads to generation of more infor-
mative response.

Model proposed by Dušek and Jurcicek (2016a)
serves as a baseline sequence to sequence gener-
ation model (TGen model) for SDS which takes
into account the context. The model takes into
account the preceding user utterance while gener-
ating natural language output. The model imple-
mented three modifications to the model proposed
by Dušek and Jurcicek (2016b). The first modi-
fication was prepending context to the input DAs.
The second modification was implementing a sep-
arate encoder for user utterances/contexts. The
third modification was implementing a N-gram
match reranker. This reranker is based on n-gram
precision scores and promotes responses having
phrase overlaps with user utterances (Dušek and
Jurcicek, 2016a).

In the next section, we present the proposed
CNN-based sequence to sequence generator for
NLG.
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Figure 1: Pipeline of the proposed convolutional NLG model.

3 Proposed Approach

The pipeline of the proposed approach for NLG
is shown in Figure 1. Input DA with prepended
context is first given to convolutional sequence
to sequence generator (ConvSeq2Seq) to get n-
best natural language responses or hypotheses (n
is beam size). These n-best hypotheses and binary
vector representation of input DA are given as in-
put to CNN reranker to get the misfit penalties of
the hypotheses. The n-best hypotheses and con-
text user utterance are given as input to the N-gram
match reranker to get bigram precision scores of
hypotheses. Final rank of each hypothesis i where
1 ≤ i ≤ n is calculated as follows:

ranki = log probabilityi

+(ω ∗ bigram precisioni)

−(W ∗misfit penaltyi)
Here, we get log probabilities from ConvSeq2Seq
generator, bigram precision scores from N-gram
match reranker and misfit penalties from CNN
reranker. Here, ω and W are constants. We im-
plement the N-gram match reranker as given by
Dušek and Jurcicek (2016a). We describe the pro-
posed convolutional sequence to sequence gener-
ator in Section 3.1 and convolutional reranker in
Section 3.2.

3.1 ConvSeq2Seq Generator
The proposed sequence to sequence generator is
based on convolutional sequence to sequence ap-
proach proposed by Gehring et al. (2017)1. It

1We use the implementation in the pytorch framework
(Gehring et al., 2017)

is a CNN-based encoder decoder architecture.
Figure 2 shows the working of proposed Con-
vSeq2Seq generator on an input instance from
training dataset. In this architecture, CNNs are
used to compute the encoder states and decoder
states. This architecture is based on succession
of convolutional blocks/layers. Input sequence is
represented as a combination of word and posi-
tion embeddings. These embeddings are operated
upon by first convolutional block and gated lin-
ear units (GLUs) to get the outputs for the first
block. This can be seen in Figure 2 where only
one convolutional block is shown for representa-
tion purpose. The output from first block is input
to the second convolutional block and this succes-
sion follows till the last convolutional block.

Stacking of several convolutional layers/blocks
allows to increase and control the effective context
size. For example, stacking 10 layers of convolu-
tional blocks, each having a kernel width of k=4,
results in effective context size of 31 elements.
Each output is dependent on 31 inputs. Stack-
ing of several convolutional layers/blocks results
in a hierarchical structure. In hierarchical struc-
ture, nearby elements interact at lower blocks and
distant elements at higher blocks. It provides a
shorter path for modeling long-range dependen-
cies and eases discovery of compositional struc-
ture in sequences compared to sequential structure
of RNNs. For example, to model dependencies
between n words, only O (nk ) convolutional op-
erations would be required by CNN in contrast
to O(n) operations in RNN. RNNs over-process
the first word and under-process the last word,
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Figure 2: Working of ConvSeq2Seq generator on an input instance from training dataset. Here, for
representation purpose, encoder and decoder consists of only one convolutional layer with kernel width
k=3. The encoder input sequence x =(how, far, is, that, inform, distance, X-distance) comprises of user
context “how far is that” prepended to input DA “inform distance X-distance”.

whereas a constant number of kernels and nonlin-
earities are applied to the inputs of CNN which
eases the learning process (Gehring et al., 2017).

The ConvSeq2Seq model uses position embed-
dings in addition to word embeddings in order to
get a sense of which part of the input sequence
it is currently processing (Gehring et al., 2017).
Let e = (w1 + p1,. . . ,ws + ps) be the input se-
quence representation, where w = (w1,. . . ,ws) and
p = (p1,. . . ,ps) are the the word embeddings and
positional embeddings of the input sequence x =
(x1,. . . ,xs) (having s elements) to the encoder net-
work respectively. Intermediate states are com-
puted based on a fixed number of input elements.

In encoding phase, input is padded with k−1
2 ele-

ments on the left and right side with zero vectors.
For each block l, the output zl = (zl1,. . . ,zls) is com-
puted as follows:

zli = ν(Wl
z[z

l−1
i−k/2, . . . , z

l−1
i+k/2] + blz) + zl−1

i

Here, [zl−1
i−k/2, . . . , z

l−1
i+k/2] is the input A ∈ Rkd

from the previous block, Wl
z ∈ R2d×kd, blz ∈ R2d

are parameters of convolution kernel and d is em-
bedding dimension. Let B ∈ R2d be the output of
convolution kernel. ν() is gated linear unit(GLU)
which is the nonlinearity function applied to the
output B of convolution kernel. Let zu be the en-
coder output from the last block u.
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Figure 3: 19 classes of CNN reranker.

Let g = (g1,. . . ,gt) be the representation of the
sequence that is being fed to the decoder network.
Computation of g is similar to that of encoder net-
work. Input to decoder is padded with k-1 ele-
ments on both left and right side with zero vectors
to prevent decoder from having access to future
information. As a result, last k-1 intermediate de-
coder outputs are removed. In decoding phase, for
each block l, the output hl = (hl1,. . . ,hlt) is com-
puted as follows:

qli = ν(Wl
q[h

l−1
i−k+1, . . . , h

l−1
i ] + blq) (1)

dli = Wl
dq

l
i + bld + gi (2)

alij =
exp(dli.z

u
j )∑s

m=1 exp(d
l
i.z

u
m)

(3)

cli =
s∑

j=1

alij(z
u
j + ej) (4)

hli = cli + qli + hl−1
i (5)

Here, ql = (ql1, . . . , q
l
t) is the intermediate decoder

output and its computation is similar to that of en-
coder network. For computing attention, current
intermediate decoder state qli is combined with the
embedding of the previous target element gi as
shown in Equation (2). Equation (3) computes at-
tention of i-th decoder state and j-th encoder out-
put element for the l-th decoder block. Equa-
tion (4) computes the conditional input which is
weighted sum of combination of encoder outputs
and input embeddings. Equation (5) computes the
current decoder output which is combination of
conditional input, intermediate decoder output and
previous layer decoder output. Let hLi be the de-
coder output of i-th element and the final decoding
block L. Distribution over T possible next target
elements yi+1 is computed as follows:

p(yi+1|y1, . . . , yi, x) = ζ(Woh
L
i + bo) ∈ RT

Here, ζ is softmax function, Wo and bo are the
weights and bias of fully connected linear layer.

3.2 CNN Reranker

The n-best beam search responses from Con-
vSeq2Seq model may have missing information

and/or irrelevant information. CNN reranker
reranks the n-best beam search responses and
heavily penalizes those responses which are not
semantically in correspondence with the input DA.
Responses having missing information and/or ir-
relevant information are heavily penalized. Con-
volutional networks are excellent feature extrac-
tors and have achieved state-of-the-art results in
many text classification and sentence-level classi-
fication tasks such as sentiment analysis, question
classification, etc (Kim, 2014; Kalchbrenner et al.,
2014). This classifier takes as input a natural lan-
guage response and outputs a binary vector. Each
element of binary vector is a binary decision on
the presence of DA type or slot-value combina-
tions. For the dataset which we have used (Dušek
and Jurcicek, 2016a), there are 19 such classes of
DA types and slot-value combinations. These 19
classes are shown in Figure 3.

Input DAs are converted to similar binary vec-
tor. Hamming distance between the classifier out-
put and binary vector representation of input DA
is considered as reranking penalty. The weighted
reranking penalties of all the n-best responses are
subtracted from their log-probabilities similar to
Dušek and Jurcicek (2016a).

The architecture and working of the CNN
reranker on an input instance from training dataset
is shown in Figure 4. It is based on the CNN ar-
chitecture proposed for sentence classification by
Kim (2014). Input is a natural language response
x = (x1, x2, . . . , xn) where xi’s are word embed-
dings each having m dimensions, resulting in a in-
put matrix of n×m dimensions. Each filter has the
width equal to the size of word embeddings, i.e.,
m and its height specifies the number of words it
will operate on. This one dimensional convolution
is followed by applying activation function and 1-
max pooling. The resulting feature vector has the
dimension equal to the total number of filters. This
penultimate layer is operated upon by a logistic
layer to output the binary vector. Given penulti-
mate layer feature vector t, the output binary vec-
tor y is computed as:

y = σ(t.Wf + b)
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Figure 4: Architecture and working of the CNN reranker on an input instance from training dataset.

Here, σ is sigmoid activation function, Wf is the
weight matrix and b is the bias vector.

The model proposed by Wen et al. (2015a)
implements a CNN reranker that uses one-
dimensional filters where convolutional operations
are carried out on segments of words. It uses
padding vectors. Proposed CNN reranker uses
two-dimensional filters which operate on complete
words rather than segments of words. This is more
intuitive and meaningful. Also, no padding is re-
quired. The feature vector from proposed CNN
reranker is v-dimensional whereas CNN reranker
by Wen et al. (2015a) outputs longer feature vec-
tors having dimension equal to v ∗ m, where v
= total number of filters and m = embedding
size. Thus, proposed CNN reranker requires lesser
number of computations.

4 Experimental Studies
The studies in this work are performed on
Alex Context natural language generation (NLG)
dataset (Dušek and Jurcicek, 2016a). This dataset
is intended for fully trainable NLG systems in
task-oriented spoken dialogue systems (SDS). It
is in the domain of public transport information
and has four dialogue act (DA) types namely re-
quest, inform, iconfirm and inform no match. It
contains 1859 data instances each having 3 tar-
get responses. Each data instance consists of a
preceding context (user utterance), source mean-
ing representation and target natural language re-
sponses/sentences. Data is delexicalized and split
into training, validation and test sets as done by
Dušek and Jurcicek (2016a). For training and val-
idation, the three paraphrases are used as separate
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instances. For evaluation they are used as three
target references.

Input to our ConvSeq2Seq generator is a DA
prepended with user utterance. This allows en-
trainment of the model to the user utterances. A
single dictionary is used for context utterances
and DA tokens. Our model is trained by min-
imizing cross-entropy error using Nesterov Ac-
celerated Gradient (NAG) optimizer (Nesterov,
1983). The hyper-parameters are chosen by cross-
validation method. Based on our experiments on
validation set, we use maximum sentences per
batch 20, learning rate 0.07, minimum learning
rate 0.00001, maximum number of epochs 2000,
learning rate shrink factor 0.5, clip-norm 0.5, en-
coder embedding dimension 100, decoder embed-
ding dimension 100, decoder output embedding
dimension 100 and dropout 0.3. Encoder part in-
cludes 10 layers/blocks, each having 100 units and
kernel width of 7. Decoder part includes 10 lay-
ers, each having 100 units and kernel width of 7.
For generating outputs on test set, we choose batch
size 128 and beam size 20.

For our CNN reranker, all the possible combi-
nations of DA tokens and its values are considered
as classes. We have 19 such classes. Each input
is a natural language sentence and each output is a
set of class labels. Training is done by minimizing
cross-entropy loss using Adam optimizer (Kingma
and Ba, 2015). Cross-entropy error is measured on
validation set after every 100 steps. Misclassifica-
tion penalty for CNN reranker is set to 100. Based
on our experiments, we choose embedding dimen-
sion 128, filter sizes (3,5,7,9), number of filters 64,
dropout keep probability 0.5, batch size 100, num-
ber of epochs 100 and L2 regularization, λ=0.05.

The performance of the proposed ConvSeq2Seq
model for NLG is compared with that of TGen
model (Dušek and Jurcicek, 2016a). For com-
parison, we have considered NIST (Doddington,
2002), BLEU (Papineni et al., 2002), METEOR
(Denkowski and Lavie, 2014), ROUGE L (Lin,
2004) and CIDEr metrics (Vedantam et al., 2015).
For this study, we have considered script “mteval-
v13a-sig.pl” (version 13a) that implements these
metrics. This script was used for E2E NLG chal-
lenge (Novikova et al., 2017). We focus on the
evaluations using this version. Our model has also
been evaluated using the metric script “mteval-
v11b.pl” (version 11b) to compare our results with
those stated in (Dušek and Jurcicek, 2016a). The

13a version takes into account the closest refer-
ence length with respect to candidate length for
calculation of brevity penalty. This is in accor-
dance with IBM BLEU. On the contrary, 11b ver-
sion takes shortest reference length for measuring
brevity penalty. This is the reason behind higher
BLEU scores in the 11b version when compared to
13a version. Both the models have been evaluated
on five different metrics, with NIST and BLEU
scores being of atmost importance.

We have used N-gram match reranker with the
weight ω set to 1 based on experiments done on
validation set. When using 11b version for evalu-
ating automatic metrics, weight ω is set to 5.

4.1 Studies of the models using 13a version of
the metrics

The comparison of the performance of the pro-
posed model with that of TGen model using the
13a version of the metric implementation is given
in Table 1. It is seen from Table 1 that there is
a slight improvement in the scores of our Con-
vSeq2Seq generator after using CNN reranker.
However, scores improve significantly when N-
gram match reranker is used in addition to CNN
reranker. An improvement of 3.32 BLEU points is
seen. The best scores are obtained when ω is set
to 1 for N-gram match reranker.

ConvSeq2Seq model in combination with CNN
reranker and N-gram match reranker outperforms
TGen model with N-gram match reranker in all
the metrics, with a difference of 0.65 in terms
of NIST score which is 8% more than the TGen
NIST score on this setup. ConvSeq2Seq model
with CNN reranker outperforms TGen model with
RNN reranker in all the metrics, with a differ-
ence of 1.8 in terms of NIST score which is 27%
more than the TGen NIST score on this setup. In
the domain of NLG, NIST score is found to have
highest correlation with human based judgments
when compared to other metrics (Belz and Reiter,
2006). In Table 1, the bold numbers indicate the
best scores.

4.2 Studies of the models using 11b version of
the metrics

The comparison of the performance of the pro-
posed model with that of TGen model using the
11b version of the metric implementation is given
in Table 2. A slight improvement in the scores
of our ConvSeq2Seq generator after using CNN
reranker is seen in Table 2 except for BLEU score.
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Evaluation metric version 13a NIST BLEU METEOR ROUGE L CIDEr
Baseline Model: TGen(RNN+RNN)
Prepending context (using RNN reranker) 6.660 62.13 0.4434 0.7269 3.6956
+ N-gram match reranker 7.956 65.49 0.4655 0.7547 3.8515
ConvSeq2Seq(CNN + CNN)
Prepending context 8.450 62.08 0.4670 0.7557 3.7281
+ CNN reranker 8.474 62.23 0.4692 0.7561 3.7412
+ CNN reranker + N-gram match reranker 8.608 65.55 0.4762 0.7654 3.8725

Table 1: Different automatic metric scores of TGen model (RNN+RNN) and proposed model
(CNN+CNN) on test data using evaluation metric version 13a.

Evaluation metric version 11b NIST BLEU METEOR ROUGE L CIDEr
Baseline Model: TGen(RNN+RNN)
Prepending context (using RNN reranker) 6.456 63.87 - - -
+ N-gram match reranker 7.772 69.26 - - -
ConvSeq2Seq(CNN + CNN)
Prepending context 8.450 63.02 0.4670 0.7557 3.7281
+ CNN reranker 8.474 62.93 0.4692 0.7561 3.7412
+ CNN reranker + N-gram match reranker 7.920 69.60 0.4534 0.7238 3.6955

Table 2: Different automatic metric scores of TGen model (RNN+RNN) and proposed model
(CNN+CNN) on test data using evaluation metric version 11b.

We see an improvement of 6.7 BLEU points when
using N-gram match reranker with ω set to 5. A
decrease in scores of other metrics is seen. These
inconsistencies are due to the way brevity penalty
is calculated for computing BLEU scores in 11b
version of metric implementation.

BLEU and NIST scores of the TGen model
given in Table 2 match with that represented
in (Dušek and Jurcicek, 2016a). The scores of
our model shows slight improvement over TGen
model.

The studies done to compare the proposed
model with the TGen model, show the effective-
ness of considering the CNN-based approach to
NLG. Studies also show that CNN reranker out-
performs the RNN reranker. Further, CNN-based
model is expected to take less time to train when
compared to RNN-based model. We compare the
time taken by the models in the next section.

4.3 Studies on the models based on training
time

In this section, we compare the proposed model
with that of TGen based on time taken for train-
ing. All the experiments were performed on 8GB
Nvidia GeForce GTX 1080 GPU. The time taken
for training ConvSeq2Seq generator is approxi-
mately 4 minutes. The time taken for training

CNN reranker is approximately 2 minutes. The
time taken for training TGen model is approxi-
mately 128 minutes which is 21 times more than
our ConvSeq2Seq generator in combination with
CNN reranker. This shows the effectiveness of
using convolutional neural network in building a
model for NLG than using recurrent neural net-
work based approach used in TGen.

5 Conclusion and Future Work
In this paper a novel approach to natural language
generation (NLG) using convolutional sequence
to sequence learning is proposed. The convolu-
tional model for NLG is found to encapsulate de-
pendencies between words in a better way than re-
current neural network (RNN) based sequence to
sequence learning. It is also seen that the convo-
lutional approach makes efficient use of compu-
tational resources. The proposed model in com-
bination with CNN reranker and N-gram match
reranker is capable of entraining to users’ way
of speaking. Studies conducted on a standard
dataset shows the effectiveness of proposed ap-
proach which outperforms the conventional RNN-
based approach.

In future, we propose to perform human based
evaluations to support the present performance of
the model.

198



References
A. Belz and E. Reiter. 2006. Comparing Auto-

matic and Human Evaluation of NLG Systems.
In 11th Conference of the European Chapter
of the Association for Computational Linguistics.
http://www.aclweb.org/anthology/E06-1040.

M. Denkowski and A. Lavie. 2014. Meteor Universal:
Language Specific Translation Evaluation for Any
Target Language. In Proceedings of the Ninth Work-
shop on Statistical Machine Translation. Associa-
tion for Computational Linguistics, pages 376–380.
https://doi.org/10.3115/v1/W14-3348.

G. Doddington. 2002. Automatic Evaluation of
Machine Translation Quality Using N-gram
Co-occurrence Statistics. In Proceedings of
the Second International Conference on Hu-
man Language Technology Research. Mor-
gan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, HLT ’02, pages 138–145.
http://dl.acm.org/citation.cfm?id=1289189.1289273.
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O. Dušek and F. Jurcicek. 2016b. Sequence-to-
Sequence Generation for Spoken Dialogue via Deep
Syntax Trees and Strings. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers). Asso-
ciation for Computational Linguistics, pages 45–51.
https://doi.org/10.18653/v1/P16-2008.

J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N.
Dauphin. 2017. Convolutional Sequence to Se-
quence Learning. In ICML. PMLR, volume 70 of
Proceedings of Machine Learning Research, pages
1243–1252.

N. Kalchbrenner, E. Grefenstette, and P. Blunsom.
2014. A Convolutional Neural Network for Mod-
elling Sentences. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Associa-
tion for Computational Linguistics, pages 655–665.
https://doi.org/10.3115/v1/P14-1062.

Y. Kim. 2014. Convolutional Neural Networks for
Sentence Classification. In Proceedings of the
2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). Association
for Computational Linguistics, pages 1746–1751.
https://doi.org/10.3115/v1/D14-1181.

D. P. Kingma and J. L. Ba. 2015. Adam: A Method for
Stochastic Optimization. In Proceedings of Inter-
national Conference on Learning Representations.
pages 1–13.

Y. LeCun and Y. Bengio. 1995. Convolutional net-
works for images, speech, and time series. MIT
Press, Cambridge, MA, USA, 1st edition.

C.-Y. Lin. 2004. ROUGE: A Package
for Automatic Evaluation of Summaries.
In Text Summarization Branches Out.
http://www.aclweb.org/anthology/W04-1013.

Y. Nesterov. 1983. A method for unconstrained con-
vex minimization problem with the rate of conver-
gence o(1/k2) . Doklady AN USSR 269:543–547.
https://ci.nii.ac.jp/naid/20001173129/en/.
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Abstract

In spoken dialog systems (SDSs), dia-
log act (DA) segmentation and recogni-
tion provide essential information for re-
sponse generation. A majority of previ-
ous works assumed ground-truth segmen-
tation of DA units, which is not available
from automatic speech recognition (ASR)
in SDS. We propose a unified architec-
ture based on neural networks, which con-
sists of a sequence tagger for segmenta-
tion and a classifier for recognition. The
DA recognition model is based on hierar-
chical neural networks to incorporate the
context of preceding sentences. We in-
vestigate sharing some layers of the two
components so that they can be trained
jointly and learn generalized features from
both tasks. An evaluation on the Switch-
board Dialog Act (SwDA) corpus shows
that the jointly-trained models outperform
independently-trained models, single-step
models, and other reported results in DA
segmentation, recognition, and joint tasks.

1 Introduction

A growing interest in interactive conversational
agents and robots has motivated research focus on
spoken language understanding (SLU). As an es-
sential part of spoken dialog system (SDS), SLU
analyzes user input, and provides the dialog sys-
tem with information to make a response. In con-
versations, dialog act (DA) represents the commu-
nicative function of an utterance (Stolcke et al.,
2000). For instance, we can use DA tag Statement
to describe utterance “Me, I’m in the legal depart-
ment.” and use Yes-No-Question to describe “Do
you have to have any special training?”. Recog-
nition of DA benefits the understanding of dialog

structure, thus allows SDS to conduct meaning-
ful and smooth conversation, e.g. a Yes-Answer
or No-Answer to a Yes-No-Question, and end the
conversation after a Conventional-closing.1

Most of previous works focused on DA recog-
nition given transcriptions that are manually seg-
mented (Stolcke et al., 2000; Ivanovic, 2005;
Webb et al., 2005; Sridhar et al., 2009; Li and
Wu, 2016; Khanpour et al., 2016; Lee and Dernon-
court, 2016; Shen and Lee, 2016; Joty and Hoque,
2016). Early works applied decision trees, Hid-
den Markov Model (Stolcke et al., 2000), and n-
gram models (Stolcke et al., 2000; Ivanovic, 2005)
to classify DA tags. Recently, hierarchical neural
networks have been introduced to the task. Such
models encode a DA segment into a sentence en-
coding by one network and apply the other net-
work for DA recognition given a sequence of sen-
tence encoding. Different combinations of net-
works such as CNN-ANN, RNN-ANN (Lee and
Dernoncourt, 2016), and RNN-RNN (Li and Wu,
2016; Khanpour et al., 2016) are shown to greatly
improve the accuracy of DA recognition. Ji et al.
(2016) introduced an extra latent variable to a hi-
erarchical RNN model to represent discourse re-
lation. Jointly training the latent variable model
on DA recognition and language modeling tasks
yields competitive results. Recent works (Kumar
et al., 2017; Chen et al., 2017) on DA recogni-
tion use a hierarchical encoder to generate a vector
representation for each DA segment, then a Con-
ditional Random Field (CRF) tagger is applied to
sequence labeling given the sequence of segment
representations. Kumar et al. (2017) reported an
accuracy of 79.2% on SwDA, while Chen et al.
(2017) achieved the current state-of-the-art accu-
racy of 81.3% by incorporating attentional mecha-
nism and extra inputs (character embeddings, Part-

1Examples of DA tags and utterances are selected from
the Switchboard Dialog Act (SwDA) corpus.
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Words okay so I guess it starts recording now
Segmentation E I I I I I I E
DA Backchannel Statement

Table 1: DA segmentation and recognition: “I” tag refers to inside of a segment, and “E” is the end of a
segment.

of-Speech tags, and named entitiy tags). However,
these models with CRF layer assume that com-
plete dialog is given before prediction. Thus the
reported performances will not apply to real-time
SDS, where DA tags are often predicted incremen-
tally.

As shown in Table 1, an utterance in a con-
versational turn can consist of several DA units.
In the example, we use “E” tag to denote the
end of a segment and “I” for inside. The utter-
ance “okay so I guess it starts recording now” are
split into two segments, which are a Backchannel
and a Statement respectively. However, automatic
speech recognition (ASR) in SDS usually provides
no punctuation that gives hints for DA segmenta-
tion, thus it is necessary to build a sequence labeler
for automatic DA segmentation.

A majority of previous works of DA segmenta-
tion formulated DA segmentation and recognition
in a single step (Zimmermann et al., 2006; Zim-
mermann, 2009; Quarteroni et al., 2011; Granell
et al., 2009). Segmentation labels are combined
with DA labels (e.g. “E Statement” denotes the
end of a Statement segment), and a sequence la-
beling model is applied to predict tags for both
tasks. This approach has a merit of integration so
that recognition helps segmentation and segmen-
tation errors are not propagated to the recognition
step. On the other hand, it has a drawback that it
can hardly incorporate a history of preceding sen-
tences to predict the DA tag of the current sen-
tence. Another approach is to process the data in
a pipeline manner. Manuvinakurike et al. (2016)
used a CRF for DA segmentation and a Supported
Vector Machine (SVM) for DA recognition given
predicted segments. For pipeline methods, down-
stream task (e.g. DA recognition) is vulnerable
to errors from upstream task (e.g. DA segmen-
tation). In this paper we propose a unified archi-
tecture based on neural networks for DA segmen-
tation and recognition to solve the aforementioned
problems. Our method uses separate models for
DA segmentation and recognition but introduces
joint learning so that the models can learn from

both tasks.
Joint learning (also multi-task learning) allows

a model to learn from different tasks in parallel,
which benefits the generalization of the model.
Collobert and Weston (2008) introduced a uni-
fied architecture based on Convolutional Neural
Networks (CNNs) to natural language processing
tasks such as Part-of-Speech (POS) tagging and
chunking, and showed that joint learning of related
tasks improves model performance. Inspired by
this work, we investigate joint learning of DA seg-
mentation and recognition for better generalized
model. We compare the jointly-trained models
under the unified architecture with models trained
separately and previous works on the Switchboard
Dialog Act (SwDA) corpus.

2 Models and Training

The proposed method applies a word sequence
tagger for segmentation and a sentence classifier
for recognition. Under a unified neural architec-
ture, the sequence tagger and the classifier share
parameters to learn features from each other and
improve generalization. As shown in Figure 1, the
left part corresponds to a word sequence tagger
for segmentation using Bidirectional Long Short
Term Memory (BiLSTM) (Schuster and Paliwal,
1997) and on the right-hand side is a sentence
classifier for DA recognition based on hierarchi-
cal LSTMs (Hochreiter and Schmidhuber, 1997).

Components for segmentation and recognition
will be explained in Section 2.1 and 2.2. In Sec-
tion 2.3, three proposed models are introduced.
In order to compare the proposed models with
conventional approach, we describe a single-step
model that uses combined labels in Section 2.4.

2.1 Word Sequence Tagger for DA
Segmentation

Regarding DA segmentation as a sequence label-
ing problem, BiLSTM naturally fits the task since
it can exploit information of surrounding words
in the prediction of the current word. The se-
quence tagger predicts a segmentation label yt
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Figure 1: A unified neural architecture consisting
of a word sequence tagger for DA segmentation
and a sentence classifier for DA recognition.

for each word wt in the input utterance w1:L.
A word embedding layer firstly maps the input
words w1:L into distributed vector representation
of words x1:L. Then we use a BiLSTM to process
the sequence and output hidden states h1:L. The
last decoding layer computes a probability distri-
bution yseg,1:L over segmentation labels:

x1:L = word-embedding(w1:L), (1)

h1:L = BiLSTM(x1:L), (2)

yseg,t = softmax(Wseght + bseg), (3)

where Wseg and bseg are trainable parameters in
the decoding layer.

2.2 Sentence Classifier for DA Recognition

Accurate recognition of DA requires understand-
ing of discourse relations (Ji et al., 2016). There-
fore, preceding sentences are needed as context in
the recognition of the current sentence. Hierar-
chical neural networks are able to encode intra-
sentence information and capture inter-sentence

relations through a two-level hierarchy. The lower
level of the network generates a sentence encod-
ing st for input sentence wt

1:M via BiLSTM, and
the higher-level LSTM network predicts a DA tag
of the input sentence given sentence encoding st
as well as sentence encodings of preceding k sen-
tences st−k, st−k+1, · · · , st−1.

We use a word embedding layer and a BiLSTM
layer to obtain hidden states ht

1:M as same as in the
sequence tagger. The last hidden state ht

M (sum of
the last hidden states on two directions of BiLSTM
as shown in Equation 4) is used as sentence encod-
ing st. In the same way, st−k:t−1 are calculated
and used as a context in the sentence sequence en-
coding network. We use a vanila LSTM to process
sequence st−k:t, and input the last hidden state d
to a DA tag decoding layer to compute the proba-
bility distribution over DA tags.

ht
M =

−→
h t

M +
←−
h t

M , (4)

st = ht
M , (5)

d = LSTM(st−k:t), (6)

yDA,t = softmax(WDAd+ bDA), (7)

where WDA and bDA are trainable parameters in
the DA tag decoding layer.

2.3 Proposed Models

Based on the aforementioned word sequence tag-
ger and sentence classifier, we introduce three
models. Different from the single-step method in
past works, the proposed models work in a cascad-
ing manner, i.e. to split the input text w1:L into
segments using the word sequence tagger, then
feed each segment wt

1:M to the sentence classi-
fier to predict its DA tag. As shown in Figure 1,
the segmentation component and the DA recogni-
tion component have the same structure in their
lower-level parts (a word embedding layer and a
BiLSTM-based encoder layer). The difference be-
tween the three models is the number of shared
layers.

• Model 1 A straightforward method is to sep-
arately build a word sequence tagger and a
sentence classifier. The model that has no
shared layers is called Model 1.

• Model 2 Word embedding layers are shared
between the sequence tagger and the DA clas-
sifier in Model 2. When training the sequence
tagger on the segmentation task, gradients
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from top end are back-propagated into the
shared word embeddings that are also used by
the DA classifier, vice versa. Parameters in
the shared word embedding layer are updated
by losses from both tasks, thus the model
learns generalized features on the word level.

• Model 3 We combine both the word embed-
ding layers and the BiLSTM encoding lay-
ers which produce h1:L and ht

1:M in Model
3. Since the higher-level layers are shared,
this model is expected to learn generalization
in high-level features.

2.4 Single-step Model for DA Segmentation
and Recognition

Previous single-step approaches to DA segmen-
tation and recognition are based on non-network
models such as Conditional Random Field (CRF).
For a fair comparison between the proposed neural
models and single-step method, we implement an
LSTM-based sequence tagger to predict combined
labels in a single-step manner. The single-step
model resembles the segmentation component in
Section 2.1 and the only difference is that a set
of combined labels are used in the output layer as
shown in Figure 2. Therefore, instead of predict-
ing segment boundaries (label “E”) only, it gener-
ates DA labels at the end of each segment as well
(e.g. “E Backchannel”, “E Statement”, etc.).

2.5 Training

The sequence tagger receives a whole turn (i.e.
a sequence of consecutive words uttered by one
speaker) and predicts segmentation tags (com-
bined tags in the case of single-step model) for all
words in the turn. Cross-entropy loss is computed
for each word and back-propagated. As for the
DA classifier, we use ground-truth segments that
are manually transcribed as inputs to the classifier.
The model is trained to minimize cross-entropy
loss between the predicted DA tag and the oracle
DA tag.

When training the joint models (Model 2 and 3),
we can apply different strategies to optimize the
segmentation and recognition components. One
alternative, for example, is to train the segmen-
tation component for one epoch and the recogni-
tion component for the next epoch. However, it
results in that segmentation loss is likely to dom-
inate the optimizing direction for an entire epoch
and vice versa for another epoch. This may pre-
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Figure 2: An LSTM-based single-step model that
uses combined labels

vent the model from learning from different sig-
nals simultaneously. Thus, instead of switching
between segmentation loss and recognition loss
every epoch, we compute and minimize both seg-
mentation loss and recognition loss for every mini-
batch of data.

3 Experimental Evaluations

Three sets of experiments are conducted to eval-
uate model performance on the DA segmentation
task, the DA recognition task, and their joint task
respectively. In the segmentation task, we use
the word sequence tagger to predict segmentation
labels given a sequence of words in a turn. In
the recognition task, segments with correct bound-
aries are given as inputs, and we use the sentence
classifier to predict a DA tag for each segment.
Lastly in the joint task, instead of using segments
with correct boundaries, we split each turn into
segments according to the predicted segmentation
labels by the sequence tagger. Then the sentence
classifier outputs DA tags for the predicted seg-
ments.

3.1 Evaluation Metrics

Word-level error rate is used to assess performance
on the segmentation task. It compares the pre-
dicted boundaries with ground-truth boundaries
and counts the number of words that lie in wrongly
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Reference I I E G I I E S I I E Q I E S
Prediction I I E G I I I E S I E Q I E R
Word-level Segmentation Error

√ √ √ × × × × × × √ √

Word-level Joint Error
√ √ √ × × × × × × × ×

Table 2: An example of the calculation of metrics for segmentation and joint tasks, where word-level
segmentation error rate is 54.5% (6/11), and word-level joint error rate is 72.7% (8/11).

predicted segments. The joint task is evaluated on
word level as well. However, it additionally takes
DA tags into consideration. An example of the cal-
culation of these metrics is illustrated by Table 2.
The DA recognition task is evaluated by accuracy.

3.2 Corpus and Preprocessing
The Switchboard Dialog Act (SwDA) corpus (Ju-
rafsky et al., 1997) is used for evaluation. It con-
tains 1155 human-human telephone conversations
and is annotated with 42 clustered DA tags. We
follow the train/dev/test set split by Stolcke et al.
(2000). Table 3 gives related statistics of the cor-
pus.

dataset train dev test
# of sessions 1003 112 19
# of turns 91k 10k 2k
# of segments 178k 19k 4k
# of words 1565k 164k 35k

Table 3: Corpus statistics of SwDA.

The SwDA corpus is manually transcribed, seg-
mented and labeled with DA tags. In order to
conduct meaningful experiments, we removed all
the punctuation (i.e. commas, periods, exclama-
tion marks, and question marks) and slash marks
(“/”) in the transcription because they cover most
of segmentation boundaries and we cannot obtain
such punctuation labels from ASR results in prac-
tice. Moreover, all the annotation comments in
brackets are removed. Capitalization of words are
also converted into the lower case. Vocabulary is
limited to the most frequent 10,000 words (orig-
inally 21,177 words after preprocessing) for fast
training and inference.

3.3 Experimental Setup
We use the mini-batch gradient descent with mo-
mentum to optimize the models with a mini-batch
size of 32 for 20 epochs. The learning rate is set as
1 initially and decays in half when the total loss of
development dataset does not decrease. Gradients

are clipped between [-0.5, 0.5] to avoid exploding.
We also experiment with different values of his-
tory length k from 1 to 5, which is the number of
preceding sentence encodings used in the upper-
level LSTM of the DA recognition. For all the
implemented models, we choose 200, 100 as the
dimension of word embedding and the dimension
of LSTM hidden states respectively. Both word
sequence encoding BiLSTM and sentence encod-
ing BiLSTM consist of two hidden layers, while
the sentence sequence encoding LSTM has only
one hidden layer. Dropout (Srivastava et al., 2014)
is applied after the word embedding layer and be-
tween the BiLSTM layers with a drop probability
of 0.5.

3.4 Experimental Results

3.4.1 Segmentation Evaluation
The error rates of the three models are shown in
Figure 3. With punctuation and slash marks re-
moved, segmentation error rates are fairly high
(from 18.7% to 20.8%). However, the jointly-
trained models (Model 2 and 3) always result
in lower error rates than Model 1. It indicates
that joint training benefits the segmentation model
in the unified architecture. Specifically, there is
a statistically significant error rate reduction of
1.3% when comparing the best result of Model 2
(18.7%) with that of Model 1 (20.0%), and also
a statistically significant reduction of 0.9% when
compared with the single-step model’s 19.6%.

Quarteroni et al. (2011) reported a segmentation
error rate of 1.4% using CRF model in their work.
However, they used punctuation and slash marks
which we removed, thus it is inappropriate to di-
rectly compare the results.

3.4.2 Recognition Evaluation
As shown in Figure 4, Model 1 achieves 77.1% at
a history length of 5 and gives a strong baseline.
Through joint training, Model 2 and 3 further im-
proved the accuracy to 77.7% and 77.8% at history
length of 1 and 2. Since the single model simulta-
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Model
Segmentation Recognition Joint

Error Rate Accuracy Error Rate
Model 1 20.0 77.1 31.8
Model 2 18.7 77.7 30.6
Model 3 18.9 77.8 31.0
single-step model 19.6 33.5
CRF (Quarteroni et al., 2011) 1.4∗ 29.1∗

CNN-ANN (Lee and Dernoncourt, 2016) 73.1
DRLM (Ji et al., 2016) 77.0
Hierarchical GRU (Li and Wu, 2016) 79.4∗∗

∗ The CRF used punctuation and slash marks for segmentation. For reference, when punctuation and
slash marks are reserved in our experiments, Model 2 gets a word-level segmentation error rate of 0.3%

and a joint error rate of 20.5%.
∗∗ Non-textual features were used in this work.

Table 4: Best results (in %) of models.
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neously predicts segmentation and DA labels, it is
unable to predict a DA tag given a sentence with
ground-truth boundaries and is excluded from the
recognition evaluation.

Lee and Dernoncourt (2016) reported a recogni-
tion accuracy of 71.4% using a CNN-ANN model
and Ji et al. (2016) reported 77.0% using a jointly-
trained latent variable RNN. Li and Wu (2016)
reached 79.4% by using extra non-textual features
including sentence length, utterance index, sub-
utterance index, and turn-taking information.

3.4.3 Joint Evaluation

Figure 5 shows word-level joint error rates of the
proposed models. Model 1, 2, and 3 have low-
est error rates of 31.8%, 30.6%, and 31.0% re-
spectively. We can see that Model 2 and 3 have
better results than Model 1 for all history lengths,
which suggests jointly-trained models consistently
perform better. It is confirmed from the results
that joint learning gives a statistically significant
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error rate reduction (1.2% reduction from 31.8%
of Model 1 to 30.6% of Model 2). The single-
step neural network results in 33.5% joint error
rate, much higher than the proposed models. A
major reason is that the single-step model cannot
capture context of preceding sentences, thus de-
grading recognition accuracy and leading to poor
performance in the joint task.

A single-step CRF model by Quarteroni et
al. (2011), which uses word and Part-of-Speech
(POS) n-grams features, reached a word-level
joint error rate of 29.1% while its segmentation er-
ror rate reached 1.4% using punctuation and slash
marks in transcription. If we also reserve punctu-
ation and slash marks in our experiments, Model
2 is able to get a lowest joint error rate of 20.5%
with a segmentation error rate of only 0.3%.

Model 3 shares the higher-level layers than
Model 2 but does not develop consistent and sig-
nificant advantage. We noticed that the segmenta-
tion performance and recognition performance of
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Model 3 have a reverse trend, i.e. the recognition
accuracy decreases when the segmentation error
rate reduces. We suspect that since most param-
eters in the segmentation components are shared
(all layers except for the segmentation decoding
layer) in Model 3, signals from the DA recogni-
tion side can affect the entire segmentation model
and lead to problems in optimization.

The best results of the mentioned models in seg-
mentation, recognition, and joint tasks are summa-
rized in Table 4.

4 Conclusion

In this work, we presented a unified neural archi-
tecture for joint DA segmentation and recognition
for SDS, which consists of a word sequence tagger
and a sentence classifier. Since the two compo-
nents have similar structure, we partially merged
them in their word embedding layers (Model 2)
and BiLSTM encoding layers (Model 3). Exper-
imental results of segmentation, recognition and
the joint tasks on the Switchboard Dialog Act
(SwDA) corpus showed that the proposed models
gained significant error rate reduction over single-
step approaches. Among the three models, Model
2 and 3 improved generalization through joint
training and outperformed Model 1, whose seg-
mentation and recognition components are trained
independently.
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Abstract

Dialogue state tracking (DST), when for-
mulated as a supervised learning problem,
relies on labelled data. Since dialogue
state annotation usually requires labelling
all turns of a single dialogue and utilizing
context information, it is very expensive
to annotate all available unlabelled data.
In this paper, a novel cost-sensitive active
learning framework is proposed based on
a set of new dialogue-level query strate-
gies. This is the first attempt to apply ac-
tive learning for dialogue state tracking.
Experiments on DSTC2 show that active
learning with mixed data query strategies
can effectively achieve the same DST per-
formance with significantly less data an-
notation compared to traditional training
approaches.

1 Introduction

The dialogue state tracker, an important compo-
nent of a spoken dialogue system, tracks the in-
ternal belief state of the system based on the
history of the dialogue. For each turn, the
tracker outputs a distribution over possible dia-
logue states, on which the dialogue system relies
to take proper actions to interact with users. Var-
ious approaches have been proposed for dialogue
state tracking, including hand-crafted rules (Wang
and Lemon, 2013; Sun et al., 2014), genera-
tive models (Thomson and Young, 2010; Young
et al., 2010, 2013) and discriminative models (Ren
et al., 2013; Lee and Eskenazi, 2013; Williams,
2014). For discriminative models, recent stud-
ies on data-driven approaches have shown promis-
ing performance, especially on Recurrent Neural
Network (RNN) (Henderson et al., 2013, 2014c).
As for datasets, the Dialog State Tracking Chal-

lenge (DSTC) series (Williams et al., 2016) have
provided common testbeds for this task.

Though data-driven approaches have achieved
promising performance, they require large
amounts of labelled data, which are costly to be
fully annotated. Besides this, it is quite difficult to
label a single dialogue because, for every dialogue
turn, experts need to label all the semantic slots
and typically, to label a single turn accurately, they
need to pay attention to the context rather than the
current turn only. Active learning (AL) (Settles,
2010) can be applied to select valuable samples
to label. Using the AL approach, we need fewer
labelled samples when training the model to reach
the same or even better performance compared to
traditional training approaches.

Although it is often assumed that the labelling
costs are the same for all samples in some
tasks (González-Rubio and Casacuberta, 2014;
Sivaraman and Trivedi, 2014), it is appropriate to
consider different labelling costs for the dialogue
state tracking task where different dialogues vary
in the number of turns. In this paper, we define
the labelling cost for each dialogue sample with
respect to its number of dialogue turns. Then we
provide a new AL query criterion called diver-
sity, and finally propose a novel cost-sensitive ac-
tive learning approach based on three dimensions:
cost, uncertainty, and diversity. The results of ex-
periments on the DSTC2 dataset (Henderson et al.,
2014a) demonstrate that our approaches are more
effective compared to traditional training methods.

In the next section, we will present the proposed
cost-sensitive active learning framework for dia-
logue state tracking. Then in Section 3 we will de-
scribe the experimental setup and show the results
of experiments on the DSTC2 dataset, followed by
our conclusions and future work in Section 4.
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2 Cost-Sensitive Active Learning

A complete work cycle of active learning for dia-
logue state tracking includes 3 steps: (1) train the
tracker with labelled dialogue samples; (2) post
query using the query strategy to select the valu-
able unlabelled dialogue and ask experts for its la-
bel; (3) merge the newly-labelled dialogue with all
previously-labelled dialogue samples and return to
(1). The tracker and query strategy will be intro-
duced in Section 2.1 and 2.2 respectively.

2.1 Dialogue State Tracker
Our proposed active learning workflow is indepen-
dent of the tracker type. Here we use the Lec-
Track model (Zilka and Jurcicek, 2015) as a word-
based tracker. For each turn t in a dialogue, the
tracker takes in a word concatenation of all his-
tory words (together with their confidence scores
from ASR) within this dialogue and finally out-
puts a prediction. The general model structure (at
turn t) is shown in Figure 1. The notation w ⊕ u
denotes the concatenation of two vectors, w (the
word) and u (the confidence score). FC refers to
the Fully Connected Layer. The output of FC is
then encoded by the LSTM encoder Enc, whose
output (only the last one) will be sent to a Soft-
max layer to make a prediction ps

t ∈ RNs over all
Ns possible values for a given slot s at turn t:

w1 � u1 wn � unw2 � u2

FC

Enc

Softmax

FC

Enc

FC

Enc· · ·
· · ·
· · ·

For each slot s, at turn t
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Figure 1: LecTrack model stucture. 4 models in
total since s ∈ {food, pricerange, name, area}.

2.2 Cost-Sensitive Active Learning Methods
Given that different dialogues vary in the number
of turns, we assume that the smallest query unit
should be a whole dialogue, and that the cost for
labelling a dialogue is directly proportional to the
number of dialogue turns.

Since all the unlabelled data is possible to be
collected simultaneously, the DST task can be
regarded as pool-based sampling (Settles, 2010).
This assumes that there is a small pool of labelled
data L, and a large pool of unlabelled data U avail-
able. That allows us to query the samples in a

greedy fashion according to some measurement
criteria, which are used to evaluate all samples in
the unlabelled pool.

We propose four novel query strategies. The
first three utilize one kind of measurement crite-
rion respectively and the last one is based on the
mixture of the first three. For convenience, a cer-
tain dialogue sample is denoted as x.

Cost Strategy (CS)
This strategy prefers the dialogue samples that
have the minimum number of turns. For each dia-
logue sample, its labelling cost, denoted as C(x),
can be defined as the number of turns.

Uncertainty Strategy (US)
This strategy prefers the dialogue samples whose
predictions the DST model is most uncertain
about. In this paper, we take advantage of en-
tropy (Shannon, 2001) as the uncertainty measure-
ment criterion. The dialogue uncertainty on slot s,
Us(x), is the average over all the entropy values of
dialogue turns:

Us(x) = −
1

C(x)

C(x)∑

t=1

Ns∑

i=1

ps
t [i] logp

s
t [i],

where ps
t can be directly obtained from the DST

model described in Section 2.1.

Diversity Strategy (DS)
This strategy prefers the dialogue samples that are
most diverse from the dialogues currently in the
labelled pool L. As the training and querying
process goes on, the diversity of dialogue sam-
ples selected to be labelled will decrease gradu-
ally, which results in a biased training process.
To handle such problem, here we design a novel
Spherical k-Means Clustering (MacQueen et al.,
1967) based method to evaluate the diversity of di-
alogue samples and select the most diverse ones in
unlabelled pool U to label, so that we could main-
tain the diversity of dialogue samples in labelled
pool L.

Different dialogues have varying lengths so an
embedding function to map each dialogue into a
fixed-dimensional continuous space is needed. We
utilize the method of unsupervised dialogue em-
beddings (Su et al., 2016) to extract a dialogue fea-
ture, which is used to calculate the diversity.

We choose the bag-of-words (BOW) rep-
resentation as a turn-level feature ft at turn
t, which will be sent into a Bi-directional
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LSTM (BLSTM) (Graves et al., 2013) encoder to
obtain the two directional hidden sequences, hf

1:T

and hb
1:T . At turn t, hf

t = LSTMf (ft,h
f
t−1)

and hb
t = LSTM b(ft,h

b
t+1). Then, the dialogue

feature vector v is calculated as the average over
all hidden sequences, i.e., v = 1

T

∑T
t=1 h

f
t ⊕ hb

t ,
where the notation hf

t ⊕ hb
t denotes the concate-

nation of the two vectors, hf
t and hb

t .
Next, the dialogue feature vector is chosen as

the input of a forward LSTM decoder for each
turn t, which ultimately outputs feature sequences
f ′1:T . The model’s training target is to minimize the
mean-square-error (MSE) between f1:T and f ′1:T .

The feature vectors of all dialogues in both L
and U can be obtained with this pre-trained model.
Define VL = {vl1 ,vl2 , · · · } as the feature vector
set of L and VU = {vu1 ,vu2 , · · · } as the feature
vector set of U .

We fit the set VL into a Spherical k-Means
model with Nc clusters, so that we can acquire
a substitutional set of feature vectors denoted as
V ′L = {v′l1 ,v′l2 , · · · ,v′lNc

}, which is composed of
Nc representative feature vectors (clusters) among
the vectors in the original set VL. Then for each
vector vui in VU , calculate its cosine similarity
to Nc vectors in V ′L respectively, and regard the
maximum of Nc similarity values as its true sim-
ilarity to the whole labelled set, since the cluster
of maximum similarity has the largest representa-
tiveness of all the original vectors in the labelled
set. Therefore, the diversity measure D(x) can be
defined as the opposite number of similarity:

D(x) = − max
i=1,...,Nc

{
vux · v′li

||vux || · ||v′li ||

}
.

Mixed Strategy
In practice, we usually need different query
strategies at different learning stages (Settles,
2010). Based on the strategies presented above,
we propose a new query strategy called Cost-
Uncertainty-Diversity Strategy (CUDS), which
is originated from the idea of combining multiple
strategies. This strategy takes into consideration
three measurement criteria, i.e. cost, uncertainty
and diversity, so that the unlabelled samples can
be evaluated more comprehensively.

Specifically, what we want is to select samples
with low cost, high uncertainty and high diversity.
Based on this, we propose a new measurement cri-
terion, denoted as M(x). Naturally, the goal of
CUDS is to pick out the dialogue samples which

have the maximum measurement value M(x):

M(x) = −αC(x) + βUs(x) + γD(x), (1)

where α, β and γ are positive weighting parame-
ters that can be tuned so as to find a good trade-off
among those three measurement criteria.

In order to conduct weighting, C(x), Us(x) and
D(x) should possess the same scale. C(x) ranges
from 1 to Cmax, the maximum number of a single
dialogue’s turns, and therefore we replace C(x)
in Equation 1 with Cm(x) = C(x)/Cmax. The
range of D(x) is (−1, 1), so we replace D(x) in
Equation 1 withDm(x) = (D(x)+1)/2. Then the
original Equation 1 is transformed into Equation 2:

M(x) = −αCm(x) + βUs(x) + γDm(x). (2)

3 Experiments and Results

3.1 Experimental Setup

Experiments are conducted to assess the per-
formance of different query strategies on single
slot and joint goal respectively. The dataset we
use is the second Dialogue State Tracking Chal-
lenge (DSTC2) dataset (Henderson et al., 2014a),
which focuses on the restaurant information do-
main and contains 7 slots of which 4 are in-
formable and all 7 are requestable. We implement
the dialogue state tracker as described in Section
2.1. The model is trained using Stochastic Gradi-
ent Descent (SGD), collaborating with a gradient
clipping heuristic (Pascanu et al., 2012) to avoid
the exploding gradient problems.

3.2 Results on Single Slot

In this section, five different query strategies are
compared on single slot. Besides the four query
strategies presented in Section 2.2, here we choose
Random Strategy (RS) as our baseline query
strategy. RS means we randomly select dialogues
to annotate. Although it may seem quite simple,
we have to point out that such naive strategy does
perform not bad in practice. We attribute such
phenomenon to the fact that the query process is
dominated by the underlying distribution of the
original dataset. A nature of AL called sampling
bias (Dasgupta and Hsu, 2008) can be considered
as the main cause. The training set may gradually
diverge from the real data distribution as the train-
ing and querying process continues. However, RS
is luckily not influenced by this effect, which al-
lows it to be a powerful baseline to compare with.

According to the current strategy, the model
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queries 2 dialogue samples each time. Figure 2
displays the training accuracy curves of the food
slot (the most difficult slot) using different query
strategies. Here we use the number of labelled dia-
logue turns as the x-axis, which can be regarded as
the labelling cost. It is shown that the three query
strategies (CS/US/DS), which are based on sin-
gle measurement criterion respectively, have bet-
ter performance than the baseline strategy (RS).
The reason why DS does not perform very well at
the beginning is that the diverse but greatly scarce
data is not sufficient to train an effective model.
Our proposed mixed strategy CUDS achieves the
best performance among all the query strategies,
which proves the effectiveness of our strategy
mixture methodology. Considering the training
cost, although the DSTC2 training set is composed
of 11677 turns (1612 dialogues) in total, CUDS
only consumes about 3000 turns (about 520 di-
alogues) for training to convergence. Besides,
while RS consumes 5000 turns (about 700 dia-
logues) when converging, CUDS just consumes
2000 turns (about 360 dialogues) to achieve the
performance equal to the convergence level of RS,
reducing the cost by 60%.
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Figure 2: Curves of food slot.

3.3 Results on Joint Goal
Figure 3 displays the training accuracy curves of
the joint goal using five different query strategies.
At different learning stages, the query strategy
of best performance is different. US rises more
quickly at the beginning while DS diverges earlier.
The reasons include: in order to finally reach con-
vergence, the tracker need to see samples of great
diversity, which allows it to give consideration to
several semantic slots; however, samples of large
entropy can bring tracker more concrete informa-
tion on the most controversial cases, which helps it
to learn from scratch rapidly. Our mixed strategy

CUDS, combining the advantages of those two
while minimizing the cost at the same time, ob-
tains a performance improvement. Although the
final convergence level is not quite high due to the
limitation of LecTrack model, it does not diminish
the effectiveness of proposed AL query strategies.
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Figure 3: Curves of joint goal.

4 Conclusions and Future Work

In this paper, a novel cost-sensitive active learn-
ing technique is presented for dialogue state track-
ing, which assumes that each dialogue sample has
a nonuniform labelling cost related to the number
of dialogue turns. Besides cost, we also provide
another two measurement criteria, uncertainty and
diversity. Our mixed query strategy considers
those three criteria comprehensively in order to
make queries more appropriately. Experiment re-
sults demonstrate that our proposed approaches
can achieve promising tracking performance with
lower cost compared to traditional methods.

Our future work roughly includes two parts.
One is to deploy our proposed AL methods on
some other dialogue tasks such as DSTC3 (Hen-
derson et al., 2014b) to verify the results pre-
sented in this paper. The other is to conduct
our approaches on DST models of better perfor-
mance (Mrkšić et al., 2017) because the model’s
tracking ability has an inevitable influence on the
whole active learning process.
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Abstract

To date there has been very little work
on assessing discourse coherence methods
on real-world data. To address this, we
present a new corpus of real-world texts
(GCDC) as well as the first large-scale
evaluation of leading discourse coherence
algorithms. We show that neural mod-
els, including two that we introduce here
(SENTAVG and PARSEQ), tend to perform
best. We analyze these performance dif-
ferences and discuss patterns we observed
in low coherence texts in four domains.

1 Introduction

Discourse coherence is an important aspect of text
quality. It encompasses how sentences are con-
nected as well as how the entire document is orga-
nized to convey information to the reader. Devel-
oping discourse coherence models to distinguish
coherent writing from incoherent writing is useful
to a range of applications. An automated coher-
ence scoring model could provide writing feed-
back, e.g. identifying a missing transition be-
tween topics or highlighting a poorly organized
paragraph. Such a model could also improve the
quality of natural language generation systems.

One approach to modeling coherence is to
model the distribution of entities over sentences.
The entity grid (Barzilay and Lapata, 2005), based
on Centering Theory (Grosz et al., 1995), was the
first of these models. Extensions to the entity
grid include additional features (Elsner and Char-
niak, 2008, 2011; Feng et al., 2014), a graph rep-
resentation (Guinaudeau and Strube, 2013; Mes-
gar and Strube, 2015), and neural convolutions
(Tien Nguyen and Joty, 2017). Other approaches
have used lexical cohesion (Morris and Hirst,

∗Research performed while at Grammarly.

1991; Somasundaran et al., 2014), discourse rela-
tions (Lin et al., 2011; Feng et al., 2014), and syn-
tactic features (Louis and Nenkova, 2012). Neural
networks have also been successfully applied to
coherence (Li and Hovy, 2014; Tien Nguyen and
Joty, 2017; Li and Jurafsky, 2017). However, until
now, these approaches have not been benchmarked
on a common dataset.

Past work has focused on the discourse co-
herence of well-formed texts in domains like
newswire (Barzilay and Lapata, 2005; Elsner and
Charniak, 2008) via tasks like sentence ordering
that use artificially constructed data. It was un-
known how well the best methods would fare on
real-world data that most people generate.

In this work, we seek to address the above de-
ficiencies via four main contributions. First, we
present a new corpus, the Grammarly Corpus of
Discourse Coherence (GCDC), for real-world dis-
course coherence. The corpus contains texts the
average person might write, e.g. emails and online
reviews, each with a coherence rating from expert
annotators (see examples in Table 1 and supple-
mentary material). Second, we introduce two sim-
ple yet effective neural network models to score
coherence. Third, we perform the first large-scale
benchmarking of 7 leading coherence algorithms.
We show that prior models, which performed at
a very high level on well-formed and artificially
generated data, have markedly lower performance
in these new domains. Finally, the data, annotation
guidelines, and code have all been made public.1

2 A Corpus for Discourse Coherence

2.1 Related Work
Most previous work in discourse coherence has
been evaluated on a sentence ordering task that as-
sumes each text is well-formed and perfectly co-

1https://github.com/aylai/GCDC-corpus
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Score Text

Low Should I be flattered? Even a little bit? And, as for my alibi, well, let’s just say it depends on the snow and the secret
service. So, subject to cross for sure. Do you think there could be copycats? Do you think the guy chose that mask or
just picked up the nearest one? Please keep me informed as the case unfolds–
On another matter, can you believe Dan Burton will be the chair of one of the House subcommittees we’ll have to
deal w? Irony and satire are the only sane responses.
Happy New Year–and here’s hoping for many more stories that make us laugh!

High Cheryl,
I just spoke with Vidal Jorgensen. They expect to be on the ground in about 8 months. They have not yet raised
enough money to get the project started – the total needed is $6M and they need $2M to get started. Vidal said they
process has been delayed because their work in Colombia and China is consuming all their resources at the moment.
Once on the ground, they will target the poorest of the poor and go to the toughest areas of Haiti. They anticipate an
average loan size of $200 and they expect to reach about 10,000 borrowers in five years. They expect to be profitable
in 4-5 years.
Meghann

Table 1: Examples of texts and coherence scores from the Clinton domain.

herent, and any reordering of the same sentences
is less coherent. Presented with a pair of texts
– the original and a random permutation of the
same sentences – a coherence model should be
able to identify the original text. More challeng-
ing versions of this task (sentence insertion (Elsner
and Charniak, 2011) and paragraph reconstruction
(Lapata, 2003; Li and Jurafsky, 2017)) all assume
that the original text is perfectly coherent.

Datasets for the sentence ordering task tend
to use texts that have been professionally writ-
ten and extensively edited. These have included
the Accidents and Earthquakes datasets (Barzilay
and Lapata, 2005), the Wall Street Journal (Elsner
and Charniak, 2008, 2011; Lin et al., 2011; Feng
et al., 2014; Tien Nguyen and Joty, 2017), and
Wikipedia (Li and Jurafsky, 2017).

Another task, summary evaluation (Barzilay
and Lapata, 2005), uses human coherence judg-
ments, but include machine-generated texts. Co-
herence models are only required to identify which
of a pair of texts is more coherent (presumably
identifying human-written texts).

The line of work most closely related to our ap-
proach is the application of coherence modeling
to automated essay scoring. Essays are written
by test-takers, not professional writers, so they are
not assumed to be coherent. Manual annotation
is required to assign the essay an overall quality
score (Feng et al., 2014) or to rate the coherence
of the essay (Somasundaran et al., 2014; Burstein
et al., 2010, 2013). While this line of work goes
beyond sentence ordering to examine the qualities
of a low-coherence text, it has only been applied
to test-taker essays.

In contrast to previous datasets, we collect writ-

ing from non-professional writers in everyday
contexts. Rather than using permuted or machine-
generated texts as examples of low coherence, we
want to investigate the ways in which people try
but fail to write coherently. We present a cor-
pus that contains texts from four domains, cover-
ing a range of coherence, each annotated with a
document-level coherence score. In Sections 2.2-
2.6, we describe our data collection process and
the characteristics of the resulting corpus.

2.2 Domains

For a robust evaluation, we selected domains that
reflect what an average person writes on a reg-
ular basis: forum posts, emails, and product re-
views. For online forum posts, we sampled re-
sponses from the Yahoo Answers L6 corpus2 for
the Yahoo domain. For emails, we used the State
Department’s release of emails from Hillary Clin-
ton’s office3 and emails from the Enron Corpus4

to make up our Clinton and Enron domains. Fi-
nally, we sampled reviews of businesses from the
Yelp Open Dataset5 for our Yelp domain.

2.3 Text Selection

We randomly selected texts from each domain
given a few filters. We want each text to be
long enough to exhibit a range of characteristics
of local and global coherence, but not so long
that the labeling process is tedious for annotators.
Therefore, we considered texts between 100 and

2https://webscope.sandbox.yahoo.com/
catalog.php?datatype=l

3https://foia.state.gov/Search/
Results.aspx?collection=Clinton_Email

4https://www.cs.cmu.edu/˜./enron/
5https://www.yelp.com/dataset
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300 words in length. We ignored texts contain-
ing URLs (as they often quote writing from other
sources) and texts with too many line breaks (usu-
ally lists).

2.4 Annotation
We collected coherence judgments both from ex-
pert raters with prior linguistic annotation expe-
rience, as in Burstein et al. (2010) and from un-
trained raters via Amazon Mechanical Turk. This
allows us to assess the efficacy of using untrained
raters for this task. We asked the raters to rate the
coherence of each text on a 3-point scale from 1
(low coherence) to 3 (high coherence) given the
following instructions, which are based on prior
coherence annotation efforts (Barzilay and Lapata,
2008; Burstein et al., 2013):

A text with high coherence is easy to un-
derstand, well-organized, and contains
only details that support the main point
of the text. A text with low coherence
is difficult to understand, not well orga-
nized, or contains unnecessary details.
Try to ignore the effects of grammar or
spelling errors when assigning a coher-
ence rating.

Expert Rater Annotation We solicited judg-
ments from 13 expert raters with previous anno-
tation experience. We provided a high-level de-
scription of coherence but no detailed rubric, as
we wanted them to use their own judgment. We
also provided examples of low, medium, and high
coherence along with a brief justification for each
label. The raters went through a calibration phase
during which we provided feedback about their
judgments. In the annotation phase, we collected
3 expert rater judgments for each text.

Mechanical Turk Annotation We collected 5
MTurk judgments for each text from a group of
62 Mechanical Turk annotators who passed our
qualification test. We again provided a high-level
description of coherence. However, we only pro-
vided a few examples for each category so as not
to overwhelm the annotators.

We were mindful of how the characteristics of
each domain might affect the resulting coherence
scores. For example, after rating a batch of gen-
erally low coherence forum data, business emails
may appear to be more coherent. However, our
goal is to discover the characteristics of a low co-
herence business email or a low coherence forum

post, not to compare the two domains. Therefore,
we recruited new MTurk raters for each domain
so as not to bias their scores. The same 13 expert
raters worked on all four domains, but we specifi-
cally instructed them to consider whether each text
was a coherent document for its domain.

2.5 Grammarly Corpus of Discourse
Coherence

The resulting four domains each contain 1200
texts (1000 for training, 200 for testing). Each text
has been scored as {low, medium, high} coher-
ence by 5 MTurk raters and 3 expert raters. There
is one consensus label for the expert ratings and
another consensus label for the MTurk ratings. We
computed the consensus label by averaging the in-
teger values of the coherence ratings (low = 1,
medium = 2, high = 3) over the MTurk or expert
ratings and thresholding the mean coherence score
(low≤ 1.8 < medium≤ 2.2 < high) to produce a
3-way classification label (Table 2). We observed
that the MTurk raters tended to label more texts as
“medium” coherence than the expert raters. Since
the MTurk raters did not go through an extensive
training session, they may be less confident in their
ratings, defaulting to medium as the safe option.

Table 3 contains type and token counts for the
full dataset, and Figure 1 shows the number of
paragraphs, sentences, and words per document.

Coherence Class (%)
Domain Raters Low Med High

Yahoo untrained 35.5 39.2 25.3
expert 46.6 17.4 37.0

Clinton untrained 36.7 38.6 24.7
expert 28.2 20.6 51.1

Enron untrained 34.9 44.2 20.9
expert 29.9 19.4 50.7

Yelp untrained 19.9 43.4 36.7
expert 27.1 21.8 51.1

Table 2: Distribution of coherence classes as a per-
centage of the training data.

Yahoo Clinton Enron Yelp
# types 13,235 15,564 13,694 12,201
# tokens 189,444 220,115 223,347 213,852

Table 3: Type and token counts in each domain.

2.6 Annotation Agreement
To quantify agreement among annotators, we fol-
low Pavlick and Tetreault (2016)’s approach to
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Domain Raters ICC Weighted κ

Yahoo untrained 0.113 ± 0.024 0.060 ± 0.013
expert 0.557 ± 0.010 0.386 ± 0.009

Clinton untrained 0.270 ± 0.020 0.156 ± 0.013
expert 0.398 ± 0.015 0.250 ± 0.011

Enron untrained 0.141 ± 0.021 0.077 ± 0.012
expert 0.428 ± 0.014 0.273 ± 0.011

Yelp untrained 0.120 ± 0.026 0.069 ± 0.014
expert 0.304 ± 0.015 0.181 ± 0.010

Table 4: Interannotator agreement (mean and stan-
dard deviation) on all domains.

simulate two annotators from crowdsourced la-
bels. We repeat the simulation 1000 times and
report the mean agreement values in Table 4 for
both intraclass correlation (ICC) and quadratic
weighted Cohen’s κ for an ordinal scale.

The expert raters have fair agreement (Lan-
dis and Koch, 1977) for three of the domains,
but agreement among MTurk raters is quite low.
These agreement numbers are the result of an ex-
tensive annotation development process and em-
phasize the difficulty of the task. We recommend
that future work in this area leverages raters with a
strong annotation background and the time for in-
depth instructions. For evaluation, we use the con-
sensus label from the expert judgments. For com-
parison, we include an experiment using MTurk
consensus labels in the supplementary material.

3 Models

We evaluate a range of existing discourse coher-
ence models on GCDC: entity-based models, a
word embedding graph model, and neural net-
work models. These models from previous work
have been very effective on the sentence ordering
task, but have not been used to produce coher-
ence scores. We also introduce two new neural
sequence models.

3.1 Baseline

We compute the Flesch-Kincaid grade level (Kin-
caid et al., 1975) of each text and treat it as a co-
herence score. While Flesch-Kincaid is a readabil-
ity measure, previous work has treated readability
and text coherence as overlapping tasks (Barzilay
and Lapata, 2008; Mesgar and Strube, 2015). For
coherence classification, we search over the grade
level scores on the training data and select thresh-
olds that result in the highest accuracy.

3.2 Entity-based Models

Entity-based models track entity mentions
throughout the text. In the majority of our exper-
iments, we applied Barzilay and Lapata (2008)’s
coreference heuristic and consider two nouns to
be coreferent only if they are identical. As Elsner
and Charniak (2011) noted, automatic corefer-
ence resolution often fails to improve coherence
modeling results. However, we also evaluate the
effect of adding an automatic coreference system
in Section 4.1.

Entity grid (EGRID) The entity grid (Barzilay
and Lapata, 2005) is a matrix that tracks entity
mentions over sentences. We reimplemented the
model from Barzilay and Lapata (2008), convert-
ing the entity grid into a feature vector that ex-
presses the probabilities of local entity transitions.
We use scikit-learn (Pedregosa et al., 2011) to train
a random forest classifier over the feature vectors.

Entity graph (EGRAPH) The entity graph
(Guinaudeau and Strube, 2013) interprets the en-
tity grid as a graph whose nodes are sentences.
Two nodes are connected if they share at least one
entity. Graph edges can be weighted according to
the number of entities shared, the syntactic roles
of the entities, or the distance between sentences.
The coherence score of a text is the average out-
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degree of its graph, so for classification we iden-
tify the thresholds that maximize accuracy on the
training data.

Entity grid with convolutions (EGRIDCONV)
Tien Nguyen and Joty (2017) applied a convolu-
tional neural network to the entity grid to capture
long-range transitions. We use the authors’ imple-
mentation.6

3.3 Lexical Coherence Graph (LEXGRAPH)

The lexical coherence graph (Mesgar and Strube,
2016) represents sentences as nodes of a graph,
connecting nodes with an edge if the two sentences
contain a pair of similar words (i.e. the cosine sim-
ilarity of their pre-trained word vectors is greater
than a threshold). From the graph, we can extract
a feature vector that expresses the frequency of all
k-node subgraphs. We use the authors’ implemen-
tation7 and train a random forest classifier over the
feature vectors.

3.4 Neural Network Models

We reimplemented a neural network model of co-
herence, the sentence clique model, to evaluate its
effectiveness on GCDC. We also introduce two
new neural network models that are more straight-
forward to implement than the clique model.

Sentence clique (CLIQUE) Li and Jurafsky
(2017)’s model operates over cliques of adjacent
sentences. For the sentence ordering task, a pos-
itive clique is a sequence of k sentences from the
original document. A negative clique is created by
replacing the middle sentence of a positive clique
with a random sentence from elsewhere in the text.
The model contains a single LSTM (Hochreiter
and Schmidhuber, 1997) that takes a sequence of
GloVe word embeddings and produces a sentence
vector at the final output step. All k sentence vec-
tors are concatenated and passed through a final
layer to produce a probability that the clique is co-
herent. The final coherence score is the average of
the scores of all cliques in the document.

We extend CLIQUE to 3-class classification by
labeling each clique with the document class la-
bel (low, medium, high). To predict the text label,
the model averages the predicted coherence class
distributions over all cliques.

6https://github.com/datienguyen/cnn_
coherence

7https://github.com/MMesgar/lcg

Sentence averaging (SENTAVG) To investigate
the extent to which sentence order is important in
our data, we introduce a neural network model that
ignores sentence order. The model contains a sin-
gle LSTM that produces a sentence vector (the fi-
nal output vector) from a sequence of GloVe em-
beddings for the words in that sentence. The doc-
ument vector is the average over all sentence vec-
tors in that document, and is passed through a hid-
den layer and a softmax to produce a distribution
over coherence labels.

Paragraph sequence (PARSEQ) The role of
paragraph breaks has not been explicitly discussed
in previous work. Models like EGRID assume that
entity transitions have the same weight whether
adjacent sentences A and B occur in the same
paragraph or different paragraphs. We expect
paragraph breaks to be important for assessing co-
herence in longer documents.

Therefore, we introduce a paragraph sequence
model, PARSEQ, that can distinguish between
paragraphs. PARSEQ contains three stacked
LSTMs: the first takes a sequence of GloVe em-
beddings to produce a sentence vector, the second
takes a sequence of sentence vectors to produce a
paragraph vector, and the third takes a sequence of
paragraph vectors to produce a document vector.
The document vector is passed through a hidden
layer and a softmax to produce a distribution over
coherence labels. A diagram of this model is avail-
able in the supplementary material.

4 Evaluation

We evaluate the models on multiple coherence
prediction tasks. The best model parameters, re-
ported in the supplementary material, are the result
of 10-fold cross-validation over the training data.

For all neural models (EGRIDCONV, EGRID-
CONV +coref, CLIQUE, SENTAVG, and PARSEQ),
the reported results are the mean of 10 runs with
different random seeds, as suggested by Reimers
and Gurevych (2017).

We indicate (†) when the best neural model re-
sult is significantly better (p < 0.05) than the
best non-neural result. We use the one-sample
Wilcoxon signed rank test and adjusted the p-
values to account for the false discovery rate.

4.1 Classification
For this task, each text has a consensus label ex-
pressing how coherent it is: {low, medium, high}.

218



Accuracy
System Yahoo Clinton Enron Yelp

Majority class 41.0 55.5 44.0 54.0
Baseline 43.5 56.0 52.5 55.0

EGRID 38.0 43.0 46.0 45.5
EGRID +coref 41.5 48.0 47.0 49.0
EGRAPH 40.0 56.0 43.5 53.0
EGRAPH +coref 42.5 55.0 44.0 54.0
EGRIDCONV 47.0 56.3 44.8 54.2
EGRIDCONV +coref 51.0 56.6 44.7 54.0

LEXGRAPH 37.0 51.0 45.0 48.0

CLIQUE 53.5 61.0† 54.4† 49.1
SENTAVG 52.6 58.4 53.2 54.3
PARSEQ 54.9† 60.2 53.2 54.4†

Table 5: Three-way classification results on test.

We report overall accuracy for all systems on pre-
dicting the expert rater consensus label (Table 5).
We repeated this evaluation using the MTurk rater
labels and included those results in the supplemen-
tary material.

The neural models outperformed the entity-
based and lexical graph models. Non-neural mod-
els showed mixed results, performing on par with
or worse than our baseline. Most models perform
poorly on Yelp, worse than the baseline, perhaps
because Yelp has the lowest annotator agreement
among expert raters.

We also tried adding coreference information
for the entity-based methods, as it has been shown
to be useful in some prior work (Barzilay and La-
pata, 2008; Elsner and Charniak, 2008). For the
base entity model experiments, we used Barzi-
lay and Lapata (2008)’s heuristic to determine
whether two nouns are coreferent. For the +coref
setting, we used the Stanford coreference annota-
tor (Clark and Manning, 2015) as a preprocessing
step before computing the entity grid. The coref-
erence system yielded consistent performance im-
provements of 1–5% accuracy over the corre-
sponding heuristic results, indicating that auto-
matic coreference resolution can help entity-based
models in these domains.

4.2 Score Prediction
A 3-point coherence score might not reflect the
range of coherence that actually exists in the data.
We can instead present a more fine-grained score
prediction task where the gold score is the mean
of the three expert rater judgments (low coher-
ence = 1, medium = 2, high = 3). In Table 6,
we report Spearman’s rank correlation coefficient

Spearman ρ
System Yahoo Clinton Enron Yelp

Baseline 0.089 0.323 0.244 0.200

EGRID 0.110 0.146 0.168 0.121
EGRAPH 0.198 0.366 0.074 0.103
EGRIDCONV 0.204 0.251 0.258 0.104

LEXGRAPH 0.130 0.049 0.273 −0.008
CLIQUE 0.474 0.474 0.416 0.304
SENTAVG 0.466 0.505† 0.438 0.311
PARSEQ 0.519† 0.448 0.454† 0.329†

Table 6: Score prediction results on test.

between the gold scores and the predicted coher-
ence scores. As in the classification task, the neu-
ral methods convincingly outperformed all other
methods, with PARSEQ the top performer in three
out of four domains.

4.3 Sentence Ordering

The sentence ordering ranking task is a somewhat
artificial evaluation, as a document whose sen-
tences have been randomly shuffled does not re-
semble a human-written text that is not very co-
herent. However, we still want to assess whether
good performance on previous sentence ordering
datasets translates to GCDC. Since the sentence
ordering task assumes well-formed texts, we use
only the high coherence texts. As a result, there
are fewer texts than for the classification task, as
we show below. The number of training examples
is 20 times the number of texts, as we generate 20
random permutations for each text.

Yahoo Clinton Enron Yelp

Train texts 369 511 507 511
Test texts 76 111 88 108

Table 7 shows the accuracy of each system
on identifying the original text in each (original,
permuted) text pair. We leave out the baseline
and SENTAVG because they ignore sentence order.
We also simplify PARSEQ to a sentence sequence
model (SENTSEQ) containing only two LSTMs
because the sentence ordering task ignores para-
graph information. As in the prior two evaluations,
the neural models perform best in most domains,
although EGRAPH is best on Yahoo.

4.4 Minority Class Classification

One application of a coherence classification sys-
tem would be to provide feedback to writers by
flagging text that is not very coherent. Such a sys-
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Accuracy
System Yahoo Clinton Enron Yelp

Random baseline 50.0 50.0 50.0 50.0

EGRID 55.9 78.2 77.4 62.9
EGRAPH 64.0 75.3 75.9 59.5
EGRIDCONV 54.8 75.5 73.1 58.7

LEXGRAPH 62.5 78.3 77.9 60.8

CLIQUE 57.8 89.4† 88.7† 64.6
SENTSEQ 58.3 88.0 87.1 74.2†

Table 7: Sentence ordering results on test data.

System Yahoo Clinton Enron Yelp

Baseline 0.283 0.255 0.341 0.197

EGRID 0.258 0.260 0.294 0.161
EGRAPH 0.308 0.382 0.278 0.117
EGRIDCONV 0.360 0.238 0.279 0.169

LEXGRAPH 0.342 0.094 0.357 0.000

CLIQUE 0.055 0.000 0.077 0.146
SENTAVG 0.481† 0.332 0.393† 0.199
PARSEQ 0.447 0.296 0.373 0.112

Table 8: Minority class predictions, F0.5 score on
test data.

tem should identify only the most incoherent areas
of the text, to ensure that the feedback is not a false
positive. To evaluate this scenario, we present a
minority class classification problem where only
15-20% of the data is low coherence:

Yahoo Clinton Enron Yelp
Low coherence % 30.0 16.6 18.4 14.8

We relabel a text as low coherence if at least two
expert annotators judged the text to be low coher-
ence, and relabel as not low coherence otherwise.

We report the F0.5 score of the low coherence
class in Table 8, where precision is emphasized
twice as much as recall.8 This is in line with eval-
uation standards in other writing feedback appli-
cations (Ng et al., 2014). Again, the neural mod-
els perform best in most domains. However, the
results of this experiment in particular show that
there is still a large gap between the performance
of these models and what might be required for
high-precision real-world applications.

4.5 Cross-Domain Classification

Up to this point, we assumed that the four do-
mains are different enough from one another that
we should train separate models for each. To test

8Precision and recall are in the supplementary material.

Test
Yahoo Clinton Enron Yelp

Tr
ai

n

Yahoo 54.9 56.7 50.6 55.3
Clinton 51.8 60.2 50.7 40.4
Enron 51.5 59.9 53.2 50.8
Yelp 48.3 55.5 44.0 54.4

Table 9: Cross-domain accuracy of PARSEQ on
three-way classification test data.

Test accuracy
Yahoo Clinton Enron Yelp

Train in-domain 54.9 60.2 53.2 54.4
Train all data 58.5 61.0 53.9 56.5

Table 10: Classification accuracy of PARSEQ

when trained on data from all four domains.

this assumption, we train PARSEQ, one of the top
performing neural models, in one domain (e.g. Ya-
hoo) and evaluate it in a different domain (Clinton,
Enron, and Yelp). Table 9 compares the in-domain
results (the diagonal) to the cross-domain results.

While the model’s accuracy generally decreases
when transferred to a different domain, sometimes
this decrease is not too severe: for example, train-
ing on Yahoo/Enron data and testing on Clinton
data, or training on Yahoo data and testing on
Yelp data. It is reasonable that training on one set
of business emails (Clinton or Enron) produces a
model that can accurately score the coherence of
other sets of business emails. Similarly, both Ya-
hoo and Yelp contain online text written for public
consumption which may share coherence charac-
teristics, so it is not surprising that a model trained
on Yahoo data works on Yelp (even outperforming
the Yelp-trained model).

These results indicate that we might be able to
train a better coherence model by combining all
our data across multiple domains. We evaluate this
theory in Table 10, comparing the results of the
PARSEQ model evaluated in-domain (e.g. trained
and tested on Yahoo data) to a model trained on
the combined training data from all four domains.
With four times as much training data, the perfor-
mance of PARSEQ improves in all domains, indi-
cating that better coherence models may be trained
from data outside of a specific, narrow domain.

4.6 Discussion

We observe some trends across our experiments.
The basic entity models (EGRID and EGRAPH)
tend to perform poorly, often barely outperform-

220



ing the baseline. The entity grids computed from
GCDC texts are often extremely sparse, so mean-
ingful entity transitions between sentences are in-
frequent. In addition, scoring the coherence of
a text (either classification or score prediction)
is more difficult than the sentence ordering task,
where basic entity models do outperform the ran-
dom baseline by a reasonable margin. Both the
data and the difficulty of the tasks contribute to
poor performance from the basic entity models.

The neural network models almost always out-
perform other models. This supports Li and Ju-
rafsky (2017)’s claim that neural models are bet-
ter able to extend to other domains compared to
previous coherence models. Our PARSEQ and
SENTAVG models are easier to implement than
CLIQUE and outperform CLIQUE on a majority of
experiments. EGRIDCONV usually does not per-
form as well as the other neural models, but it usu-
ally improves over EGRID.

Finally, the relative success of SENTAVG,
which ignores sentence order, is evidence that
identifying a document’s original sentence order
is not the same as distinguishing low and high co-
herence documents. The large number of parame-
ters in PARSEQ may explain why it is sometimes
outperformed by SENTAVG.

5 Analysis

To better understand what distinguishes a low co-
herence text from a high coherence text, we man-
ually analyzed Yahoo and Clinton texts whose
labels were unanimously agreed on by all three
raters. Regardless of the domain, many low coher-
ence texts are not well-organized and appear to be
written almost as stream of consciousness. They
often lack connectives, resembling a list of points
rather than a coherent document.

Incoherent Yahoo texts often contain extremely
long sentences, lack paragraph breaks, and veer
off-topic without a transition or any connection
back to the main point. This is an especially fre-
quent occurrence with personal anecdotes.

Low coherence Clinton emails make better use
of paragraphs, but they too often lack transitions
between topics. In addition, missing information
was a primary reason for low coherence scores.
We provided the raters with individual emails, not
the entire email thread, so raters had less informa-
tion than the original recipient of the email. This
amplifies the detrimental effects on coherence of

jargon, abbreviation, and missing context. How-
ever, overuse of these compression strategies can
result in low coherence even for the intended re-
cipient, so it is worth modeling their effects.

Across domains, coherent texts have a clear
topic that is maintained throughout the text, and
they are well-organized, with sentences, para-
graphs and sub-topics following a logical order-
ing. Connectives, such as however, for example,
in turn, also, in addition are used more frequently
to assist the structure and flow.

Although sentence order is clearly important,
rewriting a disorganized text is not as simple as
reordering sentences. Even if changing the loca-
tion of one sentence increases coherence, a true fix
would still require rewriting that sentence or the
surrounding sentences. Our analysis indicates that
the sentence reordering task is not a good evalua-
tion of whether models can truly be useful to the
task of identifying low coherence texts.

6 Conclusion

In this paper, we examine the evaluation of dis-
course coherence by presenting a new corpus
(GCDC) to benchmark leading methods on real-
world data in four domains. While neural mod-
els outperform others across multiple evaluations,
much work remains before any of these methods
can be used for real-world applications. That said,
our SENTAVG and PARSEQ models serve as sim-
ple and effective methods to use in future work.

We recommend that future evaluations move
away from the sentence ordering task. While it
is an easy evaluation to carry out, the performance
numbers overpredict the success of those systems
in real-world conditions. For example, prior eval-
uations (Tien Nguyen and Joty, 2017; Li and Ju-
rafsky, 2017) report performance numbers around
or above 90% accuracy, which contrasts with the
much lower figures shown in this paper. In addi-
tion, we recommend that future annotation efforts
leverage expert raters, preferably with a back-
ground in annotation, as this task is difficult for
untrained workers on crowdsourcing platforms.

By releasing GCDC, the annotation guidelines,
and our code, we hope to encourage future work
on more realistic coherence tasks.
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Abstract

This paper proposes a fully neural network
based dialogue-context online end-of-turn
detection method that can utilize long-
range interactive information extracted
from both target speaker’s and interlocu-
tor’s utterances. In the proposed method,
we combine multiple time-asynchronous
long short-term memory recurrent neu-
ral networks, which can capture target
speaker’s and interlocutor’s multiple se-
quential features, and their interactions.
On the assumption of applying the pro-
posed method to spoken dialogue systems,
we introduce target speaker’s acoustic se-
quential features and interlocutor’s lin-
guistic sequential features, each of which
can be extracted in an online manner. Our
evaluation confirms the effectiveness of
taking dialogue context formed by the tar-
get speaker’s utterances and interlocutor’s
utterances into consideration.

1 Introduction

In human-like spoken dialogue systems, end-of-
turn detection that determines whether a target
speaker’s utterance is ended or not is an essen-
tial technology (Sacks et al., 1974; Meena et al.,
2014; Ward and Vault, 2015). It is widely known
that heuristic end-of-turn detection based on non-
speech duration determined by speech activity
detection (SAD) is insufficient for smooth turn-
taking (Hariharan et al., 2001).

Various methods have been examined for mod-
eling the end-of-turn detection (Koiso et al., 1998;
Shriberg et al., 2000; Schlangen, 2006; Gravano
and Hirschberg, 2011; Sato et al., 2002; Gun-
takandla and Nielsen, 2015; Ferrer et al., 2002,
2003; Atterer et al., 2008; Arsikere et al., 2014,

2015). A general approach is discriminative mod-
eling using acoustic or linguistic features extracted
from target speaker’s current utterance. In addi-
tion, recent studies use recurrent neural networks
(RNNs) as they are suitable for directly captur-
ing long-range sequential features without manual
specification of fixed length features such as max-
imum, minimum, average values of acoustic fea-
tures or bag-of-words features (Masumura et al.,
2017; Skantze, 2017)

We note, however, that interlocutor’s utterances
are rarely used for end-of-turn detection. In di-
alogues, target speaker’s utterances are definitely
impacted by the interlocutor’s utterances (Heeman
and Lunsford, 2017). It is expected that we can
improve end-of-utterance detection performance
by capturing the “interaction” between the target
speaker and the interlocutor.

In this paper, we propose a neural dialogue-
context online end-of-turn detection method that
can flexibly utilize both target speaker’s and inter-
locutor’s utterances. To the best of our knowledge,
this paper is the first study to utilize dialogue-
context information for neural end-of-turn detec-
tion. Although some natural language processing
tasks recently examine dialogue-context modeling
(Liu and Lane, 2017; Tran et al., 2017), they can-
not handle multiple acoustic and lexical features
individually extracted from both target speaker’s
and interlocutor’s utterances. In the proposed
method, target speaker’s and interlocutor’s multi-
ple sequential features, and their interactions are
captured by stacking multiple time-asynchronous
long short-term memory RNNs (LSTM-RNNs).
In order to achieve low-delayed end-of-turn detec-
tion in spoken dialogue systems, acoustic sequen-
tial features extracted from target speaker’s speech
and linguistic sequential features extracted from
the interlocutor’s (system’s) responses are used for
capturing interactive information.
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In our experiments, human-human contact cen-
ter dialogue data sets are used with the goal of con-
structing a human-like interactive voice response
system. We show that the proposed method out-
performs a variant that uses only target speaker’s
utterances.

2 Proposed Method

End-of-turn detection is the problem of detect-
ing whether each end-of-utterance point is a turn-
taking point or not. The utterance is defined as
an internal pause unit (IPU) if it is surrounded
by non-speech units (Koiso et al., 1998). The
speech/non-speech units are estimated by SAD.

In dialogue-context-based online end-of-turn
detection, all past information of both target
speaker’s and interlocutor’s utterances behind the
speaker’s current end-of-utterance can be utilized
for extracting context information. The estimated
label is either end-of-turn or not. The label of the
t-th target speaker’s end-of-utterance in a conver-
sation can be decided by:

l̂(t) = argmax
l(t)∈{0,1}

P (l(t)|S(1:t),C(1:t),Θ), (1)

where Θ denotes a model parameter. l̂(t) is
the estimated label of the t-th speaker’s end-of-
utterance. S(1:t) represents speaker’s utterances
{S(1), · · · ,S(t)} where S(t) is the t-th utter-
ance. C(1:t) represents interlocutor’s utterances
{C(1), · · · ,C(t)} where C(t) is the t-th utterance
that occurred just before S(t). Undoubtedly, there
are some exceptional cases wherein the t-th inter-
locutor’s utterance is none.

The t-th speaker’s utterance involves N kinds
of sequential features:

S(t) = {s(t)1 , · · · , s(t)N }, (2)

s(t)n = {a(t)n,1, · · · ,a
(t)
n,Itn
}, (3)

where s(t)n represents the n-th sequential feature in
S(t), and atn,i is the i-th frame’s feature in s(t)n . Itn
is the length of s(t)n . In the same way, the t-th inter-
locutor’s utterance involves M kinds of sequential
features:

C(t) = {c(t)1 , · · · , c(t)M }, (4)

c(t)m = {b(t)m,1, · · · , b
(t)
m,Jt

m
}, (5)

where ctm represents the m-th sequential feature in
C(t), and b(t)m,j is the j-th frame’s feature in c(t)m .

J t
m is a length of c(t)m .

Figure 1: Model structure of neural dialogue-
context online end-of-turn detection.

2.1 Fully Neural Network based Modeling
This paper proposes a neural dialogue context on-
line end-of-turn detection method that is mod-
eled using fully neural networks. In order to
model (l(t)|S(1:t),C(1:t),Θ), we extend stacked
time asynchronous sequential networks that in-
clude multiple time-asynchronous LSTM-RNNs
for embedding complete sequential information
into a continuous representation (Masumura et al.,
2017). In order to capture long-range dialogue
context information, the proposed method em-
ploys two stacked time asynchronous sequential
networks for both target speaker’s and interlocu-
tor’s utterances. In addition, the proposed method
introduces another sequential network to capture
interactions of both side’s utterances.

Figure 1 details the structure of the proposed
method. In the proposed method, each feature
within an utterance is individually embedded into
a continuous representation in an asynchronous
manner. To this end, LSTM-RNNs are prepared
for individual sequential features in both target
speaker’s and interlocutor’s utterances. Each se-
quential information is embedded as:

A(t)
n = LSTM(a

(t)
n,1, · · · ,a

(t)
n,Itn

;θAn), (6)

B(t)
m = LSTM(b

(t)
m,1, · · · , b

(t)
m,Jt

m
;θBm), (7)

where A(t)
n denotes a continuous representation

that embeds the n-th sequential feature within the
t-th target speaker’s utterance. B(t)

m denotes a con-
tinuous representation that embeds the n-th se-
quential feature within the t-th interlocutor’s ut-
terance. LSTM() represents a function of the uni-
directional LSTM-RNN layer. θAn and θBm are
model parameters for the n-th sequence in the tar-
get speaker’s utterance and the m-th sequence in
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the interlocutor’s utterance, respectively.
The continuous representations individually

formed from each sequential feature are merged to
yield an utterance-level continuous representation
as follows:

x(t) = [A
(t)
1

>
, · · · ,A(t)

N

>
]>, (8)

y(t) = [B
(t)
1

>
, · · · ,B(t)

M

>
]>, (9)

where x(t) and y(t) represent utterance-level con-
tinuous representations for the t-th target speaker’s
utterance and the t-th interlocutor’s utterance, re-
spectively.

In order to capture long-range contexts, target
speaker’s utterance-level continuous representa-
tions and interlocutor’s utterance-level continuous
representations are individually embedded into a
continuous representation. The t-th continuous
representation that embeds a start-of-dialogue and
the current end-of-utterance is defined as:

X(t) = LSTM(x(1), · · · ,x(t);θX), (10)

Y (t) = LSTM(y(1), · · · ,y(t);θY), (11)

where X(t) denotes a continuous representation
that embeds speaker’s utterances behind the t-
th speaker’s end-of-utterance, and Y (t) denotes a
continuous representation that embeds interlocu-
tor’s utterances behind the t-th interlocutor’s end-
of-utterance. θX and θY are model parameters
for the target speaker’s utterance-level LSTM-
RNN and the interlocutor’s utterance-level LSTM-
RNN, respectively.

In addition, to consider the interaction be-
tween the target speaker and the interlocutor, both
utterance-level continuous representations are ad-
ditionally summarized as:

z(t) = [X(t)>,Y (t)>]>, (12)

Z(t) = LSTM(z(1), · · · , z(t);θZ), (13)

where Z(t) denotes a continuous representation
that embeds all dialogue context sequential in-
formation behind the t-th target speaker’s end-of-
utterance. θZ represents the model parameter.

In an output layer, posterior probability of end-
of-turn detection in the t-th target speaker’s end-
of-utterance is defined as:

O(t) = SOFTMAX(Z(t);θO), (14)

where SOFTMAX() is a softmax function, and θO is
a model parameter for the softmax function. O(t)

corresponds to P (l(t)|S(1:t),C(1:t),Θ). Summa-
rizing the above, Θ is represented as {θA1 , · · · , θAN ,
θB1 , · · · , θBM , θX, θY, θZ, θO}. In training, the pa-
rameter can be optimized by minimizing the cross
entropy between a reference probability and an es-
timated probability:

Θ̂ = argmin
Θ

−
∑

d∈D

Td∑

t=1

∑

l∈{0,1}
Ô

(t)
l,d logO

(t)
l,d ,

(15)
where Ô(t)

l,d and O(t)
l,d are a reference probability

and an estimated probability of label l for the t-th
end-of-utterance in the d-th conversation, respec-
tively. D represents a training data set.

2.2 Features for Spoken Dialogue Systems
In neural dialogue-context-based online end-of-
turn detection, various sequential features can be
leveraged for capturing both target speaker’s and
interlocutor’s utterances. In spoken dialogue sys-
tems, the interlocutor is the system. Therefore,
lexical information generated by the system’s re-
sponse generation module can be utilized. This
paper uses pronunciation sequences and word se-
quences as the interlocutor’s sequential features.
In the proposed modeling, we use both symbol se-
quences by converting them into continuous vec-
tors. On the other hand, the target speaker’s ut-
terances are speech. This paper introduces funda-
mental frequencies (F0s), and senone bottleneck
features inspired by Masumura et al. (2017). The
senone bottleneck features, which extract phonetic
information as continuous vector representations,
offer strong performance without recourse to lexi-
cal features.

3 Experiments

This paper employed Japanese simulated con-
tact center dialogue data sets instead of human-
computer dialogue data sets. The data sets include
330 dialogues and 6 topics. One dialogue means
one telephone call between one operator and one
customer, in which each speaker’s speech was sep-
arately recorded. In order to simulated interactive
voice response applications, we regard the opera-
tor as the interlocutor, and the customer as the tar-
get speaker. We divided each data set into speech
units and non-speech units using an LSTM-RNN
based SAD (Eyben et al., 2013) trained using var-
ious Japanese speech data. An utterance is defined
as a unit surrounded by non-speech units whose
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Speaker’s features Interlocutor’s features Dialogue context Recall Precision F-value Accuracy
(1). F0 - - 80.4 69.9 74.8 73.4
(2). SENONE - - 82.7 78.3 80.4 80.3
(3). F0+SENONE - - 84.5 77.4 80.8 80.6
(4) - PRON - 46.2 64.9 54.0 61.3
(5). - WORD - 66.1 64.6 65.4 65.3
(6). - PRON+WORD - 68.3 64.1 66.2 65.9
(7). SENONE WORD

√
82.0 80.5 81.2 81.4

(8). F0+SENONE PRON+WORD
√

82.7 81.4 82.1 82.0

Table 2: Experimental results: Recall (%), Precision (%), F-value (%), and Accuracy (%).

Topics #calls #utterances #turns
Finance 50 3,991 2,166
Internet provider 64 3,860 1,799
Local government unit 58 3,741 1,598
Mail-order 52 3,752 1,828
PC repair 45 2,838 1,934
Mobile phone 61 4,453 2.016
Total 330 22,635 11,341

Table 1: Experimental data sets.

duration is more than 100 ms. Turn-taking points
and backchannel points were manually annotated
for all dialogues. The evaluation used 6-fold cross
validation in which training and validation data
were 5 topics and test data were 1 topic. Detailed
setups are shown in Table 1 where #calls, #utter-
ances, and #turns represent number of calls, utter-
ances and end-of-turn points, respectively.

To realize a comprehensive evaluation, we ex-
amined various conditions. In the proposed mod-
eling, unit size of LSTM-RNNs was unified to
256. For training, the mini-batch size was set to
2 calls. The optimizer was Adam with the default
setting. Note that a part of the training sets were
used as the data sets employed for early stopping.
We constructed five models by varying an initial
parameter for individual conditions and evaluated
the average performance. When using either target
speaker’s utterances or interlocutor’s utterances,
required components were only used for building
the proposed modeling. We used following se-
quential features. F0 represents 2 dimensional se-
quential features of F0 and ∆F0; frame shift was
set to 5 ms. SENONE represents 256-dimensional
senone bottleneck features extracted from 3-layer
senone LSTM-RNN with 256 units trained from a
corpus of spontaneous Japanese speech (Maekawa
et al., 2000). Its frame shift was set to 10 ms, and
the bottleneck layer was set to the third LSTM-
RNN layer. PRON represents pronunciation se-
quences, and WORD represents word sequences of
interlocutor’s utterances. The lexical features were
introduced by converting them into 128 dimen-
sional vectors through linear transformation that
was also optimized in training.

3.1 Results

Table 2 shows the experimental results. We
used the evaluation metrics of recall, precision,
macro F-value, and accuracy. The results gained
when using only target speaker’s utterances are
shown in (1)-(3). In terms of F-value and ac-
curacy, (3) outperformed (1) and (2). This con-
firms that stacked time-asynchronous sequential
network based modeling is effective for com-
bining multiple sequential features. The results
gained when using only interlocutor’s utterances
are shown in (4)-(6). Among them, (6) attained the
best performance although its performance was
inferior to (1)-(3). In fact, (4)-(6) outperformed
random end-of-turn decision making. This indi-
cates interlocutor’s utterances are effective in im-
proving online end-of-turn detection performance.
The proposed method, which takes both target
speaker’s and interlocutor’s utterances into consid-
eration, is shown in (7) and (8). In terms of F-
value and accuracy, (7) outperformed (2) and (5).
These results indicate that interaction information
is effective for detecting end-of-turn points. The
best results were attained by (8), which utilized
both multiple target speaker’s features and mul-
tiple interlocutor’s features. The sign test results
verified that (8) achieved statistically significant
performance improvement (p < 0.05) over (3).

4 Conclusions

In this paper, we proposed a neural dialogue
context online end-of-turn detection method.
Main advance of the proposed method is taking
long-range interaction information between target
speaker’s and interlocutor’s utterances into con-
sideration. In experiments using contact center
dialogue data sets, the proposed method, which
leveraged both target speaker’s multiple acous-
tic features and interlocutor’s multiple lexical fea-
tures, achieved significant performance improve-
ment compared to a method that only utilized tar-
get speaker’s utterances.
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Abstract

Aiming to expand the current research
paradigm for training conversational AI agents
that can address real-world challenges, we
take a step away from traditional slot-filling
goal-oriented spoken dialogue systems (SDS)
and model the dialogue in a way that al-
lows users to be more expressive in describ-
ing their needs. The goal is to help users
make informed decisions rather than being fed
matching items. To this end, we describe the
Linked-Data SDS (LD-SDS), a system that
exploits semantic knowledge bases that con-
nect to linked data, and supports complex con-
straints and preferences. We describe the re-
quired changes in language understanding and
state tracking, and the need for mined features,
and we report the promising results (in terms
of semantic errors, effort, etc) of a prelimi-
nary evaluation after training two statistical di-
alogue managers in various conditions.

1 Introduction
There has been an increasing amount of research be-
ing conducted on many aspects of Spoken Dialogue
Systems (SDS) with applications ranging from well-
defined goal-oriented tasks to open-ended dialogue,
e.g., (Amazon, 2017). Deep learning and joint opti-
misations of SDS components are becoming the stan-
dard approach e.g., (Chen et al., 2017; Li et al., 2016;
Williams et al., 2017; Liu et al., 2017; Wen et al.,
2017; Cuayáhuitl et al., 2017; Yang et al., 2017), show-
ing many benefits but also limitations and disadvan-
tages. Due to the complexity of the problem, most
of these approaches focus on limited applications e.g.,
information retrieval on small domains or shallow-
understanding chat-bots.

Moving towards conversational AI, we shift the
paradigm to information navigation and present in this
work a more realistic goal-oriented setup. The pro-
posed paradigm is designed towards complex interac-
tions using semantic knowledge bases and linked data
(Heath and Bizer, 2011), and allows users to be more
expressive in describing their constraints and prefer-

ences. We aim to enable users to make informed
decisions by understanding their needs and priorities
through conversation with an intelligent agent.

In this work we extend the Linked Data Spoken Di-
alogue System (LD-SDS) system proposed in (Papan-
gelis et al., 2017) in the following directions: a) we
propose features mined over the set and the order of
objects in the current user focus, b) we modify the
language understanding and belief state tracking mod-
ules to support the proposed complex interactions over
rich information spaces, c) we apply an agenda-based
user simulator to train two statistical dialogue manager
models, and d) we conduct a preliminary evaluation
with promising results.

2 Challenges and Background

2.1 Challenges and Requirements

As our paradigm moves towards information naviga-
tion, we assume that the users have a vague idea of
what they are looking for and through interaction with
the system they can understand their own needs bet-
ter. The user’s intents, therefore, do not always express
hard restrictions (constraints) but often express prefer-
ences1 that users may or may not be willing to relax
as the dialogue progresses. Such preferences may re-
fer to the importance of attributes over other attributes
(e.g., location is much more important than has-free-
wifi when searching for accommodation), or may re-
fer to preferred values of a given attribute (e.g., prefer
central over northern locations but northern may still
be okay under certain circumstances), etc. Moreover,
it is worth highlighting aspects of items that may have
not been mentioned but have high discriminative power
within their cluster (e.g., 5 hotels match the user’s pref-
erences but there’s one with vegan menu).

Towards this objective, we propose the interaction of
SDS with exploratory systems that offer the aforemen-
tioned functionality over semantic knowledge bases.
This requires extensions in language understanding and
state tracking, and the need for mined features.

1Preferences can be considered as soft constraints or
wishes that might or might not be satisfied
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2.2 Background: Preference-Enriched Faceted
Search and Hippalus

Faceted search is currently the de facto standard in
e-commerce (e.g., eBay, booking.com), and its popu-
larity and adoption is increasing. The enrichment of
Faceted Search with preferences, hereafter Preference-
enriched Faceted Search (PFS), was proposed in (Tz-
itzikas and Papadakos, 2013). It has been proven use-
ful for recall-oriented information needs, because such
needs involve decision making that can benefit from
the gradual interaction and expression of not only re-
strictions (hard constraints) but also preferences (soft
constraints). It is worth noting that it allows express-
ing preferences over attributes, whose values can be hi-
erarchically organized and/or multi-valued, it supports
preference inheritance, and it offers scope-based rules
for automatic conflict resolution.

PFS offers various preference actions (e.g., relative,
best, worst, around, etc.) that allow the user to order
facets (i.e. slots), values, and objects. Furthermore,
the user is able to compose object related preference
actions2. Essentially, a user u can express gradually
a set of qualitative (i.e. relative) preferences over the
values of each facet (slot), denoted by Prefu. These
actions define a preference relation (a binary relation)
over the values Vsi of each slot si, denoted by �i,
which are then composed to define a preference rela-
tion over the elements of the information space, i.e.
over V = Vsi × ... × Vsn (in the case of multi-valued
slots V = P(Vsi) × ... × P(Vsn)). Since the descrip-
tions of the objects in the current user focus Fu are
a subset of V , the actions in Prefu define a prefer-
ence relation over Fu denoted as (Fu, �Prefu ), from
which a bucket order of Fu, i.e. a linear order of sub-
sets of Fu ranked based on preference and denoted by
B(Fu, P refu) =< b1, ..., bz >, is derived through
topological sorting.
Hippalus (Papadakos and Tzitzikas, 2014) is an

exploratory search system (publicly accessible3) that
materializes PFS over semantic views gathered from
different data sources through SPARQL queries. The
information base that feeds Hippalus is represented
in RDF/S and objects can be described according to di-
mensions with hierarchically organized and set-valued
attributes. Preference actions are validated using the
preference language described in (Tzitzikas and Pa-
padakos, 2013). If valid, the system computes the re-
spective preference bucket4 order and returns the cor-
responding ranked list of objects.

In addition, Hippalus implements the scoring
function defined in (Tzitzikas and Dimitrakis, 2016),
that expresses the degree up to which an object in
Fu fulfills the preferences in Prefu and is a real

2There are different composition modes like Pareto,
Pareto optimal (i.e. skyline), Priority-based, etc.

3http://www.ics.forth.gr/isl/Hippalus/
4A preference bucket holds incomparable objects with re-

spect to the given soft-constraints

number (in our case its range is the interval [1, 100]).
The specific scoring function, exploits all available
composition modes available in Hippalus enrich-
ing the bucket orders with scores respecting the con-
sistency of the qualitative-based bucket order that is
defined as: A scoring function score is consistent
with the qualitative-based bucket order, if for any two
objects o, o′ and any set of user actions Prefu, it
holds: if pos(o) < pos(o′) then score(o, Prefu) >
score(o′, P refu) where pos(o) is the position of o in
B(Fu, P refu).

3 Features
3.1 Motivation
In order to reduce the complexity of the dialogue sys-
tem while at the same time improving its efficiency
and effectiveness, we enriched the response of the
Hippalus system with a number of features, which
provide cues about interesting slots/values (as men-
tioned in §2.1) that can be exploited by the Belief
Tracker, Dialogue Manager, Natural Language Genera-
tor, and other statistical components of the SDS. These
features are extracted from: a) the set of objects of the
current user focus (selectivity and entropy); and b) from
the imposed ordering of the objects according to the ex-
pressed user preferences (avg, min and max preference
score per bucket and pair-wise wins of objects per slot
per bucket).

3.2 Features extracted from object focus
Assume a dataset D that contains |OD| objects, where
Fu ⊆ OD is the current focus of the user u (i.e. the
objects that satisfy the expressed hard-constraints). Let
S|Fu

= {s1, ..., sn} denote the set of available slots in
D under focus Fu and Vsi|Fu

= {vsi1 , ..., vsim} denote
the set of values for slot si ∈ S|Fu

respectively5. We
define the following metrics:

Definition 3.1. The selectivity of a slot si under focus
Fu is defined as:

Selectivity(si|Fu
) =
|Vsi|Fu

|
|Fu|

(1)

Definition 3.2. The entropy of a slot si under focus Fu

is defined as:

Entropy(si|Fu
) = −

|Vsi|Fu
|∑

j=1

(P (vsij|Fu
)∗log2(

1

P (vsij|Fu
)
))

(2)
where P (vsij|Fu

) is the probability of value vsij in slot
si under focus Fu.

Both selectivity and entropy metrics provide insights
about the discreteness and the amount of information
contained in the values of a specific slot for the objects

5The set of values can be hierarchically organized through
a subsumption binary relation (Vsi ,≤i)
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under focusFu. Selectivity is an inexpensive but rough
metric that takes values in [0, 1]. If the value of each
object for a specific slot is unique, then selectivity is
1 (high selectivity), while it is near 0 for the opposite
(low selectivity). On the other hand entropy is a refined
but more expensive metric, with bigger values when the
probabilities of values in Vsi|Fu

are equal. Hippalus
returns the values of both metrics for each slot of the
current user focus Fu on the fly, along with the pre-
computed values for the whole dataset.

3.2.1 Features extracted from object order
Other interesting features can be extracted from the
imposed ordering of objects based on the user pref-
erences, including min, max, and average preference
score of objects in each bucket, and for each object of
a bucket the sum of pair-wise wins per each slot over
which the user has expressed a preference. The last
feature can be used as an indication about the number
of wins of each object over all different preference cri-
teria (slots), pinpointing criteria that affect only a small
number of objects.

Definition 3.3. The pair-wise wins PWW metric un-
der focus Fu of objects contained in a bucket b ∈
BFu,Prefu derived by preference actions Prefu of
user u for slot s, is defined as:

PWW (b, Prefu|s) =
∑

o∈b

∑

o′∈b

2 ∗ wins(o, o′)
|b|(|b| − 1)

(3)

where Prefu|s denotes the preference actions of
a user u over the slot s and wins(o, o

′) = 1 if
poss(o) < poss(o

′), where poss(o) is the position of o
in BFu,Prefu|s, else wins(o, o′) = 0.

Notice that big PWW values mean that we have a
small number of objects, even a single object, that win
the rest objects of the bucket for the preference actions
of a specific slot. As an example consider a bucket that
contains the cheapest hotel. This hotel wins the rest
objects of the bucket for the slot price and could be
used by the dialogue system to ask if price is consid-
ered more important than the rest slots (i.e. expression
of priority). On the other hand lower values mean that
we have a number of ties for the objects of a bucket,
and that the dialogue system is not able to pin-point
specific slots that could further restrict the top-ranked
objects.

4 The LD-SDS
Figure 1 shows the architecture of our system.
Hippalus is responsible for feeding information re-
garding the current knowledge view to the SLU and
DST components. In addition, it provides the previ-
ously mentioned features and the current ranked list of
results to the multi-domain policy, and Natural Lan-
guage Generation (NLG) and Text to Speech (TTS)
components respectively. Spoken Language Under-
standing (SLU) and dialogue state / belief tracking

Figure 1: The architecture of our prototype.

(DST / BT), have been extended with operations that
correspond to the actions supported by Hippalus.
Since Hippalus supports hierarchical and multi-
valued attributes, the notion of slot has been extended
to allow the definition of relations between slot values.

4.1 Dialogue Management
The objective is to conduct dialogues with as few se-
mantic errors as possible that result in successfully
completed tasks and satisfied users. As baselines for
dialogue management, we created a hand-crafted Dia-
logue Manager (DM) and trained two statistical DMs in
simulation. To this end, we developed an agenda-based
user simulator (Schatzmann et al., 2007) that was de-
signed to handle the complexities and demands of our
SDS, e.g., real values for slots, intervals, hierarchies,
all of our operators, hard constraints and preferences,
etc., as well as to be able to handle multiple items being
suggested by the system (in the sense of an overview of
current results) and tell if these items satisfy the user’s
constraints. In order to handle a wide range of do-
mains, we use the method proposed in (Wang et al.,
2015), which extracts features describing each slot and
action plus some general features pertaining to the di-
alogue so far and the current state of the knowledge
base. Thus, even if new slots are added to the knowl-
edge base, our dialogue manager does not need to be re-
trained. Specifically, we use some of the features pro-
posed in (Wang et al., 2015; Papangelis and Stylianou,
2016) and the features described in the previous sec-
tion, which are necessary to handle the increased com-
plexity of the interaction.

4.2 Understanding and State Tracking
Translating the identified user intentions from SLU into
a belief state is not trivial, even for slot filling models
with one or two operators (e.g., =, 6=). Moreover, as
we aim to connect our system to live knowledge bases,
it is important for SLU to be able to adapt over time,
as well as handle out-of-domain input gracefully. As
an initial approach to belief tracking, we follow some
simple principles (Papangelis et al., 2017) in conjunc-
tion with an existing belief tracker (Ultes et al., 2017).
While this is straightforward for regular slots, we need
a different kind of belief update for hierarchically val-
ued or multi-valued slots. Specifically, for hierarchical
slots we need to recursively perform the belief update,
while still following the basic principles. As the con-
straints become more complex, traversing the hierar-
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Variables E1 E2 E3 E4
Semantic Error 15% 30% 45% 45%

SLU N-Best Size 3 5 7 7
Sim. User Patience 5 3 3 2

Max User Constraints 3 5 7 10
Acceptable Num. Items 7 5 3 2

Table 1: Four environments (parameter settings) under
which our DMs were evaluated.

chy of values becomes non-trivial. In our prototype,
we traverse the hierarchy once for each constraint (rel-
evant to a specific hierarchical slot) and then combine
the updates into a single belief update as the average
for each value. When updating multi-valued slots, we
assign the probability mass to each value that was men-
tioned (and not negated); this can be seen as generating
(or removing) a single-valued “sub-slot” for each value
on the fly.

5 Preliminary Evaluation

To assess how well current statistical DMs perform in
this setting, we compare a hand-crafted dialogue policy
(HDC) against a DM trained with GP-SARSA (GPS)
(Gašić et al., 2010) and one trained with Deep Q Net-
works with eligibility traces (DQN-λ) - an adapted ver-
sion of (Harb and Precup, 2017). HDC, GPS, and
DQN (without eligibility traces) have been the top per-
forming algorithms in a recent benchmark evaluation
(Casanueva et al., 2017). We test the DMs under var-
ious conditions, presented in Table 1. Semantic Error
refers to simulated errors, where we change either the
type of dialogue act, slot, value, or operator that the
simulated user issues, based on some probability. This
can happen multiple times, to generate multiple SLU
hypotheses. SLU N-Best Size is the maximum size of
the N-best list of SLU hypotheses, after the simulated
error stage. Sim. User Patience is the maximum num-
ber of times the simulated user tolerates the same ac-
tion being issued by the DM. Max User Constraints is
the maximum number of constraints in the simulated
user’s goal (e.g., price ≤ 70). One important obser-
vation is that task success is very hard to define, as we
consider a cluster of ranked items to be a valid sys-
tem response. Some users may want to get exactly one
option while for some it may be acceptable to get no
more than four. Therefore, we add a feature to our user
simulator to indicate the number of items a user will ac-
cept as a final result (provided that all of them meet the
user’s constraints). We sample this uniformly from the
set {1, ..., acceptable}, as defined in Table 1 (Accept-
able Num. Items). While this is a rough approximation
of real world conditions, we expect that it introduces
one more layer of complexity that the statistical DMs
need to model.

The dataset used for the evaluation consists of four
domains (Hotels, Restaurants, Museums, and Shops)
with databases populated with content scrapped from
the internet, containing a total of 84 slots and 714 ob-

ENV E1 E2 E3 E4
Single Domain Per Dialogue

HDC 83.8 ± 5 65.8 ± 6 38.8 ± 9 35.7 ± 8
DQNλ 74.4 ± 8 60.7 ± 9 52.1 ± 10 49.6 ± 9
GPS 88.1 ± 4 79.5 ± 3 66.8 ± 6 60.3± 9

Multiple Domains Per Dialogue
HDC 82.3 ± 7 71.6 ± 7 40.7 ± 10 30.5 ± 9

DQNλ 88.3 ± 2 87.5 ± 2 85.8 ± 3 82.9 ± 4
GPS 44.6 ± 8 26.3 ± 2 22.7 ± 6 13.3 ± 7

Table 2: Dialogue success rates for the DMs under var-
ious semantic error rates ± std dev.

jects. We evaluated the statistical DMs on a single do-
main and on a multi-domain setting (as described in
section 4.1). Table 2 summarizes the results of our
evaluation in simulation in the four environments we
have defined, where each entry is the average of 5
runs of 1,000 training and 100 evaluation dialogues.
DQN-λ performs better with the rich (dense) domain-
independent feature set in the multi-domain scenario,
likely because it is exposed to more variability in the
data and therefore needs less iterations to learn well-
performing policies. In fact, it is able to cope very well
in deteriorating conditions, by learning to adapt e.g.,
by asking for more confirmations. GPS shows the op-
posite trend, preferring the sparse belief state features
of the single-domain scenario, needing many more di-
alogues (than the 1,000 allowed here) to reach good
performance in the multi-domain case.

6 Conclusion

We have presented LD-SDS, a prototype information
navigation SDS that connects to semantic knowledge
bases to guide users towards making informed deci-
sions. This direction is more challenging compared to
other simpler kinds of interaction. To evaluate the qual-
ity of the approach that we propose, we developed an
agenda-based user simulator and applied it to train two
statistical DMs. While we have proven the feasibility
of our approach, our system still needs to be trained and
evaluated with human users as in some cases statistical
DMs may overfit simulators (or take advantage of cer-
tain aspects of them). We are therefore in the process of
designing studies to collect text-based human-human
data that will be used to train LD-SDS either end-to-
end or by jointly optimising some of the components.
In addition, we plan to evaluate our approach with live
semantic knowledge bases and extend our approach to
also exploit available unstructured information (out of
domain). In the appendix we show an example dia-
logue with our system that highlights the extensions to
the typical slot-filling approach.
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A Supplemental Material
In this section, we provide an example interaction be-
tween a human user and the LD-SDS prototype. Fig-
ure 2 shows the system in operation. Figures 3 and 4
show examples of slots that can take multiple values or
whose values have hierarchical relations, respectivelly.

Figure 2: The prototype SDS, acting as a hotel
concierge, with live connections to Hippalus.
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Figure 3: An item in Hippalus, where the lan-
guagesspoken slot can take multiple values.

Figure 4: An example of a slot in Hippalus, where
the values have hierarchical relations.

System: Hello, welcome to the Japanese Hotels spoken
dialogue system. How may I help you?
User: I’m looking for a hotel in Kyoto but not in Mi-
nami where they offer free Wi-Fi and have non smok-
ing rooms. (ASR confidence: 0.75154209) Minami is
a region in Kyoto.
Constraints: [ type=hotel, location=kyoto,
location 6=minami, amenities={free-wifi, non-smoking-
rooms} ]
Preferences: [ ]
Hippalus: [ 267 items in 2 buckets; {60, 207} items in buck-
ets ]

S: What price range are you looking for?
U: I want something around 70 pounds and with more
than two stars. (0.7065863)
C: [ pricerange ∼ 70, stars > 2 ]
P: [ ]
H: [ 188 items in 45 buckets; {25, 103, 13, ...} items in buck-
ets ]

S: What kind of user rating would you prefer the hotel
to have?
U: I’d like excellent ratings. (0.92533112)
C: [ ]
P: [ ratings=excellent : best ]
H: [ 188 items in 27 buckets; {9, 11, 8, ...} items in buckets;
identified slots that can affect ranking and reduce items in
first bucket: {stars, location, price} ]

S: Which of the following criteria are important for
you? stars, price, or location?
U: I prefer location and price. (0.95948964)
C: [ ]
P: [ location >> all, price >> all ]
H: [ 188 items in 152 buckets; 3 items in first bucket ]

S: 3 hotels match your preferences. Two are located
in Shimogyo and one in Nakagyo. Ryokan Kyoraku
in Shimogyo is cheaper with 59 pounds per night and
3 stars, and Daiwa Roynet is more expensive at 81
pounds per night but with 4 stars. Royal Park in Nak-
agyo is expensive as well at 79 pounds per night and
4 stars. Both expensive hotels offer more services than
the cheaper one.
U: Thank you, goodbye. (0.97125274)

Table 3: Example interaction between a human user
and our LD-SDS prototype. In the interest of space,
the notes under each dialogue turn briefly show items
that correspond to new information. The belief state is
updated accordingly. ASR: Automatic Speech Recog-
nition.
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Abstract

This paper examines a method to improve
the user impression of a spoken dialog
system by introducing a mechanism that
gradually changes form of utterances ev-
ery time the user uses the system. In some
languages, including Japanese, the form of
utterances changes corresponding to social
relationship between the talker and the lis-
tener. Thus, this mechanism can be ef-
fective to express the system’s intention
to make social distance to the user closer;
however, an actual effect of this method is
not investigated enough when introduced
to the dialog system. In this paper, we
conduct dialog experiments and show that
controlling the form of system utterances
can improve the users’ impression.

1 Introduction

Demand for a spoken dialog system has raised, in-
cluding AI speakers or personal assistant systems
(Bellegarda, 2014). Not only the conventional
task-oriented dialog systems (Aust et al., 1995;
Zue et al., 2000), but also non-task-oriented sys-
tems (Bickmore and Picard, 2005; Meguro et al.,
2010; Yu et al., 2016; Akasaki and Kaji, 2017)
have attracted the attention in recent years. In or-
der for such dialog systems to become ubiquitous
in the society, it is important to improve the user
impression to the dialog with the system.

Miyashita et al. (2008) conducted a research
that increases the user’s intention to talk with the
system by gradually increasing the behavior of a
robot that expresses intimacy. Their study showed
that the user felt the robot more friendly and in-
creased desire to use the robot continuously by the
robot’s behavior. This research showed that, ex-

pressing intimacy with the user is effective to pro-
mote the user’s desire to use the system.

In this research, we focused on a linguistic form
of system utterances to improve the user impres-
sion. Several languages, including Japanese, have
a mechanism called “honorifics” by which the
speech form changes according to the relative so-
cial position or closeness of the social distance to
the dialog partner (Brown and Ford, 1961). The
honorific is often treated as one of the categories of
politeness (Brown and Levinson, 1978, 1987) al-
though several arguments have been raised (Ide,
1989; Agha, 1994). Brown and Levinson (1987)
claimed that the speaker can choose strategy ac-
cording to the politeness level depending on the
social distance or relative power between the
speakers. In Japanese, the speakers try to close
the social distance by gradually decreasing the use
of honorific form.

This paper examines effectiveness of intro-
ducing such mechanism to the dialog sys-
tem. Kim et al. (2012) conducted experiments of
human-robot interaction in Korean language, and
indicated that the robot is perceived more friendly
when calling the user in the familiar form, but
the effect of the speech form itself was limited.
In contrast, we investigate the effect of changing
speech form on the user impression including the
friendliness.

2 Changing Form of System Utterances
Considering Social Distance

2.1 Expressions of Japanese for social
distance, politeness and familiarity

This study exploits the expressions of Japanese
that express politeness and social distance be-
tween the talker and the listener. Thus, we first
explain such mechanism of Japanese briefly. The
Japanese language has a system of speaking form
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called “the honorifics (keigo)”, that indicates so-
cial relationships between the speaker and the lis-
tener or the speaker and the persons referred in
the utterance using the linguistic form. For ex-
ample, the verb tsukuru (to make) can be used as
either tsukuru (normal form) or tsukuri-masu (po-
lite form). Another way of expressing closeness is
to use the ending particles, such as tsukuri-masu
(polite, far) or tsukuri-masu-yo (polite, closer). In
addition to the honorifics, it is possible to express
closeness using different wording, such as hai (a
positive answer or a backchannel, polite) and un
(casual). When the interlocutors are familiar with
each other, the form of utterances become less po-
lite, closer and more casual. In this experiment,
we defined “honorific form” as polite, less close
and formal expressions, and “normal form” as less
polite, closer and casual expressions.

2.2 Gradual control of system speech form
based on speech level shift

The changes of the speech form are caused by
several factors, such as the social entrainment
(Hirschberg, 2008). One of the main factors is the
changes of the social distance. When two persons
make conversations several times, it was men-
tioned that the proportion of honorific form de-
creases, and that of normal form increases as they
make more conversations (Ikuta, 1983). This phe-
nomenon is called “speech level shift” or “speech
style shift” (Ikuta, 1983; Hasegawa, 2004). The
“speech level” or “speech style” means the expres-
sions in the utterances that express closeness of the
interlocutors. Thus, the “speech level shift” means
the switching of speech level that occurs in conver-
sations between the same persons.

To make the dialog system express that the sys-
tem and the user gradually become more friendly,
we propose a method to use the speech level shift.
In the experiment, the subjects talked with the sys-
tem for three consecutive days and evaluated the
impression on the system and the dialog with the
system. We changed the speech level step by step
within the three-day experiment, as shown in Ta-
ble 1. In Japanese, it is natural to use the honorific
form when persons meet for the first time; thus,
all of the system utterances were in the honorific
form in the first conversation.

Proposed system
Honorific Normal

Day 1 100% 0%
Day 2 50% 50%
Day 3 0% 100%

Table 1: The ratio of utterance form corresponding
to day of experiment for proposed system

3 Experimental Dialog System

3.1 System architecture

An experimental system is based on an example-
based dialog system (Takeuchi et al., 2007;
Lee et al., 2009) commonly used for the non-
task-oriented system. A computer-based female
agent was employed. In the example-based dialog
system, the system calculates the similarities
between the user’s utterance and example sen-
tences in the database, and then selects a response
corresponding to the most similar example. This
study employed the cosine similarity for the
similarity calculation.

3.2 Topic-dependent example-response
database for non-task-oriented dialog

The example-response databases for the exper-
iments were constructed through the actual di-
alogs with the system and users (Kageyama et al.,
2017). We focused on chatting between friends,
which is one of the non-task-oriented dialog, and
prepared four databases corresponding to the dif-
ferent dialog topic. To collect the dialog data, the
users asked the agent what she had done yester-
day on the assumption that she had led a human-
like life in the dialog collection. The topics of
the database were cooking, movies, and meal.
A dialog example is appended at Appendix A.
The number of pairs included in the constructed
database was ranged from 1,000 to 1,125. The re-
sponses of the system were composed in the hon-
orific form.

3.3 Preparation of the system utterances in
normal form

The databases of the normal form were con-
structed by rewriting the form of the response
sentences of the collected databases. 26 persons
rewrote the sentences into the normal form. In the
rewriting, the rewriting rules shown at Appendix
B were provided to the rewriters for the consis-
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tency.

4 Dialog Experiments by Gradually
Changing Expression

4.1 Experimental condition
The experiments were conducted in a sound-proof
chamber for 3 consecutive days. The participants
interacted with the system once a day, where a par-
ticipant made 10 utterances to control the num-
ber of interchanges. The topic of the conversa-
tion was different from day to day, where the or-
der of the topics was randomly determined from
participant to participant. The rate of the system
utterances in the honorific and normal form was
changed according to Table 1. After the conversa-
tion, they evaluated the impression on the spoken
dialog system using a questionnaire. For compari-
son, we prepared the dialog systems speaking in
only the honorific form and the normal form in
all three days. These two systems are denoted as
“Honorific” and “Normal” hereafter. In the exper-
iments, 14 participants talked with one of the three
systems, and thus the total number of the partici-
pants was 42 (3 systems × 14 participants). Each
group contained 7 male and 7 female participants.

We first presented the participants all the top-
ics the dialog system could handle, and the par-
ticipants were instructed to ask what the agent did
yesterday for the specific topic. We also presented
a dialog example to the participants. Then the par-
ticipants made conversation with the system on the
presented topic. The participants were allowed to
make self-disclosure utterances.

We expected the system and the participant
made conversations within the given topic, but
the conversation broke down when the participant
made an unanticipated utterance. The participants
were instructed to talk with the system until mak-
ing the specified number of utterances even when
the conversation broke down.

4.2 Procedure of dialog experiments
The experimental procedure is as below:

Step 1: The topic is announced to the participant.
Step 2: The participant asks the system what the

agent did yesterday.
Step 3: The participant made 10 interchanges

with the system.
Step 4: The participant answered a questionnaire

on the impression of the dialog.

Day 1 Day 2 Day 3 Total
Proposed 67.1 72.1 70.7 70.0
Honorific 65.0 71.4 73.6 70.0
Normal 69.3 67.9 66.4 67.9

Table 2: Rate of correct answer [%]

Step 5: The steps 1 to 3 were repeated for 3 con-
secutive days changing the topic every day

4.3 Evaluation method
At the end of the every conversation, the partici-
pants answered the following four questions using
the five-grade Likert scale, one (not at all) to five
(very much).

Satisfaction: How the participant was satisfied
with the dialog

Friendliness: How friendly the participant felt
the dialog system

Impression of speech form: How adequate the
participant felt of the system’s speech form

Intention of talk: How strongly the participant
wants to use the system again

In addition, we asked the participants who talked
with the proposed system, whether they noticed
the changes of the speech form or not after the last
experiment.

5 Analysis of Experimental Results

5.1 Analysis of response rates
Table 2 shows the rates of the correct answers
made by the system in the experiments. The cor-
rectness was judged by the participant based on
the naturalness of the response to the question.

As shown in the table, the rate of correct answer
of each system through three days experiments is
about 70%, and this is almost equal to the pre-
vious results (Kageyama et al., 2017). From the
one-way layout ANOVA factoring the condition
of speech form, the significant difference was not
observed. Therefore, the effect of response error
in the subjective evaluation is considered to be al-
most equal between systems.

5.2 Experimental results of subjective
evaluation

Figure 1 shows the average scores of the subjec-
tive evaluation per day. The graph shows that the
subjective scores of the proposed system tend to
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Figure 1: Average scores of subjective evaluation per day (error bar: 95% confidential interval)

Satisfaction Friendliness Impression of speech form
Mean diff. (95%CI) p-value Mean diff. (95%CI) p-value Mean diff. (95%CI) p-value

Proposed - Honorific 0.45 (-0.04, 0.93) 0.07 0.19(-0.20, 0.59) 0.49 0.43 (0.06, 0.80) 0.02*
Proposed - Normal 0.60 (0.12, 1.07) 0.01* 0.60 (0.20, 0.99) <0.01** 0.07 (-0.30, 0.44) 0.89
Normal - Honorific -0.14 (-0.62, 0.33) 0.76 -0.40 (-0.800, -0.01) 0.04* 0.36 (-0.01, 0.72) 0.06

Table 3: Results of Tukey-Kramer multiple-comparison test (Mean diff.: difference of average score, CI:
confidence interval, *p < 0.05, **p < 0.01)

increase day by day, whereas those of the “Hon-
orific” and the “Normal” systems tend to be flat.
The scores of “Proposed” and “Honorific” are al-
most same at the first day because the all of utter-
ances conducted in the honorific form. Interest-
ingly, we can observe the difference between the
scores of “Proposed” and “Normal” at Day 3 even
both systems spoke in the same form. This result
reflects that the effect of the changing form of the
utterance by number of interactions.

Here, we conducted the two-way layout
ANOVA to compare the condition of the speech
form and the number of the interaction, and ob-
tained the significant difference at the speech form
factor in Satisfaction (p ≤ 0.01, F = 3.07), Im-
pression of speech form (p = 0.01, F = 3.07),
and Friendliness (p ≤ 0.01, F = 3.07). Then, we
conducted the Tukey-Kramer tests to investigate
the difference between the conditions. The results
are summarized in Table 3.

As shown in the table, “Proposed” surpassed
“Honorific” in terms of Impression of speech
form, and surpassed “Normal” in terms of Sat-
isfaction and Friendliness. These results suggest
that the proposed system tends to obtain the better
subjective score comparing to the simple systems
without changing the form of utterance.

5.3 Perception of changes of speech form

In the experiments, 5 out of 14 participants that
used the proposed system did not perceive the
changes of the speech form. Here, we compared

Figure 2: Score depending on perception

the scores between the groups of participants who
perceived (denoted as “Perceived”) and did not
perceive (denoted as “Not-perceived”) the changes
of the form. Figure 2 shows the variation of the
average scores of each group. From the figure,
we can observe that all of the subjective scores of
“Not-perceived” tend to increase as same with the
scores of “Perceived.” This result suggests that it
is possible that the proposed method is able to im-
prove the user impression unconsciously.

6 Conclusion

In this paper, we examined a method to im-
prove the user impression by changing the form
of system utterance according to number of uses.
The dialog experiments showed that the proposed
method can improve the subjective scores, such
as the satisfaction compared to the simple systems
unchanging the speech form, even the user could
not perceive the changes of the expression.

In a future work, we will examine a method to
change the form of the sentences considering the
relationship between the speakers (Li et al., 2016).
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A Dialog example

Speaker Utterance
User What did you cook?
System I cooked nikujaga.
User Are you good at cooking nikujaga?
System I can’t say, but I often cook it.
User Do you make anything else?
System I often cook stir fry vegetables.
User Did you invite your friend?
System I used Cookpad. Have you ever used

it?
User Did you invite your friend?
System I went for a light run after cooking.
User Do you often go jogging?
System Yes. I’m trying to always go jogging

for my health.
User How long did you run?
System I ran about 5 km.
User Where did you run?
System The jogging path by the Hirose river.
User Did you run alone?
System Yes, I ran on the jogging path by the

Hirose river.
User Have you ever participated in a

marathon?
System Yes, I have participated in a half-

marathon several times.

Table 4: Dialog example of cooking (translation
from Japanese)

B Example of rewriting sentence

Example rewriting sentences
Honorific Hai, ie de yoku tsukutte masu yo

Yes, I often make it at home.
Normal Un, ie de yoku tsukutte iru yo

Yeah, I often make it home

Table 5: Example of rewriting presented to the
rewriters (italic: original, upright: translated, un-
der line: different parts depending on form)
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Abstract

This demonstration paper presents a bilin-
gual (Arabic-English) interactive human
avatar dialogue system. The system is
named TOIA (time-offset interaction ap-
plication), as it simulates face-to-face con-
versations between humans using digital
human avatars recorded in the past. TOIA
is a conversational agent, similar to a chat
bot, except that it is based on an actual hu-
man being and can be used to preserve and
tell stories. The system is designed to al-
low anybody, simply using a laptop, to cre-
ate an avatar of themselves, thus facilitat-
ing cross-cultural and cross-generational
sharing of narratives to wider audiences.
The system currently supports monolin-
gual and cross-lingual dialogues in Arabic
and English, but can be extended to other
languages.

1 Introduction

Conversational agents are software programs that
are able to conduct conversations with human
users (interactors), by interpreting and respond-
ing to statements made in ordinary natural lan-
guage. The components of our system, TOIA, tar-
get two types of users: (a) avatar makers, which
are the people who wish to create personalized
avatars, and (b) interactors, those interacting with
the avatar. The system is designed to allow any-
body, simply using a laptop, to create an avatar
of themselves, thus facilitating cross-cultural and
cross-generational sharing of narratives to wider
audiences. Through our system, we aim to enable
interactor users to conduct conversations with a
person (avatar maker) who is not available for con-
versation in real time with the intention of learning
about them. Since face-to-face human interaction

is a powerful tool of human understanding, TOIA
overcomes the restrictions on time and place that
limit this type of interaction, presenting users with
a platform for dialogue at their own pace and con-
venience. Additionally, it allows people from dif-
ferent linguistic backgrounds to communicate by
supporting mechanisms for cross-lingual interac-
tions between users and avatars that speak differ-
ent languages.

2 Related Work

TOIA is inspired by research at the University of
Southern California’s Institute for Creative Tech-
nologies (ICT), such as SGT Blackwell, a digi-
tally animated character designed to serve as an
army conference information kiosk (Leuski et al.,
2006). Users can talk to the character through a
microphone, after which their speech is converted
into text through an automatic speech recognition
(ASR) system. This output is then analyzed by an
answer selection module and the appropriate re-
sponse is selected from the 83 pre-recorded lines
that Blackwell can deliver. Another ICT project,
based off of video recordings instead of digital
media, is New Dimensions in Testimony (NDT), a
prototype dialogue system allowing users to con-
duct conversations with Holocaust survivor Pin-
chas Gutter (Traum et al., 2015a,b; Artstein et al.,
2015, 2016). Similarly, users talk to the Gutter
Avatar through a microphone; their speech is then
converted into text through ASR; a dialogue man-
ager identifies the proper video to play back to
simulate a conversational turn. The NDT setup
is quite impressive in terms of the amount of re-
sources that went into creating the avatar record-
ing — hours of recording, use of top-of-the-line
digital cinema cameras, etc. In TOIA, our goal
is to create a system that will enable any avatar
maker with a laptop and webcam to create and

241



Figure 1: TOIA System Design

publicly share their avatar. We are also interested
in enabling the dialogue to happen cross-lingually,
where an interactor asks in one language, and the
avatar answers in another language (with captions
in the interactor’s language). In our current system
we support Arabic (Ar) and English (En), allowing
for all combinations: (Ar-Ar, En-En, Ar-En and
En-Ar).

3 Overall System Design

TOIA includes four components: (a) a recorder
that records the avatar maker’s videos, (b) a
database that contains the avatar’s video responses
and other data facilitating the matching of the
interactor’s questions with the avatar’s answers,
(c) a player interface through which the interactor
is able to interact with the avatar, and (d) a dia-
logue manager that matches the user’s speech to
the avatar’s answers in any of the four language
pairs. Figure 1 illustrates the relationship among
the different components.

3.1 Recorder
We implemented a web-based recorder to help
avatar makers record personal videos. We used
Node.js as the runtime environment, Express as the
web framework, WebRTC for live recording sup-
port, and MangoDB for real-time data updates.

The overall framework is as follows: Avatar
makers create scripts consisting of pairs of ques-
tions and answers from scratch or customize ex-
isting scripts by removing or adding questions as
desired. These scripts are uploaded to a Cloudant
database. Throughout the recording, avatar mak-
ers can further update answers, delete questions or
add questions on the spot.

The avatar maker selects a specific question
prompt in any order and proceeds to record a video
response to pair with it. A semi-transparent head
location indicator is provided to help the avatar

maker create consist videos. The avatar maker can
review the recorded video, re-record it or delete it.
Figure 2 shows a screen capture of the recorder.

Currently, we have recorded four digital avatars
using this interface, three in English and one in
Arabic, each consisting of around 300 question-
answer pairs.

3.2 Database

TOIA’s avatar data are stored using two compo-
nents: (a) a collection of the answer videos saved
locally for speedy access; and (b) a JSON database
storing question-answer entries. Each question-
answer entry in the database has a unique ref-
erence id number, the answer video path in file
system, as well as a character tag, consisting of
the name of the character. Avatar files support-
ing cross-lingual interaction also include transla-
tions of the answer text. We currently use manual
translations, but machine translations of the ques-
tions and answers may also be included to support
cross-lingual dialogue management, allowing for
languages beyond Arabic and English. Figure 3
shows three English, and their corresponding Ara-
bic, database entries.

3.3 Player

The main TOIA system interface is the player,
through which the interactor user is able to in-
teract with the avatar. Similarly to the recorder,
we implemented a web-based user interface using
a Flask (Grinberg, 2018) web platform utilizing
both Python and JavaScript.

The interactor can initiate a conversation with
any of the available avatars by selecting one of
them using the first page of the player’s interface,
and then specifying whether the interaction will
be in Arabic or English. The character can eas-
ily be switched at any point by returning to the
player’s main page, after which the interaction ses-
sion would restart with a different avatar. The
player listens to the interactor through a micro-
phone and then passes the collected audio through
an ASR system (Google Speech API). The text
produced through ASR is then passed on to the
dialogue management system. The dialogue man-
agement system returns a video file path to be dis-
played by the player. While the video is playing,
the microphone switches to mute mode to avoid
feedback. It then starts listening for utterances
again once the video ends.
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Figure 2: TOIA Recorder (left) and Player (right)

 
 

New York University Abu Dhabi  

URC - 1  
The Sixth United Arab Emirates Undergraduate Research Competition  

 
 

Entry ID  Language  Avatar  Question  Answer  Video Path  

1001  English  Katarina  Who are you?  I am an avatar of an NYUAD student who can answer 
any questions you may have about the university.  

katarina-1.mp4  

1002  English  Katarina  What can I talk to 
you about?  

You can to talk me about anything relating to Academics, 
Admissions, life in Abu Dhabi, and NYUAD in general. 
Feel free to ask me about my experiences here.  

katarina-2.mp4  

1032  English  Katarina  Where is the NYU 
Abu Dhabi 
campus?  

The NYU Abu Dhabi campus is located on Saadiyat 
Island. Saadiyat is home to a few emerging cultural 
landmarks such as the Louvre Museum in Abu Dhabi.  

katarina-32.mp4  

2001  Arabic  Katarina من أنت؟  على أي أنا أفاتار لطالبة في جامعة نیویورك أبوظبي و یمكنني أن أجیب  
.أسئلة لدیك عن الجامعة  

katarina-1.mp4  

2002  Arabic  Katarina عن ماذا یمكنني أن  
أحدثك؟  

یمكنك التحدث معي عن أي شيء لھ علاقة بالشؤون الأكادمیة أو القبول أو 
الحیاة في أبوظبي أو عن جامعة نیویورك أبوظبي بشكل عام. یمكنك سؤالي 

عن تجربتي الشخصیة ھنا أیضًا  

katarina-2.mp4  

2032  Arabic  Katarina أین یقع حرم جامعة  
نیویوك أبوظبي؟  

یقع حرم جامعة نیویورك أبوظبي في جزیرة السعدیات. تعد السعدیات 
.أبوظبيلبعض المعالم الفنیة والثقافیة الناشئة بما فیھا متحف اللوفر  اموطن  

katarina-32.mp4  

 
Figure 3: TOIA Database example

We designed the interface so that the user’s in-
teraction and control could be navigated solely
through audio. The speech recognition is done
in streaming mode; and the end of a question is
determined through silence. This allows for the
interaction to feel more natural and as close to a
live conversation as possible. We have a collection
of ‘filler’ videos with every avatar, that play in a
loop while the player is waiting for the question to
be completed; the microphone is active only while
these videos are playing.

Regardless of the avatar’s spoken language, the
player accepts utterances in both Arabic and En-
glish. The player also displays captions with En-
glish subtitles for Arabic speaking avatars, and
Arabic subtitles for English speaking avatars. The
subtitles are generated based off of the answers
in the script, which by design match the video
recordings. To support a smoother user experience
we display the text processed by the speech rec-
ognizer. This allows the user to recognize when
the utterance has not been ‘heard’ correctly, and
encourages them to use a clearer or louder voice
when interacting with the avatar. The right side of
Figure 2 shows the TOIA player interface.

3.4 Dialogue Manager

Once the interactor selects the avatar and interac-
tion language, the dialogue manager loads the data
linked to the chosen avatar. A new dialogue ses-
sion is created in order to save the state of the con-
versation and ensure a natural flow where repeti-
tion and irrelevant answers are minimized.

The input to the dialogue manager is a textual
version of the interactor’s last utterance with a lan-
guage id. The output is a path to the video file that
is to be played in response.

The dialogue manager matches the interactor’s
questions with all the questions and answers in
the avatar database. In order to facilitate the
matching, the text in both the interactor questions
and the database entries is preprocessed, removing
punctuation and stop words, then expanded into
word feature representations for matching pur-
poses. The word representations include: uni-
gram, bigram and trigram sequences, in terms of
raw words, their lemmas and their stems. Lem-
mas abstract over inflectional variants of the word,
which is particularly important for Arabic, a mor-
phologically rich language (Habash, 2010).

For English, we use the Natural Language Tool
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Kit (NLTK) (Bird et al., 2009). For Arabic, we
use the Standard Arabic Morphological Analyzer
(SAMA) (Graff et al., 2009). Due to Arabic’s or-
thographic ambiguity, SAMA produces multiple
analyses (lemmas and stems) per word. We select
a single analysis using the Yamama system’s max-
imum liklihood models for Arabic lemmas (Khal-
ifa et al., 2016).

We further add lemma synonyms to increase
the possibility of matching. For English, we used
NLTK Synset support (Bird et al., 2009). For
Arabic, we created synthetic synsets by cluster-
ing Arabic lemmas with the same English glosses.
Only for English, the database of questions and an-
swers is also enriched through automatically gen-
erated questions, based off of the answers, to in-
crease the probability of finding an appropriate an-
swer for an interactor’s query.

The matching process is optimized for speed
using a number of hash maps to allow the fast
generation of an answer ranked list. The ranking
uses the number of matches in the various dimen-
sions mentioned above, term-frequency inverse-
document-frequency weights, as well as a history
of whether a particular video had been played al-
ready in the current session. The more matches be-
tween the interactor’s utterance and the question-
answer pair, the more the likelihood that pair’s en-
try will be selected. In the case of multiple tied en-
tries, the one whose answer video was played the
least in the current session is chosen. The playing
count of the chosen entry is updated.

4 Preliminary Evaluation

We performed a user study with ten Arabic speak-
ers and ten English speakers, each of whom chat-
ted with three avatars (two English, one Arabic).
The metrics we recorded were accuracy, under-
standing, interaction pace, timely response and
conversation flow. On average across all metrics
and users, we received a score of 3.6 out of 5. 85%
of users enjoyed interacting with avatars, and 60%
said they would like to interact with other avatars.

5 Demo Plan

In the demo of our work, we will present the four
avatars we have created, each of which can be spo-
ken to in English and Arabic. We will also present
users with the ability to test the recorder by cre-
ating their own list of questions and answers, and
recording a set of videos.

6 Conclusion and Future Work

We presented a bilingual (Arabic-English) interac-
tive human avatar dialogue system that simulates
face-to-face conversations between humans using
previously recorded digital human avatars.

In the future, we plan to work on a detailed
user study to evaluate the performance of the var-
ious components in our system. Consistent with
our motivating mission, we also plan to make the
recorder and player available online to allow users
anywhere to use it. We look forward to maximiz-
ing its usability so that any person can start sharing
their life stories at their own pace, from their point
of view, and in the comfort of their home.
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Abstract

When creating a dialog system, developers
need to test each version to ensure that it is
performing correctly. Recently the trend
has been to test on large datasets or to ask
many users to try out a system. Crowd-
sourcing has solved the issue of finding
users, but it presents new challenges such
as how to use a crowdsourcing platform
and what type of test is appropriate. Di-
alCrowd makes system assessment using
crowdsourcing easier by providing tools,
templates and analytics. This paper de-
scribes the services that DialCrowd pro-
vides and how it works. It also describes
a test of DialCrowd by a group of dialog
system developers.

1 Introduction

The development of a spoken dialog system in-
volves many steps and always ends in system tests.
As our systems have become more complicated
and the statistical methods we use demand more
and more data, proper system assessment becomes
an increasingly difficult challenge. One of the eas-
ier approaches to goal-oriented system assessment
is to employ user simulation (Jung et al., 2009;
Pietquin and Hastie, 2013; Schatzmann et al.,
2005). It aims at the overall assessment of the sys-
tem by measuring goal completion. While this is
a useful first approach, it can’t reveal what a hu-
man user would actually say. Thus this approach
is usually used as a first approximation, quickly
followed up with some assessment using humans.
SOme chatbot systems use machine learning met-
rics to compare a model-generated response to a
golden standard response. However, those met-
rics assume that a valid response has a significant
word overlap with the golden response, which is

often not the case. Liu et al. (2016) showed that
these metrics correlate very weakly with human
judgment. Other approaches used to assess non-
task oriented dialog systems include word simi-
larity metrics, next utterance classification, word
perplexity, and response diversity (Serban et al.,
2015). They are limited since they can’t reproduce
the variety found in actual user behavior.

Crowdsourcing platforms, such as Amazon Me-
chanical Turk (AMT), have shown promise in as-
sessing spoken dialog systems (Eskenazi et al.,
2013; Jurčı́ček et al., 2011). But for most devel-
opers it is not trivial to set up the crowdsourc-
ing process and obtain usable results. Jurčı́ček
et al. (2011) noted that this process must be cheap
to operate and easy to use. Researchers (the re-
questers) have to overcome the following diffi-
culites: learning how to use the crowdsourcing
entity interface, learning how to create an under-
standable and attractive task, deciding on the cor-
rect form that the task should take (the template),
connecting the dialog systems that are to be as-
sessed to the crowdsourcing platform, paying the
workers, assessing the quality of the workers’ pro-
duction, getting solid final results. To solve the
connection issue, researchers have used the tele-
phone to connect their dialog systems, relying on
a crowdsourcing web interface to present the task,
then sending the worker to the dialog system and
finally bringing them back to the interface to col-
lect their production and schedule payment. This
connection issue is one example of these hurdles.
Researchers are also faced with the choice of the
form of assessment. The types of tests may vary.
One form that is often found in the literature is
to compare two versions of the same system (A/B
text). The literature shows that a small number of
test types covers most publications.

DialCrowd (https://dialrc.org/dialcrowd.html)
is a toolkit that makes crowdsourced evalua-
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tion studies easy to run. We have identified a
small number of standard evaluation experiment
types and provided templates that generate web
interfaces for these studies in a crowdsourcing
environment. The DialCrowd interface first has
the researcher choose the type of study (or she
can make up her own). Once the type is chosen,
the corresponding template appears and is filled
in. This generates the task (HIT on AMT) that
the worker will see. This considerably lowers
preparation time, and guides those who are new
to the field to commonly-accepted study types.
DialCrowd presently has a small set of templates
which will soon expand to include those sug-
gested by our users or that we find in the literature.
Other aspects of crowdsourced assessment that
DialCrowd presently addresses are:

• Explaining the overall goal of the assessment
to the worker

• Instructing the worker on how to accomplish
the task

• Reminding a requester to post a consent form
for explicit permission to use the data

• Helping calculate how much to pay for a HIT

• How to make a HIT less susceptible to BOTs

• Help in designing the appearance of the HIT.

Going forward, DialCrowd will also provide tools
to:

• Assess an individual worker

• Create a golden data set

• Assess the final outcome with basic analytics

• Ensure that results are collected ethically and
are made available to the community with as
few restrictions as possible that do not com-
promise the worker’s privacy.

2 Related Work

The performance of dialog systems can be mea-
sured via: task success, the number of turns per
dialog, ASR accuracy, system response delay, nat-
uralness of the speech output, consistency with
the users expectations, and system cooperative-
ness (Moller and Skowronek, 2003). These met-
rics are both subjective and objective. Subjective
metrics often come in the form of exit polls follow-
ing the worker’s interaction with a system. They

often measure how much a worker liked interact-
ing with a system or whether the worker would
like to use the system again. Objective metrics can
be extracted automatically or labeled manually by
experts.

Toolkits must support both interactive and non-
interactive studies. There are offline datasets that
could be used to run some system studies. But they
can’t be used if success depends on how the user
responds to a system utterance. In this case, only
interactive tests can do the job. On the other hand,
some researchers may have sets of responses that
their systems have produced for which they need
to know the appropriateness, given recent dialog
context. Non-interactive tests are used in this case.
DialCrowd provides support for both forms.

Non-interactive tests are the simplest to imple-
ment since the actual dialog system is not in-
volved. Here the worker often sees a portion of
a real dialog and passes some sort of judgment.
Yang et al. (2010) for example used the Let’s Go
dialog logs (Raux et al., 2005) and identified sev-
eral cue phrases that afforded the development of
a set of heuristics to automatically classify those
logs into five categories in terms of task success:
too short, multi-task, task complete, out of scope,
and task-incomplete.

Interactive tests usually have instructions and
a scenario to enact that constrain the worker’s
behavior. Jurčı́ček et al. (2011)), for example,
conducted real user evaluations of the Cambridge
Restaurant Information system using AMT.

Crowdsourcing has several advantages. The
crowd has been shown to be substantially more ef-
ficient in accomplishing assessment tasks (Munro
et al., 2010). No time is spent recruiting users.
Jurčı́ček et al. (2011) note that it took several
weeks to recruit users for the Cambridge trial
while it only took several days to get this done us-
ing crowdsourcing and the cost was much lower.

3 DialCrowd

The inspiration for DialCrowd comes from the
TestVox toolkit (Parlikar, 2012) for speech syn-
thesis evaluation. TestVox enables any developer
to quickly upload data in a standard format and
then deploy it on AMT or some other crowdsourc-
ing site, or to a controlled set of developer-selected
workers and get results easily and rapidly. TestVox
is easy to deploy on AMT.

Several tools have recently been proposed to
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connect non-speech dialog systems to AMT. Di-
alCrowd is different in that it is speech-enabled.
DialCrowd is designed to make it easy to connect
to spoken dialog systems using Google Chrome’s
speech recognition. It also provides audio test-
ing to ensure that workers have a working micro-
phone, speakers, and headset. DialCrowd is de-
signed to eliminate common crowdsourcing mis-
takes that affect results such as giving the worker
too much information, creating a task with an un-
reasonably high cognitive load and proposing a
task that a bot can easily be created to do. It pro-
vides off-the-shelf dialog systems that can be used
as a baseline, such as DialPort’s Let’s Forecast
(weather), Let’s Eat (restaurants), Let’s Go (bus
information) and Qubot (question answering chat-
bot) (Zhao et al., 2016). Requesters can use their
own dialog systems as the baseline.

DialCrowd uses test design techniques such as
Latin Square in a set of templates (Cochran and
Cox, 1950)). It uses timed sandbox trials to sug-
gest correct, respectful payment for a HIT with
the following equation = M×T

60min where M is the
hourly minimum wage in the requester’s state. T
is the average amount of time on task during in-
ternal testing for 10 people. Requesters pay using
their own accounts with the crowdsourcing plat-
form of choice.

4 Overall Architecture of DialCrowd

DialCrowd has two components: DialCrowd Ad-
min (requester view) and DialCrowd Worker
(worker view). Although not restricted to AMT,
this paper explains the overall process on AMT as
an example. Given a dialog log format, the re-
quester selects the set of turns and the context the
worker should see. This section describes the pro-
cess on DialCrowdAdmin.

1. Creating a project on Amazon MTurk: Di-
alCrowd’s requester site provides 10 sample tem-
plates that cover common uses of AMT. For inter-
active assessment, a survey template is chosen and
DialCrowdAdmin automatically generates the link
to a dialog system.

2. Create a project on DialCrowd Admin:
After creating a project, the study is designed in
detail. DialCrowd can help assess a single dialog
system with Likert feedback ratings. It can also
compare more than one dialog system, for exam-
ple using an A/B template. In the latter case, di-
alog systems are presented in random order or in

a Latin Square format. For non-interactive tests,
JSON data, such as dialog logs, is added by the
requester. DialCrowd also supports various types
of exit polls: Likert scale, open-ended, and A/B,
with random order presentation. For interactive
tests, there are two types of testing: ”1 to N” and
”N to 1” where ”1 to N” means one worker tests
and individually scores N dialog systems (Likert
Scale or select the best one). ”N to 1” means N
workers test one dialog system that DialCrowd has
randomly selected amongst several.

3. Connect one or more dialog systems:
1. At the end of the DialCrowdAdmin setup,
the DialCrowd Worker webpage is available. To
connect to DialCrowd, a dialog system has an
HTTP server waiting for utterances that Dial-
Crowd directs to it using some simple spe-
cific protocols. This makes connecting to Di-
alCrowd easy for anyone with basic program-
ming knowledge. DialCrowd provides off-the-
shelf server wrapper templates in three main-
stream programming languages: Java, Python, and
JavasSript https://github.com/DialRC/PortalAPI.
The API protocol is the same as for DialPort.

4. Testing the task and then deploying it:
After running the backend RESTful APIs, the re-
quester inputs the backend API URL and checks
the DialCrowd connection. The requester can
then preview the website automatically generated
by DialCrowdAdmin. DialCrowdAdmin provides
log viewers and survey results. Requesters can
also download data. DialCrowdWorker is the web-
site through which workers talk to dialog systems
and carry out the assigned task. The website is
automatically generated by DialCrowdAdmin.

5 A user study of DialCrowd

This section describes a study of the use of
DialCrowd by a set of requesters. The Dial-
Crowd toolkit was made available to 10 dialog re-
searchers. We gave them survey links and asked
them to use DialCrowd. After they used it, we col-
lected feedback. When asked how long it took to
build a crowdsourcing study in their previous re-
search, over 50% said more than one day and less
than one week. For DialCrowd, 50% said they fin-
ished the whole process in between one and three
hours. When asked how they set up the evaluation
pipeline previously, 90% said they did it them-
selves without a toolkit. When asked how easy
it was to use the DialCrowd toolkit and if it was
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useful, answers averaged above 4 on a scale from
1 to 5 where 5 was best.

• The instructions were clear to follow.
[AVG:4.4, STD:0.69]

• The toolkit is useful. I want to use this toolkit
in the future to run other studies [AVG:4,
STD:0.94]

• I will use this toolkit in the future to run other
studies [AVG:4.2, STD:0.78]

They also said that it took a lot less time to
run a study using DialCrowd (100%), and that the
toolkit is well documented (80%). They used in-
teractive tests on their dialog systems or chatbot
and non-interactive tests for classifying intent or
entity labeling in specific domains. Among the
open-ended questions, we received several ques-
tions about whether future versions of DialCrowd
could include turn-based assessments and full sys-
tems that include other ASRs and TTSs, not just
Google Chrome APIs. Participants also asked
about adding more question types/more support
for custom question types through an API. We are
working on this function at present.

6 Conclusion

DialCrowd is a spoken dialog system crowdsourc-
ing assessment toolkit. It is designed for use by the
research community. Most users have found Dial-
Crowd easy to use and would like to use it again
in the future.
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Filip Jurčı́ček, Simon Keizer, Milica Gašić, Fran-
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Abstract

We present a paradigm for interactive
teacher training that leverages multimodal
dialog technology to puppeteer custom-
designed embodied conversational agents
(ECAs) in student roles. We used the
open-source multimodal dialog system
HALEF to implement a small-group class-
room math discussion involving Venn di-
agrams where a human teacher candidate
has to interact with two student ECAs
whose actions are controlled by the dialog
system. Such an automated paradigm has
the potential to be extended and scaled to
a wide range of interactive simulation sce-
narios in education, medicine, and busi-
ness where group interaction training is es-
sential.

1 Introduction

There has been significant work in the research
and development community on the use of em-
bodied conversational agents (ECAs) and social
robots to enable more immersive conversational
experiences. This effort has led to the devel-
opment of multiple software platforms and so-
lutions for implementing embodied agents (Rist
et al., 2004; Kawamoto et al., 2004; Thiebaux
et al., 2008; Baldassarri et al., 2008; Wik and Hjal-
marsson, 2009). More recently, there has also
been a push towards developing ECAs that are
empathetic (Fung et al., 2016) and are directed
toward specific educational applications such as
computer-assisted language learning (CALL) (Lee
et al., 2010), including the possibility of provid-
ing targeted feedback to participants (Hoque et al.,
2013). The degree of realism and immersiveness
of the interaction experience can elicit varying be-
haviors and responses from users depending on
the nature and design of the virtual interlocutor
(Astrid et al., 2010).

Figure 1: Screenshot of the two virtual student
avatars that teacher candidates interact with

2 Task Design

The task we used for our prototype implemen-
tation asks participants to imagine themselves in
the role of a 2nd grade teacher leading a class-
room discussion on the purpose and function of
Venn diagrams with two ECAs designed to be-
have as students (see Figure 1). We provided par-
ticipants with a stimulus Venn diagram (shown
in Figure 2) in which one item, fish, is purpose-
fully placed in the wrong place to serve as a cat-
alyst for a small-group discussion. The learning
goals for the discussion are to effectively evalu-
ate the Venn diagram for its accuracy, while con-
sidering the similarities and differences between
lakes and oceans. Further, one of the ECAs is
designed to manifest a certain misunderstanding
of this particular Venn diagram—that fish belongs
outside all the circles—but the ECA does not re-
veal this misunderstanding unless it is asked to
comment. The teacher candidate must engage
both students in conversation, diagnose potential
misunderstandings, and then correct those misun-
derstandings through dialog interactions.
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Figure 2: The Venn diagram that the trainee dis-
cusses with the ECAs
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Figure 3: The HALEF multimodal dialog frame-
work with ECAs to support educational learning
and assessment applications.

3 System Design and Implementation

This section first describes our existing dialog
framework. It then discusses the authoring pro-
cess, in which the final step is integration of the 3D
classroom user interface (UI) with the HALEF di-
alog system1. Note that work described in this pa-
per builds on our previous efforts in building vir-
tual avatars for job interviewing (see for example
(Ramanarayanan et al., 2016; Cofino et al., 2017)).
While designing such experiences for users and
authors, we aim for several high-level goals:

• The simulation must be available to potential
users across the globe with as little setup as
possible. This goal implies that we avoid re-
quiring software to be installed, if possible,

1http://halef.org

and that we make the experience as accessi-
ble as possible.

• The activity must be realistic and immer-
sive. Research has shown that engagement
is higher with on-screen ECAs than without
(and higher yet with physical embodiments
such as robots) (Sidner et al., 2005; Rich and
Sidner, 2009), and higher engagement might
provide more effective training.

• The authoring tools/resources must be as
open, low-cost, easy-to-use, and well-
supported as possible.

• It must be possible to control the ECAs re-
motely from the HALEF system and to sync
the mouth motions and gestures of the ECAs
with the audio of the ECAs’ speech.

To fulfill these goals, we decided to use the
Unity 3D2 authoring tool, because it allows a game
to be built as a WebGL3 resource that can be
hosted in a web page, thereby saving users from
having to install anything. The following subsec-
tions describe how we integrated a Unity WebGL
resource with HALEF.

3.1 Resources for Authoring
We used the Blender 3D modeling tool4 to cre-
ate several of our scenes and ECAs5. We also
explored creating animations through the motion-
capture capabilities of Microsoft Kinect. While
both these methods are effective and complement
each other, we found both of these to have a
steeper learning curve than application design-
ers (content matter experts who are not neces-
sarily expert software engineers) might find ac-
ceptable, and they both require substantial time
and expertise to develop ECAs of optimal qual-
ity. Therefore, going forward, we will work to-
ward creating and maintaining an open repository
of scenes, characters, and animations created by
game-authoring experts6.

When scenes, characters, and animations are
assembled in Unity and built, they are still non-
responsive because there is no way of sending
commands (yet). One must add code to the web

2https://unity3d.com/
3https : //developer.mozilla.org/en-US/docs/Web/API/WebGL API
4https://www.blender.org
5We worked off assets originally created for us by Mur-

sion, Inc.
6The public repository might not include the 3D models

shown here as they are proprietary.

250



ECA LifeLikeness System Appropriateness System Engagement Authenticity Overall Experience
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

P
ro

p
o

rt
io

n
 o

f 
a
ll
 c

a
ll
s

 

 

1

2

3

4

5

Figure 4: Crowdsourced ratings aggregated from 146 calls during user acceptance tests on Amazon
Mechanical Turk.

page to receive commands over the network, as
well as to the Unity files in order to route com-
mands to a particular character. We bundled code
to support these functions into a new Unity ”We-
bGL template” that is easy to import into new
Unity projects. The code includes a JSON config-
uration file that specifies all information required
to connect to the HALEF dialog system. After
an author imports this template, she updates the
HTML, CSS, and JSON to fit the task (e.g. show-
ing a static image of a Venn diagram), she builds
the template as a ”WebGL build”, and the result is
a set of files comprising a website.

For the backend, the author creates a dia-
log callflow using the Eclipse-based OpenVXML
toolkit7; the author exports the callflow as a Java-
based WAR file and HALEF hosts it on an Apache
Tomcat server, similar to the way many HTML-
only applications that have dynamic server-based
logic are hosted.

To control ECAs from a callflow, the callflow
must have nodes containing scripts that send com-
mands over the network to the website. These
commands include references to animations that
should be triggered, as well as the ECA that
should perform them. When an ECA speaks, the
command that triggers the audio and mouth mo-
tions just identifies the ECA and the audio file.
Part of front-end configuration is a sequence of
animation-like “blendshape” settings to move the
mouth into different phoneme-related shapes (this
sequence of blendshape settings is generated from

7https://sourceforge.net/p/halef/openvxml

a forced alignment speech recognition tool that is
currently proprietary).

4 User Acceptance Tests

We used the Amazon Mechanical Turk crowd-
sourcing platform to do user acceptance testing
(UAT). We collected data from 146 crowd workers
interacting with the ECAs. Following their inter-
action, the workers were also requested to rate, on
a scale from 1–5 (with 1 being least satisfactory
and 5 being most satisfactory), the following:

1. ECA Lifelikeness: How realistic and life-like
were the ECAs over the course of the interac-
tion?

2. Appropriateness: How appropriate were the
system (or ECAs’) responses to the questions
posed by the user?

3. Engagement: How engaged were users while
interacting with the ECAs?

4. Authenticity: How authentic were the re-
sponses of the ECAs, considering that they
were supposed to represent students?

5. Overall Experience: How was the overall
user experience interacting with the applica-
tion?

Figure 4 plots the results of this user survey. We
observe that users gave predominantly positive rat-
ings to all aspects of the survey, with a majority
proportion assigning ratings of 4 or 5. This also
suggests that the lifelikeness of the ECAs and the
appropriateness of system responses warranted the
most improvement.
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5 Conclusions

We have presented a multimodal dialog-based
teacher training application involving more than
one virtual agent to create an immersive and in-
teractive classroom simulation experience. Future
work will look at leveraging the results of our user
acceptance tests to improving the naturalness of
the ECAs and the interaction, as well as in design-
ing the simulation to be more adaptable to the en-
gagement level of users. We will also explore the
addition of more student avatars and different sit-
uational contexts.
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Abstract

Self-disclosure is a key social strategy
employed in conversation to build rela-
tions and increase conversational depth. It
has been heavily studied in psychology
and linguistic literature, particularly for
its ability to induce self-disclosure from
the recipient, a phenomena known as reci-
procity. However, we know little about
how self-disclosure manifests in conver-
sation with automated dialog systems, es-
pecially as any self-disclosure on the part
of a dialog system is patently disingenu-
ous. In this work, we run a large-scale
quantitative analysis on the effect of self-
disclosure by analyzing interactions be-
tween real-world users and a spoken di-
alog system in the context of social con-
versation. We find that indicators of reci-
procity occur even in human-machine di-
alog, with far-reaching implications for
chatbots in a variety of domains including
education, negotiation and social dialog.

1 Introduction

Humans employ different strategies during a con-
versation in pursuit of their social goals (Tracy
and Coupland, 1990). The contributions to a con-
versation can be categorized as those which serve
propositional functions by adding new informa-
tion to the dialog, those which serve interactional
functions by driving the interaction and those
which serve interpersonal functions, by building
up the relationship between the involved parties.
When fulfilling interpersonal functions, people ei-
ther consciously or sub-consciously employ social
conversational strategies in order to connect and
build relationships with each other (Laurenceau
et al., 1998; Won-Doornink, 1985). This feeling of

M: How is it going?
H: Not bad not bad.
M: Oh! Thats great. I had a great day 
too. Yeah, I've just been chilling all 
day and catching up with my friends. 
They just got married. What about 
you? Anything special that I should 
know of?
H: Well I went to see a play today, I 
quite enjoyed it.
M: You know, I spent all my weekend 
watching T.V. . I am obsessed with 
this show.
H: What show?

Figure 1: Excerpt dialog from conversation be-
tween a user and our dialog agent1. H represents
user utterance and M represents machine dialog.

rapport, of connecting and having common ground
with another human being is one of the fundamen-
tal aspects of good human conversation. Maintain-
ing conversational harmony has shown to be effec-
tive in several domains such as education (Ogan
et al., 2012; Sinha and Cassell, 2015a,b; Frisby
and Martin, 2010; Zhao et al., 2016) and nego-
tiation (Drolet and Morris, 2000; Nadler, 2003,
2004).

Self-disclosure is the conversational act of dis-
closing information about oneself to others. We
consider the definition of self-disclosure within
the theoretical framework of social penetration
theory, where it is defined as the voluntary sharing
of opinions, thoughts, beliefs, experiences, pref-
erences, values and personal history (Altman and
Taylor, 1973). The effect of self-disclosure has
been well-studied in the psychology community,
in particular it’s ability to induce reciprocity in
dyadic interaction (Jourard, 1971; Derlega et al.,

1Real interaction data withheld for confidentiality. Con-
versation data shown here is not real interaction data but fol-
lows similar patterns.
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1973). Several studies have shown that self-
disclosure reciprocity characterizes initial social
interactions between people (Ehrlich and Graeven,
1971; Sprecher and Hendrick, 2004) and further,
that disclosure promotes disclosure (Dindia et al.,
2002).

This brings us to a natural question: how does
such behavior manifest itself in interactions with
dialog systems? A subtle but crucial aspect is that
humans are aware that machines do not have feel-
ings or experiences of their own, so any attempt at
self-disclosure on the part of the machine is inher-
ently disingenuous. However, Nass et al. (1994)
suggests that humans tend to view computers as
social actors, and interact with them in much the
same way they do with humans. Disclosure reci-
procity in such a setting would have far-reaching
implications for dialog systems which aim to elicit
information from the user in order to offer more
personalized experiences for example, or to bet-
ter achieve task completion (Bickmore and Cas-
sell, 2001; Bickmore and Picard, 2005; Goldstein
and Benassi, 1994; Lee and Choi, 2017).

In this work, we study this phenomena by build-
ing an open-domain chatbot (§3) which engages
in social conversation with hundreds of Amazon
Alexa users (Figure 1.), and gains insights into two
aspects of human-machine self-disclosure. First,
self-disclosure by the dialog agent is strongly cor-
related with instances of self-disclosure by the
user indicating disclosure reciprocity in interac-
tions with spoken dialog systems (§4.1). Second,
initial self-disclosure by the user can characterize
user behavior throughout the conversation (§4.2).
We additionally study the effect of self-disclosure
and likability, but find no reliable linear relation-
ship with the amount of self-disclosure in the con-
versation (§4.3). To the best of our knowledge, this
work is the first large-scale study of reciprocity
and self-disclosure between users in the real world
and spoken dialog systems.

2 Background

Self-disclosure as a social phenomena is the act of
revealing information about oneself to others. It
has been of particular interest to study what factors
makes humans self-disclose (Miller et al., 1983;
Dindia and Allen, 1992; Hill and Stull, 1987;
Buhrmester and Prager, 1995; Stokes, 1987; Qian
and Scott, 2007; Jourard and Friedman, 1970; Ko
and Kuo, 2009), how do they do it (Chen, 1995;

Greene et al., 2006; Chelune, 1975; Sprecher and
Hendrick, 2004) and what are the effects of self-
disclosing (Gibbs et al., 2006; Mazer et al., 2009;
Forest and Wood, 2012; Turner et al., 2007; Knox
et al., 1997; Vittengl and Holt, 2000).

One such effect is disclosure reciprocity, which
has been shown to be one of the most signif-
icant effects of self-disclosure (Jourard, 1971).
Reciprocity is the phenomenon by which self-
disclosure by one participant in a dyadic social in-
teraction results in self-disclosure from the other
participant in response. A substantial amount
of research has shown that when one party self-
discloses, the other party is much more likely to
self-disclose (Jourard, 1971; Jourard and Fried-
man, 1970; Dindia et al., 2002; Derlega et al.,
1973). While the exact cause of this phenom-
ena is not known, it has been suggested that self-
disclosure can be viewed as a social exchange,
where the party receiving self-disclosure feels ob-
ligated to self-disclose in return (Archer, 1979),
or as a social conversational norm (Derlega et al.,
1993), or from the point of view of social trust-
attraction (Vittengl and Holt, 2000) where people
self-disclose to people who disclose to them, as
they consider self-disclosure to be a sign of trust
and liking. Additionally, Sprecher and Hendrick
(2004) find that people who consider themselves
to be high self-disclosers are likely to be much
better at eliciting self-disclosure as well. Derlega
et al. (1973) observe that self-disclosure is a pos-
itive function of self-disclosure received, regard-
less of liking for the initial discloser. Mikulincer
and Nachshon (1991) analyze personality types
and self-disclosure, and find that secure people
are more likely to both self-disclose and recipro-
cate self-disclosure. Cozby (1972) study the rela-
tionship between disclosure and liking and suggest
that this relationship is not linear. In this work, we
attempt to combine these perspectives to gain in-
sights into the nature of self-disclosure in human-
machine dialog.

3 Identifying Self-Disclosure

3.1 Coding Self Disclosure

In this work, we consider the definition of self-
disclosure within the theoretical framework of so-
cial penetration theory (Altman and Taylor, 1973)
where it is defined to be the voluntary sharing of
information which could include amongst other
things one’s personal history, thoughts, opinions,
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Self-Disclosure 
1) M: Good to hear! Is it anything special today? 
H: Nothing much, I am just going down to the lake 
with my dogs today 
2) M: Have you seen the movie Arrival? 
H: Oh my god, yes i have it’s my favorite movie

No Self-Disclosure 
1) M: Good to hear! Is it anything special today? 
H: Not really 
2) M: Have you seen the movie Arrival? 
H: Yeah I did I did see Arrival 

Figure 2: Examples of self-disclosing user responses as well as responses when the user does not self-
disclose 2.

beliefs, feelings, preferences, attitudes, aspira-
tions, likes, dislikes and favorites. In a human-
machine context, we define self-disclosure as the
conversational act of revealing aspects of oneself
voluntarily, which would otherwise not be possi-
ble to be known by the dialog system. A general
rule-of-thumb we follow is, self-disclosure is pro-
portional to the amount of extraneous information
that is added to a conversation. For example, we
do not identify a direct response to a question as
self-disclosure as it is not strictly voluntary. We
show examples of our definition of human self-
disclosure and non-disclosure in the context of our
dialog system in Figure. 2.

3.2 Dataset Preparation
The data for this study was collected by hav-
ing users from the real-world interact with our
open-domain dialog agent. The dialog agent was
hosted on Amazon Alexa devices as part of the
AlexaPrize competition (Ram et al., 2018) and
was one of sixteen socialbots that could be invoked
by any user within the United States through the
command ‘Let’s chat!’. The users that interacted
with our socialbot were randomly chosen, and did
not know which of the sixteen systems they were
interacting with. Users who interacted with our
bot over a span of three days (N=1507) were ran-
domly assigned to two groups: one received a bot
that self-disclosed at high depth from the begin-
ning of the conversation while the other group in-
teracted with a socialbot that self-disclosed only
later about superficial topics like movies and TV
shows. At the end, both socialbots engaged in
free-form conversation with the user, where the
initiative of the interaction was on the user and
both bots were free to self-disclose at any depth.
The users were also free to end the interaction
at any time, and thus had no motivation for con-
tinuing the conversation besides their own enter-

2Not real interaction data, however very similar to actual
utterances found in the interaction data

tainment. To control the direction of the conver-
sation and bot utterance, we utilize a finite state
transducer-based dialog system that chats with
the user about movies and TV shows, as well as
plays games and supports open-domain conversa-
tion (Prabhumoye et al., 2017). State transitions
are decided based on sentiment analysis of user ut-
terances, in order to gauge interest in a particular
topic. Initially the dialog system takes initiative
in the conversation and steers the topic of discus-
sion, however later there is a handoff to the user
whereby the user can determine the focus of the
conversation. In this way, the socialbot leads the
user through the following topics, conditioned on
user interest as shown in Figure 3:
Greeting : In this phase, our dialog agent greets
the user and asks them about their day. The bot
which performs high self-disclosure initially also
responds with information about it’s day and a per-
sonal anecdote.
TV Shows: The next phase involves chit chat about
popular TV shows. The dialog agent asks the user
if they are an enthusiast of a recent popular TV
show and moves on to the next phase of the con-
versation if they aren’t.
Movie: In this phase, the dialog agent attempts
to engage the user in conversations about movies,
asking them if they have seen any of the recent
ones.
Word Game: In this phase, the dialog agent re-
quests the user to play a word game. Participation
in the game is completely optional and the user
can move on to the next phase by stating that they
do not wish to play.
CQA: The last phase supports uninhibited free-
form conversation. The initiative of the exchange
is now on the user and conversation is stateless.
The dialog system response is determined by a
retrieval model. For each utterance, the social-
bot attempts to retrieve the most relevant response
from the Yahoo L6 dataset (yl6, 2017), a dataset
containing approximately 4 million questions and
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Figure 3: Topic FST for Conversation

their corresponding answers from the Community
Question-Answering (CQA) website, Yahoo An-
swers 3.

The users were then allowed to rate the inter-
action on a scale of 1-5, based on the question
‘Would you interact with this socialbot again?’.
319 users rated the socialbot (Group 1) and 1507
users interacted with our system in total (Group 2).
Following this, to preserve confidentiality of the
interaction data, one annotator annotated all turns
of conversation from Group 1 for self-disclosure.
Annotator reliability was determined by calculat-
ing inter-annotator agreement from three exter-
nal annotators on a carefully prepared anonymized
subset of the data amounting to 62 interactions
comprising of over 816 turns. The Fleiss’ kappa
from the four annotators was 63.8, indicating sub-
stantial agreement. Atleast two of three annota-
tors agreed on 93.6% of the reference annotations.
The full dataset contains a total of 319 conversa-
tions, spanning 10751 conversational turns. Out of
the 5216 human dialog utterances, 13.8% featured
some form of self-disclosure.

Since our agent is a spoken dialog system in
the real world there is some amount of noise in
the dataset caused due to ASR errors. To estimate
this, we randomly sample 100 utterances from the
dataset and annotate these utterances for whether
they contained an ASR mistake, and if the sen-
tence meaning was still apparent either from con-
text or from the utterance itself. We find that at
least one ASR error occurs in 13% of user utter-
ances, but 46.1% of utterances with ASR mistakes
can still be understood. Since our dialog agent re-
lies on sentiment-based FST transitions during the
initial stages of the conversation, we also analyze
the rate of false transitions in the data. We ran-
domly sample 100 utterances from across choice
points of all conversations and find that 11% of
them consisted of incorrect responses, either due
to mistakes in sentiment analysis or due to nu-

3answers.yahoo.com

ance in the user utterances which rendered a re-
sponse from the dialog agent unusable. Finally,
we analyze how many users had multiple interac-
tions with our dialog agent during the course of
our study. This is relevant as user behavior during
a second interaction with the system might differ
from initial interaction. Users are identifiable only
by an anonymized hash key provided by Amazon
along with the conversation data. We find that out
of 316 users who interacted with our dialog agent
and left a rating, only 3 interacted with our agent
twice and none of them interacted with our agent
more than two times, largely allowing us to disre-
gard this effect.

3.3 Feature Space Design

We utilize the annotations of 319 conversations to
train and evaluate a Machine Learning model to
identify user self-disclosure. We categorize the
features for this model at two levels, utterance-
level features wherein the user utterance is taken
standalone and analyzed for self-disclosure and
conversational-level features which consider the
utterance in context of the current conversation.

3.3.1 Utterance Features
This represents a class of features that only con-
sider the current utterance. These include-

1. Bag-of-words Features TF-IDF features
from the user utterance.

2. Linguistic Style Features This class of fea-
tures attempts to characterize the linguis-
tic style of user utterances, including lexi-
cal choices that might be indicative of self-
disclosure (Doell, 2013). These include- i)
Length of the user utterance, ii) Presence
of negation words, iii) Part-of-speech tags
such as nouns and adjectives in the user ut-
terance in order to represent users reveal-
ing emotion or discussing topics, iv) Pres-
ence of filler words in utterance, v) Number
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of named entities in the utterance, vi) Gaze-
teer features based on common responses to
questions asked by our dialog system, in-
dicative of conversational responses as well
as strongly positive, negative or neutral re-
sponses 4.

3. LIWC Features i) Studies have shown
(Sparrevohn and Rapee, 2009) that people
who self-disclose tend to use words that re-
veal strong emotion. Thus, we include fea-
tures to represent words from affect rele-
vant categories of LIWC (Pennebaker et al.,
2015), such as anger, anxiety, sadness, pos-
itive emotion or negative emotion, ii) num-
ber of personal pronouns, first person sin-
gular pronouns, first person plural pronouns,
second person pronouns, third person plural
pronouns, third person singular pronouns, iii)
Additionally, users self-disclosing incidents
from their personal lives tend to discuss their
social settings. Thus, we use relationship
words related to the family and friends cat-
egories from LIWC.

3.3.2 Conversation Features

These features are broadly based on dialog struc-
ture or the language-based features from local con-
versational context. These include i) TF-IDF fea-
tures from the user utterance concatenated with the
bot utterance5, to help capture the difference be-
tween direct responses to questions and voluntary
self-disclosure, ii) dialog system self-disclosing in
previous turn, iii) dialog system asking a question
in the previous turn, iv) Amount of word overlap
with previous machine utterance, which is defined
as the number of words that overlap with the pre-
vious dialog system utterance normalized by the
length of the dialog system utterance, v) Number
of content words6 that overlap with previous ma-
chine utterance.

4Includes phrases such as ”I’m fine”, ”I’m ok”, ”I’m
good”, ”I’m doing ok”, ”I’m doing good”, ”how are you”
for conversational responses, ”delightful”, ”favorite”, ”amaz-
ing”, ”awesome”, ”fantastic”, ”brilliant”, ”the best”, ”re-
ally great” etc. for strongly positive, ”boring”, ”tired”,
”bored”, ”sad”, ”lonely”, ”disgusting”, ”hate”,”awful” etc.
for strongly negative and ”rain”, ”summer”, ”winter”, ”cold”,
”wind” etc. for strongly neutral (as users tend to discuss
weather while making small talk).

5Each word of the bot utterance is encapsulated within a
<bot></bot> tag

6where we determine content words following the usual
definition of nouns, main verbs, adjectives and adverbs.

Model Accuracy Precision Recall F1
First Person 86.6% 68.0% 6.0% 10.9%

Utterance
Features

89.8% 69.8% 46.5% 55.5%

Utterance +
Conversation
Features

91.7% 74.4% 60.5% 66.67%

Table 1: Classification performance(%) of mod-
els at identifying user utterances to contain self-
disclosure.

Figure 4: Ablation Study for Conversation Fea-
tures.

3.4 Results of Identification

The combination of the three categories of features
results in a 234-dimensional vector which acts as
input to an SVM with a linear kernel. We utilize
truncated SVD with 100 components for dimen-
sionality reduction of all bag-of-words based fea-
ture classes. We compare against two baselines,
the first is a baseline consisting of only personal
voiced features (including all LIWC features) and
the second attempts to classify self-disclosure in-
dependent of dialog context (only conditioned on
the current user utterance). We perform 10-fold
cross validation and describe our results in Ta-
ble. 1. We observe that considering user utter-
ances in context of the conversation considerably
improves our ability to predict self-disclosure. To
perform more detailed error analysis on a larger
test set, we randomly sample 1044 utterances from
5216 utterances to be a held-out test set. This test
set consists of 134 utterances of self-disclosure.
Our classifier achieves an accuracy of 93.4% at
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recognizing self-disclosure on this test set, with
a F1-score of 72.7% (Precision: 77.3%, Recall:
68.6%). The test distribution contains 12.8% ex-
amples of self-disclosure and 87.2% examples of
no disclosure. We further perform an ablation
study of each dialog-context feature as shown in
Figure 4. We observe that considering the word in
the context of the machine utterance is most help-
ful in identifying self-disclosure, indicating pos-
sibly that it helps us capture the notion of self-
disclosure being a voluntary phenomena whereby
the user reveals information about himself or her-
self, by separating instances of direct answers to
questions from turns where users disclose more
than what is asked. We next conduct a careful
manual error analysis of the mistakes made by our
classifier, in an attempt to identify what cases are
particularly hard or ambiguous. We observe that
85% of user turns which our model wrongly la-
beled as containing self-disclosure had personal
pronouns, suggesting that our model considers
these as a very strong signal for self-disclosure.
However many of these utterances were in fact di-
rect responses to questions, or questions to the bot
itself prefaced with a personal pronoun, and thus
not really instances of self-disclosure. 25.9% of
the mistakes were not well-formed or meaning-
ful sentences, possibly due to ASR errors, speech
disfluencies or user phrasing. We also examine
the user turns our model failed to predict as being
self-disclosure. 19.5% of these mistakes were not
well-formed sentences and 12.1% were statements
about the bots performance. A further 21.9% of
errors contained rare words which might not have
been seen before in the training data along with an
absence of the linguistic markers of self-disclosure
identified by us (for example, M: Anything special
today? H: Really wanna grab a smoke). In the
future, real world knowledge and a larger amount
of training data might help mitigate some of these
error classes.

4 Effect of Self-Disclosure

4.1 Reciprocity

We analyze common markers of reciprocity
(Jourard and Jaffe, 1970; Harper and Harper,
2006), such as the usage of personal pronouns,
word overlap with the previous sentence (normal-
ized by length of previous utterance) and average
user utterance length between two groups of users-
ones who were shown a bot that self-disclosed ini-

Marker Mean SD Mean Ctrl
Word Overlap* 0.0352 0.0226
First Person Pronouns* 0.84 0.57
Avg. Noun Mentions* 2.00 1.49
Avg. Adjective Mentions 0.55 0.47
Avg. User Utt. Length 4.428 3.983

Table 2: Various effects of conversation with a
dialog system that self-discloses right off-the-bat
and with a control dialog system that only self-
discloses later. * indicates p<0.05 after Bonfer-
roni correction.

Group No Machine SD With Machine SD

Rated 10.5% 24.3%
All 7.4% 21.6%

Table 3: % of turns with Human Self-Disclosure
following Machine Self-Disclosure/Non-
Disclosure.

tially and a bot which only self-disclosed later (Ta-
ble 2.).

Within the data which consists of only rated
conversations, we observe how many turns where
the machine self-disclosed were also met with hu-
man self-disclosure (“Rated” in Table. 3). We then
tag all user utterances 7 with our SVM classifier as
either being instances of self-disclosure or not be-
ing instances of self disclosure (“All” in Table. 3).
We find that 10.6% of all user utterances contain
self disclosure, and 21.6% of machine utterances
that contained self-disclosure were followed by
a human utterance that contained self-disclosure,
compared to the 7.4% of cases where a user self-
disclosed without the machine self-disclosing (p <
0.05). These results are shown in Table. 3.

Next, we observe the utterance after initial self-
disclosure for a group where the socialbot self-
discloses compared to the equivalent dialog turn
for a group where the bot doesn’t self-disclose, to
analyze if self-disclosure has immediate effects.
These results are shown in Table. 4. We ob-
serve that when the bot self-discloses, the user
self-discloses in response in 56.5% of all cases.
However if the bot does not self-disclose and asks
the same question, the user self discloses only in
35.5% of all cases (p < 0.0001). Our findings sug-
gest that it is possible user behavior is affected by

7from 811 conversations of length greater than three turns.
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Group No Machine SD With Machine SD

Rated 44.4% 62.6%
All 35.5% 56.5%

Table 4: % of turns with Human Self-Disclosure
in turns immediately following equivalent initial
self-disclosing/non-disclosing turn of machine.

the self-disclosing behavior of our dialog agent,
and that such an effect can be seen immediately.

4.2 Initial Self-Disclosure and User behavior
We next examine conversation-wide characteris-
tics and self-disclosure patterns of users based on
their initial self-disclosing behavior.

Are Conversations With Initial Self-Disclosure
Longer? We analyze whether whether initial
occurrences of user self-disclosure lead to
users prolonging the conversation by examining
average conversational length for two groups
of users : those who decided to self-disclose
at the very beginning of the conversation it-
self and those who didn’t. We find that users
who self-disclose initially tend to have signif-
icantly longer conversation than users who do
not (p<0.05), with an average conversational
length of 37.19 turns compared to an average of
32.4 turns for users who chose not to self-disclose.

Does not self-disclosing initially imply reduced
self-disclosure throughout the conversation? We
next examine the hypothesis that users who do
not self-disclose initially tend to self-disclose
less throughout. This is based on the notion of
openness and guardedness in personality (Stokes,
1987; Sermat and Smyth, 1973) indicating that
some individuals are more likely to self-disclose
than others. For this study, we do not consider in-
teractions involving the word game as it prolongs
the conversation without giving opportunities for
self-disclosure. We examine to what extent do
individuals who refuse to self-disclose initially,
self-disclose later in the conversation compared to
users who self-disclose from the beginning of the
conversation itself. We find that on average, users
who do not choose to self-disclose initially are
significantly less likely to self-disclose (p<0.05)
even later on in the conversation, only revealing
information in 9% of their turns as compared to
the 24.6% of turns of other users.

Do users who choose not to self-disclose initially
exhibit less interest in following machine inter-
ests? To analyze openness to conversation, we
invite users to play a long-winded word game
with the dialog system. We analyze how much
self-disclosure correlates with willingness to play
the game and length of game playing. We find
that on average users who self-disclose initially
are also significantly more open to game-playing
than those who don’t (p<0.05), playing on aver-
age 4.75 turns of the game compared to an aver-
age gameplay of 3.16 turns by other users. They
are also significantly more likely to attempt to play
the game (p<0.05), with 34.7% of self-disclosing
users attempting to play the game and only 25.1%
of non-disclosing users attempting to do so.

4.3 Does Self-Disclosure Increase Likability

Motivated by Cozby (1972), we attempt to ana-
lyze whether self-disclosure increases likability in
human-machine interaction. We utilize the user
ratings based on the question ‘Would you talk to
this socialbot again’ as a proxy for likability of
the dialog agent, and examine whether conver-
sations where the user self-disclosed often were
given higher ratings than ones where they didn’t.
We find that there is negligible correlation in gen-
eral between user ratings and the amount of self-
disclosure (pearson’s r = 0.01). We then exam-
ine the differences in user ratings between the top
20% and bottom 20% of self-disclosing conversa-
tions, once more excluding interactions with the
game. We observe that while more self-disclosing
conversations get higher ratings in general, the re-
sults are not statistically significant (average rat-
ing of conversations with higher self-disclosure
is 3.14 compared to 3.13 for conversations with
lesser self-disclosure). Lastly, we analyze the ef-
fect of reciprocity and self-disclosure, by analyz-
ing the ratings of users who self-disclosed in re-
sponse to bot disclosure but find no significant dif-
ference in the ratings of such users (3.34 to 3.27).
Thus we are unable to find any conclusive linear
relationship between self-disclosure and likability.

5 Discussion and Related Work

There has been significant prior interest in com-
putationally analyzing various forms of self-
disclosure online (Yang et al., 2017; Wang et al.,
2016; Stutzman et al., 2012; Yin et al., 2016;
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Bak et al., 2014; De Choudhury and De, 2014).
Bickmore et al. (2009) study the effect of ma-
chine ‘backstories’ in dialog, and find that users
rate their interactions to be more enjoyable when
the dialog system has a backstory. Zhao et al.
(2016) identify self-disclosure in peer tutoring be-
tween humans. Han et al. (2015); Meguro et al.
(2010) identify self-disclosure as a user intention
in a natural language understanding system. Oscar
J. Romero (2017) use self-disclosure as one strat-
egy amongst others to build a socially-aware con-
versational agent. Higashinaka et al. (2008) study
if users self-disclose on topics they like rather than
ones they don’t, with a focus on text-based chat
rather than spoken dialog. Similarly, Lee and Choi
(2017) study the relation between self-disclosure
and liking for a movie recommendation system,
using a Wizard-of-Oz approach instead of con-
structing a dialog agent. Perhaps closest to our
work is the work of Moon (2000), which studies
the phenomena of reciprocity in human-machine
self-disclosure. However, this phenomena is not
studied for dialog, and similar to previous work,
relies on a text-based series of interview questions.

In this work, we are interested in realizing self-
disclosure in a real-time, large-scale spoken di-
alogue system. We depart from previous work
in three main ways. First, we have the opportu-
nity of deploying a dialog agent in the wild, and
studying hundreds of interactions with real users
in US households. Second, we study reciprocity
of self-disclosure in human-machine dialog, and
find markers of reciprocity even in conversations
with a dialog agent. Third, we characterize users
by their initial self-disclosing behavior and study
conversation-level behavioral differences. We be-
lieve this work to be a step towards better under-
standing the effect of dialog agents deployed in
the real-world employing self-disclosure as a so-
cial strategy, as well as better understanding the
implications of self-disclosing user behavior with
dialog agents.

We acknowledge limitations of our current ap-
proach. In this work, our definition of self-
disclosure is binary. A more nuanced version
that considers both magnitude and valence of self-
disclosure would open up several further research
directions, such as analyzing reciprocity matching
in depth of disclosure and analyzing user behav-
ior based on the valence of disclosure. It would
also be interesting to analyze how agent behavior

can significantly influence non-disclosing users, as
our results find that users who do not initially self-
disclose continue to self-disclose at reduced lev-
els throughout the conversation. Another imme-
diate research direction would be to study the ef-
fect of other social conversational strategies such
as praise (Fogg and Nass, 1997; Zhao et al., 2016)
at a large scale in spoken-dialog systems. In the
future, one could imagine dialog agents that rea-
son over both social strategies and their magni-
tude, conditioned on user behavior, in service of
their conversational goals.

6 Conclusion

In this work, we empirically study the effect of
self-disclosure in a large-scale experiment involv-
ing real-world users of Amazon Alexa. We find
that indicators of reciprocity occur even in conver-
sations with dialog systems, and that user behavior
can be characterized by self-disclosure patterns in
the initial stages of the conversation. We hope that
these findings inspire more user-centric research in
dialog systems, with an emphasis on dialog agents
that attempt to build a relationship and maintain
rapport with the user when eliciting information.
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Abstract

Having consistent personalities is impor-
tant for chatbots if we want them to be
believable. Typically, many question-
answer pairs are prepared by hand for
achieving consistent responses; however,
the creation of such pairs is costly. In
this study, our goal is to collect a large
number of question-answer pairs for a
particular character by using role play-
based question-answering in which mul-
tiple users play the roles of certain char-
acters and respond to questions by online
users. Focusing on two famous charac-
ters, we conducted a large-scale experi-
ment to collect question-answer pairs by
using real users. We evaluated the ef-
fectiveness of role play-based question-
answering and found that, by using our
proposed method, the collected pairs lead
to good-quality chatbots that exhibit con-
sistent personalities.

1 Introduction
Having a consistent personality is important
for chatbots if we want them to be be-
lievable (Li et al., 2016; Gordon et al., 2016;
Curry and Rieser, 2016; Sugiyama et al., 2017;
Akama et al., 2017). Although neural network-
based methods are emerging for achieving con-
sistent personalities, their quality is not that
high (Li et al., 2016). Therefore, in many sys-
tems, question-answer pairs are prepared by hand
for consistent responses (Takeuchi et al., 2007;
Leuski et al., 2009; Traum et al., 2015). However,
the creation of such pairs is costly.

In this study, our aim is to collect a large
number of question-answer pairs for a particu-
lar character by using role play-based question-
answering (Higashinaka et al., 2013a) in which

multiple users play the roles of certain characters
and respond to questions by online users. The con-
cept is shown in Figure 1. The main idea is that
role players collectively represent a single char-
acter and that a question is broadcast via a char-
acter to all role players. In this way, question-
answer pairs can be efficiently collected because
there is less burden on people responding, and the
entertaining nature of role playing makes people
likelier to participate (Ments, 1999). In a small-
scale experiment, Higashinaka et al. found that
question-answer pairs of a character can be effi-
ciently collected by multiple users and that users
are highly motivated to provide questions and an-
swers.

There were two limitations to their work. One
was that the experiment was conducted using only
a small number of people, who were recruited by
the authors. It was not clear if the scheme would
work with real users (i.e., users who are not re-
cruited nor paid by researchers). The other lim-
itation was that the applicability of the collected
data to the creation of chatbots was not verified. In
their small-scale experiment, the maximum num-
ber of question-answer pairs for a character was
only about 80. This was because users were al-
lowed to register any of their favorite characters,
resulting in a small amount of data per character.
It was difficult to create a chatbot with such little
data.

In this paper, we tackle these limitations by us-
ing role play-based question-answering for col-
lecting question-answer pairs from real users. Re-
garding the second limitation, we limited the char-
acters to two famous ones so as to collect a large
number of question-answer pairs per character and
create workable chatbots. We conducted a sub-
jective evaluation of the chatbots by using human
participants. Our contributions are as follows:

• We verified that role play-based question-
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Figure 1: Role play-based question-answering
scheme (Higashinaka et al., 2013a).

answering works with real users, collecting
a large number of question-answer pairs per
character in a short period.

• We proposed a method to create chatbots
from collected question-answer pairs and
verified that it can lead to good-quality chat-
bots exhibiting consistent personalities.

We first describe our data collection by us-
ing role play-based question-answering with real
users. Then, we propose our method for creat-
ing chatbots using the collected question-answer
pairs. Next, we describe the experiment we con-
ducted to evaluate the quality of the chatbots by
using human participants. After covering related
work, we summarize the paper and mention future
work.

2 Data collection by real users
To collect a large number of question-answer pairs
per character, we focused on two characters: a real
person called Max Murai and a fictional charac-
ter in a novel, Ayase Aragaki. They are popular
characters in Japan and have a large number of
fans. We created Web sites in their fan communi-
ties so that fans could try role play-based question-
answering. We first describe the two characters in
more detail and then briefly go over the Web sites.
Finally, we present the statistics of the data and
look at the results from several aspects.

2.1 Characters
Max Murai His real name is Tomotake Murai

(Max Murai is his stage name). Born in 1981,
Murai is a CEO of the IT company AppBank
but also a YouTuber who specializes in the
live coverage of TV games. He is known to
have a frank personality.

Ayase Aragaki A fictional character in the novel
“Ore no imouto ga konnnai kawaii wakega

Figure 2: Web site for Max Murai.

c©Tsukasa Fushimi/ASCII MEDIA WORKS/OIP2 c©BANDAI NAMCO

Entertainment Inc. Copyright c©2017 Live2D Inc.

Figure 3: Web site for Ayase Aragaki.

nai” (My Little Sister Can’t Be This Cute),
which has sold more than five million copies
in Japan in its series. Ayase is not a main
character but plays a supporting role. Her
character is often referred to as a “Yandere”.
According to Wikipedia, Yandere characters
are mentally unstable, incredibly deranged,
and use extreme violence or brutality as an
outlet for their emotions.

2.2 Web sites
On the Japanese streaming service NICONICO
Douga1, each character has a channel for their
fans. The channel is limited to subscribers.
Through the generosity of this service, we were
allowed to establish our Web sites for role play-
based question-answering on their channels. Mu-
rai has more than 10,000 subscribers; the number
of subscribes for Ayase is not disclosed.

We opened the Web sites in March and Octo-
ber 2017 for Murai and Ayase, respectively. Fig-
ures 2 and 3 show screenshots of the sites. The ap-
pearances of the sites were adjusted to the charac-
ters. The users can ask the characters questions by

1http://www.nicovideo.jp/
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Murai Ayase
No. of users who participated 340 333
No. of question-answer pairs 12,959 15,112
No. of questions 7,652 6,482
Average words per question 10.38 13.09
Average letters per question 17.42 20.35
No. of unique words in questions 7,317 6,654
No. of words in questions 79,412 84,838
No. of users who posted questions 284 262
No. of questions per user 22.51 19.47
No. of answers 12,959 15,112
No. of answers per question 1.69 2.33
Average words per answer 7.03 15.27
Average letters per answer 11.59 24.64
No. of unique words in answers 8,666 10,208
No. of words in answers 91,119 230,707
No. of users who posted answers 243 290
No. of answers per user 38.11 45.38

Table 1: Posting statistics.

means of a text-field interface, and users who want
to play the role of the characters can post answers.
To stimulate interaction, the Web sites show the
rankings of users by their number of posts. In ad-
dition, a “like” button is placed beside each answer
so that when a user thinks the answer sounds very
much “like” the character in question, this opinion
can be reflected in the number of “likes”. The sites
were primarily for collecting one-shot question-
answer pairs. It was also possible for the Murai
site to collect follow-up question-answer pairs, but
this function was rarely utilized by users.

2.3 Statistics
The statistics of the postings (at the time of sub-
mission) are listed in Table 1. We obtained a to-
tal of 12,959 and 15,112 question-answer pairs for
Murai and Ayase, respectively. The size of the
data is quite large. We want to emphasize that the
users were not paid for their participation; they did
so voluntarily. This indicates that role play-based
question-answering works well with real users. As
seen in the table, more than 300 users partici-
pated for each character. The questions/answers
for Ayase were longer and contained more words
and letters.

2.4 Efficiency
Table 2 shows the times when the number of
question-answer pairs exceeded certain thresh-
olds. We can see how fast we could collect a few
thousand question-answer pairs. For both charac-
ters, it took just about a couple of days to reach
2,000 question-answer pairs. For Ayase, the pace
was much faster than for Murai, reaching 10,000
question-answer pairs in 18 days. After a cer-

Murai Ayase
Threshold Hours Days Hours Days
1K 21.36 0.89 25.71 1.07
2K 22.17 0.92 26.88 1.12
5K 1,730.05 72.09 72.21 3.01
10K 2,307.60 96.15 443.73 18.49
12K 2,808.91 117.04 993.37 41.39
15K N/A N/A 2,834.26 118.09

Table 2: Time taken to reach certain number of
question-answer pairs.

tain period, the pace of the postings slowed. Al-
though role play-based question-answering is cer-
tainly entertaining, we may need to consider ways
to keep users engaged in the interaction. En-
abling more sustainable collection of question-
answer pairs is future work.

2.5 Quality of the postings
We also evaluated the answers given by the
users through subjective evaluation (see GOLD
in Tables 4 and 5). We obtained the average
naturalness/character-ness scores of around 3.5–
4.0 on a five-point Likert scale, indicating that
the answers collected through role play-based
question-answering were good. However, it was
surprising that human users also struggled to ob-
tain scores over 4.0, indicating that generating ut-
terances for a particular character is difficult, even
for humans.

2.6 Satisfaction of users
We asked users of the channels to participate
in a survey to determine their user satisfac-
tion. We used the same questionnaire as in
(Higashinaka et al., 2013a). It consisted of three
questions: (Q1) How do you rate the usability
of the Web site?, (Q2) Would you be willing to
use the Web site again?, and (Q3) Did you enjoy
role playing on the Web site? The users answered
based on a five-point Likert scale, with one being
the lowest score and five the highest. Twenty-three
and 36 participants took part in the survey for Mu-
rai and Ayase, respectively.

Table 3 shows the results of the questionnaire
averaged over all participants. Since these results
were obtained from volunteers, they may not re-
flect the view of all site users. However, the results
are encouraging: at the very least, they indicate
that there are real users who feel very positively
about the experience of role play-based question-
answering.
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Questionnaire item Murai Ayase
Q1 Usability of Web site 3.74 4.08
Q2 Willingness for future use 4.57 4.56
Q3 Enjoyment of role playing 4.39 4.53

Table 3: Questionnaire results.

3 Creating chatbots from collected
question-answer pairs

Now that we have successfully collected a large
number of question-answer pairs for our two char-
acters, the next step is to determine if the col-
lected pairs can be useful for creating chatbots
that exhibit the personalities of the characters in
question; namely, Murai and Ayase. Since the
size of the data was not large enough to train
neural-generation models (Vinyals and Le, 2015),
we opted for a retrieval-based approach in which
relevant question-answer pairs are retrieved using
an input question as a query and the answer part
of the most relevant pair is returned as a chatbot’s
response. One of the methods we used is a sim-
ple application of an off-the-shelf text search en-
gine, and the other is our proposed method, which
is more sophisticated and uses neural-translation
models for ranking.

3.1 Simple retrieval-based method
This method uses the text search engine
LUCENE2 for retrieval. Questions and an-
swers are first indexed with LUCENE. We use
a built-in Japanese analyzer for morphological
analysis. Given an input question, the BM25
algorithm (Walker et al., 1997) is used to search
for a similar question using the content words of
the input question. The answers for the retrieved
questions are used as the output of this method.
Although simple, this method is quite compet-
itive with other methods when there are many
question-answer pairs because it is likely that we
will be able to find a similar question by word
matching.

3.2 Proposed method
Only using word-matching may not be sufficient.
Therefore, we developed a more elaborate method
that re-ranks the results retrieved from LUCENE.
Our idea comes from cross-lingual question an-
swering (CLQA) (Leuski et al., 2009) and re-
cent advances in neural conversational models
(Vinyals and Le, 2015). We also conducted se-
mantic and intent-level matching between ques-

2https://lucene.apache.org/

Figure 4: Flow of proposed method.

tions so that appropriate answer candidates could
be ranked higher. Figure 4 shows the flow of this
method. Given an input question Q, the method
outputs answers in the following steps. The de-
tails of some of the key models/modules used in
the steps are described later.

1. Given Q, LUCENE retrieves top-N question-
answer pairs (Q′

1, A
′
1) . . . (Q′

N , A′
N ), as de-

scribed in Section 3.1.

2. The question-type estimation and extended
named entity recognition modules estimate
the question types of Q and Q′ and extract
extended named entities (Sekine et al., 2002)
contained in A′. The question-type match
score is calculated by using the match of the
question type and the number of extended
named entities in A′ requested by Q. See
Section 3.3 for details.

3. The center-word extraction module extracts
center-words (noun phrases (NPs) that repre-
sent foci/topics) from both Q and Q′. The
center-word score is 1.0 if one of the center-
words of Q is included in those of Q′; other-
wise it is 0.0.

4. The translation model is used to calculate the
probability that each A′ is translated from Q,
that is, p(A′|Q). We also calculate the proba-
bility bi-directionally, that is, p(Q|A′), which
has been shown to be effective in CLQA
(Leuski et al., 2009). The probabilities are
normalized by dividing them by the number
of words on the target side. Since the raw
probabilities are difficult to integrate with
other scores, we sort the question-answer
pairs by their probabilities and use their ranks

267



to obtain the translation scores. That is, if the
rank is r, its score is calculated by

1.0 − (r − 1)/max rank, (1)

where max rank is the maximum number of
elements to be ranked.

5. The semantic similarity model is used to cal-
culate the semantic similarity score between
Q and Q′. We use Word2vec (Mikolov et al.,
2013) to calculate this score. First, we ob-
tain word vectors (trained from Wikipedia)
for each word in Q and Q′ and then calcu-
late the cosine similarity between the aver-
aged word vectors.

6. The score calculation module integrates the
above scores to obtain a final score:

score(Q, (Q′, A′))

= w1 ∗ search score

+ w2 ∗ qtypes match score

+ w3 ∗ center-word score

+ w4 ∗ translation score

+ w5 ∗ rev translation score

+ w6 ∗ semantic similarity score (2)

Here, search score indicates the score con-
verted from the rank of the search results
from LUCENE. The conversion is done using
Eq. (1). rev translation score indicates the
translation score derived from p(Q|A′). The
w1 . . . w6 denote the weights of the scores.

7. The question-answer pairs are sorted by their
scores, and top-M answers are returned as
output.

3.3 Modules
We describe some of the models/modules used in
the above steps.

Question-type estimation and extended named
entity recognition We estimated four question
types for a question. One is a general ques-
tion type. We used the taxonomy described in
(Higashinaka et al., 2014), which has 16 question
subtypes. We trained a logistic-regression based
question-type classifier that classifies a question
into one of the 16 question types. The other three
question types come from an extended named en-
tity taxonomy proposed by Sekine (2002). The
taxonomy has three layers ranging from abstract

(e.g., Product, Location) to more concrete enti-
ties (e.g., Car, Spa, City). We trained a logistic-
regression-based classifier that classifies which of
the named entity types is requested in a question.
We trained a classifier for each layer; thus, we
had three classifiers. Using our in-house data, by
two-fold cross-validation, the classification accu-
racies are 86.0%, 84.9%, 76.9%, and 73.5% for
the general question type, layer-1, layer-2, and
layer-3 question types, respectively. We also ex-
tract extended named entities from an answer can-
didate (A′) by using our extended named entity
recognizer (Higashinaka et al., 2013b) and check
whether the extended named entities correspond-
ing to the layer-1, layer-2, and layer-3 question
types of a question (Q) are included in A′.

The qtypes match score is calculated as fol-
lows: if there is a match of the general ques-
tion type between Q and Q′, the score of one is
obtained. Then, the number of extended-named-
entity question types covered by the answer can-
didate is added to this score. Finally, this score is
divided by four for normalization.

Center-word extraction We define a center-
word as an NP that denotes the topic of a con-
versation. To extract such NPs from an utter-
ance, we used conditional random fields (CRFs)
(Lafferty et al., 2001). For the training and test-
ing, we prepared about 20K sentences with center-
word annotation. The sentences were those ran-
domly sampled from our in-house open-domain
conversation corpus. The feature template uses
words, part-of-speech (POS) tags, and semantic
categories of current and neighboring words. The
extraction accuracy is 76% in F-measure with our
in-house test set.

Translation model We trained a translation
model by using a seq2seq model. We trained
the model by using the OpenNMT Toolkit3 with
default settings. The translation model learns to
translate a question into an answer. By using
the trained model, we can obtain the generative
probability of an answer given a question; namely
p(A′|Q). Since the amount of question-answer
pairs was limited, we first trained a model by using
our in-house question-answering data comprising
0.5 million pairs. The data were collected using
crowd-sourcing. We then adapted the model to
our question-answer pairs. The model for p(Q|A′)
was trained in the same manner by swapping the

3http://opennmt.net/
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source and target data. To reflect the number
of “likes” associated with the answers (see Sec-
tion 2.2), we augmented the number of samples
by their number of “likes”; that is, if a question-
answer pair has n “likes”, n samples of such a
question-answer pair are included in the training
data.

3.4 Extending question-answer pairs
When developing our method, we noticed that, in
some cases, top-N search results do not contain
good candidates because of the lack of question
coverage. When the top-N questions do not se-
mantically match reasonably with the input ques-
tion, the answers are likely to be inappropriate.
To have a wider coverage of questions, we ex-
tended our question-answer pairs by using Twit-
ter. Our methodology was simple: for each answer
A that occurred twice or more in our question-
answer pairs, we searched for tweets that resemble
A with a Levenshtein distance (normalized by the
sentence length) below 0.1. Then, if the tweets had
an in-reply-to relationship to other tweets, they
were retrieved and coupled with A to form ex-
tended question-answer pairs. The reason we fo-
cused on an answer that occurred twice or more
is mainly due to the efficiency of crawling, but
such answers that occur multiple times are likely
to be characteristics of the characters in question.
We obtained 2,607,658 and 1,032,492 extended
question-answer pairs for Murai and Ayase, re-
spectively.

4 Experiments
We conducted a subjective evaluation to determine
the quality of chatbots created from our collected
question-answer pairs. We first describe how we
prepared the data for evaluation and how we re-
cruited participants. We then describe the eval-
uation criteria. Next, we describe the methods
for comparison, in which we compared the meth-
ods presented in the previous section with a rule-
based baseline and gold data (human-generated
data). Finally, we explain the results and present
our analyses.

4.1 Data
To create the data for testing, we first randomly
split the question-answer pairs into train, devel-
opment, and test sets with the ratios of 0.8, 0.1,
and 0.1, respectively. The splits were made so
that the same question would not be included over
multiple sets. We used the train and development

sets to train the translation models. In addition,
the question-answer pairs used by LUCENE for
retrieval consisted only of train and development
data. For each character, 50 questions were ran-
domly sampled from the test set and used as input
questions for this experiment.

4.2 Procedure
We recruited 26 participants each for Murai and
Ayase. The participants were recruited mainly
from the subscribers of the channels for the two
characters. Before taking part in the experiment,
they self-declared their levels of knowledge about
the characters. Then, they rated the top-1 output
of the five methods (shown below) for the 50 ques-
tions; they rated at maximum 250 answers (since
some methods output duplicate answers, such an-
swers were only rated once). We compensated
for their time by giving Amazon gift cards worth
about 20 US dollars.

4.3 Evaluation criteria
The participants rated each output answer by their
degree of agreement to the following statements
on a five-point Likert scale (1: completely dis-
agree, 5: completely agree).

Naturalness Not knowing who’s speaking, the
answer is appropriate to the input question.

Character-ness Knowing that the character in
question is speaking, the answer is appropri-
ate to the input question.

The first criterion evaluates the interaction from
a general point of view, while the second from
the character point of view. Ideally, we want the
character-ness to be high, but we want to maintain
at least reasonable naturalness when considering
the deployment of the chatbots. Note that an ut-
terance can be rated low in terms of naturalness
but high in character-ness, or vice-versa: for ex-
ample, some general utterances, such as greetings,
can never be uttered by particular characters.

4.4 Methods for comparison
We compared five methods. A rule-based base-
line written in Artificial Intelligence Markup Lan-
guage (AIML) (Wallace, 2009) was used. The aim
of having this baseline is to emulate when we do
not have any question-answer pairs available. Al-
though this is a simple rule-based baseline, it is a
competitive one because it uses one of the largest
rule sets in Japanese.
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All High Low
Natural Character Natural Character Natural Character

(a) AIML 2.93 2.60 2.93 2.49 2.96 2.95
(b) LUCENE 2.80 2.87aa 2.81 2.80aa 2.75 3.10
(c) PROP WO EXDB 3.16aabb 3.17aabb 3.17abb 3.09aabb 3.13 3.42aa

(d) PROP 3.39aabbcc 3.20aabb 3.42aabbcc 3.14aabb 3.32bb 3.39a

(e) GOLD 3.91aabbccdd 3.81aabbccdd 3.93aabbccdd 3.80aabbccdd 3.85aabbccdd 3.85aabbccdd

Table 4: Results for Murai. The scores were averaged over the participants. Superscripts indicate whether
the value is significantly better than those for the methods denoted with letters; two letters, such as ‘aa’,
indicate statistical significance p < 0.01, and a single letter indicates p < 0.05. The Steel-Dwass
multiple comparison test was used as a statistical test. The best scores (excluding GOLD) are in bold.

All High Low
Natural Character Natural Character Natural Character

(a) AIML 2.71 2.44 2.74 2.42 2.49 2.63
(b) LUCENE 2.98aa 3.13aa 3.05aa 3.13aa 2.48 3.11
(c) PROP WO EXDB 3.04aa 3.15aa 3.09aa 3.14aa 2.62 3.19a

(d) PROP 3.23aabbc 3.24aa 3.28aabb 3.23aa 2.78 3.27aa

(e) GOLD 3.61aabbccdd 3.74aabbccdd 3.68aabbccdd 3.75aabbccdd 3.11aabb 3.65aab

Table 5: Results for Ayase. See caption of Table 4 for notations in table.

Rule-based baseline (AIML) The typical ap-
proach to implement a chatbot is by using
rules. We used the rules written in AIML
created by Higashinaka et al (2015). There
are roughly 300K rules. In Japanese,
sentence-end expressions are key factors to
exhibit personality. Therefore, following
the method by Miyazaki et al. (2016), we
created sentence-end conversion rules so
that the output of this method would have
the sentence-end expressions that match the
characters in question.

Retrieval-based method (LUCENE) The
retrieval-based method described in Section
3.1.

Proposed method 1 (PROP WO EXDB) The
proposed method described in Section 3.2.
This method does not use the extended
question-answer pairs from Twitter. The
weights w1 . . . w6 are all set to 1.0. We used
10 for N for document retrieval.

Proposed method 2 (PROP) The proposed
method with extended question-answer pairs
from Twitter, as described in Section 3.4.
We retrieved 10 candidates from collected
question-answer pairs and 10 from extended
ones. The weights w1 . . . w6 are all set to
1.0.

Upper bound (GOLD) The gold responses by
the online users to the test questions. When
multiple answers are given to a question, one
is randomly selected.

4.5 Results
Tables 4 and 5 list the results for Murai and Ayase,
respectively. The topmost row indicates the level
of knowledge about the characters. ‘All’ indicates
the results of all participants, ‘High’ those who
self-declared as being very knowledgeable, and
‘Low’ those who self-declared otherwise. We had
26 High and 6 Low participants for Murai, and 23
High and 3 Low participants for Ayase.

The tendencies were the same for the two char-
acters, although the scores for Ayase were gener-
ally lower than those of Murai. AIML performed
the worst followed by LUCENE. It was surprising
that AIML’s score was low; this is probably be-
cause of the peculiarities of the input questions for
the characters. PROP WO EXDB and PROP per-
formed better than AIML and LUCENE with sta-
tistical significance in many cases. GOLD was al-
ways the best-performing method. PROP was sig-
nificantly better than PROP WO EXDB for natu-
ralness but not for character-ness.

These results indicate that simple text-based re-
trieval is not sufficient, and we need more elabo-
rate methods. The effectiveness of the extended
question-answer pairs seems to be limited. It can
be useful to make the interaction seem natural, but
this does not necessarily improve character-ness,
although we believe that having the ability to con-
verse naturally is a requirement for chatbots.

When we focus on the results as they relate to
the knowledge levels, we see large differences be-
tween High and Low. The High participants are
likely to differentiate the answers more than Low
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Question Method Answer Nat. Char.
What did you eat for
lunch today?

AIML I had a chicken breast rice bowl. It was good. What did
you eat?

4.50 3.46

LUCENE Anything will do when you are playing video games. 1.88 2.08
PROP WO EXDB Ramen! 4.81 4.77
PROP Ramen. 4.73 4.31
GOLD I had a ginger grilled meal at Hidakaya. 4.92 4.15

Table 6: Examples of answers for Murai by each method. Questions and answers were originally in
Japanese. English translations are by the authors.

Question Method Answer Nat. Char.
You are so cute. AIML Cute is the best. 2.69 2.15

LUCENE Shut up or I will sew your mouth. 3.04 4.12
PROP WO EXDB Thank you! It’s a little embarrassing. 4.69 4.08
PROP Thank you! 4.62 4.15
GOLD You say silly things all the time. I may take it seriously. 4.08 4.27

Table 7: Examples of answers for Ayase by each method.

participants. For example, for Murai, there were
only few cases in which there was statistical sig-
nificance between the proposed methods when the
knowledge level was low. The tendency was the
same for Ayase. This highlights the difficulty in
evaluating for characters.

Tables 6 and 7 show examples of answers for
Murai and Ayase, respectively. Overall, since the
proposed methods achieved character-ness scores
well over 3 (which is the middle point in the scale),
we conclude that we can create chatbots with con-
sistent personalities by means of role play-based
question-answering.

5 Related Work
Although there have not been any studies involv-
ing role play-based question-answering for data
collection, there is a large body of research for cre-
ating chatbots that show consistent personalities.

There have been several studies on char-
acters by generating or rewriting utterances
reflecting the underlying personality traits
(Mairesse and Walker, 2007; Sugiyama et al.,
2014; Miyazaki et al., 2016). In addition, there
has been extensive research on extending neural
conversational models to reflect personal profiles
(Li et al., 2016). Although such neural network-
based methods show promising results, they still
suffer from sparsity of data and non-informative
utterances (Li et al., 2015). This paper proposed
increasing the source data for character building;
the data can be useful for neural models.

6 Summary and future work
Our goal for this study was to verify the effec-
tiveness of role play-based question-answering for
creating chatbots. Focusing on two famous char-

acters in Japan, we successfully collected a large
volume of question-answer pairs for two charac-
ters by using real users. We then created chat-
bots using the question-answer pairs. Subjective
evaluation showed that although a simple text-
retrieval based method does not work well, our
proposed method that uses translation models as
well as question-type matching and center-word
extraction works well, showing reasonable scores
in terms of naturalness and character-ness.

For future work, we need to consider ap-
proaches to improve the quality of the proposed
method. For example, we are currently using
equal weights for scoring. We believe that they
can be optimized using training data. We also
want to incorporate other pieces of information
that may contribute to the ranking of answers,
such as sentence embeddings (Kiros et al., 2015),
discourse relations (Lin et al., 2009; Otsuka et al.,
2017), and external knowledge about the charac-
ters. Although we used two very different char-
acters in this paper, we want to use additional
types of characters as targets for role play-based
question-answering. We also want to incorporate
the chatbots into the Web sites so that the users can
feel they are training up the characters.
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Abstract

Statistical spoken dialogue systems usu-
ally rely on a single- or multi-domain dia-
logue model that is restricted in its capabil-
ities of modelling complex dialogue struc-
tures, e.g., relations. In this work, we pro-
pose a novel dialogue model that is cen-
tred around entities and is able to model
relations as well as multiple entities of the
same type. We demonstrate in a prototype
implementation benefits of relation mod-
elling on the dialogue level and show that
a trained policy using these relations out-
performs the multi-domain baseline. Fur-
thermore, we show that by modelling the
relations on the dialogue level, the system
is capable of processing relations present
in the user input and even learns to address
them in the system response.

1 Introduction

Data-driven statistical spoken dialogue systems
(SDS) (Lemon and Pietquin, 2012; Young et al.,
2013) are a promising approach for realizing spo-
ken dialogue interaction between humans and ma-
chines. Up until now, these systems have success-
fully been applied to single- or multi-domain task-
oriented dialogues (Su et al., 2017; Casanueva
et al., 2017; Lison, 2011; Wang et al., 2014; Pa-
pangelis and Stylianou, 2017; Gašić et al., 2017;
Budzianowski et al., 2017; Peng et al., 2017)
where each dialogue is modelled as multiple inde-
pendent single-domain sub-dialogues. However,
this multi-domain dialogue model (MDDM) does
not offer an intuitive way of representing multi-
ple objects of the same type (e.g., multiple restau-
rants) or dynamic relations between these objects.
To the best of our knowledge, neither problem has
yet been addressed in statistical SDS research.

The goal of this paper is to propose a new di-
alogue model—the conversational entity dialogue
model (CEDM)—which offers an intuitive way of
modelling dialogues and complex dialogue struc-
tures inside the dialogue system. Inspired by
Grosz (1978), the CEDM is centred around ob-
jects and relations instead of domains thus offer-
ing a fundamental change in how we think about
statistical dialogue modelling. The CEDM allows

• to model dynamic relations directly, indepen-
dently and persistently so that the relations
may be addressed by the user and the system,

• the system to talk about multiple objects of
the same type, e.g., multiple restaurants,

while still allowing feasible policy learning.
The remainder of the paper is organized as fol-

lows: after presenting a brief motivation and re-
lated work in Section 2, Section 3 presents back-
ground information on statistical SDSs. Section 4
contains the main contribution and describes the
conversational entity dialogue model in detail.
Looking at one aspect of the CEDM, the mod-
elling of relations, Section 5 describes a proto-
type implementation and shows the benefits of the
CEDM in experiments with a simulated user. Sec-
tion 6 concludes the paper with a list of open ques-
tions which need to be addressed in future work.

2 Motivation and Related Work

To introduce the terminology that will be used in
this work and to illustrate the necessity of adequate
modelling of relations, Figure 1 shows an exam-
ple dialogue about hotels and restaurants in Cam-
bridge with the relation in the same area. Instead
of talking about a sequence of domains, the sys-
tem and the user talk about different objects and
relations. Each part of the dialogue thus may be
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Restaurant
name
area
food
…

Entities:
Objects	and	Relations Object	TypesExample	dialogue

Conversational	World

Object	1	(Hotel)
name:	Royal	Camb.
area:	centre

Object	2	(Restaurant)
name:	Golden	House
area:	centre

Is	type	of

Relation	1	
(Object	1	with	Object	2)
area:	same

Hotel
name
area
stars
…

S1:	Hello,	howcan I	help you?
U1:	I	need a	hotel in	Cambridge.
S2:	What price rangedo	you have in	mind?
U2:	Expensive.
S3:	Royal	Camb.	is an	expensive	hotel in	the centre.	
U3:	Great,	I	also	need a	cheap restaurant in	the same	area.
S4:	What type	of foodwould you like?
U4:		don’t care.
S5:	Golden	House	is a	cheap Chinese	restaurant in	the centre.
U5:	Great,	thanks.
S6:	Do	you need anything else?
U6:	Not	for now,	bye.

Figure 1: A dialogue between the system (S) and a user (U) about a restaurant and a hotel in the same
area along with the mapping of fractions of the dialogue to the respective objects (of predefined types)
and the relation. All objects and relations reside inside a conversational world.

mapped to an object or a relation in the conver-
sational world or may be mapped to the world it-
self (grey). In the example, the first part (blue)
is about Object 1 of type hotel. When the focus
shifts towards Object 2 of type restaurant (green)
at U3, the user also addresses the relation (red) in
the same area between Object 1 and Object 2.

Addressing a relation in this way could still be
captured by the semantic interpretation of the user
input as the information area=centre may be de-
rived from the context. However, if the user said I
need a hotel and a restaurant in Cambridge in the
same area right in the beginning of the dialogue
(U1), no context information would be available.
To capture these dialogue structures, the dialogue
model and the corresponding dialogue state must
be able to represent them adequately.

The proposed CEDM achieves this by mod-
elling state information about conversational enti-
ties instead of domains. More precisely, it models
separate states about the objects (e.g., the hotel or
restaurant) and the relations. Previous work on di-
alogue modelling already incorporated the idea of
objects or entities to be the principal component
of the dialogue state (Grosz, 1977; Bilange, 1991;
Montoro et al., 2004; Xu and Seneff, 2010; Hein-
roth and Minker, 2013). However, these dialogue
models are not based on statistical dialogue pro-
cessing where a probability distribution over all
dialogue states needs to be modelled and main-
tained. This additional complexity, though, cannot
be incorporated in a straight-forward way into the
proposed models. In contrast, the CEDM offers

a comprehensive and consistent way of modelling
these probabilities by defining and maintaining
entity-based states. Work on statistical dialogue
state modelling (Young et al., 2010; Lee and Stent,
2016; Schulz et al., 2017) also contain a variant of
objects but is still based on the MDDM thus not
offering any mechanism to model multiple enti-
ties or relations between objects. Ramachandran
and Ratnaparkhi (2015) proposed a belief track-
ing approach using relational trees. However, they
only consider static relations present in the ontol-
ogy and are not able to handle dynamic relations.

3 Statistical Spoken Dialogue Systems

Statistical SDS are model-based approaches1 and
usually assume a modular architecture (see Fig. 2).
The problem of learning the next system action
is framed as a partially-observable Markov deci-
sion process (POMDP) that accounts for the un-
certainty inherent in spoken communication. This
uncertainty is modelled in the belief state b(s) rep-
resenting a probability over all states s.

Reinforcement learning (RL) is used in such
a sequential decision-making process where the
decision-model (the policy π) is trained based on

1Model-free approaches like end-to-end generative net-
works (Serban et al., 2016; Li et al., 2016) have interest-
ing properties (e.g., they only need text data for training) but
they still seem to be limited in terms of dialogue structure
complexity (not linguistic complexity) in cases where content
from a structured knowledge base needs to be incorporated.
Approaches where incorporating this information is learned
along with the system responses based on dialogue data (Eric
and Manning, 2017) seem hard to scale.
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Semantic	
Decoding

Speech	
Recognition

Natural	Language	
Generation

Ontology
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Dialogue
Policy

waveform

Dialogue Manager

Figure 2: The modular statistical dialogue system
architecture. The dialogue manager takes the se-
mantic interpretation as input to track the belief
state. The updated state is then used by the dia-
logue policy to decide on the next system action.

sample data and a potentially delayed objective
signal (the reward r) (Sutton and Barto, 1998).
The policy selects the next action a ∈ A based
on the current system belief state b to optimise the
accumulated future reward Rt at time t:

Rt =

∞∑

k=0

γkrt+k+1 . (1)

Here, k denotes the number of future steps, γ a
discount factor and rτ the reward at time τ .

The Q-function models the expected accumu-
lated future reward Rt when taking action a in be-
lief state b and then following policy π:

Qπ(b, a) = Eπ[Rt|bt = b, at = a] . (2)

For most real-world problems, finding the exact
optimal Q-values is not feasible. Instead, RL al-
gorithms have been proposed for dialogue policy
learning based on approximating the Q-function
directly or employing the policy gradient theo-
rem (Williams and Young, 2006; Daubigney et al.,
2012; Gašić and Young, 2014; Williams et al.,
2017; Su et al., 2017; Casanueva et al., 2017; Pa-
pangelis and Stylianou, 2017).

Aside from the policy model, the dialogue
model plays an important role: it defines the struc-
ture and internal links of the dialogue state as well
as the system and user acts (i.e., the semantics the
system can understand). Thus, the policy model
is only able to learn system behaviour based on
what is defined by the dialogue model. By defin-
ing the dialogue state, the dialogue model further
represents an abstraction over the task ontology or
knowledge base restricting the view on the infor-
mation that is relevant so that the system is able to
converse2. Most current dialogue models are built

2Using the knowledge base directly to model the (noisy)
dialogue state (Pragst et al., 2015; Meditskos et al., 2016)
usually results in high access times.

around domains which encapsulate all relevant in-
formation as a section of the dialogue state that
belongs to a given topic, e.g., finding a restaurant
or hotel. However, the resulting flat state that is
widely used (Williams et al., 2005; Young et al.,
2010; Thomson and Young, 2010; Lee and Stent,
2016; Schulz et al., 2017, e.g.) is not intuitive to
model complex dialogue structures like relations.

To overcome this limitation, we propose the
conversational entity dialogue model which will
be described in detail in the following section.

4 Conversational Entity Dialogue Model

The conversational entity dialogue model
(CEDM) is proposed as an alternative way of
statistical dialogue modelling having the concept
of entities at the core of the model. Entities
being objects or relations offer an intuitive way of
modelling complex task-oriented dialogues.

4.1 Objects and Relations

Objects are entities of a certain object type (e.g.,
Restaurant or Hotel) where each type defines a
set of attributes (see Fig. 1). This type definition
matches the contents of the back-end knowledge
base and thus the internal representation of real-
world objects. This is similar to the definition of
domains. In contrast to domains, though, this no-
tion allows the modelling of multiple objects of the
same type within a dialogue as well as the mod-
elling of a type hierarchy which may be exploited
during policy learning.

Relations are also entities that connect objects
or attributes of objects. An example is shown in
Figure 3: the two objects obj1 and obj2 of types
Hotel and Restaurant respectively are connected
through the attribute area with the equals relation.

Possible relations may directly be derived from
the object type definitions, e.g., by allowing only
connections for attributes that represent the same
concepts like area. Note that these relations are
dynamic relations that may be drawn between ob-
jects in a conversation. This is different to static
relations which are often used in knowledge bases
to describe how concepts relate to each other.

4.2 Conversational Entities in a
Conversational World

A conversational entity is a virtual entity that ex-
ists in the context of the current conversation and
is either a conversational object or a conversational
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I	need	a	hotel	and	a	restaurant	in	Cambridge	 in	the	same	area

Obj1:	Hotel

pricerange
area
stars

Obj2:	Restaurant

pricerange
area
food

=

Figure 3: Example mapping of a user utterance to
two objects and one relation.

relation. A conversational object may match a
real-world entity but does not need to. In fact, the
task of a goal-oriented dialogue is often to find a
matching real-world entity based on the informa-
tion acquired by the system during the dialogue.
In the example dialogue (Fig. 1), matching entities
have already been found for both objects. How-
ever, a conversational object exists independently
of whether a matching real-world entity has been
found yet or even exists.

Derived from the object type definition, a con-
versational object comprises an internal state that
consists of the user goal belief su and the con-
text state sc as shown in the example in Figure 4.
There, su is depicted using marginal probabilities
for each slot (which is common in recent work on
statistical SDS). While the user goal belief models
the system’s belief of what the user wants based
on the user input, the context state models infor-
mation that the system has shared with the user. In
the example of Figure 4, the system has already
offered a matching real-world object based on the
user goal belief of the conversational object. If no
offer has been made yet, the context state is empty.

The context state plays an important role as ad-
dressed relations usually refer to the object offered
by the system instead of search constraints repre-
sented by the user goal belief. The context state
further allows to relate to attributes that have not
been mentioned in the dialogue.

One key aspect of the CEDM is that relations
are also modelled as a conversational entity. Thus,
these conversational relations also define a user
goal belief and a context state as shown in Fig-
ure 5. The attributes of the relation are cre-
ated out of the attributes of the objects they con-
nect. In the given example, the attributes area
and pricerange of the two objects are connected
resulting in the relation attributes area2area and
pricerange2pricerange. The values of these at-
tributes are the actual relations, e.g., equals or
greater/less than. Similar to the slot belief of con-

Obj2:	Restaurant

User	goal	belief

name
pricerange
area
food
requests

Context	state

name Golden	House	
pricerange cheap
area centre
food chinese
post	code CB2	1EG
phone	number 01842	753771	
address 12	lensfield road	city	centre

Figure 4: Example of a conversational entity rep-
resenting object obj2 of type Restaurant. The user
goal belief models the search constraints the user
has provided to the system and the context state
represents the most recent real-world match of-
fered by the system.

Relation1:	obj1	– obj2

Context	state

pricerange 2	pricerange >
area	2	area =

User	goal	belief

pricerange 2	pricerange
area	2	area
requests

Figure 5: Example of the conversational entity Re-
lation1 between obj1 and obj2. The user goal be-
lief models the search constraints the user has pro-
vided to the system and the context state represents
the relations based on the most recent real-world
matches for both objects offered by the system.

versational objects, each attribute is modelled with
a marginal probability over all possible relations.

Assigning part of the belief state to the relations
enables the system to specifically react to these re-
lations and even to address them in a system utter-
ance. Furthermore, if the context state of one of
the related objects changes (e.g., because the user
changed their mind), the relation may still persist.

Each conversational entity resides within a con-
versational world w (see Fig. 1) that defines the
number of objects and the type of each object (re-
lations may be derived from this) as well as gen-
eral state information. This world may either be
predefined or needs to be derived from the user
input. In the latter case, the user input is usu-
ally noisy and an uncertainty needs to be modelled
within the dialogue state. As this work focuses
on relation modelling, a predefined conversational
world is used leaving the uncertainty modelling of
conversational worlds for future work.

4.3 Belief Tracking and Focus of Attention
The task of belief tracking is to update the proba-
bility distribution b′(s) over the states s based on
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the system action a, the observation o of the user
input and the previous probability distribution b:

b′(s) = P (s|o, a, b) . (3)

With the additional complexity of the CEDM hav-
ing an unknown number of entities in a conversa-
tional world, we propose to decompose the state s
in the spirit of work by Williams et al. (2005). The
belief update for each entity e is then defined as

b′e(u, su, sc, he) = P (u, su, sc, he|a, o, be) , (4)

where su is the user goal state of entity e, sc the
context state of e, he the dialogue history of e and
u the last user action3.

The belief update for the world belief bw is

b′w(u, sw, hw) = P (u, sw, hw|a, o, bw) , (5)

where sw is the world state of world w, hw the
dialogue history and u the last user action.

This multi-part belief allows hierarchical dia-
logue processing on the world level and the en-
tity level as depicted in Figure 6. Each level pro-
duces its own belief and based on that, the sys-
tem is able to act on each level. On the world
level, the system might produce general dialogue
behaviour like greetings or engage in a dialogue to
adequately identify the entity which is addressed
by the user input. On the entity level, the system
talks to the user to acquire information about the
concrete entity the user is talking about, e.g., to
find a matching entity in the knowledge base.

In addition to belief tracking, we would like to
introduce another concept called focus of atten-
tion. Based on work by Grosz (1978), we define
the current focus of attention F for each conver-
sational world as a subset of conversational enti-
ties in this world F ⊆ W . Hence, the task of
focus tracking is to find the new set of conversa-
tional entities which is in the current focus of at-
tention based on the user input and the updated be-
lief state. Even though the concept of focus is not
mandatory, it may be helpful when framing the re-
inforcement learning problem as it allows to limit
the size of the input to the reinforcement learning
algorithm as well as the number of actions avail-
able to the learning algorithm at a given time. Us-
ing F may also prevent the system from acting in
parts of the belief state that are completely irrele-
vant to the current part of the conversation.

3In case of an unknown number of entities represented
by a probability over worlds, the probability in Equation 4
needs to be extended to depend on the conversational world
and needs to be multiplied by a probability over all worlds.

world level world general behaviour bw

entity level entity specific behaviour be

Figure 6: The layered model of the CEDM with
the respective components of the belief state.

4.4 The Conversational Entity vs. the
Multi-Domain Dialogue Model

The functionality and the modelling possibilities
of the proposed CEDM go beyond (and thus in-
clude) the possibilities of the multi-domain dia-
logue model (MDDM). To demonstrate this, we
will outline how a dialogue using the MDDM may
be modelled using the CEDM. The core concept
domain of the MDDM may be mapped to one
conversational object of a specific type where the
slots of the domain are the attributes of the type.
Since the number of domains is predefined, there
is only one conversational world with a set num-
ber of conversational objects. Relations may not
be modelled using the MDDM. Belief update is re-
duced to finding the right entity for the user input
and updating its state. In the CEDM, the semantic
decoding of user input includes the entity (or en-
tity type) it refers to, which is similar to the topic
tracker of the MDDM where the topic tracker also
defines the domain the system acts in. Hence, the
focus of attention will always contain only the en-
tity that has been addressed by the user. By that,
a policy for each conversational object (and thus
object type) may be trained which is the same as
the domain policies of the MDDM.

5 Relation Modelling Evaluation

To demonstrate the capabilities and benefits of the
conversational entity dialogue model (CEDM), the
aspect of relation modelling has been selected as
it is a core concept of the CEDM. For this, we
built upon the mapping to the multi-domain dia-
logue model (MDDM) as described in Section 4.4
and extend it with conversational relations. After a
brief description of the model implementation, the
experiments and their results are presented using
two conversational objects of different types. Note
that only the equals relation is considered here due
to limitations of the marginal belief state model.

5.1 Model Implementation
To implement all relevant aspects of the CEDM,
the publicly available open-source statistical dia-
logue system toolkit PyDial (Ultes et al., 2017) is
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used which originally follows the MDDM.
The main challenge for policy implementation

is to integrate both the state of the object in F
as well as the states of all corresponding rela-
tions into the dialogue decision. To achieve this,
a hierarchical policy model based on feudal re-
inforcement learning (Dayan and Hinton, 1993)
has been implemented following the approach
of Casanueva et al. (2018). For each object type,
a master policy decides whether the next system
action addresses a conversational relation or the
conversational object. A respective sub-policy is
then invoked in a second step where each object
type and each relation type are modelled by an in-
dividual policy. Thus, the model decomposes the
action selection problem to take account for the
specificities of the object policy and relation poli-
cies respectively and is able to handle a variable
number of relations. During training, all policies
(master and sub-policies) receive the same reward
signal.

Aside from the feudal RL architecture which
seems to be intuitive for the proposed CEDM, the
main problem is the handling of back-end data-
base access. In the MDDM, each domain mod-
els all information which is necessary to do the
data-base lookup. However, this is not possible in
the CEDM as information from different conver-
sational objects and relations need to be taken into
account. One way of doing this is to apply a rule-
based merging of the state of the conversational
object in F with the states of all other conversa-
tional objects that are related through a conversa-
tional relation to form the focus state b̂:

b̂s(v) =

∑
iwib

i
s(v)∑

iwi
, (6)

where s is the slot, v is the value, and bi the be-
lief of the i-th conversational entity involved in the
merging process. wi = 1 − bis(∅) is the weight of
the i-th conversational entity where bis(∅) repre-
sents the probability where no information about
slot s has yet been shared with the system. bi ei-
ther refers to the belief bo of the conversational
object o in F or to an already weighted belief b̃o

′

originating from the conversational relation reloo
′

connecting conversational object o with o′:

b̃o
′
s (v) =

{
reloo

′
s (=) · bo′s (v), v 6= ∅

reloo
′

s (=) · bo′s (v) + reloo
′

s (∅), v = ∅

where bo
′

is the belief of object o′. The relation
probability rel is 0 if the slot s has no matching

slot in o′. Please note that for bo
′
s (v), even though

we refer to the belief, the context state of o′ is used
instead if not empty. The focus state is used as
input to the master policy as well as the sub-policy
of the conversational object.

As an example, consider bos = [∅ : 0.3, v1 :
0.7, v2 : 0.0], bo

′
s = [∅ : 0.2, v1 : 0.0, v2 : 0.8],

and reloo
′

s = [∅ : 0.1,=: 0.9]. This results
in b̃o

′
s = [∅ : 0.28, v1 : 0.0, v2 : 0.78] and

b̂s = [∅ : 0.29, v1 : 0.35, v2 : 0.36]. This ex-
ample also shows that conflicts which may exists
between the state of the conversational object and
the state defined by the relation are visible at this
level. To help the policy to learn in this situation,
an additional conflict bit is added to the focus be-
lief state as input to the master policy.

The source code of the CEDM implementation
is available at http://pydial.org/cedm.

5.2 Experimental Setup

To evaluate the relation modelling capabilities of
the CEDM, the task of finding a hotel and a restau-
rant in Cambridge has been selected (correspond-
ing to the CamRestaurants and CamHotels do-
mains of PyDial). The corresponding conversa-
tional world consists of two conversational objects
of types hotel and restaurant and one conversa-
tional relation. Based on the object type defini-
tions, the conversational relation connects the slots
area and pricerange of both objects. Using a sim-
ulated environment, the goals of the simulated user
were generated so that at least one of these two
slots is related (i.e., contains the same value).

To test the influence of the user addressing the
relation instead of the correct value (e.g., ”restau-
rant in the same area as the hotel” vs. ”restaurant
in the centre”), we have extended the simulated
agenda-based user (Schatzmann and Young, 2009)
with a probability r of the user addressing the re-
lation instead of the value. The higher r, the more
often the user addresses the relation. The user sim-
ulator is equipped with an additional error model
to simulate the semantic error rate (SER) caused
in a real system by the noisy speech channel.

For belief tracking, an extended version of the
focus tracker (Henderson et al., 2014)—an effec-
tive rule-based tracker—was used for the conver-
sational entities and the conversational world that
also discounts probabilities if the respective value
has been rejected by the user. As a simulated in-
teraction is on the semantic level, no semantic de-
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coder for the relations is necessary. For training
and evaluation of the proposed framework, both
the master policy and all sub-policies are mod-
elled with the GP-SARSA algorithm (Gašić and
Young, 2014). This is a value-based method that
uses a Gaussian process to approximate the state-
value function (Eq. 2). As it takes into account the
uncertainty of the estimate, it is sample-efficient.

To compare the dialogue performance of the
CEDM with the MDDM baseline, two experi-
ments have been conducted. All dialogues follow
the same structure: the user and the system first
talk about one conversational object before mov-
ing on to the second object. As the user only ad-
dresses a relation to an object that has previously
been part of the dialogue, relations are only rele-
vant when talking about the second object. How-
ever, there are times where a relation has been ad-
dressed by the user before the goal of the first ob-
ject changed which resulted in the addressed rela-
tion being wrong. This could only be resolved by
the system by addressing the relation itself.
Experiment 1 In the first experiment, the influ-
ence of r on the dialogue performance is investi-
gated in a controlled environment. Having a fixed
order, only the feudal policy of the second ob-
ject (where relations may occur), the restaurant,
is learned. To avoid interfering effects of jointly
learning both policies at the same time, the first
object hotel uses a handcrafted policy.
Experiment 2 The second experiment focusses
on the joint learning effects. Thus, the order of
objects is alternated, all objects use the feudal pol-
icy model and are trained simultaneously.

5.3 Results

The experiments have been conducted based on
the PyDial simulation environments Env. 1 and
Env. 3 specified by Casanueva et al. (2017) where
Env. 1 operates on a clean communication channel
with an SER of 0% and Env. 3 simulates an SER
of 15%. For each experiment, a policy for the re-
spective object types was trained with 4,000 and
tested with 1,000 dialogues. The reward was set
to +30/+0 for success/failure and -1 for each turn
with a maximum of 25 turns per object. The re-
sults were averaged over 5 different random seeds.
Experiment 1 As can be seen in Table 1 and Fig-
ure 7 on the left, the proposed CEDM with a feu-
dal policy model is easily able to deal with rela-
tions addressed by the user for any relation prob-

ability r in both environments. Success rate and
reward achieve similar results for all r. Only for
very high r, a small reduction in performance is
visible. This can be explained with the added com-
plexity of the dialogue itself as well as the system
actions that address the relations. A high relation
probability for a slot requires the system to address
either the relation or the slot value directly. Both
actions may have similar or contradicting impact
on the dialogue which makes it harder to learn a
good policy. In Env. 3, the added noise results in
minor fluctuations which may be expected.

In contrast, the baseline (the MDDM) is not
able to handle the user addressing relations ade-
quately for higher r: while for low r, the policy
is able to compensate by requesting the respec-
tive information again, the performance drops at
around r = 0.5. The reason why the performance
of the baseline does not drop as much in Env. 3
as it does in Env. 1 is the way the simulated error
model of the simulated user operates. By produc-
ing a 3-best-list of user inputs, the chance that the
actual correct value is introduced as noise if a rela-
tion has originally been uttered is relatively high.
As the n-best-list of Env. 1 has the length of one,
this does not happen there.

The performance of the hand-crafted hotel pol-
icy was similar for all r in Env. 1 with rew =
23.4, suc = 99.7% and in Env. 3 with rew =
20.1, suc = 94.5%.

Analysing the system actions of the dialogues of
the CEDM shows that the system learns to address
a relation in up to 28% of all dialogues for r = 1.0.

Example dialogues for Env. 1 are shown in Fig-
ures 8 and 9.
Experiment 2 The results shown in Table 1 and
Figure 7 on the right show the performance of the
conversational object policies when the respective
object was the second one in the dialogue (where
relations occur). Still, policies of both objects
were trained in all dialogues. The effects of this
added noise become visible in the results as they
seem to be less stable. Furthermore, the over-
all performance for the restaurant policy drops a
bit, but still shows the same characteristics as in
Experiment 1. Learning a hotel policy results in
worse overall performance (which matches the lit-
erature) and in cases where a relation is involved.

The performance of the policy of the first object
was similar for all r where the restaurant policy
achieved rew = 21.5, suc = 95.4% and the hotel
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Table 1: Reward and success rate of both experiments for different relation probabilities r comparing the proposed CEDM
to the MDDM baseline. The measures only show the performance of the second object in the dialogue where the relation is
relevant. All results are computed after 4,000/1,000 train/test dialogues and averaged over 5 trials with different random seeds.
Bold indicates statistically significant outperformance (p < .05), italic indicates no statistically significant difference.

Experiment 1 Experiment 2

Restaurant - Env. 1 Restaurant - Env. 3 Restaurant - Env. 3 Hotel - Env. 3

CEDM base CEDM base CEDM base CEDM base

r Rew. Suc. Rew. Suc. Rew. Suc. Rew. Suc. Rew. Suc. Rew. Suc. Rew. Suc. Rew. Suc.

0.0 23.3 99.3% 23.2 99.6% 20.4 94.3% 20.8 96.6% 20.1 95.0% 20.7 96.1% 16.5 86.7% 16.6 85.8%
0.1 23.1 99.5% 23.2 99.1% 20.5 94.7% 21.1 96.5% 20.3 94.4% 20.4 94.4% 16.5 86.4% 17.5 89.0%
0.3 23.2 99.5% 23.1 99.0% 20.2 93.6% 21.0 95.8% 19.7 93.6% 20.4 95.0% 16.2 85.5% 16.5 87.1%
0.5 22.8 99.6% 21.9 96.2% 19.8 92.8% 18.7 89.7% 19.7 92.5% 19.3 92.0% 14.6 80.8% 15.2 82.4%
0.7 22.6 99.2% 17.4 82.3% 19.9 92.9% 17.7 86.8% 19.2 91.6% 17.9 87.9% 16.7 86.9% 12.7 75.7%
0.9 22.5 99.4% 5.3 41.6% 19.3 91.2% 15.0 79.8% 18.2 89.5% 14.2 78.2% 9.8 64.3% 8.1 61.5%
1.0 21.6 99.5% -3.6 11.7% 18.9 90.2% 13.9 76.8% 17.9 88.3% 10.9 67.5% 13.8 79.4% 7.0 58.2%
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Figure 7: Reward and confidence interval of Experiment 1 (left) and Experiment 2 (right) for different relation probabilities
r comparing the proposed CEDM to the MDDM baseline. The measures only show the performance of the second object in
the dialogue where the relation is relevant. All results are computed after 4,000/1,000 train/test dialogues and averaged over 5
trials with different random seeds.

policy rew = 18.8, suc = 90.2%.
Analysing the system actions of the dialogues

shows that the CEDM learns to address a relation
in up to 24.5% of all dialogues for r = 1.0.

6 Conclusion and Future Work

In this paper, we have presented a novel dialogue
model for statistical spoken dialogue systems that
is centred around objects and relations (instead of
domains) thus offering a new way of modelling
statistical dialogue. The two major advantages of
the new model are the capability of including mul-
tiple objects of the same type and the capability
of modelling and addressing relations between the
objects. By assigning a part of the belief state not
only to each object but to each relation as well, the
system is able to address the relations in a system
response.

We have demonstrated the importance of the as-
pect of relation modelling—a core functionality
of our proposed model—in simulated experiments
showing that by using a hierarchical feudal pol-

icy architecture, adequate policies may be learned
that lead to successful dialogues in cases where
relations are often mentioned by the user. Further-
more, the resulting policies also learned to address
the relation itself in the system response.

However, only a small part of the proposed
dialogue model has been evaluated in this pa-
per. To explore its full potential, many questions
need to be addressed in future work. For creat-
ing a suitable semantic decoder that is able to se-
mantically parse linguistic information about re-
lations, an extensive prior work on named entity
recognition and dependency parsing already ex-
ists and needs to be leveraged and applied to con-
duct real user experiments. Moreover, relations
other than equals need to be investigated. Fi-
nally, the challenges of identifying all conversa-
tional entities in the dialogue and assigning the
correct one to each user action as well as find-
ing suitable belief-tracking approaches for the pro-
posed multi-layered architecture along with effec-
tive policy models need to be addressed.
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Iñigo Casanueva, Paweł Budzianowski, Pei-Hao Su,
Stefan Ultes, Lina Rojas-Barahona, Bo-Hsiang
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A Example Dialogues
1: Sys hello()
2: User inform(CamHotels#type=”placetostay”, CamHotels#area=”west”, CamHotels#pricerange=”moderate”,

CamHotels#kind=”guesthouse”)
3: Sys inform(CamHotels#kind=”guesthouse”, CamHotels#pricerange=”moderate”, CamHotels#name=”hobsons

house”, CamHotels#area=”west”)
4: User reqalts()
5: Sys inform(CamHotels#name=”none”, CamHotels#name!=”hobsons house”, CamHotels#kind=”guesthouse”,

CamHotels#pricerange=”moderate”, CamHotels#area=”west”)
6: User reqalts(CamHotels#area=”north”)
7: Sys inform(CamHotels#kind=”guesthouse”, CamHotels#pricerange=”moderate”,

CamHotels#name=”limehouse”, CamHotels#area=”north”)
8: User request(CamHotels#price)
9: Sys inform(CamHotels#name=”limehouse”, CamHotels#price=”a cheapest single room is 40 pounds and a

cheapest double room is 75 pounds”)
10: User inform(CamRestaurants#type=”restaurant”, CamRestaurants#food=”british”)
11: Sys request(CamRestaurants#pricerange)
12: User inform(CamRestaurants#pricerange=”moderate”)
13: Sys request(CamRestaurants#area)
14: User inform(CamRestaurants#area=CamHotels#area)
15: Sys inform(CamRestaurants#name=”none”, CamRestaurants#food=”british”,

CamRestaurants#pricerange=”moderate”, CamRestaurants#area=”north”)
16: User negate(CamRestaurants#area=”west”)
17: Sys confirm(CamHotels#area=CamRestaurants#area)
18: User negate(CamRestaurants#area=”west”)
19: Sys inform(CamRestaurants#food=”british”, CamRestaurants#pricerange=”moderate”,

CamRestaurants#name=”saint johns chop house”, CamRestaurants#area=”west”)
20: User bye()
21: Sys bye()

Figure 8: An example simulated dialogue using the proposed CEDM (Experiment 1, Env. 1, r = 0.7)
about finding a hotel first (blue) followed by a restaurant (green). The system is able to process user input
addressing a relation (Turn 14) as well as to address the relation in a system utterance (Turn 17). The
dialogue nicely shows how the system is able to resolve a conflict between the belief of the conversational
relation and the belief of the conversational object (i.e., CamRestaurants#area = CamHotels#area vs.
CamRestaurants#area = ”west”).

1: Sys hello()
2: User inform(CamHotels#type=”placetostay”, CamHotels#kind=”hotel”, CamHotels#area=”north”,

CamHotels#stars=”2”)
3: Sys inform(CamHotels#kind=”hotel”, CamHotels#name=”lovell lodge”, CamHotels#stars=”2”,

CamHotels#area=”north”)
4: User confirm(CamHotels#kind=”hotel”)
5: Sys inform(CamHotels#name=”lovell lodge”, CamHotels#kind=”hotel”)
6: User inform(CamRestaurants#type=”restaurant”, CamRestaurants#food=”chinese”,

CamRestaurants#pricerange=”expensive”)
7: Sys request(CamRestaurants#area)
8: User inform(CamRestaurants#area=CamHotels#area)
9: Sys request(CamRestaurants#area)

10: User inform(CamRestaurants#area=CamHotels#area)
11: Sys request(CamRestaurants#area)
12: User inform(CamRestaurants#area=CamHotels#area)
13: Sys request(CamRestaurants#area)
14: User inform(CamRestaurants#area=”north”)
15: Sys inform(CamRestaurants#food=”chinese”, CamRestaurants#pricerange=”expensive”,

CamRestaurants#name=”hakka”, CamRestaurants#area=”north”)
16: User bye()
17: Sys bye()

Figure 9: An example dialogue using the MDDM (Experiment 1, Env. 1, r = 0.7) about finding a hotel
first (blue) followed by a restaurant (green). As the system is not able to process user input addressing a
relation it keeps requesting the same information (Turns 7-12: CamRestaurants#area) over and over until
the user finally utters the actual value of the area (Turn 14: CamRestaurants#area=”north”) which then
leads to a successful dialogue.
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Abstract

We present “conversational image edit-
ing”, a novel real-world application do-
main combining dialogue, visual infor-
mation, and the use of computer vision.
We discuss the importance of dialogue in-
crementality in this task, and build vari-
ous models for incremental intent identi-
fication based on deep learning and tra-
ditional classification algorithms. We
show how our model based on convolu-
tional neural networks outperforms mod-
els based on random forests, long short
term memory networks, and conditional
random fields. By training embeddings
based on image-related dialogue corpora,
we outperform pre-trained out-of-the-box
embeddings, for intention identification
tasks. Our experiments also provide ev-
idence that incremental intent processing
may be more efficient for the user and
could save time in accomplishing tasks.

1 Introduction

The development of digital photography has led to
the advancement of digital image editing, where
professionals as well as hobbyists use software
tools such as Adobe Photoshop, Microsoft Photos,
and so forth, to change and improve certain char-
acteristics (brightness, contrast, etc.) of an image.

Image editing is a hard task due to a variety of
reasons: (1) The task requires a sense of artistic
creativity. (2) The task is time consuming, and
requires patience and experimenting with various
features before settling on the final image edit.
(3) Sometimes users know at an abstract level what
changes they want but are unaware of the image
editing steps and parameters that will result in the
desired image. For example, a person’s face in

a photo may look flushed, but the users may not
know that adjusting the saturation and the temper-
ature settings to some specific values will change
the photo to match their expectations. (4) Users
are not sure what changes to perform on a given
image. (5) Users are not fully aware of the fea-
tures and the functionality that are supported by
the given image editing tool.

Users can often benefit from conversing with
experts to edit images. This can be seen in ac-
tion in web services such as the Reddit Photo-
shop Request forum1, Zhopped2, etc. These web
services include two types of users: expert edi-
tors who know how to edit the photographs, and
novice users who post their photographs and re-
quest changes to be made. If the editor needs fur-
ther clarification regarding the requested change,
they post their query and wait for a response from
the user. The conversational exchanges also hap-
pen through edit feedback where the editor inter-
prets the user request and posts the edited pho-
tographs. The user can reply with further requests
for changes until they are fully satisfied. Due to
this message-forum-like setup, users do not have
the freedom to request changes in real time (at the
same time as the changes are actually being per-
formed), and hence often end up with edited im-
ages that do not fully match their requests. Fur-
thermore, the editors are often unable to provide
suggestions that could make the photograph fit
better the user’s narrative for image editing.

In this setup the users can benefit greatly from
conversing with an expert image editor in real time
who can understand the requests, perform the edit-
ing, and provide feedback or suggestions as the
editing is being performed. Our ultimate goal is to
build a dialogue system with such capabilities.

1https://www.reddit.com/r/PhotoshopRequest/
2https://zhopped.com
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Conversational image editing is a task particu-
larly well suited for incremental dialogue process-
ing. It requires a lot of fine-grained changes (e.g.,
changing brightness to a specific value), which of-
ten cannot be just narrated with a command. In
order to perform such fine-grained changes to the
user’s liking, it is necessary that the editor under-
stands the user utterances incrementally (word-by-
word) and in real time, instead of waiting until
the user has finished their utterance. For example,
if the user wants to increase the brightness, they
could utter “more, more, more” until the desired
change has been achieved. The changes should
occur as soon as the user has uttered “more” and
continue happening while the user keeps saying
“more, more”.

In this paper, our contributions are as follows:
(1) We introduce “conversational image editing”,
a novel dialogue application that combines natu-
ral language dialogue with visual information and
computer vision. Ultimately a dialogue system
that can perform image editing should be able to
understand what part of the image the user is refer-
ring to, e.g., when the user says “remove the tree”.
(2) We provide a new annotation scheme for incre-
mental dialogue intentions. (3) We perform intent
identification experiments, and show that a convo-
lutional neural network model outperforms other
state-of-the-art models based on deep learning and
traditional classification algorithms. Furthermore,
embeddings trained on image-related corpora lead
to better performance than generic out-of-the-box
embeddings. (4) We calculate the impact of vary-
ing confidence thresholds (above which the clas-
sifier’s prediction is considered) on classification
accuracy and savings in terms of number of words.
Our analysis provides evidence that incremental
intent processing may be more efficient for the
user and save time in accomplishing tasks. To
the best of our knowledge this is the first time in
the literature that the impact of incremental intent
understanding on savings in terms of number of
words (or time) is explicitly measured. DeVault
et al. (2011) measured the stability of natural lan-
guage understanding results as a function of time
but did not explicitly measure savings in terms of
number of words or time.

2 Related Work

Combining computer vision and language is a
topic that has recently drawn much attention.

Some approaches assume that there are manual an-
notations available for mapping words or phrases
to image regions or features, while other ap-
proaches employ computer vision techniques. Re-
search is facilitated by publicly available data sets
such as MS COCO (Lin et al., 2014) and Visual
Genome (Krishna et al., 2017). Typically im-
age and language corpora consist of digital pho-
tographs paired with crowdsourced captions, and
sometimes mappings of words and captions to spe-
cific parts of an image.

Yao et al. (2010) is an example of a work re-
lying on manual input. They developed a semi-
automatic method for parsing images from the
Internet to build visual knowledge representation
graphs. On the other hand, the following works
did not rely on manual annotations. Feng and La-
pata (2013) generated captions from news articles
and their corresponding images. Mitchell et al.
(2012) and Kulkarni et al. (2013) built systems for
understanding and generating image descriptions.

Due to space constraints, below we focus on
work that combines computer vision or visual ref-
erences (enabled through manual annotations) and
language in the context of a dialogue task, which
is most relevant to our work. Antol et al. (2015)
introduced the “visual question answering” task.
Here the goal is to provide a natural language an-
swer, given an image and a natural language ques-
tion about the image. Convolutional neural net-
works (CNNs) were employed for encoding the
images (Krizhevsky et al., 2012). This was later
modeled as a dialogue-based question-answering
task in Das et al. (2017). These works used im-
ages from the MS COCO data set. de Vries et al.
(2017) introduced “GuessWhat?!”, a two-player
game where the goal is to find an unknown ob-
ject in a rich image scene by asking a series of
questions. They used images from MS COCO and
CNNs for image recognition.

Paetzel et al. (2015) built an incremental di-
alogue system called “Eve”, which could guess
the correct image, out of a set of possible can-
didates, based on descriptions given by a hu-
man. The system was shown to perform nearly
as well as humans. Then in the same domain,
Manuvinakurike et al. (2017) used reinforcement
learning to learn an incremental dialogue policy,
which outperformed the high performance base-
line policy of Paetzel et al. (2015) in offline sim-
ulations based on real user data. Each image was
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associated with certain descriptions and the game
worked for a specific data set of images without
actually using computer vision.

Manuvinakurike et al. (2016a) developed a
model for incremental understanding of the de-
scribed scenes among a set of complex config-
urations of geometric shapes. Kennington and
Schlangen (2015) learned perceptually grounded
word meanings for incremental reference resolu-
tion in the same domain of geometric shape de-
scriptions, using visual features.

Huang et al. (2016) built a data set of sequen-
tial images with corresponding descriptions that
could potentially be used for the task of visual sto-
rytelling. Mostafazadeh et al. (2016) introduced
the task of “visual question generation” where
the system generates natural language questions
when given an image, and then Mostafazadeh et al.
(2017) extended this work to natural language
question and response generation in the context of
image-grounded conversations.

Some recent work has started investigating the
potential of building dialogue systems that can
help users efficiently explore data through visual-
izations (Kumar et al., 2017).

The problem of intent recognition or dialogue
act detection has been extensively studied. Below
we focus on recent work on dialogue act detec-
tion that employs deep learning. People have used
recurrent neural networks (RNNs) including long
short term memory networks (LSTMs), and CNNs
(Kalchbrenner and Blunsom, 2013; Li and Wu,
2016; Khanpour et al., 2016; Shen and Lee, 2016;
Ji et al., 2016; Tran et al., 2017). The works that
are most similar to ours are by Lee and Dernon-
court (2016) and Ortega and Vu (2017) who com-
pared LSTMs and CNNs on the same data sets.
However, neither Lee and Dernoncourt (2016) nor
Ortega and Vu (2017) experimented with incre-
mental dialogue act detection as we do.

Regarding incrementality in dialogue, there has
been a lot of work on predicting the next user ac-
tion, generating fast system responses, and turn-
taking (Schlangen et al., 2009; Schlangen and
Skantze, 2011; Dethlefs et al., 2012; Baumann
and Schlangen, 2013; Selfridge et al., 2013; Ghigi
et al., 2014; Kim et al., 2014; Khouzaimi et al.,
2015). Recently Skantze (2017) presented a gen-
eral continuous model of turn-taking based on
LSTMs. Most related to our work, DeVault et al.
(2011) built models for incremental interpreta-

tion and prediction of utterance meaning, while
Manuvinakurike et al. (2016b) and Petukhova and
Bunt (2014) built models for incremental dialogue
act recognition.

3 Data

We use a Wizard of Oz setup to collect a dialogue
corpus in our image edit domain. The Wizard-user
conversational session is set up over Skype and
the conversation recorded on the Wizard’s system.
The screen share feature is enabled on the Wiz-
ard’s screen so that the user can see in real time the
changes requested. There are no time constraints,
and the Wizard and the user can talk freely un-
til the user is happy with the changes performed.
Users may have varying levels of image editing
expertise and knowledge of the image editing tool
used during the interaction (Adobe Lightroom).

Each user is given 4–6 images and time to think
of ways to edit them to make them look better. The
conversation typically begins with the step called
image location. The user describes the image in a
unique manner so that it can be located in the li-
brary of photos by the Wizard. If the descriptions
are not clear the Wizard can ask clarification ques-
tions. Once the image is located, the user conveys
to the Wizard the changes they desire. The user
and the Wizard have a conversation until the user
is happy with the final outcome. In order to cap-
ture all the changes that the user wants to achieve
in spoken language, the image editing tool is con-
trolled only by the Wizard. Figure 4 in the Ap-
pendix shows the Adobe Lightroom interface as
seen by the user and the Wizard. Note that users
were not explicitly told that they would interact
with another human and could not see who they
interacted with because the Wizard and the user
were in different locations. However, the natural-
ness of the conversation made it obvious that they
were conversing with another human.

The photographs chosen for the study are sam-
pled from the Visual Genome data set (Krishna
et al., 2017). For the dialogue to be reflective of
a real-world scenario the images sampled should
be representative of the images regularly edited
by the users. We sampled 200 photoshop re-
quests from the Reddit Photoshop Request forum
and Zhopped, and found that the images in those
posts fell into eight high-level categories: ani-
mals, city scenes, food, nature/landscapes, indoor
scenes, people, sports, and vehicles.
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 User:    I don’t like the guy creepily                         um a little bit higher till the black               yup that’s good                   um and from the bottom the wheel is
             staring so let’s crop top down                      frame                                                                                                    absolutely useless lets get rid of it 
 Wizard:                                                   ok                                                                    ok

User:         that’s good much better               let’s black and                         uh how do you adjust the                                         what happens if you go all
                                                                      white this picture                     black and whites                                                       the way up
Wizard:                                              alright                                alright                                                 uh with the contrasts

 User:                                                                                                            can you keep going down I’ll          right there
                                                                                                                      tell you when to stop
 Wizard:     this is all the way up                     this is all the way down                                                          ok

TIME

TIME

TIME

User:   [IER-N: I don’t like the guy creepily                         [O: um] [IER-U: a little bit higher till the black frame]                                [RS-Y: yup] [COM-L: that’s good]       
                         staring so let’s crop top down]                                                                                                                          
Wizard:                                                                [ACK: ok]                                                                                                  [ACK: ok]

TIME

a)

Figure 1: Example Wizard-user conversation. The user provides new requests, modifies the requests,
provides feedback, and issues a high-level command. The Wizard responds with acknowledgments and
provides a clarification. Figure 1a shows the annotation of the dialogue acts for the user utterances.

# users 28
# dialogues 129
# user utterances 8890
# Wizard utterances 4795
# time (raw) 858 min
# user tokens 59653
# user unique tokens 2299
# Wizard tokens 26284
# Wizard unique tokens 1310
# total unique tokens 2650

Table 1: Data statistics.

Figure 1 shows a sample conversation between
the user and the Wizard, and Table 1 shows the
statistics of the data. Details of the semantics of
the conversation are discussed in Section 4. Each
dialogue session ranges between 2–30 min (7 min

on average). The dialogues were transcribed via
crowdsourcing (Amazon Mechanical Turk). We
intend to publicly release the data.

4 Dialogue Semantics

The data collected were annotated with dialogue
acts. User utterances were segmented at the word
level into utterance segments. An utterance is de-
fined as a portion of speech preceded and/or fol-
lowed by a silence interval greater than 300 msec.
Each utterance segment was then assigned a di-
alogue act. The annotations were performed by
two expert annotators. The inter-annotator agree-
ment was measured by having our two annotators
annotate the same dialogue session of 20 min, and
kappa was found to be 0.81 which indicates high
agreement. Below we describe briefly our dia-
logue act scheme.
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Image Edit Requests: The most common di-
alogue acts used by the user are called “Image
Edit Requests (IERs)”. These are user requests
concerning the changes to be made to the images.
IERs are further categorized into 4 groups: IER-
New (IER-N), IER-Update (IER-U), IER-Revert
(IER-R), and IER-Compare (IER-C). IER-N re-
quests refer to utterances that are concerned with
new image edit requests different from the previ-
ously requested edits. These requested changes
are either abstract (“it’s flushed out, can you fix
it?”) or exact (“change the saturation to 20%”).
The Wizard interprets these requests and performs
the changes. IER-U labels are used for utter-
ances that request updates to the previously men-
tioned IER-Ns. These include the addition of
more details (“change it to 50%”) to the IER-
N (“change the saturation”), issuing corrections
to the IER (“can you reduce the value again?”),
modifiers (more, less), etc. If the users are com-
pletely unhappy with the change they can revert
the change made (IER-R). The IER-R act is used if
the user reverts the complete changes performed,
compared to only changing the values. For exam-
ple, if the user is modifying the saturation of the
image and across multiple turns changes the value
of saturation from 20% to 30% and back to 20%,
the user’s action is labeled as IER-U. If the user
wants all the saturation changes to be undone, the
user’s action is labeled as IER-R. Users may also
want to compare the changes made across differ-
ent steps (“can we compare this to the previous
update?”), and this action is labeled as IER-C.

Comments: Once the changes are performed
the user is typically happy with the change and
issues a comment that they like the edit (COM-
L), or they are unhappy and issues a comment that
they dislike the edit (COM-D). In some cases the
users are neutral and neither like nor dislike the
edit. Typically such utterances are comments on
the images and are labeled as COM-I.

Requests & Responses: The user may ask the
Wizard to provide suggestions on the IERs. These
are labeled as “Request” acts. “Yes” and “no” re-
sponses uttered in response to the Wizard’s sug-
gestions are labeled as RS-Y or RS-N.

Suggestions: This is the most commonly used
Wizard dialogue act after “Acknowledgments”.
When the user does not know what edits to per-
form, the Wizard issues suggestion utterances with
the intention of providing the user with ideas about

the changes that could be performed. The Wiz-
ard provides new suggestions (S-N), e.g., “do you
want to change the sharpness on this image?”. The
Wizard could also provide update suggestions for
the current request under consideration (S-U), e.g.,
“sharpness of about 50% was better”.

Other user actions are labeled as questions
about the features supported by the image editing
tool, clarifications, greetings, and discourse mark-
ers. In total there are 26 dialogue act labels, in-
cluding the dialogue act “Other (O)” which covers
all of the cases that do not belong in the other cat-
egories. In this work we are interested in the task
of understanding the user utterances only, and in
particular, in classifying user utterances into one
of 10 labels: IER-N, IER-U, IER-R, IER-C, RS-
Y, RS-N, COM-L, COM-D, COM-I, and O.

An agent will eventually be developed to re-
place the Wizard, which means that the agent will
need to interpret the user utterances. The task of
understanding the user utterance happens in two
phases. In the first step the goal is to identify the
dialogue acts. The second step is to understand
the user image edit requests IER-N and IER-U at
a fine-grained level. For example, when the user
says “make the tree brighter to 100”, it is impor-
tant to understand the exact user’s intent and to
translate this into an action that the image editing
tool can perform. For this reason we use action-
entities tuples <action, attribute, location/object,
value>. The user utterances are mapped to dia-
logue acts and then to a pre-defined set of image
action-entities tuples which are translated into im-
age editing actions. For more information on our
annotation framework for mapping IERs to action-
able commands see Manuvinakurike et al. (2018).
It is beyond the scope of this work to perform the
image editing and we intend to pursue this in fu-
ture work. Table 2 shows an example of the pro-
cess of understanding the image edit requests.

5 Incrementality

Table 3 shows example utterances for some of the
most frequently occurring dialogue acts in the cor-
pus. In these examples it can be seen that, with
the exception of 3, all the other dialogue acts can
be identified with some degree of certainty with-
out waiting for the user to complete the utterance.
Also, Figure 5 in the Appendix shows example
IERs. One of the motivations for our work is to
identify the right dialogue act at the earliest time.
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Utterance Segments Dialogue Action Attribute Location Value
Act Object

uh make the tree
brighter <sil> to
like a 100 <sil>
nope too much 50
please

uh O - - - -
make the tree brighter IER-N Adjust brightness tree -
to like a 100 IER-U Adjust brightness tree 100
nope too much COM-D - - - -
50 please IER-U Adjust brightness tree 50

perfect <sil> let’s
work on sharpness

perfect COM-L - - - -
let’s work on sharp-
ness

IER-N Adjust sharpness - -

Table 2: Examples of commonly occurring dialogue acts, actions, and entities.

Utterance Tag
1 add a vignette since it’s also en-

circled better
IER-N

2 can we go down to fifteen on that IER-U
3 go back to .5 IER-U
4 actually let’s revert back IER-R
5 can you compare for me before

and after
IER-C

6 I like it leave it there please COM-L
7 no I don’t like this color COM-D

Table 3: Examples of some of the most commonly
occurring dialogue acts in our corpus.

Not only is this more efficient but also more nat-
ural. The human Wizard can begin to take action
even before the utterance completion, e.g., in ut-
terance 1 the Wizard clicks the “vignette” feature
in the tool before the user has finished uttering
their request. Another goal is to measure potential
savings in time gained through incremental pro-
cessing, i.e., how much we save in terms of num-
ber of words when we identify the dialogue act
earlier rather than waiting until the full completion
of the utterance, without sacrificing performance.

6 Model Design

For our experiments we use a training set sampled
randomly from 90% of the users (116 dialogues
for training, 13 dialogues for testing). We use
word embedding features whose construction is
described in Section 6.1. There are several reasons
for using word embeddings as features, e.g., un-
seen words have a meaningful representation and
provide dimensionality reduction.3

3Figure 6 shows the visual presentation of the utterances
embeddings using t-SNE (Maaten and Hinton, 2008).

6.1 Constructing Word Embeddings

We convert the words into vector representations
to train our deep learning models (and a varia-
tion of the random forests). We use out-of-the-
box word vectors available in the form of GloVe
embeddings (Pennington et al., 2014) (trained
with Wikipedia data), or we employ fastText (Bo-
janowski et al., 2017) to construct embeddings us-
ing the data from the Visual Genome image region
description phrases, the dialogue training set col-
lected during this experiment, and other data re-
lated to image editing that we have collected (im-
age edit requests out of a dialogue context). From
now on these embeddings trained with fastText
will be referred to as “trained embeddings”.

As we can see in Table 4, for models E (LSTMs)
and I (CNNs) we use word embeddings trained
with fastText on the aforementioned data sets. The
Vanilla LSTM (model D) does not use GloVe or
trained embeddings, i.e., there is no dimensional-
ity reduction. Model H (CNN) uses GloVe em-
beddings. The vectors used in this work (both
GloVe and trained embeddings) have a dimension
of 50. For trained embeddings, the vectors were
constructed using skipgrams over 50 epochs with
a learning rate of 0.5.

Recent advancements in creating a vector rep-
resentation for a sentence were also evaluated. We
used the Sent2Vec (Pagliardini et al., 2018) toolkit
to get a vector representation of the sentence and
then used these vectors as features for models G
and J. Note that LSTMs are sequential models
where every word needs a vector representation
and thus we could not use Sent2Vec.

6.2 Model Construction

We use WEKA (Hall et al., 2009) for the Naive
Bayes and Random Forest models, MALLET
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Model Accur
A Baseline (Majority) * 0.32
B Naive Bayes * 0.41
C Conditional Random Field * 0.51
D LSTM (Vanilla) * 0.53
E LSTM (trained word embed-

dings) *
0.55

F Random Forest * 0.72
G Random Forest (with

Sent2Vec)
0.73

H CNN (GloVe embeddings) 0.73
I CNN (trained word embed-

dings)
0.74

J CNN (Sent2Vec) 0.74

Table 4: Dialogue act classification results for
perfect segmentation. * indicates significant dif-
ference (p < 0.05) between the best performing
models (I and J) and the other models.

(McCallum, 2002) for the CRF model (linear
chain), and TensorFlow (Abadi et al., 2016) for
the LSTM and CNN models. The models B, C, D,
and F in Table 4 use bag-of-words features. The
CNN has 2 layers, with the first layer containing
512 filters and the second layer 256 filters. Both
layers have a kernel size of 10 and use ReLU acti-
vation. The layers are separated by a max pooling
layer with a pool size of 10. The dense softmax is
the final layer. We use the Adam optimizer with
the categorical cross entropy loss function. The
LSTM cell is made up of 2 hidden layers. We use
a dropout with keep prob = 0.1. We put the logits
from the last time steps through the softmax to get
the prediction. We use the same optimizer and loss
function as for the CNN since they were found to
be the best performing.

Table 4 shows the dialogue act classification ac-
curacy for all models on our test set. Here we as-
sume that we have the correct utterance segmen-
tation for both the training and the test data. Note
that because of the “Other” dialogue act all words
in a sentence will belong to a segment and a dia-
logue act category. We hypothesize that the poor
performance of the sequential models (CRF and
LSTM) is due to the lack of adequate training data
to capture large context dependencies.

6.3 Incrementality
Table 5 shows the savings in terms of overall num-
ber of words and average number of words saved
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Figure 2: Confidence contours based on every
word. The correct tag is IER-N. The confidence
contours at the word level take time to stabilize.

per sentence, for each dialogue act in the corpus.
Figure 2 shows the confidence curves for pre-

dicting the dialogue act with the progression of
every word. From this figure it is clear that after
listening to the word “photo” the classifier is con-
fident enough that the user is issuing the IER-N
command. Here the notion of incrementality is to
predict the right dialogue act as early as possible
and evaluate the savings in terms of the number of
words. While from this example it is clear that the
correct dialogue act can be identified before the
user completes the utterance, it is not clear when to
commit to a dialogue act. The trade-off involved in
committing early is often not clear. Table 5 shows
the maximum savings that can be achieved in an
ideal scenario where an oracle (an entity inform-
ing if the prediction is correct or wrong as soon as
the prediction is made) identifies the earliest point
of predicting the correct dialogue act.

The method used for calculating the savings is
shown in Table 6. In this example for the utterance
“I think that’s good enough”, we feed the classifier
the utterances one word at a time and get the clas-
sifier confidence. The class label with the highest
score is obtained. Here the oracle tells us that we
could predict the correct class COM-L as soon as
“I think that’s good” was uttered and thus the word
savings would be 1 word.

However, in real-world scenarios the oracle is
not present. We use several confidence thresh-
olds and measure the accuracy and the savings
achieved in predicting the dialogue act without the
oracle. For the predictions in the test set we get the
accuracy for each of the thresholds. Then if the
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Tag % Overall Average
Word Word Savings

Savings per Utterance
IER-N 37 3.96
IER-U 39 2.72
IER-R 41 1.63
IER-C 40 1.69
COM-L 36 1.13
COM-D 41 1.38
COM-I 37 2.56
RS-Y 28 0.34
RS-N 37 0.69
O 47 3.95

Table 5: Percentage of overall word savings and
average number of words saved per utterance, for
each dialogue act.

Utterance Max
conf

Class

I 0.2 O
I think 0.3 O
I think that’s 0.3 O
I think that’s good 0.5 COM-L
I think that’s good enough 0.5 COM-L

Table 6: Example incremental prediction. The
correct label is COM-L. Columns 2 and 3 show the
maximum confidence level and model prediction
after each word is uttered.

predictions are correct, we calculate the savings.
Thus Figure 3 shows the word savings for each
confidence threshold when the predictions are cor-
rect for that threshold.

So in the example of Table 6, for a confidence
threshold value of 0.4, we extract the class label
assigned for the utterance once the max confidence
score exceeds 0.4. In this case once the word
“good” was uttered by the user the confidence
score assigned (0.5) was higher than the thresh-
old value of 0.4 and we take the predicted class as
COM-L. The word savings in this case is 1 word
and our prediction is correct. But for a confidence
threshold value of 0.2, our prediction would be the
tag O which would be wrong and there would be
no time savings. Figure 3 shows that as the con-
fidence threshold values increase the accuracy of
the predictions rises but the savings decrease.

Researchers have used simulations (Paetzel
et al., 2015) or a reinforcement learning policy
(Manuvinakurike et al., 2017) to learn the right
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Figure 3: % savings (for correct predictions) and
accuracy (% correct) of incremental predictions of
dialogue acts as a function of confidence level.

points of interrupting the user which are dependent
on the language understanding confidence scores.
Here we do not focus on learning such policies.
Instead, our work is a precursor to learning an in-
cremental system dialogue policy.

7 Conclusion

We presented “conversational image editing”, a
novel real-world application domain, which com-
bines dialogue, visual information, and the use of
computer vision. We discussed why this is a do-
main particularly well suited for incremental dia-
logue processing. We built models for incremen-
tal intent identification based on deep learning and
traditional classification algorithms. We calcu-
lated the impact of varying confidence thresholds
(above which the classifier’s prediction is con-
sidered) on classification accuracy and savings in
terms of number of words. Our experiments pro-
vided evidence that incremental intent processing
could be more efficient for the user and save time
in accomplishing tasks.
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Figure 4: The interface as seen by the user and the Wizard. We use Adobe Lightroom as the image
editing program.

Tag User Edit Requests

IER-N I want to um add more
focus on the boat

IER-N can you make the water
uh nicer color

IER-N uh can we crop out uh
little bit off the bottom

IER-N is there a way to add
more clarity

IER-N can we adjust the shad-
ows

IER-U more [saturation]
IER-U can we get rid of the

hints of green in it
IER-U bluer
IER-U little bit more from the

left [crop]
IER-R can you unfocus it
IER-C can you show me be-

fore and after

Figure 5: Example user edit requests. Only two bounding boxes are labeled in the image for better
reading. The actual images have more extensive object labels.

294



Figure 6: Visualization of the sentence embeddings of the user utterances used for training. The t-
SNE visualizations after half-way through the utterances are shown. The utterances that have the same
dialogue acts can be seen grouping together. This shows that the complete utterance is not always needed
to identify the correct dialogue act.
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Abstract

In this work, we are interested in the
computation of logical representations of
discourse. We argue that all discourse
connectives are anaphors obeying differ-
ent sets of constraints and show how this
view allows one to account for the seman-
tically parenthetical use of attitude verbs
and verbs of report (e.g., think, say) and
for sequences of conjunctions (A CONJ1 B
CONJ2 C). We implement this proposal in
event semantics using de Groote (2006)’s
dynamic framework.

1 Introduction

The aim of a theory of discourse such as Rhetor-
ical Structure Theory (RST, Mann and Thomp-
son 1988) or Segmented Discourse Representa-
tion Theory (SDRT, Asher and Lascarides 2003)
is to explain the structure of text beyond the sen-
tence level, usually through a set of discourse rela-
tions (DRs; e.g., Explanation, Elaboration, Con-
trast).1 This structure is not only of theoretical
interest but has also proved valuable for several
Natural Language Processing (NLP) and Com-
putational Linguistics (CL) applications, such as
Question Answering (Narasimhan and Barzilay,
2015; Jansen et al., 2014) or Machine Translation
(Guzmán et al., 2014; Tu et al., 2014).

The vast majority of the NLP and CL world
relies on statistical rather that symbolic methods.
Yet, logic-based systems, which are closer to the
linguistic theories, can be a viable alternative, es-
pecially for inference-related problems (Bos and
Markert, 2005; Bjerva et al., 2014; Abzianidze,

1DRs appear inter-sententially, e.g., Consequence in Mary
did not sleep well yesterday. So, she is tired, but also intra-
sententially, e.g., Explanation in Mary is tired, because she
did not sleep well.

2015). That is the direction we advocate for;
grounded in the fields of formal grammar and
formal semantics, we are interested in the com-
putation of logical representations of discourse.
Following Asher and Pogodalla (2011); Qian and
Amblard (2011), we argue that it is not necessary
to extends syntax beyond the sentence level, as a
dynamic framework such as the one presented by
de Groote (2006) and based on continuation se-
mantics, allows one to handle discourse relations
with a traditional lexicalized grammar.

In particular, this paper shows how a system of
anaphora resolution—independently required for
the interpretation of pronouns (she, it) and dis-
course adverbials (then, otherwise)—along with
an appropriate representation of propositional at-
titude verbs and verbs of report (AVs, e.g., think,
say) can be used to account for the non-alignment
between syntactic and discourse arguments (Di-
nesh et al., 2005; Hunter and Danlos, 2014) ob-
served for instance in (1).2 In these discourses,
although the AV with its subject (Jane said) is
part of the syntactical arguments of the connec-
tives, it is not considered part of the corresponding
discourse arguments and is said to be evidential.
Evidential status impacts, among other things, the
inferences that can be drawn, in particular on the
beliefs of the author (Danlos and Rambow, 2011;
Hunter, 2016; Hunter and Asher, forthcoming).

(1) (from Hunter and Danlos 2014)
a. John didn’t come to the party

although Jane said he was back in
town.

b. Lots of people are coming to my party.

2Following the notation convention of the Penn Discourse
Treebank (PDTB, Prasad et al. 2007), the two arguments of
relevant discourse relations—named “Arg1” and “Arg2”—
are shown in italic and bold, while the connectives lexical-
izing them, if any, are underlined.
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Jane said, for example, that Fred is
coming with his whole family.

This article is organized as follows. In Section
2, we present the anaphoric character of adverbial
connectives. In Section 3, we start by reviewing
the notion of (semantically) parenthetical report—
a category that subsumes evidential reports—and
we highlight its relation with discourse connec-
tives. Next, we sketch our main contribution,
namely that parenthetical reports can be modeled
by assuming that all connectives behave anaphori-
cally, even though different classes of connectives
obey different sets of constraints. These ideas are
implemented formally using continuation seman-
tics in Section 4. In Section 5, we discuss related
work and Section 6 concludes the article.

2 Adverbial connectives as anaphors

In English, using a discourse connective—a word
that lexicalizes a DR, such as although and for ex-
ample in (1) above—is the most direct and reliable
way to express a DR. The three main categories
of discourse connectives are COORDINATE CON-
JUNCTIONS (e.g., and, or), SUBORDINATE CON-
JUNCTIONS (e.g., because, although) and ADVER-
BIALS (e.g., for example, otherwise). Webber
et al. (2003) argue that in contrast with the first
two types, jointly called “structural connectives”,
adverbials are interpreted anaphorically. In other
words, the arguments of adverbials cannot be de-
termined by syntax alone (nor an extension of syn-
tax using similar notions of dependency or con-
stituency) and are found in or derived from the
context in a similar fashion as the antecedents of
nominal anaphoric expressions (e.g., she).

While Webber et al. (2003); Webber (2004)
outline D-LTAG, a discourse grammar incorpo-
rating anaphoric elements for adverbial connec-
tives, nothing is said about the resolution of
the anaphors. In contrast, our approach consid-
ers a traditional lexicalized sentence-level gram-
mar such as Combinatorial Categorial Grammar
(CCG, Steedman and Baldridge 2011), a formal-
ism for which parsing is an active research topic
(Lewis et al., 2016; Ambati et al., 2016), and
we focus here on the semantic part of the lexi-
con, embedding explicitly the anaphoric process
in the computation of the semantics of the dis-
course. In addition, we will see in the next sec-
tion that considering that structural connectives do
sometime behave anaphorically too accounts for

(non-)parenthetical reports in a simple way.

3 Parenthetical reports

3.1 Intensionality and evidentiality

It was observed in Urmson (1952) that some verbs,
called parentheticals, can have a special meaning
when used with the first person of the present sim-
ple. In these cases, the verb is not used primarily
to describe an event or a state, but rather to indicate
“the emotional significance, the logical relevance
or the reliability” of a statement. As an illustration,
Urmson (1952) provides sentences in (2), in which
I suppose is used to signal a certain degree of relia-
bility (low or moderate) of the speaker’s opinion.3

(2) a. I suppose that your house is very old.
b. Your house, I suppose, is very old.
c. Your house is very old, I suppose.

It appears that this behaviour is not limited to
the first person present. Indeed, Simons (2007)
cites dialogue (3) as an example, where Henry
thinks that is described as an evidential, indicat-
ing the source of its complement (she’s left town),
which is the main point of the sentence. This
evidential use is opposed to the traditional non-
parenthetical (or intensional) use, for which the
AV carries the main point of the sentence as in (4)
(also from Simons 2007).4 Only when Henry
thinks that is interpreted as evidential can (3b) be
accepted as a valid answer to (3a). Things are sim-
ilar with monologue; in (5) (from Hunter and Dan-
los 2014), the evidential use of Jane said allows he
is out of town to be argument of an implicit Expla-
nation relation.5

(3) a. Why isn’t Louise coming to our meet-
ings these days?

b. Henry thinks that she’s left town.

(4) a. Why didn’t Henry invite Louise to the
party?

b. He thinks that she’s left town.
3The name “parenthetical” comes from the syntactic pos-

sibility of the sentence-medial (2b) and sentence-final (2c)
positions. In all sentences of (2), the verb plays the same role
and is said to be semantically parenthetical.

4Although they can serve another discourse function, AVs
used parenthetically are very often evidential. As, in addition,
our proposal presented below in Section 3.3 applies equally to
all semantically parenthetical uses, we will use the two terms
interchangeably in the remaining of this article.

5A DR is implicit when it is not lexically marked by a con-
nective such as because but inferred at a sentence boundary.
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(5) Fred didn’t come to my party. Jane said he
is out of town.

The ability to account for both uses of AVs is
of theoretical and practical interest. First, one
might expect an efficient NLP system to be able to
make the difference between, for instance, cases
where a report is given as an explanation (as in
(4)) and cases where the explanation is only the
object of the report (as in (3) or (5)). Also, propo-
sitions reported by an evidential are interpreted
as, if not true, at least possibly true, information
that is valuable for reasoning systems. According
to Hunter (2016); Hunter and Asher (forthcom-
ing), parenthetical reports are related to modal (or
hedged) DRs: the Explanation in (5) is modalized
(�Explanation) and entails (at least) the possibil-
ity of both of its arguments. While they focus on
implicit DRs, they seem to extend their claim to
explicit ones, such as (6) (or (1) above). Accord-
ing to Danlos and Rambow (2011), however, the
relation in (6) is not hedged and a strong revision
of propositional attitude occurs: one infers that the
speaker agrees with Jill’s report.

(6) John didnt come to the party. Instead,
Jill said that he went to dinner with his
brother. (from Hunter and Asher forth-
coming)

This last question seems hard to settle without
conducting a proper experiment on native speak-
ers and is out of the scope of the present arti-
cle, which aims at modelling through anaphor-
like properties of connectives how DRs receive
their arguments and how this process gives rise to
(non-)parenthetical interpretations of AVs. There-
fore, we will not here take stance on the matter but
instead explain how both views can be accommo-
dated within our proposal.

3.2 Two classes of explicit connectives

Hunter and Danlos (2014) argue that some con-
nectives, such as because, restrict the reports in
their scope to the intensional interpretation, while
others, such as for example or although, behave
like the implicit connective in (5). In this exam-
ple, while an implicit because is perfectly fine and
lead to an evidential interpretation of the report,
the use of an explicit connective is not compatible
with the evidential interpretation (7a).6 Only an

6A “*” marks an unavailable/ungrammatical analysis

intensional interpretation could be accepted: how-
ever in this particular case (7b), it corresponds to a
very unnatural reading. For example, on the con-
trary, does not suffer from the same limitations (8):
the explicit connective is compatible with the evi-
dential interpretation (8b).

(7) a. *Fred didn’t come to my party
because Jane said he is out of town.

b. #Fred didn’t come to my party
because Jane said he is out of town.

(8) Lots of people are coming to my party.
a. Jane said that Fred is coming with

his whole family.
b. For example, Jane said that Fred is

coming with his whole family.

Independently, Haegeman (2004) argues that
adverbial clauses (i.e., subordinate clauses that
function as adverbs) are composed of two classes:
central adverbial clauses and peripheral ones.
Several syntactic and semantic phenomena distin-
guish between them; in particular, negation and
modal operators present in a matrix clause can also
scope over a central clause as in (9), which can ei-
ther mean that the rain makes Fred happy or that
Fred is sad for a reason other than the rain. On
the other hand, such elements cannot scope over
a peripheral one, as illustrated by (10), which un-
ambiguously expresses a contrast between Fred’s
happiness and the rain. It appears that all the sub-
ordinate conjunctions allowing parenthetical re-
ports mentioned by Hunter and Danlos (2014) in-
troduce peripheral clauses while the ones that do
not allow them all introduce central clauses. We
think that this is no coincidence and will thus call
“central” the connectives that allow parenthetical
reports and “peripheral” the ones that do not.7

(9) Fred is not sad because it is raining.

(10) Fred is not sad although it is raining.

The non-alignment between syntactic and dis-
course arguments resulting from the parentheti-
cal use of AVs is in no way exceptional.8 Us-

while a “#” indicates a semantically rejected one.
7Some ambiguous connectives can introduce both type of

adverbial clauses. For instance, while is central when used
temporally and peripheral when used contrastively.

8The term “non-alignment”—or sometimes “mismatch”
(Prasad et al., 2008)—is used to describe a DR Rel lexical-
ized by a connective CONN such that the (discourse) argu-
ments of the former do not directly correspond to the (syn-
tactic) arguments of the latter.
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ing the PDTB Browser9, we have calculated that
in the PDTB, 12.7% of the all explicit relations
attributed to the writer have at least one of their
arguments attributed to another agent, principally
due to the use of an evidential. This proportion is
even higher (26.9%) for implicit relations, which
most of the time (98.0%) can be accounted for via
an implicit (i.e., morphologically empty) adverbial
connectives at the beginning of a clause or sen-
tence (Prasad et al., 2008).

3.3 Evidentiality and anaphora

Consider a sentence of the form A CONN Jane
says X and label eA the propositional content of A,
eB the content of Jane says X, e′ the content of the
report X and e the content of the full sentence. We
propose that no connectives are really fully struc-
tural, but all behave anaphorically, in the sense that
their discourse arguments are not determined by
syntax alone. In consequence, these discourse ar-
guments are not necessarily the propositional con-
tents of their syntactic arguments (in this case eA
and eB respectively). However, these anaphors are
constrained by a few rules. The first one applies to
all connectives: a discourse argument must have
been introduced by the corresponding syntactic ar-
gument (in this case, eA is the only candidate for
Arg1, but both eB and e′ are candidates for Arg2).
The second applies only to central connectives:
these cannot “decompose” a clause headed by an
AV to access the report (here, for instance, e′) but
have to stop at the AV itself (here eB). A third rule
is introduced at the end of the section.

This explains why the two sentences in (11) are
acceptable: although, a peripheral connective, has
access to both eB and e′ which can be selected as
Arg2 depending on their semantics.10 In contrast,
because is central and so in the present configura-
tion uses necessarily eB for Arg2; in consequence,
the AV is always interpreted intentionally, which

9http://bit.ly/2zfrTNr
10It has been argued that there is no mismatch between

syntax and discourse in (11b) and that the two sentences in
(11) have the same structure (Hardt, 2013). The argument
is based on the idea that if there is a contrast between A
and B and if agent X speaks truthfully, then there is a con-
trast between A and X SAYS B. One of the issues with this
view is that it fails to account for the differences between
(non-)parenthetical uses of AVs; in particular, if (11) have the
same structure, how does one infer that the speaker/writer can
reject the truth of the complement of the AV in (11a) but not
in (11b)? In addition, while the given argument might be in-
tuitively appealing for Concession and Contrast, extending it
to other DRs such as the one lexicalized by for example would
require to drastically weaken the meaning of those DRs.

predicts the acceptability of (12a) and the incoher-
ence (in most contexts) of (12b).

(11) a. Fred cameeA althoughe Sabine
saideB she hatede′ him.

b. Fred cameeA althoughe Sabine
sayseB he was sicke′ .

(12) a. Fred cameeA becausee Sabine
saideB she likede′ him.

b. # Fred cameeA becausee Sabine
sayseB he had recoverede′ .

We propose that a third constraint applies to all
connectives: when its syntactic argument contains
a conjunction, a connective is able to decompose
it to access the matrix clause, as in (13b), but not
the embedded one. This constraint disambiguates
between the two possible bracketings of A CONJ1
B CONJ2 C structures: when the Arg1 of the rela-
tion lexicalized by CONJ2 is the content of either
A or the whole A CONJ1 B then the bracketing is
as in (13), when instead this Arg1 is the content of
B, then the bracketing is as in (14).

(13) a. [Fred played music while Sabine
was taking a nap] because he
wanted to annoy her.

b. [Fred washed the dishes while
Sabine was taking a nap] because he
wanted to be nice to her.

(14) Fred broke his arm because [he fell
because he was drunk].

This idea of handling connectives as restricted
anaphors can probably be put in practice in vari-
ous ways; in the remainder of this article we have
chosen to implement it in a logical system based
on λ-calculus.

4 Implementation

4.1 Continuation semantics as a dynamic
framework

The notion of continuation has emerged in the the-
ory of computer programming in relation to the
idea of order of evaluation (see Reynolds 1993 on
the history of continuation). It has proved very
useful in the understanding of natural language
too (Barker and Shan, 2014) and in particular, it
forms the basis of de Groote (2006)’s framework
for dynamic semantics, i.e., a system accounting
for the context-change nature of sentences and in
particular, the possibility for a sentence to make
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reference to entities introduced previously in the
discourse (Asher, 2016). A continuized function
takes a continuation—which is a representation of
some further computation—as an additional argu-
ment. This function is then free to execute or not
its continuation and (if the continuation is itself a
function taking an argument) with what argument.
According to a similar principle, in the continua-
tion semantics of de Groote (2006), a sentence is
a function that takes as argument not only its left
context, but also its continuation, i.e., the remain-
ing portion of the discourse, whose argument is
meant to be the context updated with the informa-
tion expressed by the proposition.

Such a framework, based on Church (1940)’s
simply typed λ-calculus, is able to handle com-
plex dynamic phenomena (Lebedeva, 2012; Qian,
2014). In particular, an anaphora is modelled us-
ing a selection function, a term representing the
algorithmic process of determining (from the con-
text) the reference of the anaphoric expression.
For instance, the pronoun she uses a selection
function sel she that, provided a context c, returns
a feminine individual mentioned in c.11 One of
the advantages of de Groote (2006)’s framework
over other dynamic systems—such as Kamp and
Reyle (1993)’s DRT or Groenendijk and Stokhof
(1991)’s DPL—is that it relies entirely on usual
mathematical notions; in particular, variables be-
have standardly and variable renaming, a critical
operation to avoid clashes and loss of information
(the destructive assignment problem), is handled
by the classical operation of α-conversion.12

We add to the continuation semantics of Lebe-
deva (2012); Qian (2014) a basic type for proposi-
tional referential markers. Mathematically, those
propositional markers are similar to the event vari-
ables of event semantics (Davidson, 1967), ac-
cording to which Marie walk is translated as
∃e. walk(e,Marie), i.e., “there exists an event
that is a walking by Marie”; the main difference
is that those markers denote propositions and are
thus suitable to represent the complements of AVs.
This move allows us to reuse the anaphora sys-
tem of continuation semantics for propositional
anaphora at no cost. We consider here that any

11Describing the implementation of the selection functions
is out of the scope of this work; however, we make sure that
their arguments are informative enough for them to be math-
ematically defined.

12See Hindley and Seldin (1986) for more about λ-
calculus.

sentence describes such a propositional marker,
which is provided to the semantic translation of
the sentence as an argument, and can additionally
introduce other markers in the context when, for
instance, it contains a report or a discourse con-
nective.

4.2 Sentence-level analysis

The meaning of a single sentence is computed as
usual, according to a syntactic parse and the se-
mantic entries of the lexicon; Table 1 below shows
the parts of the lexicon that are relevant to the cur-
rent discussion. For the sentence Fred came, the
result is given by a in Table 2. This term has three
arguments (as all dynamic propositions): a propo-
sitional marker e, a context c and a continuation
φ (the variable representing the subsequent sen-
tences). It states that e is about Fred coming, and
passes the context updated with this description of
e (i.e., p :: c) to its continuation.13

4.2.1 AVs

Because a verb such as think has a proposi-
tional complement, it corresponds here to a three-
place predicate, relating the proposition being
constructed (about the thinking), the thinker, and
the proposition describing what is thought. Cru-
cially, because the two propositions are repre-
sented by objects of the same logical type, they
can both be referred to anaphorically in the same
way. Note how JthinkK in Table 1 introduces the
marker e′, described by the complement P (the
proposition embedded under think). The meaning
of Eva thinks he recovered is given in b2 of Ta-
ble 2: this term states that e is about Eva thinking
e′, which is about “he” (note the selection function
that has to find a reference in the context) having
recovered.

It is important to remark that the object of a
thought (or of any report that is not factive; Kart-
tunen 1971) is not necessarily a true proposition.
Therefore, merely stating the existence of a propo-
sitional marker, as in JthinkK, does not imply that
the corresponding proposition is true. This means
that at some point, we will have to indicate when
propositions are true; this will be achieved through
a predicate true and an entailment relation over
makers: a ⊃ b , true(a)→ true(b).

13The precise implementation of contexts is irrelevant but
a representation as lists of formula can be assumed.
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JFredK = λP. PFred
JheK = λPec. P selhe(c)ec
JcomeK = λS. S(λsecφ. come(e, s)︸ ︷︷ ︸

p

∧φ(p :: c))

JthinkK = λPS. S(λsecφ. ∃e′. think(e, s, e′)︸ ︷︷ ︸
p

∧Pe′(p :: c)φ)

JbecauseK = λABecφ. ∃eA. e ⊃ eA︸ ︷︷ ︸
p1

∧AeA(p1 :: c)(λc′. ∃eB . e ⊃ eB︸ ︷︷ ︸
p2

∧BeB(p2 :: c′)(λc′′.

Explanation(e, selC(eA, c
′′), selC(eB , c

′′))︸ ︷︷ ︸
p3

∧φ(p3 :: c′′)))

JalthoughK = λABecφ. ∃eA. e ⊃ eA︸ ︷︷ ︸
p1

∧AeA(p1 :: c)(λc′. ∃eB . e ⊃ eB︸ ︷︷ ︸
p2

∧BeB(p2 :: c′)(λc′′.

Concession(e, selP (eA, c
′′), selP (eB , c

′′))︸ ︷︷ ︸
p3

∧φ(p3 :: c′′)))

Di = λφ. φci
dupd = λDSφ. D(λc. ∃e. true(e)︸ ︷︷ ︸

p

∧Se(p :: c)φ)

JhoweverK = λBecφ.∃eB . e ⊃ eB︸ ︷︷ ︸
p1

∧BeB(p1 :: c)(λc′. Contrast(e, sel(c), selP (eB , c
′))︸ ︷︷ ︸

p2

∧φ(p2 :: c′))

Table 1: The semantic lexicon. The six first terms (JFredK-JalthoughK) are introduced in Section 4.2; the
last three (Di-JhoweverK) are discussed in Section 4.3. The underbraces are only a shorthand for copies
of the corresponding terms.

4.2.2 Conjunctions

As AVs, conjunctions introduce propositional
markers; in this case, one for each syntactic ar-
gument. We said earlier that all connectives be-
have, at least to some extent, anaphorically. In our
proposition, this corresponds to the fact that the
two propositional variables eA and eB transmitted
to the two syntactic arguments (A and B, respec-
tively), are not hard-wired as the discourse argu-
ments of the relation lexicalized by the connective;
instead, two types of selection functions are used:
selC and selP , for central and peripheral connec-
tives respectively. These functions have two ar-
guments: the first one is the marker representing
the whole corresponding syntactic argument (eA
or eB) and the second one is a context. If the
context has been judiciously updated, the selection
function has then all the information needed to re-
spect the constraints it is subject to and retrieve the
correct discourse argument.

All central conjunctions have a lexical entry
similar to JbecauseK given in Table 1. This term
can be understood sequentially: for A and B, e
(the marker of the whole A because B proposition),
the left context c and a continuation φ:

i) eA, a marker whose truth is entailed by the
truth of e, is described by executing A;

ii) similarly, eB is described by executing B;
iii) the relation Explanation between two

anaphorically determined propositions (one

from eA, the other from eB) is stated (this is
the description of e);

iv) the remaining φ of the discourse is executed.
This order of evaluation is expressed through in-
termediate continuations, which are written so that
the context is appropriately updated from the be-
ginning to the end: the input context of the connec-
tive is c, (p1 :: c) is given to A which gives back
c′, then (p2 :: c′) is given to B which gives back
c′′ and finally the connective transmits (p3 :: c′′)
to its continuation.

The (unnatural) sentence Fred came because
Eva thinks he had recovered therefore leads to the
term c in Table 2: because of the three constraints
applying to selC (in particular the impossibility
of accessing the content of a report), there is no
ambiguity in the discourse arguments of the ex-
planation, which are eA (about the coming) and
eB (about the thinking). This corresponds to an
intensional interpretation of the AV which can be
judged inappropriate based on world-knowledge.

The entries for peripheral conjunctions (e.g.,
JalthoughK in Table 1) only differ in the use of
the selP selection function instead of selC . The
sentence Fred came although Eva thinks he was
sick is translated into term c′ of Table 2: while
selP (eA, c

′′) is necessarily resolved as eA itself
(because of the first rule), selP (eB, c′′) could po-
tentially be either eB (intensional interpretation)
or e′ (evidential one), the latter being indicated by
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world-knowledge.

4.3 Discourse analysis

4.3.1 Discourse update
To actually compute full discourses, two ad-
ditional elements are needed (see Lebedeva
2012, who expresses discourse dynamics through
continuations and an exception raising/handling
mechanism but does not account for DRs); they
are shown in Table 1. The first one, Di, is the ini-
tial (content-empty) discourse, which simply con-
tains some initial context ci that is passed to its
continuation.14 The second is the dupd opera-
tor, that updates a discourse D with a sentence
S, by transferring the context from the former to
the latter and introducing a new true propositional
marker.15

4.3.2 Adverbials
The adverbial connectives, an example of which
is given as JhoweverK in Table 1, are very similar
to the conjunctions of the previous section. The
only difference is that as they lack one syntactic
argument, only one propositional marker (eB) is
introduced, while the other has to be determined
anaphorically from the left context c with an un-
constrained selection function. The discourse Fred
came. However, Sabine thinks he is sick is trans-
lated into term d of Table 2; it is very similar to c′,
only the selection of Arg1 is different.

4.4 Hedging DRs?

So far, we have been considering that explicit con-
nectives always introduced “plain” (unmodalized)
DRs. By simply adding as axioms that veridical
DRs such as Explanation or Concession (Asher
and Lascarides, 2003) entail the truth of their ar-
guments (R(e, eA, eB) ⇒ e ⊃ eA ∧ e ⊃ eB),
we obtain the strong revision of propositional at-
titude proposed by Danlos and Rambow (2011).
However, to get the “hedged DR” interpretation
advocated for by Hunter (2016), one can modify
the terms of the connectives along the following
lines: use a conditional statement to introduce a
modalized propositional marker for the DR if one
of the selected arguments has been introduced by
an AV (this piece of information is present in the

14The initial context ci can be chosen arbitrarily, for in-
stance as empty, or containing some world-knowledge.

15A discourse can also be evaluated to a static formula with
the trivial continuation stop = λc. >.

context), directly use the provided (unmodalized)
marker otherwise.

5 Related work

The idea of using de Groote (2006)’s contin-
uation semantics framework for computing dis-
course structure was first discussed by Asher and
Pogodalla (2011), who were interested in integrat-
ing SDRT more tightly with syntax. They outlined
a system that does so, giving explicitly a lexical
entry for adverbial connectives that uses a selec-
tion function to recover its Arg1. Qian and Am-
blard (2011) defend a very similar proposition, but
focus on implicit DRs and use an event-based se-
mantics instead of SDRT, in which the discourse
arguments are events rather than discourse speech
acts (DSA). Their account, as ours, is expressed in
a logical language that is simpler than the one of
SDRT, which uses labels that name DSA (Asher
and Lascarides, 2003); in consequence, all the dis-
course that they and we treat are directly and en-
tirely (including the DRs) translated in first or-
der logic, ready to be used by theorem provers
and model builders. However, considering that
discourse arguments are propositions allows us to
handle DRs which takes as arguments the com-
plements of propositional attitude verbs (which ar-
guably are propositions and not events nor DSA).

These two previous works both focused on the
general principles of introducing DRs in continu-
ation semantics and how to ensure the accessibil-
ity constraint (for the selection functions) known
as the Right Frontier Constraint (Asher and Las-
carides, 2003). This constraint is not only of lin-
guistics interest, it also naturally lowers the ambi-
guity of anaphors and thus reduces the computa-
tion required for the selection algorithms. How-
ever, the solutions proposed in these two articles
can easily be implemented in our particular propo-
sition as ensuring this constraint is orthogonal to
the issues mainly discussed here, namely the vari-
ation in anaphoric properties of discourse connec-
tives and the interpretation of AVs.

The distinction between central and peripheral
conjunctions and their interaction with AVs has
been formally modeled by Bernard and Danlos
(2016). In particular, they account for the scope
phenomena distinguishing the two classes of sub-
ordinating conjunctions discussed in Haegeman
(2004)–which we do not. However, their propo-
sition is heavily dependent on the syntactic aspect
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a , JcomeKJFredK = λecφ. come(e,Fred)︸ ︷︷ ︸
p

∧φ(p :: c)

b1 , JrecoveredKJheK = λecφ. recover(e, selhe(c))︸ ︷︷ ︸
p

∧φ(p :: c)

b2 , JthinkK(b1)JEvaK = λecφ. ∃e′. think(e,Eva, e′)︸ ︷︷ ︸
p1

∧ recover(e′, selhe(p1 :: c))︸ ︷︷ ︸
p2

∧φ(p2 :: p1 :: c)

c , JbecauseK(a)(b2) = λecφ. ∃eA. e ⊃ eA︸ ︷︷ ︸
p1

∧ come(eA,Fred)︸ ︷︷ ︸
p2

∧∃eB . e ⊃ eB︸ ︷︷ ︸
p3

∧∃e′. think(eB ,Eva, e′)︸ ︷︷ ︸
p4

∧ recover(e′, selhe(p4 :: . . . p1 :: c))︸ ︷︷ ︸
p5

∧Explanation(e, selC(eA, p5 :: . . . p1 :: c), selC(eB , p5 :: . . . p1 :: c))︸ ︷︷ ︸
p6

∧φ(p6 :: . . . p1 :: c)

c′ , JalthoughK(a)(b′2) = λecφ. ∃eA. e ⊃ eA︸ ︷︷ ︸
p1

∧ come(eA,Fred)︸ ︷︷ ︸
p2

∧∃eB . e ⊃ eB︸ ︷︷ ︸
p3

∧∃e′. think(eB ,Eva, e′)︸ ︷︷ ︸
p4

∧ sick(e′, selhe(p4 :: . . . p1 :: c))︸ ︷︷ ︸
p5

∧Concession(e, selP (eA, p5 :: . . . p1 :: c), selP (eB , p5 :: . . . p1 :: c))︸ ︷︷ ︸
p6

∧φ(p6 :: . . . p1 :: c)

d , dupd(Di(a))(JhoweverK(b2)) = λφ. ∃eA. true(eA)︸ ︷︷ ︸
p1

∧ come(eA,Fred)︸ ︷︷ ︸
p2

∧∃e. true(e)︸ ︷︷ ︸
p3

∧∃eB . e ⊃ eB︸ ︷︷ ︸
p4

∧∃e′. think(eB ,Eva, e′)︸ ︷︷ ︸
p5

∧ sick(e′, selhe(p5 :: . . . p1 :: ci))︸ ︷︷ ︸
p6

∧Contrast(e, sel(p3 :: . . . p1 :: ci), selP (eB , p6 :: . . . p1 :: ci))︸ ︷︷ ︸
p7

∧φ(p7 :: . . . p1 :: ci)

Table 2: Some examples of terms discussed in Section 4. Term b′2 (used in c′) is obtained by replacing
recover with sick in b2.

of the formalism they use, namely STAG (Shieber
and Schabes, 1990), while we are more agnostic
about this part of the grammar. Furthermore, they
model the difference between (non-)parenthetical
uses of AVs as a lexical ambiguity (the idea be-
ing that the parenthetical version of AVs are only
compatible with peripheral connectives), whereas,
in line with Simons (2007)’s analysis, we see it
as a pragmatic ambiguity concerning the argument
of discourse connectives. We achieve this through
the use of selection functions, a mechanism inde-
pendently motivated by pronominal anaphora and
adverbial connectives. This allows us to process
whole discourses with a limited set of tools while
they only account for subordinating conjunctions
(i.e., intra-sentential DRs).

Building on Hunter (2016)’s analysis, Hunter
and Asher (forthcoming) present a coercion mech-
anism to compositionally derive in SDRT the cor-
rect discourse structure of instances involving ev-
idential reports with implicit connectives. How-
ever, their solution does not account for examples
involving an evidential with an explicit DR, such
as (8b), which remain for them problematic. Note

that the present account smoothly extends to im-
plicit DRs under the assumption that they are in-
troduced by implicit adverbial connectives (simi-
lar to JhoweverK in Table 1).

6 Conclusion

We have argued that all discourse connectives—
not the adverbials only—should be treated as
anaphors, with different classes of connectives
obeying different anaphoric constraints. We have
shown that this view allows one to account for se-
mantically parenthetical reports without postulat-
ing any ad-hoc lexical ambiguity concerning the
status of AVs. Instead, the parenthetical interpre-
tation is viewed here as a product of the discourse
structure itself. The same mechanism also handles
sequences of conjunctions (A CONJ1 B CONJ2
C). We have shown how to implement this pro-
posal in de Groote (2006)’s dynamic framework.
Such a framework makes it possible to handle dis-
course semantics without the need of a syntactic
parse above the sentence level, and in a strictly
compositional way using continuations.
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Abstract

In this paper we have proposed a lin-
guistically informed recursive neural net-
work architecture for automatic extrac-
tion of cause-effect relations from text.
These relations can be expressed in ar-
bitrarily complex ways. The architec-
ture uses word level embeddings and other
linguistic features to detect causal events
and their effects mentioned within a sen-
tence. The extracted events and their re-
lations are used to build a causal-graph
after clustering and appropriate general-
ization, which is then used for predictive
purposes. We have evaluated the perfor-
mance of the proposed extraction model
with respect to two baseline systems,one
a rule-based classifier, and the other a con-
ditional random field (CRF) based super-
vised model. We have also compared
our results with related work reported in
the past by other authors on SEMEVAL
data set, and found that the proposed bi-
directional LSTM model enhanced with
an additional linguistic layer performs bet-
ter. We have also worked extensively on
creating new annotated datasets from pub-
licly available data, which we are willing
to share with the community.

1 Introduction

The concept of causality can be informally in-
troduced as a relationship between two events
e1 and e2 such that occurrence of e1 results in
the occurrence of e2. Curating causal relations
from text documents help in automatically build-
ing causal networks which can be used for pre-
dictive tasks. Expression of causality can be ex-
pressed within text documents in arbitrarily com-
plex ways. For example, in the sentence “Aircel

files for bankruptcy over mounting financial trou-
bles”, the event “mounting financial troubles” is
causing the event “Aircel filed for bankruptcy.” In
a more complicated scenario, “Company recalled
some vehicles to fix loose bolts that could lead to
engine stall” we can observe nested cause-effect
pairs. Here, the effect “company recalled vehicle”
is caused by the event “to fix loose bolts is not easy
to extract. That the cause “loose bolts” could lead
to engine stall”, is even more difficult to detect.

While there has been a considerable body of
researchers working in the area whose work has
been reviewed in section 2, there are many chal-
lenges that are still not properly addressed. Most
of the earlier approaches have considered rule
based or traditional machine learning algorithms
which heavily depend on careful feature engineer-
ing. Though one sees adoption of deep learning
techniques for causality extraction, it is still con-
siderably low compared to other text mining tasks.
This is largely due to the unavailability of ade-
quate annotated data: the only available dataset
for evaluation is the SEMEVAL-10 Task 8 which
is woefully inadequate to train such deep models.
There are challenges with annotations of this data
also (Rehbein and Ruppenhofer, 2017).

Most of the existing extraction mechanisms
look for single word representation of events
within a sentence, thereby yielding wrong results.
For example, in the sentence “The AIDS pandemic
caused by the spread of HIV infection” the cause
and effect are both multi-word phrases i.e. “spread
of HIV infection” and ‘AIDS pandemic’. How-
ever, SEMEVAL 2010 annotated dataset for this
task mentions the cause and effect as “infection”
and “pandemic” only. In another example, “In-
fectious diseases or communicable diseases are
caused by bacteria, viruses, and parasites.”, the
need to extract multiple causal as well as effect
events is obvious. The example sentence in the
first paragraph not only demonstrates the need to
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extract phrases as events, but also highlights how
complex such statements can be, often without the
use of known causal connectives like “causes, be-
cause of, leads to, after, due to” etc. which have
been traditionally exploited by the community.

In this work, we explore the use of bidirec-
tional LSTMs that can learn to detect causal in-
stances from sentences. To address the paucity
of training data, we propose the use of additional
linguistic feature embeddings, over and above
the regular word embeddings. With the use of
such linguistically-informed deep architecture, we
avoid the task of complex feature engineering.

A major contribution of this work is in devel-
oping annotated datasets with information curated
from multiple sources spanning across different
domains. To do this, we have collected news
articles and generate annotations. Beside SE-
MEVAL dataset we have also used another avail-
able dataset that has annotated data about drugs
and their adverse effect extracted from Medline
(Gurulingappa et al., 2012). We have done inten-
sive experimentations with parts of the dataset for
training and testing which will be discussed in the
following sections.

Detection of causal relation from text has many
analytical and predictive applications. Few of
these are: detecting cause-effect relations in med-
ical documents, learning about after effects of nat-
ural disasters, learning causes for safety related in-
cidents etc.. However to build a meaningful appli-
cation that can detect an event from texts and pre-
dict its possible effects, there is a need to curate
large volume of cause-effect event pairs. Further,
similar events need to be grouped and generalized
to super classes, over which the predictive frame-
work can be built(Zhao et al., 2017). In this paper,
we have proposed a k-means clustering of causal
and effect events detected from text, using word
vector representations.

The rest of the paper is organized as fol-
lows. Section 2 summarizes challenges and re-
lated works on causality detection. Section 3
presents the resource creation and the architecture
of the proposed causality extraction framework.
Experiments and evaluation are detailed in Section
4. Finally, in section 5 we conclude the paper.

2 Challenges in Causality Detection and
the State of the Art

Identification of causality is not a trivial problem.
Causation can occur in various forms. Two com-
mon differentiations are made on: a) Marked and
Unmarked causality and b) Implicit and Explicit
causality (Blanco et al., 2008)(Hendrickx et al.,
2009)(Sorgente et al., 2013). Marked Causality
is where there is a linguistic signal of causation
present. For example, “I attended the event be-
cause I was invited”. Here, causality is marked
by because. On the other hand in “Drive slowly.
There are potholes”, causality is unmarked.

Explicit Causality is where both cause and ef-
fect are stated. For example, “The burst has been
caused by water hammer pressure” has both cause
and effect stated explicitly. However, “The car ran
over his leg” does not have the effect of the acci-
dent explicitly stated.

Automatic extraction of cause-effect relations
are primarily based on three different approaches
namely, Linguistic rule based, supervised and un-
supervised machine learning approaches. Both
SemEval-2007 (Girju et al., 2007) & 2010 (Hen-
drickx et al., 2009) had tasks aimed at identify-
ing different relations from text, including Cause-
Effect relations. Both tasks offered a corpus of
annotated gold standard data to researchers. How-
ever, the task has primarily focused on extracting
single word cause-effect pairs. Early work in this
area relied totally on hand-coded patterns. These
were heavily dependent on both domain and lin-
guistic knowledge, due to the nature of the pat-
terns, and were hard to scale up. PROTEUS (Gr-
ishman, 1988) and COATIS (Garcia, 1997) were
two early systems that used such non-statistical
techniques. C.G Khoo carried out extensive devel-
opment of this train of thought in a series of works
(Khoo et al., 1998) (Khoo et al., 2001), and elimi-
nated a lot of the need for domain knowledge.

A method of automatically identifying linguis-
tic patterns that indicate causal relations and a
semi-supervised method of validation of patterns
obtained was proposed by (Girju et al., 2002).
In particular, this work introduced the usage of
WordNet hierarchal classes, namely, human ac-
tion, phenomenon, state, psychological feature
and event, as a distinguishing feature.

Radinsky et al. in their work uses statisti-
cal inferencing combined with hierarchical clus-
tering technique to predict future events from
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news (Radinsky et al., 2012). Logistic regression
was employed (Bui et al., 2010) to extract drugs
(cause) and virus mutation (effect) occurrences
from medical literature. The relatively untouched
task of extracting implicit cause-effect from sen-
tences was tackled by Ittoo et.al (Ittoo and Bouma,
2011). More recently, Zhao et al. (Zhao et al.,
2017) have proposed novel causality network em-
beddings for the abstract representation of causal
events from News headlines. Here, the authors
have primarily used four common causal connec-
tives namely, “because”, “after”, “because of” and
“lead to” to extract causal mentions in news head-
lines and constructed a network of causal rela-
tions. The authors have proposed a novel gener-
alization technique to represent “specific events”
into more abstract form. Finally, they proposed a
dual cause-effect model that uses the causal net-
work embeddings and optimize the margin based
loss function to predict effect of a given cause. Al-
though the work is commendable, there are vari-
ous factors that need to be addressed further. For
example, construction of the causal network itself
is a non trivial task. Some of the linguistic chal-
lenges have already mentioned earlier in this sec-
tion. Further, Zhao et al. worked with only un-
ambiguous causal connectives. On the contrary
causal connectives can be ambiguous also (Sor-
gente et al., 2013) (Hendrickx et al., 2009) For ex-
ample, from in “Profits from the sale were given
to charity” implies causation of profits due to the
sale, while from in “Sales profits increased from
1.2% to 2%” does not have any causality involved
in it. Analysis of such complex constructs are yet
to be addressed.

3 Proposed Methodology

The overall architecture of our proposed approach
is composed of three modules: a)Resource Cre-
ation b) Linguistic preprocessor and feature ex-
tractor, c) Classification model builder, and d) Pre-
diction framework for cause/effect, built on the
output of the classifier module. Each of the indi-
vidual modules are described in the following sub-
sections.

3.1 Resource Creation

Data Description: In this section we will discuss
about the following dataset used to develop and
test our proposed models. 1) Part of the SemEval
2010 Task 8 data set dealing with“Cause-Effect”

Table 1: Data Statistics
Source Sentence countAvg. sent. length
Analyst Report (AR) 4500 23.7
SEMEVAL (SEM) 1331 18.7
BBC News(BBC) 503 22.5
ADE 3000 20.5
Recall News (RN) 1052 23.1

relation, which consists of 1331 sentences. 2) The
adverse drug effect (ADE) dataset (Gurulingappa
et al., 2012) composed of 1000 sentences consist-
ing of information about consumption of differ-
ent drugs and their associated side effects. 3)The
BBC News Article dataset, created by the Trin-
ity College Computer Science Department, con-
taining news articles in five topical areas : busi-
ness, sports, tech, entertainment and politics from
2004-2005 (Greene and Cunningham, 2006). We
have considered 140 business news articles, con-
taining approximately 1950 sentences. Out of this,
around 500 sentences were found to contain cau-
sation. 4)Around 4500 analyst reports of a specific
organization over a period of seven months is the
fourth dataset that we have considered. We have
manually extracted all the sentences that contained
causation. 5) The Recall dataset 1 is a collection
of 1050 recall news of different products.

The first two datasets, that is, SemEval and
ADE datasets, are already publicly available.
However, for the SemEval dataset we have ex-
tended the annotation to phrase-level causal rela-
tionships. Hence the fresh annotations of these ex-
isting data sets, as well as parts of the annotated
Recall news and BBC news datasets, will be pub-
licly shared with this paper. We could not share
the analyst report dataset due to copyright and IPR
issues.

Preprocessing: We perform a number of pre-
processing over the collected dataset. The first
stage of preprocessing involves identifying which
sentences are probably candidates for cause-effect
identification out of a body of text. This involves
looking for the presence of at least one causal
connective in the sentence under consideration.
Xuelan (Xuelan and Kennedy, 1992) reported a
list of 130 causal connectives in English. To ex-
tend the list we follow methods similar to Girju
(Girju, 2003) and Blanco (Blanco et al., 2008).
We use Wordnet (University, 2010) as our lexi-
cal database. An entry of WordNet, whose gloss
definition contains any of the terms in the exist-

1https://www.edmunds.com/recalls/
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Table 2: Annotation Examples
Honda/E1 Motor/E1 Co./E1 is/E1 recalling/E1 Acura/E1 ILX/E1 and/E1 ILX/E1 Hybrid/E1 vehicles/E1 because/CC1
excessive/C1 headlight/C1 temperatures/C1 pose/C1 a/C1 fire/C1 risk/C1.

Attrition/C1 of/C1 associates/C1 will/CC1 effect/CC1 scheduled/E1/C2 release/E1/C2 of/E1/C2 product/E1/C2
causing/CC2 high/E2 business/E2 impact/E2.

ing causal list, is included in the list as a possi-
ble causal connectives. Once we have a list of
words, we further expand the list by adding com-
mon phrases with contain one or more of these
words. For example, the seed word causes is ex-
tended to include phrases like “one of the main
causes of”, “a leading cause of” etc. This gives us
an extended connective list of 310 words/phrases.
Table 3 shows a few examples of seed words and
new terms added to the list. After preprocess-
ing, we finally obtained a dataset of 8K sentences
for annotation in terms of their cause, effect and
causal connectives.

The Annotation Process: The above sentences
are presented to three expert annotators. The ex-
perts were asked to complete the following two
tasks. a) Identify whether a given sentence con-
tains a causal event (either cause/effect) and b)
Annotate each word in a sentence in terms of the
four labels cause (C), effect(E), causal connec-
tives(CC) and None. An illustration of the anno-
tated dataset is depicted in Table 2.

In some of the candidate sentences, it is ob-
served that a single sentence contains multiple
cause-effect pairs, some of which are even chained
together. In order to handle multiple instances of
causality present in the same sentence, sentences
are split into sub-sentences. e.g. “In develop-
ing countries four-fifths of all the illnesses are
caused by water-borne diseases with diarrhoea
being the leading cause of childhood death” (Hen-
drickx et al., 2009). This sentence has two distinct
causes and their corresponding effects : four-fifths
of all the illnesses are caused by water-borne dis-
eases and diarrhoea being the leading cause of
childhood death.

We have also observed a number of cases where
a single sentence contains a chain of causal events
where a cause event e1 results the effect of an-
other event e2 which in turn causes event e3. In
such cases e2 will be marked as both effect for e1

and cause for e3. For example, in “The reactor
meltdown caused a chain reaction that destroyed
all the towers in the network” (Hendrickx et al.,
2009), there are two different causalities, chained
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Figure 1: Overview of the bidirectional LSTM ar-
chitecture for Cause-Effect relation extraction.

together: (1)The reactor meltdown caused a chain
reaction and (2)a chain reaction that destroyed all
the towers in the network. The effect in the first
case and the cause in the second is “A chained re-
action”. Similar example illustrated with an an-
notation is depicted in example (2) of Table 2. In
order to extract all instances of causality present
in a sentence, the sentence is divided into sub-
sentences. We use openIE (Schmitz et al., 2012)
to extract multiple relationships from the sentence,
and then treat each relationship as a separate sen-
tence.

Based on the given annotation scheme, each of
the annotator received around 2500 sentences. Out
of these, 2000 sentences are unique and rest 500
are overlapping. Using these 500 common sen-
tences, we measure the inter annotator agreement
of the annotation using the Fleiss Kappa (Fleiss
and Paik, 1981) measure (κ). This is computed
as κ = P̄−P̄e

1−P̄e
. The factor 1 − P̄e gives the de-

gree of agreement that is attainable above chance,
and P̄ − P̄e gives the degree of agreement actually
achieved above chance. We have achieved the in-
ter annotator agreement to be around 0.63. This
implies that the expert annotated dataset is reli-
able to be used for further processing. Some more
examples of annotated sentences are elaborated in
the appendix A.
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Table 3: Examples of seed and learnt terms from WordNet for lexical patterns
Seed New Term Wordnet Gloss of Term Example

due to corrode cause to deteriorate due to agent The acid corroded the metal.
break down collapse due to agent Stomach juices break down proteins.

cause to choke become or cause to become obstructed He choked on a fishbone.
confuse cause to be unable to think clearly The sudden onslaught confused the enemy.

3.2 The linguistically informed Bi-directional
LSTM model

There is a recent surge of interest in deep neu-
ral network based models that are based on
continuous-space representation of the input and
non-linear functions. Thus, such models are ca-
pable of modeling complex patterns in data and
since they do not depend on manual engineering
of features, they can be applied to solve prob-
lems in an end-to-end fashion. On the other hand,
such neural network models fails to consider the
latent linguistic characteristics of a text that can
play an important role in extraction of the rele-
vant information. Therefore, we have proposed
a deep neural network model based on the bidi-
rectional long-short term memory (LSTM) model
(Hochreiter and Schmidhuber, 1997) (Schmidhu-
ber et al., 2006) that along with the word embed-
dings, utilizes different linguistic features within a
text for the automatic classification of cause-effect
relations.

In identification of causal relationships from
text, the surrounding context is of paramount in-
formation. While typical LSTMs allow the pre-
ceding elements to be considered as context for an
element under scrutiny, we prefer to use bidirec-
tional LSTMs (Bi-LSTM) networks (Graves et al.,
2012) that are connected so that both future and
past sequence context can be examined, i.e. both
preceding and succeeding elements can be consid-
ered.

The overview of the proposed model is depicted
in Figure 1. Corresponding to each input text,
we determine the word embedding representation
of each words of the text and the different lin-
guistic feature embeddings. The input to the Bi-
LSTM unit is an embedding vector (E)which is
the composition of the word embedding represen-
tation (We) and the linguistic feature embeddings
(Wl). This is represented as

−→
E =

−→
We

⊗−→
Wl

Generating Word Embeddings: Pre-trained
GloVe word vector representations of dimension
300 have been used for this work (Pennington
et al., 2014). GloVe is a relatively recent method

of obtaining vector representations of words and
has been proven to be effective. Along with the
GloVe vector, the embedding vector of each word
is appended with the vector formed from the lin-
guistic features that has been described in the ear-
lier section.

Generating linguistic feature embeddings:
Apart from the presence of causal connectives
mentioned earlier, other features added to make
our model linguistically informed are relevant lex-
ical and syntactic features : Part of Speech(POS)
tags (Manning et al., 2014), Universal Depen-
dency relations (De Marneffe et al., 2006) and po-
sition in Verb/ Noun/ Prepositional Phrase struc-
ture. We have also used the semantic features as
identified by Girju (Girju, 2003) - the nine Noun
hierarchies (H(1) to H(9)) in WordNet namely,
entity, psychological feature, abstraction, state,
event, act, group, possession, and phenomenon.
First, a single feature Primary Causal Class (PCC)
is defined for a word wi. If wi ∈ Hi where Hi is
any of the nine WordNet hierarchies, PCC = Hi,
else PCC = null. Another feature, Secondary
Causal Class(SCC) is also defined. This takes
value H(i) if any WordNet synonym of the word
belongs to H(i), and is Null otherwise. Further,
we consider the dependency structure of the sen-
tence, which gives us thatwi is dependent on word
pi. In addition to the five features described above
for wi, we also consider the same five features of
pi as part of wis feature set. If wi is not dependent
on any other word in the sentence, then the par-
ent features are the same as the word features. An
example of the linguistic feature selection can be
found in appendix A.

Network Architecture: We use a k-layer Bi-
RNN, composed of k Bi-RNNs stacked, where the
output of each such unit is the input to the next
unit (Irsoy and Cardie, 2014). A two-layer stack
of Bi-LSTMs is employed for the purpose of ex-
periments. The model is trained with Adam opti-
mizer (Kingma and Ba, 2014) and dropout layer
with the dropout value of 0.5 for each Bi-RNN.
The dropout layer reduces the problem of over-
fitting often seen in trained models by dropping
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unit with connections to the neural network at ran-
dom during the training process (Srivastava et al.,
2014). The model is fit over runs of 2000 epochs,
with batch size of 128. The loss is calculated as
a function of the mean cross entropy generated.
Each Bi-LSTM has 256 hidden layers and 1 final
dense layer with softmax activation as output.

3.3 Causal Embeddings for Representing
Similar Events

We have applied the proposed causal extraction
technique over a large set of data from four dif-
ferent domains namely, Analyst Reports, Adverse
Drug Effects, Business News and Product Re-
call News. We observe that a number of ex-
tracted causal events shows high degree of se-
mantic similarity. For example, “Engine break-
down” and “Engine failure” represents the same
semantic sense. Therefore, we intend to group
these events into clusters. Accordingly, we de-
vice a novel algorithm to determine similar causal
events. The algorithm follows the following steps:
a) first identify the word embeddings of each con-
stituent word of a causal event. The word em-
beddings are identified using the standard GloVe
representations (Pennington et al., 2014). Apart
from the word embeddings, we have also created
phrase embeddings by computing a tensor product
between the individual word embeddings. For ex-
ample, given two causal events C1 = w1, w2..., wi

and C2 = w′1, w
′
2, ...w

′
j , where w1, w2, ...wk and

w′1, w
′
2...w

′
k are the constituent word embeddings

of the causal events C1, and C2 such that i 6= j,
the phrase embedding P(w1, w2) is created by
computing the tensor product of each adjacent
word embedding pairs. This is represented as
P (w1, w2) = w1

⊗
w2. Similar word and phrase

embeddings are constructed for causal event C2.
Consequently, we define A and B as the number
of word embeddings in C1 andC2 respectively.
Similarly,A′ and B′ are the number of phrase em-
beddings in C1 and C2 respectively. Therefore,
the similarity

S(C1, C2) =
(S′ + S′′)
N1 +N2

The expressionsN1 andN2 impliesA∪B andA′∪
B′ respectively. S′ and S′′ are computed as: S′ =∑
∀wi∈C1

Swi and S′′ =
∑
∀pi∈C1

Spi Where,

Swi = max
∀w′

j∈C2

(Sim(wi, w
′
j))

Spi = max
∀p′j∈C2

(Sim(pi, p
′
j))

Again, p and p′ are the individual phrase em-
beddings in sentence C1 and C2 respectively.
Sim(x, y) is the cosine similarity between the two
word vector wx and wy. Based on the similarity
score, we perform a k-means clustering to form
clusters of similar causal events. We have used
the Average silhouette method to identify number
of clusters k. For the present work we obtained
the value of k as 21. A partial network of a few
representative clusters, as obtained from the ve-
hicle Recall database, is shown in Figure 2. For
each cluster, the size is given as number of phrases
that constitute the cluster, and a few representa-
tive phrases of each cluster is also shown as refer-
ence. The name of the cluster is chosen from the
most common noun chunks present in the cluster.
The network itself is shown as a directed graph,
with edges directed from Cause to Effect, as edge
weights being computed as the fraction of total oc-
currences of the cause that lead to the effect.

Following the method each cluster can be fur-
ther represented by a verb-noun pair as proposed
in (Zhao et al., 2017). For noisy clusters where no
such generalization is possible are left out for the
time being.

4 Experiments and Results

We perform a number of different experiments to
evaluate and compare the performance of our pro-
posed system with the baseline systems. In gen-
eral we classify the experiments into three differ-
ent groups. Each group uses different techniques
to identify causality in text. Group-1 uses rule
based method, group-2 uses a CRF based classi-
fication model, group-3 uses Bi-LSTM model and
group-4 uses our proposed linguistically informed
Bi-LSTM model. The outputs of the experiments
are evaluated in terms of the five given datasets
that are explained earlier. Again, corresponding
to each group, we define three different evaluation
tasks. The tasks are distinguished in terms of the
way each datasets are divided for training, devel-
opment and testing purposes.

In Task-I, we took the five datasets separately
and each dataset is divided into 80%, 10% and
10% for training, testing and development respec-
tively. The F1 scores obtained by each system on
the datasets by this model are reported in Table
4 for identified Cause, Effect and Causal Connec-
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Figure 2: A projection of the network of cause-effect clusters

Table 4: Comparing F-scores of the Cause (C), Effect(E)
and Connective (CC) extraction by the four classification
models namely, Rule based (R), CRF, Bi-LSTM(BL) and
Linguistically informed Bi-LSTM model (L-BL). The eval-
uation criteria follows Task-II technique where The models
are trained and tested on five different dataset namely, Ana-
lyst Report (AR), BBC News (BBC), SemEval data (SEM),
Adverse Drug Effect data(ADE) and Recall News (R).

R CRF BL L-BL

C

AR 65.92 68.02 69.10 70.12
BBC 61.07 68.12 70.18 74.63
SEM 68.00 71.23 81.62 84.22
ADE 51.18 69.5 64.8 65.13
R 76.36 74.43 75.68 78.91

E

AR 59.14 60.45 65.13 66.50
BBC 66.34 67.03 68.91 73.48
SEM 69.20 76.6 78.05 78.86
ADE 58.51 76.1 73.56 74.05
R 77.96 78.03 78.86 79.16

CC

AR 57.89 58.40 59.10 59.84
BBC 61.32 64.19 69.02 72.32
SEM 70.23 73.22 74.87 75.39
R 66.17 70.58 72.41 74.3

tives.
In Task-II, we combine all the five datasets to-

gether and divide the training set, development set
and test sets into 80%, 10% and 10% respectively.
The division in dataset follows a five-fold manner.
Therefore, the 10% testing data in fold-1 is differ-
ent from the 10% testing data in fold-2 or fold-3.
We compute the individual results and report the
average of them.

Finally, in Task-III, we train the model using
one dataset and test it to other four models. We
conducted the experiments using the designated
training portions of each dataset of BBC news, Re-
call News, Analyst Reports and SemEval individ-
ually to train the model and then tested all the sets
on each resultant model. Of these, the best results
were seen to be from the model trained on the BBC
dataset.

From Table 4 we observe that in most of the
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Figure 3: F1 scores for Cause Identification across
different datasets for different training sets
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Figure 4: F1 scores for Effect Identification across
different datasets for different training sets

cases Bi-directional LSTM model along with the
additional layer of linguistic features significantly
reduces the false negative score and achieved a
high true positive score thereby achieving a high
F-measure. For the project analyst report, BBC
News, SEMEVAL and Recall news, we have
achieved F-measures of around 66%, 73%, 79%,
and 78% respectively which is best as compared to
the other baseline methods. For the ADE dataset,
the CRF classifier performs better than the pro-
posed deep learning techniques, at about 73%.
The inclusion of openIE as a sentence-splitter
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Figure 5: F1 scores for Causal Connective Identi-
fication across different datasets for different train-
ing sets

gave the most significant improvements in situa-
tions where the sentence structure was not overtly
complicated, despite of the presence of multiple
causal instances. Hence, the SemEval and ADE
dataset results gained most from it. However, sen-
tences from news sources often had a far more
complicated structure than what OpenIE could re-
solve. The presence of descriptive clause along
with valid cause/effect phrases made it difficult for
the system to correctly identify and localize the
valid phrases. In fact, the system suffered when
working with such sentences, even when there was
just a single instances of causality present. In the
SemEval dataset, openIE usage led to identifica-
tion of multiple causality in around 1/4th of the
cases where multiple causality was indeed present.
However, in the BBC News dataset, this amount
was barely 8% of all the sentences that contained
multiple instances of causation.

On an average, around 7% cases the system
incorrectly predicted a cause/effect relation as
valid which is actually not, whereas only 4%
of the sentences were incorrectly identified as
“Not an cause/effect” despite being marked as
“cause/effect” by the experts. The primary reason
behind this is due to fact that most of the collected
texts are noisy, as a result of which the depen-
dency parser fails to parse the texts properly and
thus returning incorrect linguistic feature values.
For ADE dataset, we observed that a large number
of descriptions are written in languages other than
English, as a result of which the classifier failed to
predict correctly. Another source of error is the oc-
currence of incomplete sentences that restricts the
classification engine to correctly label the descrip-
tions. Apart from labeling the cause and effect
events, the proposed classifier also aims to label

the explicit causal connectives. Table 4 reports the
results of the connective classification. We have
observed that the proposed classification model
is able to identify novel causal connectives that
were previously not enlisted in the original causal
connective list. We previously mentioned that ex-
isting schemes of having a single word represent
cause and effect leads to a loss of information. Just
in the SemEval dataset, just 33% of the total cor-
pus is such that their given single-word annotation
effectively captures all the information about the
causal event present in the sentence. Using our
proposed methodology and extending the scheme
to phrases give us the complete causal information
in almost 60% of the sentences that were only par-
tially covered previously. However, we are able
to somewhat quantify this observation only for the
SemEval dataset, since the other datasets do not
have a single-word gold standard annotation. As
discussed in section 2, ambiguous causatives are a
big contributor to causality being identified when
it is not actually present in the sentence. Exam-
ples of some common ambiguous causal connec-
tives, as well some of the novel connectives iden-
tified by the system (which were not present in our
original list), are given in Appendix A. In addition
to the above results, Figures 3, 4 and 5 show the
relative performances of models trained with the
individual datasets and then tested on all the test
sets (Task-III).

5 Conclusion

In this paper, we present a linguistically informed
deep neural network architecture for the automatic
extraction of cause-effect relations from text docu-
ments. Our proposed architecture uses word level
embeddings and other linguistic features to detect
causal events and their effects. We evaluate the
performance of the proposed model with respect
to a rule based classifier and a conditional random
field (CRF) based supervised classifier. We find
that the bi-directional LSTM model along with an
additional linguistic layer performs much better
than existing baseline systems. Along with the ex-
traction task another important contribution of this
work is the development of new dataset annotated
in terms of the cause-effect relations, which will
be publicly shared with this paper for further re-
search in this domain.
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A Appendix

We use this section to elaborate on certain aspects
of our work with the help of some more examples.

Table 6 shows the list of linguistic features con-
structed for each word of an example sentence.
W1-W6 are similarly features of the original word,
which are, in order,part of speech tag, universal
dependency tag, parent word id, phrase structure,
primary causal class and secondary causal class.
Feature P is the parent word, and P1-P6 are the
features of the parent word, similar to those de-
scribed as W1-W6. Finally, the last column is the
label associated with the word. C implies Cause,
CN implies Causal Connective, E implies Effect,
and N implies None.

Table 7 shows some more typical cases of
causal sentences encountered and their respec-
tive annotations. As explained, the four annota-
tion labels are cause (C), effect(E), causal con-
nectives(CC) and None(N). The second sentence
contains an example of a phrase irrelevant to the
actual causality that is present in the target sen-
tence. In the current work, preciseness of the so-
lution is dependent on it correctly disregarding the
irrelevant portion and identifying causality only in
the rest of the sentence. The third sentence, on

the other hand, shows an example of one of the
more challenging scenarios of causality identifi-
cation, i.e. in the absence of any explicit causal
connective. While the causality in the given sen-
tence looks obvious to an observer, the challenge
lies in the fact that there are possible grammati-
cally and structurally similar sentences that do not
contain causality.

Table 8 shows some common ambiguous causal
connectives that identify sentences as causal even
in the cases where they are not being used to iden-
tify causality. To further emphasize on their am-
biguity, we show, in parallel, examples where the
same connectives imply causality.

Table 5: Examples of some unusual learnt connec-
tives

account for Direct payments by the patient account
for a large proportion of funding

derive from The name of Portugal derives from the
Romano-Celtic name Portus Cale

dictate by
A spin label’s motions aredictated by its
local environment

based on
the fact

His conclusion is based on the fact the
objects contain more than 1% Arsenic

on account
of

The amount covers expenses on account of
his staff and transportation

stem from
He suffers from seizures stemming from a
childhood injury

punishment
for

They claim the downfall was punishment for
the political ambitions of their leader.

having
Having dealt with their internal problems,
the two companies were ripe for consolidation.

Table 5 depicts a sample set of novel causal con-
nectives identified by our system.
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Table 6: Features of an example sentence “Suicide is one of the leading cause of death among teens”
Word W1 W2 W3 W4 W5 W6 P P1-P4 P5 P6 Label
Suicide NNP nsubj 3 B-NP none action one ... none psychological C
is VBZ cop 3 B-VP none none one ... none psychological N
one CD root 0 B-NP none psychological one ... none psychological CN
of IN case 7 B-PP none psychological causes ... none action CN
the DT det 7 B-NP none none causes ... none action CN
leading VBG amod 7 I-NP none action causes ... none action CN
causes NNS nmod 3 I-NP action none one ... none psychological CN
of IN case 9 B-PP none none death ... state none CN
death NN nmod 7 B-NP state none causes ... none action E
among IN case 11 B-PP none none teens ... none none N
teens NNS cop 9 B-NP none none death ... state none N

Table 7: Some typical annotation examples where causes are denoted in bold, effects are written in italic
and connectives are underlined
They will seize land owned by a British company as part of the President’s agrarian reform

program
Example of a simple

case of causality

They/N will/N seize/E land/E owned/E by/E a/E British/E company/E as/CC part/CC of/CC the/C President’s/C agrarian/C

reform/C program/C

Gasoline is up because of refinery issues in Texas, which means there will be a scramble for

products in the Gulf Coast

Example of multiple

effects of single cause

Gasoline/E1 is/E1 up/E1 because/CN1 of/CN1 refinery/C1 issues/C1 in/C1 Texas/C1 which/CN2 means/CN2 there/E2

will/E2 be/E2 a/E2 scramble/E2 for/E2 products/E2 in/E2 the/E2 Gulf/E2 Coast/E2

The recent falls have partly been the result of big budget deficits, as well as the US’s yawning

current account gap

Example of multiple

causes of single effect

The/E recent/E falls/E have partly been the/CN result/CN of/CN big/C1 budget/C1 deficits/C1, as well as the/C2 US’s/C2

yawning/C2 current/C2 account/C2 gap/C2

According to figures from the Ministry of Economy Trade and Industry, the decline was led by a fall

in demand for electronic parts for mobile phones and digital televisions

Example of irrelevant

phrase along with

causal information

According/N to/N figures/N from/N the/N Ministry/N of/N Economy/N Trade/N and/N Industry/N the/E decline/E was/N

led/CC by/CC a/C fall/C in/C demand/C for/C electronic/C parts/C for/C mobile/C phones/C and/C digital/C televisions/C

The increase in trade has put the country on the same level as Romania, Egypt and El Salvador
Example with no

explicit causal connective

The/C increase/C in/C trade/C has/N put/E the/E country/E on/E the/E same/E level/E as/E Romania/E Egypt/E and/E

El-Salvador/E

Table 8: Examples of ambiguous causatives that indicate causation only in certain context
Connective Example Without Causality Example With Causality

from
The firms higher numbers are from improved advert

sales.

The companys sales rose to $18.6bn from last year’s

$12.3bn.

followed by
The tornado caused destruction followed by widespread

disease.
The leader was followed by his supporters in the march.

since The company has cut jobs since demands were low. The company has cut 5% jobs since September 2002.
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Abstract

We present a domain portable zero-shot
learning approach for entity recognition in
task-oriented conversational agents, which
does not assume any annotated sentences
at training time. Rather, we derive a neu-
ral model of the entity names based only
on available gazetteers, and then apply the
model to recognize new entities in the con-
text of user utterances. In order to eval-
uate our working hypothesis we focus on
nominal entities that are largely used in e-
commerce to name products. Through a
set of experiments in two languages (En-
glish and Italian) and three different do-
mains (furniture, food, clothing), we show
that the neural gazetteer-based approach
outperforms several competitive baselines,
with minimal requirements of linguistic
features.

1 Introduction

In this paper we focus on user utterance under-
standing, where a conversational system has to in-
terpret the content of a user dialogue turn. At this
step, most of conversational systems try to cap-
ture both the intent of the utterance and the rele-
vant entities and relations that are mentioned. As
an example, given a user query like: Can I find
a Canada Goose parka blue for -30?, an online
shop assistant should be able to recognize that the
intent of the utterance is ‘Search’ and that the fol-
lowing entities are mentioned: Product Category
= parka; Brand = Canada Goose; Color = blue;
Min temperature = -30. We are particularly in-
terested in application domains, like e-commerce,
which show specific characteristics: large variety
of entity names for the same category (e.g. a black
and white t-shirt, black pants, white vintage shoes

are all names of clothes); compositionality of en-
tity names (e.g. black pants, black short pants);
utterances with multiple occurrences of the same
entity category (e.g. “I would like to order a salami
pizza and two mozzarella cheese sandwiches” con-
tains two occurrences of food); strong require-
ments of multilinguality (e.g. scarpe bianche vin-
tage and white vintage shoes). Finally, we are in-
terested in domains where available repositories
can only cover a portion of the possible entity
names that a user can express in an interaction.

Our working hypothesis is that, in such scenar-
ios, current entity recognition approaches based
on supervision (i.e. we call them pattern-based
as they need utterances annotated with entities in
the context they occur), need a huge amount of su-
pervision to manage the variety of entity names,
which would make those approaches ineffective
in most practical situations. Thus, we propose
an entity recognition method, we call it gazetteer-
based, which takes advantage of available entity
names for a certain category to train a neural
model that is then applied to label new unseen
entities in a user utterance. This method shares
several features with recent proposals in zero-shot
learning (Xie et al., 2016), as we do not assume
any annotated utterances at training time, and we
make use of entity names as “side information”.

We run several experiments on three e-
commerce domains (furniture, food, clothing) and
two languages (English and Italian), with differ-
ent characteristics in terms of entity names, and
show that: (i) the gazetteer-based approach signif-
icantly outperforms the pattern-based approach in
our domains and languages; (ii) the method cap-
tures linguistic properties of the entity names re-
lated to their compositionality, which are reliable
indicators of the complexity of the task.

The paper is structured as follows. Section
2 introduces the entity recognition task we are
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addressing. Section 3 provides background and
relevant related work. Section 4 describes the
gazetteer-based methodology that we adopt for en-
tity recognition in user utterances. Finally, section
5 and 6 describe, respectively, the experimental
setting and the obtained results.

2 Entity Recognition for E-commerce

Common conversational systems adopt a slot fill-
ing approach as semantic representation of the ut-
terance content. Usually, it is assumed that the ut-
terance contains just one entity for each slot. In
addition, typical entities corresponds to named en-
tities (e.g. locations) or to almost closed classes
(e.g. time, dates, quantities, currencies). Although
this is substantially true for several popular task
oriented scenarios, like flight booking (a well
known dataset is ATIS – Air Travel Information
Services), point of interest navigation, and calen-
dar scheduling (for instance the dataset used in
(Eric and Manning, 2017)), other conversational
scenarios show different characteristics. In this
section we focus on conversational agents for the
e-commerce scenario, and highlight the charac-
teristics which we believe are relevant for entity
recognition.

Task-oriented dialogue. E-commerce chat-bots
are supposed to carry on a task-oriented dialogue
whose goal is helping the user to select products
presented in an online shop, and, ultimately, buy
them. For the purposes of this paper we restrict
our attention to written chat-style dialogues (i.e.
voice is not considered).

Entity names. The main focus of the interac-
tion is on products (i.e. users search, compare,
assess information on products they are interested
in). Products can be referred to in several ways, in-
cluding their descriptions (e.g. a round table with
a marble top), proper names (e.g. Adidas Gazelle),
or with a mix of them (e.g. a white Billy shelf ).
Depending on the complexity of the domain, a sin-
gle online shop may manage from thousands to
several hundreds of thousand of different products,
with hundreds of variants (e.g. size and colour for
clothes). Throughout this paper, we refer to such
product descriptions as entity names. As we will
see, there is a high variance in the way online ven-
dors assign and manage such names. For the pur-
poses of this paper, it is relevant to notice that tak-
ing advantage of e-commerce website catalogs, it

is relatively easy to download repositories of en-
tity names for a large variety of products, and for
several languages. On the other hand, a structured
description of such entities - in term of slot-value
pairs - is often missing. We call these repositories
of entity names gazetteers.

Conversational patterns. Conversational pat-
terns in e-commerce dialogues are relatively sim-
ple. High level user intents vary from searching
for one or more products, asking to compare char-
acteristics of products, and finalizing the purchase.
Although there are just a few datasets available to
support our intuition (e.g. the Frames dataset pre-
sented in (El Asri et al., 2017)), we may assume
that the context in which product names appear is
quite limited. Compared to other scenarios (e.g.
booking hotels and flights), it is quite frequent that
user mention more than one product in the same
utterance (e.g. ”Please deliver at home a salami
pizza, a pepperoni pizza with onions and two moz-
zarella cheese sandwiches”).

Multilinguality. E-commerce is becoming more
and more multilingual. The market is world-
wide and vendors offer navigation in several lan-
guages. For our purposes a strong requirement is
that approaches for entity recognition must be eas-
ily portable through languages.

3 Background and Related Work

In this section we report useful context for the
gazetteer based approach that will be described in
Section 4. We focus on entity recognition, zero-
shot learning and generation of synthetic data.

3.1 Entity Recognition

Entity recognition has been largely approached as
a sequence labeling task (see, for instance, the
Conll shared tasks on named entities recognition
(Tjong Kim Sang and De Meulder, 2003)). Given
an utterance U = {t1, t2, ..., tn} and a set of en-
tity categories C = {c1, c2, ..., cm}, the task is to
label the tokens in U that refer to entities belong-
ing to the categories in C. As an example, us-
ing the IOB format (Inside, Outside, Beginning)
(Ramshaw and Marcus, 1995), the utterance ”I
would like to order a salami pizza and two moz-
zarella cheese sandwiches”, would be labeled as
shown in Table 1.

We refer to the Automatic Content Extraction
program - ACE (Doddington et al., 2004), where
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I would like to order a salami pizza and two mozzarella cheese sandwiches
O O O O O O B-FOOD I-FOOD O O B-FOOD I-FOOD I-FOOD

Table 1: IOB annotation of food entities inside user request.

two main entity classes are distinguished: named
entities and nominal entities. We focus on the lat-
ter, as this is more relevant for utterance under-
standing in the e-commerce scenario. Nominal
entities are noun phrase expressions describing an
entity. They can be composed by a single name
(e.g. pasta, carpet, parka) or by more than one to-
ken (e.g. capri sofa bed beige, red jeans skinny fit,
lightweigh full frame camera, grilled pork belly
tacos). Nominal entities are typically composi-
tional, as they do allow morphological and syntac-
tic variations (e.g. for food names, spanish baked
salmon, roasted salmon and hot smoked salmon),
which makes it possible to combine tokens of one
entity name with tokens of another entity name to
generate new names (e.g. for food names, salmon
tacos is a potential food name given the existence
of salmon and tacos). In addition to adjectival
and prepositional modifiers, conjunctions are also
very frequent (e.g. beef and bean burritos, black
and white t-shirt). Compositionality is crucial in
our approach, as we take advantage of it to syn-
tethically generate negative training examples for
a certain entity category, as detailed in Section 4.1.

3.2 Zero-shot Learning

In conversational agents there is a general lack of
data, both annotated and unannotated, as real con-
versations are still not widely available for dif-
ferent domains and languages. To overcome this
limit, in our gazetteer-based approach we take ad-
vantage of the fact that it is relatively easy to ob-
tain repositories of entity names for several cat-
egories (e.g. food names, locations, movie titles,
names of products, etc.). We use such reposito-
ries as “side information” in zero-shot learning to
recognize entity names for a certain class, even if
no annotated utterances are available for that class.
While similar approaches have been already pro-
posed to improve portability across domains (e.g.
(Bapna et al., 2017) uses slot names as side in-
formation), in this paper we take advantage of the
zero-shot approach focusing on large repositories
of compositional entity names.

Several approaches have been proposed to im-
plement zero-shot learning, including those that
use multiple embeddings (Norouzi et al., 2013),

those that extract features that generalize through
different domains (Socher et al., 2013), and those
that recast zero-shot learning as a domain adapta-
tion problem (Elhoseiny et al., 2013).

3.3 Synthetic Data Generation

Partly due to the need of large amounts of train-
ing data to feed neural networks, recently there
has been a diffused interest on methods for auto-
matically generate synthetic data (see (Jaderberg
et al., 2014)). The effectiveness of synthetic data
generation has been shown in several domains, in-
cluding the generation of textual descriptions of
visual scenes (Hoag, 2008), and of parallel corpora
for Machine Translation (Abdul-Rauf et al., 2016).
Alternative approaches to data generation for con-
versational agents are based on simulated conver-
sations (Shah et al., 2018). As for the e-commerce
domain, because of the dramatic scarcity of avail-
able datasets, we were forced to use synthetic gen-
eration in two cases: negative training examples
for entity names, used to train our gazetteer-based
approach, and lexicalization of utterances, used
for testing the performance of our approach.

4 NNg Entity Recognition

In our zero-shot learning assumption we propose
a neural gazetteer-based approach, which includes
two main components: a neural classifier (NNg)
trained solely on the entity names in a gazetteer,
described in Section 4.1, and the entity tagger that
applies the neural classifier to a user utterance, de-
scribed in Section 4.2.

4.1 NNg Classifier

The NNg classifier is the core of the gazetteer-
based approach. It is implemented using a mul-
tilayer bidirectional LSTM (Schuster and Paliwal,
1997) that classifies an input sequence of tokens
either as entity or non-entity for a certain entity
category, with a certain degree of confidence. We
base our NNg classifier on the system proposed
in (Lample et al., 2016), which was modified to
match the peculiarities of the gazetteer-based ap-
proach: (i) we extend it as a 3-layer biLSTM
with 120 units per layer and a single dropout layer
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black and white t-shirt

TRUE (0.75)

Input layer

biLSTM 1

biLSTM 2

biLSTM 3

Dropout

Softmax

Figure 1: Structure of the Neural Gazetteer (NNg)
entity classifier. The input layer concatenates the
features in a single vector.

(dropout probability of 0.5) between the third biL-
STM and the output layer. This topology (see Fig-
ure 1) has been empirically defined using the train
and dev portions of the synthetic gazetteers de-
scribed in section 5.2. (ii) The output layer is a
softmax layer – instead of a CRF layer – because
the goal of NNg is to classify the whole sequence
and not to tag each single token using the IOB for-
mat. The softmax layer provides the probability
of a sequence being positive or negative for a cer-
tain category, based on the output from the previ-
ous layers. We use this probability as a confidence
score for a sequence being positive or negative.

This multilayer biLSTM is meant to build an
internal representation of the core compositional
structure of the entity names that are listed in the
gazetteer, and to generalize such structure to rec-
ognize new entity names of the same category.

Synthetic Training Data. In order to train the
NNg classifier, we need not only positive exam-
ples (i.e. entity name), but also negative ones,
i.e. sub-sequences of an utterance where no en-
tities are present or where only parts of the entity
name are present. To obtain such negative exam-
ples we used the following methodology based on
synthetic generation. For each entity name i in
a gazetteer G, negative counterparts can be ob-
tained either using a sub-sequence of i (making
sure it is not present in the gazetteer), or by tak-
ing i and adding tokens at the beginning or end
of it (or both), following the pattern t1 + i + t2,
where t1 is the ending token of a random entity
in G and t2 is the starting token of a random en-
tity in G. Between these tokens and i there can be

separators, as a white space, a comma or the and
conjunction, so to mimic how multiple entities are
usually expressed in sentences. Alternatively, t1
and t2 can be tokens randomly extracted from a
generic corpus, so as to mimic cases when the en-
tity is expressed in isolation. For example, if the
initial positive example is black and white t-shirt,
the possible negative sub-sequences that are gen-
erate are: | black | white | black and | and white
| black and white |. The sub-sequences | white t-
shirt | t-shirt | are not considered because they are
already included in the gazetteer as positive ex-
amples. Adding tokens, using the pattern t1 + i
+ t2, we obtain other potential negative examples:
| buy black and white t-shirt | black and white t-
shirt and sweater | buy black and white t-shirt and
sweater |, and so on. According to this procedure,
we generate more negative examples than positive.
In order to avoid an unbalanced dataset, we ran-
domly select two negative examples per positive
one: a sub-sequence and an example surrounded
by other words, resulting in a 1:2 proportion.

Classifier Features. The NNg classifier com-
bines several features: two different word em-
beddings (i.e. generic and specific), a char-based
embedding, and seven handcrafted features. The
generic word embedding is employed to capture
generic language use, and it is similar to the one
used in (Lample et al., 2016). For English it
was trained using the English Gigaword version
5, while for Italian it was trained using a dump
of the Italian Wikipedia. We use an embedding
dimension of 64 for both English and Italian, a
minimum word frequency cutoff of 4, and a win-
dow size of 8. The second word embedding is em-
ployed to capture language use that is specific for
each domain, and it is extracted using the training
gazetteer as corpus, with a dimension of 30, a min-
imum word frequency cutoff of 1, and a window
size of 2. Finally, the char-based embedding with
a dimension of 50 is still based on (Lample et al.,
2016) and it is trained on the domain gazetteers.
Its function is to deal with out of vocabulary terms
and possible misspellings.

Handcrafted features are meant to explicitly
represent the core structure of a typical entity
name. We consider seven features of an entity
name: (i) the actual position of the token within
an entity name; (ii) the length of the entity name
under inspection; (iii) the frequency of the token in
the gazetteer; (iv) the average length of the entity

320



name containing a certain token; (v) the average
position of the token in the entity name it appears
in; (vi) the bigram probability with reference to
the previous token in the entity name; (vii) the list
of all the possible PoS associated to the token.

4.2 NNg Tagger

The neural classifier described in the previous sec-
tion is applied to all the sub-sequences of a certain
utterance (see algorithm 1), in order to select can-
didates entity names for a certain category. After
classification the algorithm takes a further step to
select the actual entities, by ranking the candidates
according to the confidence score provided by the
classifier, and by selecting the top not overlapping
candidates. As an example, the utterance “I’m
looking for golden yellow shorts and dark blue
shirt” contains six sub-sequences that are classi-
fied as positive by the NNg classifier (lines [1-5]):
| shorts | yellow shorts | golden yellow shorts |
shirt | blue shirt | dark blue shirt |, while all other
sub-sequences, such as: | I’m looking | looking
for a golden | shorts and dark | dark blue |, are
classified as negative. Then, positive examples are
ranked according to their confidence score (lines
[6]): | golden yellow shorts | yellow shorts | dark
blue shirt | etc. Finally, golden yellow shorts is se-
lected while yellow shorts is discarded because the
latter overlaps with the former. Likewise dark blue
shirt is selected since it is not overlapping with
other already selected sub-sequences while all re-
maining ones are discarded (lines [7-11]).

Algorithm 1 NNg Tagger
1: for sub-sequence in utterance do
2: if sub-sequence is an entity then
3: add sub-sequence to entity-list
4: else
5: discard sub-sequence
6: order entity-list by confidence-score
7: for element in entity-list do
8: if element not overlap previous elements

then
9: tag element as entity

10: else
11: discard element

5 Experimental Setting

In this section we first introduce two alternative
approaches for entity recognition that we used as

Algorithm 2 Rule-based entity recognition
1: G : tokens in Gazetteer - excluding stopwords.
2: morpho : morphological variations of token.
3: POS : possible PoS tags for the token.
4: bigram : All bi-grams in Gazetteer.
5:

6: for token in utterance do
7: if token is in an NP chunk then
8: if IN GAZETTEER(token) then
9: tag token as entity

10: else
11: if any(morpho[word] in G) then
12: if any(PoS[word] is noun) then
13: tag token as entity
14: for tokeni in utterance do
15: if bigram(tokeni, tokeni+1) exits then
16: tag tokeni and tokeni+1 as entity
17: Format tags to IOB notation

comparison with NNg, and then the datasets that
are used for our experiments.

5.1 Entity Recognition Algorithms
We have compared the NNg approach described
in Section 4 with two alternative entity recogni-
tion approaches: an unsupervised rule-based al-
gorithm, which takes advantage of both the en-
tity gazetteer and of linguistic information about
chunking, and a supervised algorithm that needs
annotated sentences as training.

Rule-based entity recognition. This approach
is based on (Eftimov et al., 2017), a system
that uses a terminological-driven and rule-based
named entity recognizer, taking advantage of both
entity dictionaries and rules based on chunks. The
core strategy is that a chunk in a text is recognized
as belonging to a category C if any of its tokens
are present in the gazetteer for category C. The
approach in (Eftimov et al., 2017) is tailored to a
single domain/language and involves merging suc-
cessive chunks into a single one based on the rules
imposed by the algorithm. We extended the ap-
proach by adding morphological features and the
possible PoS of a word, for which we used TextPro
(Pianta et al., 2008), (see Algorithm 2).

We assume that the dictionary+chunk algorithm
is particularly suitable for compositional entities.
In fact, actual entities in a text can still be rec-
ognized even if the perfect match is not present
in the original dictionary. For example, the tar-
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get entity white t-shirt with long sleeves can be
correctly identified as long as there are entities
in the gazetteer that contain the tokens of in-
terest, such as black and white t-shirt and red
t-shirt with long sleeves.

Neural pattern-based entity recognition (NNp).
We used the bidirectional LSTM architecture in-
troduced by (Lample et al., 2016) for named entity
recognition. Given an input embedding for a to-
ken in the utterance, the outputs from the forward
and backward LSTM are concatenated to yield the
context vector for the token, which is then used by
a CRF layer to classify it to the output type (O, I-,
B-). There are 100 LSTM units and a dropout of
0.5 is applied to the BiLSTM layer. To train the
NNp model, we used pre-trained embeddings on
Wikipedia corpora. This helps the model to adapt
itself to unseen words in the test data, provided
they have an embedding.

As expected, the proposed NNp model is highly
efficient to identify the context in which an entity
occurs in the utterance. However, it is also prone
to make errors in the sequence of the tags (i.e. tag-
ging a token to be I- without a preceding B- tag).
This is because, when trained with limited data,
the entities in the training data do not cover all
possible tags for a token, and also not all the possi-
ble entities (Lample’s model was trained on more
than ten thousand sentences per language, but in
our scenario the training data is limited to few hun-
dred sentences). For this reason, and to highlight
the model’s capability to identify the context of an
entity, at test time the outputs of the model are
post-processed to comply with the IOB notation;
e.g. tag sequences such as O, I-, B-, I- are modi-
fied to O, B-, I-, I-.

5.2 Datasets

We experimented entity recognition in three e-
commerce domains and two languages for a to-
tal of six configurations. The three domains are
respectively: food, clothing and furniture. Lan-
guages are Italian and English. In order to run our
experiments the following datasets were used.

Entity gazetteers (positive examples for
NNg). We collected a gazetteer of nominal entities
for each domain-language pair. To allow for con-
sistent comparisons across languages and domains
we scraped just one website per domain and ex-
tracted the English/Italian gazetteers versions. In
Table 2 we describe each gazetteer, reporting its

size in terms of number of entity names, the av-
erage length of the names (in number of tokens),
plus the length variability of such names (standard
deviation, SD). We also report additional metrics
that try to grasp the complexity of entity name
in the gazetteer: (i) the normalized type-token ra-
tio (TTR), as a rough measure of how much lex-
ical diversity there is for the nominal entities in
a gazetteer, see (Richards, 1987); (ii) the ratio of
type1 tokens, i.e. tokens that can appear in the first
position of an entity name but also in other po-
sitions, and type2 tokens, i.e. tokens appearing
at the end and elsewhere; (iii) the ratio of enti-
ties that contain another entity as sub-part of their
name. With these measures we are able to par-
tially quantify how difficult it is to recognize the
length of an entity, how difficult is to individu-
ate the boundaries of an entity (ratio of type1 and
type2 tokens), how much compositionality there is
starting from basic entities (i.e. how many new
entities can be potentially constructed by adding
new tokens). Note that type1 and type2 ratios can
cover cases in common with sub-entity ratio, but
they model different phenomena: given white t-
shirt, the entity name black and white skirt repre-
sents a case of type1 token for white but without
sub-entity matching, while white t-shirt with long
sleeves represents a sub-entity matching without
making white a type1 token.

Synthetic Gazetteers (positive + negative ex-
amples for NNg) (SG). To train NNg, we apply
the methodology described in Section 4.1 to ob-
tain synthetic negative data. After splitting each
gazetteer using a 64:16:20 ratio (train:dev:test),
we created the aforementioned data sets, where
– for each entity i (positive example) present in
the train-dev splits – we added two negative ex-
amples obtained by randomly selecting one of the
methodologies described in Section 4.1. The op-
timal number of negative examples was obtained
during the training phase by varying their ratio.

Synthetic Utterances (training for NNp, test
data for all approaches) (SU). To test our ap-
proaches we used synthetic sentences produced
by lexicalizing templates, following the idea pre-
sented in (Cheri and Bhattacharyya, 2017; He
et al., 2017). These recent approaches show the
feasibility of using synthetic sentences both for
training and test. More generally, there’s a grow-
ing interest in using synthetic data for conversa-
tional agents, e.g. the bAbI datasets - meant to de-
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Gazetteer #entities #tokens length ± SD TTR type1(%) type2(%) sub-entity(%)
food EN 58539 265726 4.54 ±2.53 0.76 21.37 14.61 10.70
food IT 29340 101860 3.47 ±1.80 0.69 16.90 22.44 13.31
furniture EN 3595 13601 3.78 ±1.48 0.62 3.24 7.10 2.75
furniture IT 2624 10045 3.83 ±1.56 0.63 2.32 7.61 3.43
clothing EN 36290 127944 3.53 ±1.05 0.63 13.12 0.30 12.60
clothing IT 34698 130106 3.75 ±1.24 0.64 0.29 14.71 13.50

Table 2: Gazetteers used in the experiments. Description in terms of number of entity names, total
number of tokens, average length and standard deviation (SD) of entities, type-token ratio (TTR, norm
obtained by repeated sampling of 200 tokens), type1 and type2 unique tokens ratio and sub-entity ratio.

Intent Template
Select I’m fine with <entity>
Description Could you explain to me what

<entity> is
AddToList I want to put both <entity> and

<entity> on my list
RateItem I want to give <entity> two stars

Table 3: Examples of intents and corresponding
templates used to generate test utterances.

velop learning algorithms for text understanding
and reasoning - were all constructed in a synthetic
way (Weston et al., 2015).

We created 237 templates for English and the
same amount for Italian. These templates were
manually designed in order to be domain indepen-
dent (e.g. using terminology that can be applied
to any domain), and correspond to typical intents
that can be found in the e-commerce scenario (e.g.
buy, add to list, rate item, etc.) and were evenly
distributed in order to contain 1 to 3 entity names.
A few examples are given in Table 3.

We split the templates in a 64:16:20 ratio
(train:dev:test) before lexicalization: to lexicalize
SUtrain we randomly choose entities that were in
the train split of the gazetteers, while for SUtest we
randomly choose entities than were in the test split
of the gazetteers. It should be noted that we used
this procedure to better isolate the effect of entity
name and their compositional nature over learning
approaches, in fact: (i) we controlled for the im-
pact of patterns on learning by using the same pat-
terns across data sets train and test splits. (ii) we
made the task more challenging than in standard
situations, since no entity present in the training
can be present in the test sets as well. In this way
we can assess the ability of the approaches to learn
the structure of entity names and generalize it to

NNg features config. F1 SDV
Gazetteer-info 88.08 4.94
Handcrafted 86.39 5.90
Embeddings 87.66 4.10
All 89.95 4.05

Table 4: Average F1 and standard deviation for
various features configurations of NNg over the six
SG data sets (three domains and two languages).

new examples. So, for example, a simple baseline
that uses exact match over the train gazetteers to
identify entities in the test sentences would report
a F1 of 0.

Finally, according to our zero-shot assumption,
the NNg is trained using solely SG, while its per-
formances are computed using SUtest.

6 Experiments and Results

We run two different sets of experiments to ex-
plore the impact of compositionality on the task of
entity recognition. The first set was meant to find
the optimal feature configuration for NNg, and the
second one was the comparison of the three main
approaches over the six SU datasets.

1. Experiments with NNg on SG. We run a set
of experiments to assess the best feature configu-
ration for the gazetteer-based approach. In Table 4
we report the overall results of NNg using different
feature configurations, over the six SG data sets.
The topological configuration of NNg is kept con-
stant, as described in Section 4. As can be seen,
the configuration using all features is the best one
(F1 89.95), and also the one with the lowest stan-
dard deviation (4.05). This means not only that
this configuration provides the best results on av-
erage but also the most consistent ones across all
data sets. Interestingly, the configuration that uses
no external linguistic knowledge (Gazetteer-info)
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English Italian
Food Furniture Clothing Food Furniture Clothing

Baseline 1: Rule-based 5.74 33.61 34.75 21.26 25.13 44.78
Baseline 2: NNp 25.53 43.67 61.76 14.79 25.33 22.88
NNg approach 32.43 63.28 76.92 37.17 40.41 62.64

Table 5: Experimental results (F1) over the six domain-language data sets.

is the second best, indicating that even in the worst
case, in which no linguistic resource is available,
we can still expect to obtain competitive results.

2. Experiments and Comparison on SU. Ta-
ble 5 reports the comparison among the rule-based
baseline, the NNp baseline, and the NNg approach.
NNg is the best approach on all domains and lan-
guages. This confirms our initial hypothesis that
the structure of entity names induced by gazetteers
is fundamental when having little knowledge of
the context in which entities occur within utter-
ances (i.e. having few training examples).

It should be noted that the effect of entity name
complexity (reported in Table 2) emerges clearly
from the experiments: all the approaches tend to
be affected by it. In both languages we have the
following order in term of performances food <
furniture < clothing. While for food results are
evident (the highest length-SD, TTR, type1 and
type2 token ratios and high sub-entity ratio affect
the performances even if the gazetteers are big) for
furniture and clothing we need to look closer at
the metrics in Table 2. Neglecting the possible ef-
fects of gazetteer size, we see that clothing tends
to have higher ratio of type1 or type2 tokens: this
is due to the large use of modifiers, such as colour,
typical of the domain (depending on language the
modifier is attached before or after the head white
t-shirt vs maglietta bianca). Still, being the other
token type almost 0, either the beginning or the
end of an entity name is unambiguous, and in case
of adjacent entities in a sentence this is enough to
recognize the boundaries between the two.

The NNg version that uses only gazetteer fea-
tures (i.e. no linguistic knowledge is assumed),
even if not reported in Table 5, showed to perform
more poorly than the version using all features.
Still, it is competitive against NNp, outperform-
ing it in five SU data sets out of six, and providing
an average F1 improvement of 10 points.

Finally, in Table 6 we report the results of an
additional analysis, where we computed the F1
scores according to the number of entities present

in the test sentences (all domain and languages).
As can be seen, NNg is the least sensitive to the
number of entities present in the test sentences (i.e.
NNg is the most consistent in term of performance
under all circumstances). This can be explained
by the fact that NNg, being focused on recogniz-
ing entities rather than patterns, is less sensitive
to cases of contiguous occurrences of entities that
can be wrongly segmented by other approaches.

#Entities Rule-based NNp NNg

One 27.46 47.39 59.04
Two 35.52 45.29 48.12
Three 22.14 24.43 52.42

Table 6: Results (F1) of the three approaches
according to the number of entities in the SU
datasets.

7 Conclusions and Future Work

We have provided experimental evidence that
zero-shot entity recognition based on gazetteers
is highly performing. To our knowledge, this is
the first time that a neural model has been applied
to capture compositionality of entity names. Due
to the scarcity of annotated utterances, the pro-
posed approach is particularly recommendable for
its portability through different domains and lan-
guages. Our experiments have been tested on syn-
thetic data (i.e. utterances semi-automatically gen-
erated starting from a set of conversational pat-
terns) in the context of e-commerce chat-bots, tak-
ing advantage of some of the characteristics of the
scenario. As for the future, we intend to test the
approach on natural utterances (i.e. not syntheti-
cally generated).
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Appendix

In this section we provide some examples where
NNg is able to handle cases of entity names that
other approaches are not able to. These cases are
mainly due to token type (type1 and type2) and
consecutive entities in a sentence – see table 7.

NNg NNp Rule-based
Type1 token error

roasted B- B- B-
asparagus I- I- I-
with I- O I-
orange I- B- I-
glaze I- I- I-
ann B- O B-
chair I- B- I-
mustard I- I- I-

Type2 token error
dolly B- B- B-
cushion I- I- I-
cover I- O I-
beige I- B- I-

Consecutive entities error
layene B- B- B-
armchair I- I- I-
bed I- I- I-
brown I- I- I-
trap B- I- I-
chair I- I- I-
dark I- I- I-
brown I- I- I-
ralf B- I- I-
chair I- I- I-
and O O I-
malira B- B- B-
table I- I- I-

Table 7: some entity names correctly segmented
by our approach but not by other approaches. In
bold the type1/2 token causing the error.
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Abstract

We are working on an end-to-end Shal-
low Discourse Parsing system for German
and in this paper focus on the first subtask:
the identification of explicit connectives.
Starting with the feature set from an En-
glish system and a Random Forest classi-
fier, we evaluate our approach on a (rel-
atively small) German annotated corpus,
the Potsdam Commentary Corpus. We in-
troduce new features and experiment with
including additional training data obtained
through annotation projection and achieve
an f-score of 83.89.

1 Introduction

A task central to the field of Discourse Processing
is the uncovering of coherence relations that hold
between individual (elementary) units of a text.
When discourse relations are explicitly signaled in
a text, the explicit markers are called (discourse)
connectives. Connectives can be two-way am-
biguous in the sense of having either a discourse or
a sentential reading, and if they have a discourse
reading, many can assign multiple senses. Fur-
ther, connectives form a syntactically heteroge-
neous group and include coordinating and subor-
dinating conjunctions, adverbials, and depending
on the definition maintained, also certain preposi-
tions. In our experiments, we adopt the definition
of Pasch et al. (2003, p.331) where X is a connec-
tive if X cannot be inflected, the meaning of X is a
two-place relation, the arguments of X are propo-
sitional structures and the expressions of the argu-
ments of X can be sentential structures. Following
Stede (2002), we include prepositions that have a
discourse function.

Recent approaches toward end-to-end shal-
low discourse parsing (SDP) have focused on a

pipeline approach where the identification of dis-
course connectives is the first step, followed by the
extraction of the arguments of the connective and
the classification of the sense. This pipeline ar-
chitecture has dominated the CONLL 20151 and
20162 shared tasks on SDP. We will adopt it for
our goal, viz. developing an end-to-end discourse
parser for German. This paper focuses on the first
step in the pipeline and introduces a connective
identification module for German. We train a clas-
sifier using annotated data (Section 3), investigate
and extend the feature set (Section 4), discuss and
evaluate the results (Section 5) and summarize in
Section 6.

2 Related Work

Early attempts at formalizing discourse parsing
procedures for English are described in (Sori-
cut and Marcu, 2003), among others. Pitler
and Nenkova (2009) experiment with syntacti-
cally motivated features for the binary classifica-
tion of discourse connectives (connective or non-
connective reading) and report an f-score of 94.19
for the PDTB data (Prasad et al., 2008). The SDP
pipeline architecture is adopted from Lin et al.
(2014) and is also used in the best-scoring sys-
tems of the 2015 and 2016 CONLL shared tasks,
(Wang and Lan, 2015) and (Oepen et al., 2016) re-
spectively. Oepen et al. (2016) achieve an overall
f-score of 27.77 for full SDP, but 91.79 for iden-
tifying explicit connectives. The best-scoring sys-
tem for this subtask (Li et al., 2016) achieved an
impressive 98.38.

A notable drawback of the pipeline architecture
is the possibility of error propagation. This is ad-
dressed by (Biran and McKeown, 2015), who use

1http://www.cs.brandeis.edu/˜clp/
conll15st/

2http://www.cs.brandeis.edu/˜clp/
conll16st/
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a tagging-based approach and divide the task into
processing intra-sentential and inter-sentential re-
lations (as opposed to the more typical division
into explicit and implicit relations) and report a
final f-score of 39.33. This is based on a more
lenient scoring system though, and Oepen et al.
(2016) achieve 44.20 using a similar partial match-
ing scoring system.

The main resources available for German are
DiMLex, a lexicon of German discourse connec-
tives containing 275 entries (Stede, 2002), (Schef-
fler and Stede, 2016) and the Potsdam Commen-
tary Corpus (PCC) (Stede and Neumann, 2014),
described in more detail in Section 3. We exper-
iment with generating extra training data through
annotation projection. This approach is inspired
by Versley (2010), who attempts to disambiguate
German connectives using a parallel English-
German corpus. Earlier work on connective iden-
tification for German is done by (Dipper and
Stede, 2006), who train the Brill Tagger using a
modified tag set and consider only 9 of the 42 am-
biguous entries in DiMLex, reporting an f-score of
90.20. In our present study, we deal with the full
set of connectives for which we have training data.

3 Data

To the best of our knowledge, the only German
corpora containing discourse annotations are the
PCC3 and a subsection of the TüBa-D/Z corpus
(Versley and Gastel, 2012), complemented by a
lexicon of discourse connectives; DiMLex4. We
use the PCC, which is a corpus of 176 texts taken
from the editorials page of a local German news-
paper and is annotated on several layers: discourse
connectives and their arguments and sense, syntax
trees, Rhetorical Structure Theory trees and coref-
erence chains.

The PCC contains in total 33,222 words and
1,176 connective instances. Because the texts
were not sampled to extract targeted examples (of
particular connectives or senses), they do not con-
tain the full set of connective entries from DiM-
Lex, but 156 unique connectives, compared to
in total 275 entries in DiMLex. From this cor-
pus we extracted 3,406 data instances (1,176 con-
nective instances, plus 2,230 candidates with a

3http://angcl.ling.uni-potsdam.de/
resources/pcc.html

4https://github.com/discourse-lab/
dimlex

non-connective reading). Of 156 unique connec-
tives, 74 are unambiguous and always have dis-
course reading (at least in the PCC). But these
74 connectives represent only 279 instances (8%
of the total data). Of the remaining 82 connec-
tives, the distribution is heavily skewed and covers
the full spectrum of possibilities; while connec-
tives like ‘Und’5 (‘and’), ‘sondern’ (‘but/rather’)
and ‘wenn’ (‘if’) have a high connective ratio of
0.95, 0.93 and 0.97 respectively; ‘als’ (‘as’), ‘Wie’
(‘(such) as’) and ‘durch’ (‘by/through’) very sel-
dom have the connective reading (a ratio of 0.08,
0.05, and 0.06, respectively).

In comparison, the training section of the 2016
CONLL shared task data alone contains ca. 933k
words and ca. 278k training instances, so we can-
not expect to get results nearly as good as those
that were obtained for English. In an attempt to
generate additional training data, we thus exper-
imented with annotation projection, inspired by
Versley (2010). We implemented an English con-
nective classifier using the feature set of Lin et al.
(2014), classified the English part of a parallel
corpus, located the German counterparts through
word alignment, and used the sentences obtained
as additional training data. The parallel corpus
is EuroParl (Koehn, 2005) and the word align-
ments were obtained using MGIZA (Gao and Vo-
gel, 2008). Filtering out input sentences of more
than 100 words (due to high syntactic parsing costs
for subsequent steps) and alignments to German
words not present in DiMLex, this resulted in
18,853 extra data instances.

4 Method

We started with the feature set of Lin et al. (2014)
(in turn based on (Pitler and Nenkova, 2009)),
which is a combination of surface (token and bi-
gram), part-of-speech and syntactic features (like
path to the root node, category of the siblings,
etc.). The parse trees are obtained from the NLTK
implementation of the Stanford Parser for German
(Rafferty and Manning, 2008). We use a Random
Forest classifier (Pedregosa et al., 2011) for all
experiments. All scores are the result of 10-fold
cross-validation using 90% of the PCC as training
data and the remaining 10% as test data (except
for the setup using the additional EuroParl data;
this data is added to the training data for each of

5Note that we make a distinction between ‘Und’ (upper-
case U) and ‘und’ here.
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the 10 folds). As a result of error analysis on the
output when using the base feature set, we added
some extra features. Because we include prepo-
sitions in our set of connectives (which addition-
ally includes conjunctions and adverbials), we in-
cluded a feature indicating the syntactic group of
the connective to explicitly differentiate for five
cases; the four categories above6 plus other for
the remaining cases (like ‘um...zu’ (discontinu-
ous ‘in order...to’)). The value for this feature is
just a more general label than connective’s part-of-
speech category, included to avoid sparsity. While
being sentence-initial is in most cases reflected by
the bigram features, we included an explicit fea-
ture that indicates whether or not the candidate
is initial to a clause that starts with S (S or S-
bar). These two features, which are directly de-
rived from other features already present in the
set, would likely not improve performance much
if more training data is available, but as our ex-
periments show, they do improve the f-score by
another 2 points in our scenario in which training
data is limited. Another feature that improved per-
formance was sentence length; intuitively it makes
sense that as sentences get longer, the need for
explicit structuring of the propositions therein in-
creases. Together, these added features improved
the f-score (see Table 1).

5 Results & Evaluation

The results for the different setups are illustrated
in Table 1. We use a micro-averaged f1 score for
all experiments.

We compare performance of the classifier to a
majority vote baseline, where each instance is as-
signed its most frequent label. Using the base
feature set results in an f-score of 81.90 (second
row of Table 1). Using extra training data gen-
erated through annotation projection on EuroParl
yields a negative result (below the baseline) and f-
score decreases considerably, to 65.98 (third row).
This decrease can be explained by the susceptibil-
ity of this approach to error propagation. The En-
glish classifier, trained on the PDTB (f-score of
93.64) is applied to another domain (EuroParl),
word-alignments introduce errors, and the addi-
tional German training data is again from another
domain (EuroParl) than the test set (news com-
mentary). The extra training data obtained in this

6prepositions, co-ordinating conjunctions, sub-ordinating
conjunctions and adverbials

way (18,853 instances) apparently does not com-
pensate for this. We note that the scores resulting
from annotation projection data are comparable to
the f-score of 68.7 reported by (Versley, 2010).
This may suggest an upper-limit in performance
when using data obtained through annotation pro-
jection, but more research is needed to verify this.

Since the PCC has gold annotations for syn-
tax trees, we used these for part-of-speech tag and
other syntactic features, in order to establish the
impact of parsing errors. As shown in the first row,
this mainly impacts precision and leads to an in-
crease of almost 5 points for the f-score (using the
base feature set). However, because having access
to gold parses is not feasible in an end-to-end sce-
nario, we consider this an estimation of the impact
of parsing errors and continue using automatically
generated parse trees for the other experiments.

The best results were obtained using the ex-
tended feature set (see Section 4) and are dis-
played in the last row of Table 1.

Inspecting the individual scores, we found that
in particular ‘auch’ (‘also’) and ‘als’ (‘as/than’)
were difficult to classify (with f-scores of 27.03
and 28.57, respectively), despite being relatively
frequent (208 and 147 examples in the PCC). Al-
though they are not connectives in the majority
of cases (ratios of 0.13 (‘auch’) and 0.08 (‘als’)),
some connectives with similar ratios yet signif-
icantly lower frequencies have higher f-scores,
such as ‘so’ (‘so/thus’); frequency of 108, ratio
of 0.11 and f-score of 72.00) and ‘damit’ (‘in or-
der to/thereby’); frequency of 30, ratio of 0.19
and f-score of 60.00. When using separate classi-
fiers for the different syntactic categories (a setup
which did not result in improved performance), the
conjunctions performed best (with 91.81 for co-
ordinating and 90.25 for subordinating conjunc-
tions) and prepositions worst (51.55), but group-
internally the differences were equally large, with
some prepositions having above-average scores
and some having scores close to 0. Further at-
tempts at increasing the overall f-score quickly led
to looking into solutions for individual connec-
tives and came with the risk of over-fitting to the
data set.

To put our score for German into perspective,
we performed a set of experiments with different
amounts of training data for English. Figure 1
shows the f-score (y-axis) when gradually increas-
ing the number of training instances (x-axis). The
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precision recall f-score
majority vote baseline 73.76 87.32 79.60
base features + gold trees 86.44 85.13 85.76
base features + auto-generated trees 78.88 85.16 81.90
base features + EuroParl training data 74.23 59.54 65.96
extended features + auto-generated trees 82.16 85.69 83.89

Table 1: Results for binary connective classification on PCC for gold trees and automatically generated
trees

blue line represents the curve for English, start-
ing with 1,000 instances randomly sampled from
the total of 278k instances in the 2016 CONLL
shared task data. Recall that using this full set,
the f-score using the same feature set and classi-
fication algorithm (RandomForest) is 93.64. The
orange triangle represents performance for Ger-
man, using all available instances from the PCC.
While we have no explanation for the dent in the
curve at 10,000 instances (and the smaller one
around 20,000), we focus on the German score
and note that with 81.90, this is 1.8 points higher
than the corresponding score for English (80.09).
This comparison suggests that the problem of con-
nective identification is not significantly more or
less challenging for German than it is for English.
In fact, seeing that we also include the syntactic
category of prepositions (which is not included in
the PDTB connectives), and this group scored the
worst in our separate-classifier setup, it suggests
that for the other categories, performance is bet-
ter for German than it is for English. When leav-
ing out prepositions altogether, f-score increased
to 85.99. But because it was a conscious decision
to include prepositions, the most straightforward
means of improving performance for the prob-
lem at hand seems to be adding more (in-domain)
training data.

6 Conclusion & Outlook

We implement the first part of a pipeline for end-
to-end discourse parsing for German; the identifi-
cation of discourse connectives. We use a Ran-
dom Forest classifier and add additional syntac-
tic features to the base set, which is taken from
a state-of-the-art system for English. Evaluating
this approach on the Potsdam Commentary Cor-
pus, we arrive at an f-score of 83.89, improving
by over 4 points compared to a majority vote base-
line. Generating additional training data through
annotation projection on a parallel corpus does not

Figure 1: f-scores for varying training data vol-
umes for English (blue line) and f-score for PCC
as training data for German (orange triangle)

improve performance. Our approach is best com-
pared to Dipper and Stede (2006), who achieve a
higher f-score (90.20) but only consider 9 connec-
tives whereas we consider the full set present in
the annotated data. Versley (2010) also does not
limit the set of connectives but uses an annotation
projection approach resulting in an f-score of 68.7.

We show that performance for German is on par
with (in fact, slightly better than) English when
using the same amount of training data, the same
feature set and the same classifier. This may sug-
gest that the task is not necessarily more challeng-
ing or complicated for German than it is for En-
glish, though it remains unclear what role domain
plays here (news commentary in the German case
vs. news in the English case). We plan to anno-
tate more training data in the same domain, but
also out-of-domain to establish domain influence.
We will continue to work on the follow-up com-
ponents in the pipeline (argument extraction and
sense classification), but will simultaneously at-
tempt to improve performance for this first step in
the pipeline, due to the sensitivity of the architec-
ture to error propagation.
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Abstract
Reinforcement learning (RL) is a promis-
ing dialogue policy optimisation approach,
but traditional RL algorithms fail to scale
to large domains. Recently, Feudal Dia-
logue Management (FDM), has shown to
increase the scalability to large domains
by decomposing the dialogue management
decision into two steps, making use of
the domain ontology to abstract the dia-
logue state in each step. In order to ab-
stract the state space, however, previous
work on FDM relies on handcrafted fea-
ture functions. In this work, we show
that these feature functions can be learned
jointly with the policy model while obtain-
ing similar performance, even outperform-
ing the handcrafted features in several en-
vironments and domains.

1 Introduction
In task-oriented Spoken Dialogue Systems (SDS),
the Dialogue Manager (DM) (or policy) is the
module in charge of deciding the next action in
each dialogue turn. One of the most popular
approaches to model the DM is Reinforcement
Learning (RL) (Sutton and Barto, 1999), having
been studied for several years (Levin et al., 1998;
Williams and Young, 2007; Henderson et al.,
2008; Pietquin et al., 2011; Gašić et al., 2013;
Young et al., 2013). However, as the dialogue
state space increases, the number of possible tra-
jectories needed to be explored grows exponen-
tially, making traditional RL methods not scalable
to large domains.

Recently, Feudal Dialogue Management (FDM)
(Casanueva et al., 2018) has shown to increase
the scalability to large domains. This approach is
based on Feudal RL (Dayan and Hinton, 1993),

∗Currently at PolyAI, inigo@poly-ai.com

a hierarchical RL method that divides a task spa-
tially rather than temporally, decomposing the de-
cisions into several steps and using different lev-
els of abstraction for each sub-decision. When
applied to domains with large state and action
spaces, FDM showed an impressive performance
increase compared to traditional RL policies.

However, the method presented in Casanueva
et al. (2018), named FDQN1, relied on handcrafted
feature functions in order to abstract the state
space. These functions, named Domain Indepen-
dent Parametrisation (DIP) (Wang et al., 2015), are
used to transform the belief of each slot into a fixed
size representation using a large set of rules.

In this paper, we demonstrate that the feature
functions needed to abstract the belief state in each
sub-decision can be jointly learned with the pol-
icy. We introduce two methods to do it, based on
feed forward neural networks and recurrent neural
networks respectively. A modification of the orig-
inal FDQN architecture is also introduced which
stabilizes learning, avoiding overfitting of the pol-
icy to a single action. Policies with jointly learned
feature functions achieve similar performance to
those using handcrafted ones, with superior per-
formance in several environments and domains.

2 Background
Dialogue management can be cast as a continu-
ous MDP (Young et al., 2013) composed of a fi-
nite set of actionsA, a continuous multivariate be-
lief state space B and a reward function R(bt, at).
At a given time t, the agent observes the belief
state bt ∈ B, executes an action at ∈ A and re-
ceives a reward rt ∈ R drawn fromR(bt, at). The
action taken, a, is decided by the policy, defined
as the function π(b) = a. The objective of RL
is to find the optimal policy π∗ that maximizes

1In the rest of the paper we will refer to the FDM model
presented in Casanueva et al. (2018) as FDQN.
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the expected return R in each belief state, where
R =

∑T−1
τ=t γ

(τ−t)rτ , γ is a discount factor, t is
the current timestep and T is the terminal timestep.

There are 2 major approaches to model the pol-
icy, Policy-based and Value-based algorithms. In
the former, the policy is directly parametrised by
a function π(b; θ) = a, where θ are the parame-
ters learned in order to maximise R. In the later,
the optimal policy can be found by greedily taking
the action which maximises the Q-value,Qπ(b, a),
defined as the expected R, starting from state b,
taking action a, and then following policy π until
the end of the dialogue at time step T :

Qπ(b, a) = E{R|bt = b, at = a} (1)

2.1 Feudal Dialogue Management
In FDM (Casanueva et al., 2018) (Fig. 1), the
(summary) actions are divided in two subsets; slot
independent actions Ai (e.g. hello(), inform());
and slot dependent actions Ad (e.g. request(),
confirm()). In addition, a set of master actions
Am = (ami , a

m
d ) is defined, where ami corresponds

to taking an action from Ai and amd to taking
an action from Ad. The feudal dialogue policy,
π(b) = a, decomposes the decision in each turn
into two steps. In the first step, the policy decides
to take either a slot independent or a slot depen-
dent action. In the second step, the state of each
sub-policy is abstracted to account for features re-
lated to that slot, and a primitive action is chosen
from the previously selected subset. In order to
abstract the dialogue state for each sub-policy, a
feature function φs(b) = bs is defined for each
slot s ∈ S, as well as a slot independent feature
function φi(b) = bi and a master feature function
φm(b) = bm.

Finally, a master policy πm(bm) = am, a slot
independent policy πi(bi) = ai and a slot depen-
dent policy πd(bs|∀s ∈ S) = ad are defined,
where am ∈ Am, ai ∈ Ai and ad ∈ Ad. In
FDQN, πm and πi are modelled as value-based
policies. However, Policy-based models can be
used to model πm and πi, as introduced in section
3.1. In order to generalise between slots, πd is de-
fined as a set of slot specific policies πs(bs) = ad,
one for each s ∈ S. The slot specific policies
have shared parameters, and the differences be-
tween slots are accounted by the abstracted dia-
logue state bs. πd runs each slot specific policy,
πs, for all s ∈ S , choosing the action-slot pair
that maximises the Q-value over all the slot sub-

policies2.
πd(bs|∀s ∈ S) = argmax

ad∈Ad,s∈S
Qs(bs, a

d) (2)

Then, the summary action a is constructed by join-
ing ad and s (e.g. if ad=request() and s=food,
then the summary action will be request(food)). A
pseudo-code of the Feudal Dialogue Policy algo-
rithm is given in Appendix B.
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Figure 1: Feudal dialogue architecture used in this
work. The sub-policies surrounded by the dashed
line have shared parameters. The blue rectangles
represent Value-based sub-policies while the or-
ange ones Policy-based sub-policies.

In order to abstract the state space, FDQN uses
handcrafted feature functions φi, φm and φs based
on the Domain Independent Parametrisation (DIP)
features introduced in Wang et al. (2015). These
features include the slot independent parts of the
belief state, a summarised representation of the
joint belief state, and a summarised representation
of the belief state of the slot s.

3 FDM with jointly learned feature
extractors

In order to avoid the need to handcraft the fea-
ture functions φi, φm and φs , two methods which
jointly train the feature extractors and the policy
model are proposed. FDQN, however, showed to
be prone to get stuck in local optima3. When the
feature functions are jointly learned, this problem
will be exacerbated due to the need to learn extra
parameters. In section 3.1, two methods to avoid
getting stuck in local optima are presented.
3.1 Improved training stability
FDQN showed to be prone to get stuck in local
optima, overfitting to an incorrect action and con-
tinuously repeating it until the user runs out of

2Note that, in order to compare values from different sub-
policies, πs needs to be modelled as a Value-based policy.

3Depending on the initially observed dialogues, the model
might get stuck in a sub-optimal policy. This is a know prob-
lem in RL (Henderson et al., 2017).
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Figure 2: FFN (a) and RNN (b) jointly learned
feature extractors.

patience. Appendix A shows an example of this
problem. We propose two methods that combined
help to reduce the overfitting, allowing the feature
extractors to be learned jointly.

The belief state used in FDQN only contains in-
formation about the last system action. Therefore,
if the system gets into a loop repeating the same
action for every turn, the belief state cannot depict
it. We propose to append the input to each sub-
policy with a vector containing the frequencies of
the actions taken in the current dialogue. This ad-
ditional information can be used by the policy to
detect these ”overfitting loops” and select a differ-
ent action.

Furthermore, Policy-based Actor Critic meth-
ods such as ACER (Wang et al., 2016; Weisz et al.,
2018) have shown to be more stable during learn-
ing than Value-based methods. Since πd has to
compare Q-values, the slot specific policies πs
need to be Value-based. The master and slot in-
dependent policies, however, can be replaced by
an Actor Critic policy, as shown in Figure 1. Sec-
tion 5 shows that by doing this replacement the
dialogue manager is able to learn better policies.

3.2 Jointly learned feature extractors
In order to abstract the state space into a slot-
dependent fixed length representation, FDQN uses
DIP feature functions (Wang et al., 2015). These
features, however, need to be hand engineered by
the system designer. To reduce the amount of
hand-design, we propose two feature extraction
models that can be learned jointly with the policy.
Figure 2 shows the two proposed models. The first
one (a), named FFN in section 5, pads the belief
state of the slot to the length of the largest slot and
encodes it into a vector es through a feed forward
neural network. The second one (b), uses a recur-
rent neural network to encode the values of each
slot into a fixed length representation es. Each
bs∀s ∈ S is then constructed by concatenating the
slot independent parts of the belief to the slot en-
coding es. For the feature functions φi and φm,

Domain Code # constraint slots # requests # values
Cambridge Restaurants CR 3 9 268
San Francisco Restaurants SFR 6 11 636
Laptops LAP 11 21 257

Env. 1 Env. 2 Env. 3 Env. 4 Env. 5 Env. 6
SER 0% 0% 15% 15% 15% 30%
Masks on off on off on on
User Std. Std. Std. Std. Unf. Std.

Table 1: Sumarised description of the domains and
environments used in the experiments. Refer to
(Casanueva et al., 2017) for a detailed description.

the slot independent parts of the belief are used
directly as inputs to their respective policy mod-
els. During training, the errors of the policies can
be backpropagated through the feature extractors,
training the models by gradient descent.

4 Experimental setup
The PyDial toolkit (Ultes et al., 2017) and the
PyDial benchmarking environments (Casanueva
et al., 2017)4 have been used to implement and
evaluate the models. These environments present a
set of 18 tasks (Table 1) spanning differently sized
domains, different Semantic Error Rates (SER),
different configurations of action masks and dif-
ferent user model parameter sets (Standard (Std.)
or Unfriendly (Unf.)).

4.1 Baselines
The feudal dialogue policy presented in
(Casanueva et al., 2018) is used as a baseline,
named FDQN in section 5. An implementation of
FDQN using the action frequency features intro-
duced in 3.1 is also presented, named FDQN+AF.
In addition, the results of the handcrafted policy
presented in (Casanueva et al., 2017) are also
shown, named HDC.

4.2 Feudal ACER policy
The feudal policy proposed in section 3.1, named
FACER, is implemented. This policy uses an
ACER policy (Wang et al., 2016) for the slot in-
dependent and master policies, and a DQN policy
(Mnih et al., 2013) for the slot specific policies.
The hyperparameters of the ACER sub-policies
are the same than in (Weisz et al., 2018), except
for the 2 hidden layers sizes, which are reduced to
100 and 50 respectively. The hyperparameters of
the DQN sub-policies are the same as FDQN.

4.3 Jointly learned feature extractors
The FDQN+AF and FACER policies are trained
using the FFN and RNN feature extractors pro-
posed in section 3.2, as well as with the DIP fea-

4The implementation of the models will be released
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model FDQN+AF FACER FDQN HDC
features DIP FFN RNN DIP FFN RNN DIP -

E
nv

.1
CR 13.8 12.8 11.3 11.8 12.9 12.5 11,7 14.0
SFR 9.4 6.0 7.3 10.9 4.5 3.8 7,1 12.4
LAP 9.2 8.4 7.4 7.7 5.7 8.4 5,7 11.7

E
nv

.2

CR 13.6 11.9 12.9 13.4 13.3 13.1 13,1 14.0
SFR 12.9 8.7 11.2 12.3 13.0 12.2 12,4 12.4
LAP 11.8 9.6 10.8 12.1 12.6 12.6 12,0 11.7

E
nv

.3

CR 13.1 12.8 12.9 12.9 13.0 13.0 11,7 11.0
SFR 10.3 9.8 9.9 10.3 10.1 10.5 9,7 9.0
LAP 9.8 9.4 9.7 9.6 9.8 9.6 9,4 8.7

E
nv

.4

CR 11.9 10.8 11.3 11.9 12.0 12.3 11,1 11.0
SFR 11.2 7.7 10.0 10.6 10.6 10.9 10,0 9.0
LAP 9.9 -0.6 4.5 11.2 10.9 11.0 10,8 8.7

E
nv

.5

CR 11.1 10.4 11.0 11.0 11.3 11.2 10.4 9.3
SFR 7.5 6.5 6.5 7.8 7.2 6.8 7.1 6.0
LAP 6.8 7.3 6.5 6.6 6.8 6.5 6.0 5.3

E
nv

.6

CR 11.7 11.4 11.6 11.7 11.7 11.8 11.5 9.7
SFR 8.2 7.5 7.4 8.1 8.1 7.4 7,9 6.4
LAP 6.7 6.7 6.5 6.6 6.3 6.4 5.2 5.5

Table 2: Reward after 4000 training dialogues
for FDQN+AF and FACER using DIP, FFN and
RNN features, compared to FDQN and the hand-
crafted policy presented in the PyDial benchmarks
(HDC). The best performing model is highlighted
in bold while the best performing model with
jointly learned features is highlighted in red.

tures used in (Casanueva et al., 2018) . For each
slot s ∈ S , bs is constructed by concatenating the
general and the joint belief state5 to the encoding
of the slot es generated by the feature extractor.
The size of es is 25. As input for the πm and πi
policies, the general and joint belief state is used.

5 Results
Table 2 shows the average reward6 after 4000
training dialogues in the 18 tasks of the PyDial
benchmarks. The reward for each dialogue is de-
fined as (suc ∗ 20) − n, where n is the dialogue
length and suc = 1 if the dialogue was successful
or 0 otherwise. The results are the mean over 10
different random seeds, where every seed is tested
for 500 dialogues.

Comparing FDQN and FDQN-AF when using
DIP features, the importance of including the ac-
tion frequencies can be seen. The use of these
features improves the reward in most of the tasks
between 0.5 and 2 points. When training the poli-
cies with the joint feature extractors, the action fre-
quencies were found to be a key feature in order to
avoid the policies to get stuck in local optima.

FACER shows the best performance with the
jointly learned feature extractors, outperforming
any other policy (including the ones using DIP

5The joint belief state is sorted and truncated to size 20.
6Because of space issues, the success rate is not included.

However, the success rate is very correlated with the results
presented in (Casanueva et al., 2017) and (Casanueva et al.,
2018).
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Figure 3: Learning curves for FACER in env. 3
in Cambridge Restaurants and Laptops domains,
using DIP, FFN and RNN features. The shaded
area represents the standard deviation.

features) in 8 out of 18 tasks, and obtaining
a very similar performance in the rest. This
shows the improved training stability given by the
Policy-based models. In task 1, however, (where
FDQN already showed overfitting problems) the
FDQN+AF is able to learn better feature extractors
than FACER, but the performance is still worse
than HDC.

Figure 3 shows the learning curves for FACER
in two domains of Env. 3 using the two learned
feature extractors (FFN and RNN) compared to
the DIP features. It can be observed that the
learned features take longer to converge, but the
difference is smaller than it could be expected, es-
pecially in a large domain such as Laptops.

6 Conclusions and future work
This paper has shown that the feature functions
needed to abstract the dialogue state space in feu-
dal dialogue management can be jointly learned
with the policy, thus reducing the need of hand-
crafting them. In order to make it possible to learn
the features jointly, two methods to increase the
robustness of the model against overfitting were
introduced: extending the input features with ac-
tion frequencies and substituting the master and
domain independent policies by ACER policies.
In combination, these modifications showed to im-
prove the results in most of the PyDial benchmark-
ing tasks by an average of 1 point in reward, while
reducing the handcrafting effort.

However, as the original FDQN architecture
needs to model the slot specific policies as Value-
based models, ACER policies could only be used
for the master and slot independent policies. Fu-
ture work will investigate new FDM architectures
which allow the use of Policy-based models as slot
specific policies, while maintaining the parameter
sharing mechanism between slots.
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A Dialogues getting stuck in local optima

In this section we present an example of a policy
model getting stuck in a sub-optimal policy. The
two following dialogues represent a dialogue
observed in the initial training steps of the policy
and a dialogue observed once the policy has
overfitted.

Initial dialogue:
Goal: food=british, area=centre

1: usr: Inform(food=british)
2: sys: Confirm(food=british)
3: usr: Affirm()|Inform(area=centre)
4: sys: Inform(name=The Eagle)
5: usr: Thankyou()|Bye()

Overfitted dialogue:
Goal: food=british, area=centre

1: usr: Inform(food=british)
2: sys: Confirm(food=british)
3: usr: Affirm()
4: sys: Confirm(food=british)
5: usr: Affirm()
6: sys: Confirm(food=british)
7: usr: Affirm()
8: sys: Confirm(food=british)
9: usr: Bye()

In the initial dialogue, the policy interacts with
a collaborative user7, which in line 3, provides
more information than the requested by the policy.
The dialogue ends up successfully and, therefore,
the policy learns that by confirming the slot food
in that dialogue state it will get enough informa-
tion to end the dialogue successfully. In the sec-
ond dialogue, however, the system interacts with a
less collaborative user. Therefore, when confirm-
ing the slot food in line 3, it doesn’t get the ex-
tra information obtained in the previous dialogue.
The policy keeps insisting with this action, un-
til the user runs out of patience and ends up the
dialogue. Even with ε-greedy exploration, as a
fraction of the sampled users will be collaborative
enough to make this policy successful, the policy
can get stuck in this local optima and never learn
a better policy - i.e. requesting the value of the
slot area. Other examples of overfitting include

7The user parameters are sampled at the beginning of each
dialogue.

policies informing entities at random from the first
turn (since some users will correct the policy by
informing the correct values) or policies that don’t
learn to inform about the requested slots (since
the sampled user goal sometimes doesn’t include
requesting any extra information, just the entity
name).

B Feudal Dialogue Policy algorithm

Algorithm 1 Feudal Dialogue Policy
1: for each dialogue turn do
2: observe b
3: bm = φm(b)
4: am = πm(bm)
5: if am == ami then . drop to πi
6: bi = φi(b)
7: a = πi(bi)
8: else am == amd then . drop to πd
9: bs = φs(b) ∀s ∈ S

10: slot, act = argmax
s∈S,ad∈Ad

Qs(bs, a
d)

11: a = join(slot, act)
12: end if
13: execute a
14: end for
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Abstract

Cross-domain natural language generation
(NLG) is still a difficult task within spoken
dialogue modelling. Given a semantic rep-
resentation provided by the dialogue man-
ager, the language generator should gen-
erate sentences that convey desired infor-
mation. Traditional template-based gener-
ators can produce sentences with all nec-
essary information, but these sentences are
not sufficiently diverse. With RNN-based
models, the diversity of the generated sen-
tences can be high, however, in the pro-
cess some information is lost. In this
work, we improve an RNN-based gener-
ator by considering latent information at
the sentence level during generation using
the conditional variational autoencoder ar-
chitecture. We demonstrate that our model
outperforms the original RNN-based gen-
erator, while yielding highly diverse sen-
tences. In addition, our model performs
better when the training data is limited.

1 Introduction

Conventional spoken dialogue systems (SDS) re-
quire a substantial amount of hand-crafted rules
to achieve good interaction with users. The large
amount of required engineering limits the scalabil-
ity of these systems to settings with new or multi-
ple domains. Recently, statistical approaches have
been studied that allow natural, efficient and more
diverse interaction with users without depending
on pre-defined rules (Young et al., 2013; Gašić
et al., 2014; Henderson et al., 2014).

Natural language generation (NLG) is an essen-
tial component of an SDS. Given a semantic rep-
resentation (SR) consisting of a dialogue act and
a set of slot-value pairs, the generator should pro-

duce natural language containing the desired in-
formation.

Traditionally NLG was based on templates
(Cheyer and Guzzoni, 2014), which produce
grammatically-correct sentences that contain all
desired information. However, the lack of varia-
tion of these sentences made these systems seem
tedious and monotonic. Trainable generators
(Langkilde and Knight, 1998; Stent et al., 2004)
can generate several sentences for the same SR,
but the dependence on pre-defined operations lim-
its their potential. Corpus-based approaches (Oh
and Rudnicky, 2000; Mairesse and Walker, 2011)
learn to generate natural language directly from
data without pre-defined rules. However, they usu-
ally require alignment between the sentence and
the SR. Recently, Wen et al. (2015b) proposed an
RNN-based approach, which outperformed previ-
ous methods on several metrics. However, the
generated sentences often did not include all de-
sired attributes.

The variational autoencoder (Kingma and
Welling, 2013) enabled for the first time the gener-
ation of complicated, high-dimensional data such
as images. The conditional variational autoen-
coder (CVAE) (Sohn et al., 2015), firstly proposed
for image generation, has a similar structure to the
VAE with an additional dependency on a condi-
tion. Recently, the CVAE has been applied to di-
alogue systems (Serban et al., 2017; Shen et al.,
2017; Zhao et al., 2017) using the previous dia-
logue turns as the condition. However, their output
was not required to contain specific information.

In this paper, we improve RNN-based gener-
ators by adapting the CVAE to the difficult task
of cross-domain NLG. Due to the additional la-
tent information encoded by the CVAE, our model
outperformed the SCLSTM at conveying all infor-
mation. Furthermore, our model reaches better re-
sults when the training data is limited.
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2 Model Description

2.1 Variational Autoencoder

The VAE is a generative latent variable model. It
uses a neural network (NN) to generate x̂ from a
latent variable z, which is sampled from the prior
pθ(z). The VAE is trained such that x̂ is a sam-
ple of the distribution pD(x) from which the train-
ing data was collected. Generative latent variable
models have the form pθ(x) =

∫
z pθ(x|z)pθ(z)dz.

In a VAE an NN, called the decoder, models
pθ(x|z) and would ideally be trained to maximize
the expectation of the above integral E [pθ(x)].
Since this is intractable, the VAE uses another NN,
called the encoder, to model qφ(z|x) which should
approximate the posterior pθ(z|x). The NNs in the
VAE are trained to maximise the variational lower
bound (VLB) to log pθ(x), which is given by:

LV AE(θ, φ;x) = −KL(qφ(z|x)||pθ(z))
+Eqφ(z|x)[log pθ(x|z)]

(1)

The first term is the KL-divergence between the
approximated posterior and the prior, which en-
courages similarity between the two distributions.
The second term is the likelihood of the data given
samples from the approximated posterior. The
CVAE has a similar structure, but the prior is mod-
elled by another NN, called the prior network. The
prior network is conditioned on c. The new objec-
tive function can now be written as:

LCV AE(θ, φ;x, c) = −KL(qφ(z|x, c)||pθ(z|c))
+ Eqφ(z|x,c)[log pθ(x|z, c)] (2)

When generating data, the encoder is not used and
z is sampled from pθ(z|c).

2.2 Semantically Conditioned VAE

The structure of our model is depicted in Fig. 1,
which, conditioned on an SR, generates the sys-
tem’s word-level response x. An SR consists of
three components: the domain, a dialogue act and
a set of slot-value pairs. Slots are attributes re-
quired to appear in x (e.g. a hotel’s area). A slot
can have a value. Then the two are called a slot-
value pair (e.g. area=north). x is delexicalised,
which means that slot values are replaced by cor-
responding slot tokens. The condition c of our
model is the SR represented as two 1-hot vectors
for the domain and the dialogue act as well as a
binary vector for the slots.

Figure 1: Semantically Conditioned Variational
Autoencoder with a semantic representation (SR)
as the condition. x is the system response with
words w1:N . xD, xA and xS are labels for the do-
main, the dialogue act (DA) and the slots of x.

During training, x is first passed through
a single layer bi-directional LSTM, the output
of which is concatenated with c and passed
to the recognition network. The recognition
network parametrises a Gaussian distribution
N (µpost, σpost) which is the posterior. The prior
network only has c as its input and parametrises
a Gaussian distributionN (µprior, σprior) which is
the prior. Both networks are fully-connected (FC)
NNs with one and two layers respectively. During
training, z is sampled from the posterior. When
the model is used for generation, z is sampled
from the prior. The decoder is an SCLSTM (Wen
et al., 2015b) using z as its initial hidden state and
initial cell vector. The first input to the SCLSTM is
a start-of-sentence (sos) token and the model gen-
erates words until it outputs an end-of-sentence
(eos) token.

2.3 Optimization

When the decoder in the CVAE is powerful on its
own, it tends to ignore the latent variable z since
the encoder fails to encode enough information
into z. Regularization methods can be introduced
in order to push the encoder towards learning a
good representation of the latent variable z. Since
the KL-component of the VLB does not contribute
towards learning a meaningful z, increasing the
weight of it gradually from 0 to 1 during training
helps to encode a better representation in z. This
method is termed KL-annealing (Bowman et al.,
2016). In addition, inspired by (Zhao et al., 2017),
we introduce a regularization method using an-
other NN which is trained to use z to recover the
condition c. The NN is split into three separate
FC NNs of one layer each, which independently
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recover the domain, dialogue-act and slots com-
ponents of c. The objective of our model can be
written as:

LSCV AE(θ, φ;x, c) = LCV AE(θ, φ;x, c)

+ Eqφ(z|x,c)[log p(xD|z) + log p(xA|z)+

log

|S|∏

i=1

p(xSi |z)] (3)

where xD is the domain label, xA is the dialogue
act label and xSi are the slot labels with |S| slots
in the SR. In the proposed model, the CVAE learns
to encode information about both the sentence and
the SR into z. Using z as its initial state, the de-
coder is better at generating sentences with desired
attributes. In section 4.1 a visualization of the la-
tent space demonstrates that a semantically mean-
ingful representation for z was learned.

3 Dataset and Setup

The proposed model is used for an SDS that pro-
vides information about restaurants, hotels, televi-
sions and laptops. It is trained on a dataset (Wen
et al., 2016), which consists of sentences with
corresponding semantic representations. Table 1
shows statistics about the corpus which was split
into a training, validation and testing set according
to a 3:1:1 split. The dataset contains 14 different
system dialogue acts. The television and laptop
domains are much more complex than other do-
mains. There are around 7k and 13k different SRs
possible for the TV and the laptop domain respec-
tively. For the restaurant and hotel domains only
248 and 164 unique SRs are possible. This imbal-
ance makes the NLG task more difficult.

The generators were implemented using the Py-
Torch Library (Paszke et al., 2017). The size of
decoder SCLSTM and thus of the latent variable
was set to 128. KL-annealing was used, with the
weight of the KL-loss reaching 1 after 5k mini-
batch updates. The slot error rate (ERR), used in
(Oh and Rudnicky, 2000; Wen et al., 2015a), is the
metric that measures the model’s ability to con-
vey the desired information. ERR is defined as:
(p + q)/N , where N is the number of slots in the
SR, p and q are the number of missing and redun-
dant slots in the generated sentence. The BLEU-4
metric and perplexity (PPL) are also reported. The
baseline SCLSTM is optimized, which has shown
to outperform template-based methods and train-
able generators (Wen et al., 2015b). NLG often

Figure 2: 2D-projection of z for each data point in
the test set, with two different colouring-schemes.

uses the over-generation and reranking paradigm
(Oh and Rudnicky, 2000). The SCVAE can gen-
erate multiple sentences by sampling multiple z,
while the SCLSTM has to sample different words
from the output distribution.In our experiments ten
sentences are generated per SR. Table 4 in the ap-
pendix shows one SR in each domain with five il-
lustrative sentences generated by our model.

4 Experimental Results

4.1 Visualization of Latent Variable z
2D-projections of z for each data point in the test
set are shown in Fig. 2, by using PCA for di-
mensionality reduction. In Fig. 2a, data points
of the restaurant, hotel, TV and laptop domain
are marked as blue, green, red and yellow respec-
tively. As can be seen, data points from the laptop
domain are contained within four distinct clusters.
In addition, there is a large overlap of the TV and
laptop domains, which is not surprising as they
share all dialogue acts (DAs). Similarly, there is
overlap of the restaurant and hotel domains. In
Fig. 2b, the eight most frequent DAs are color-
coded. recommend, depicted as green, has a sim-
ilar distribution to the laptop domain in Fig. 2a,
since recommend happens mostly in the laptop
domain. This suggests that our model learns to
map similar SRs into close regions within the la-
tent space. Therefore, z contains meaningful in-
formation in regards to the domain, DAs and slots.

4.2 Empirical Comparison
4.2.1 Cross-domain Training
Table 2 shows the comparison between SCVAE
and SCLSTM. Both are trained on the full cross-
domain dataset, and tested on the four domains in-
dividually. The SCVAE outperforms the SCLSTM
on all metrics. For the highly complex TV and
laptop domains, the SCVAE leads to dramatic im-
provements in ERR. This shows that the addi-
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Table 1: The statistics of the cross-domain dataset

Restaurant Hotel Television Laptop
# of examples 3114/1039/1039 3223/1075/1075 4221/1407/1407 7944/2649/2649

dialogue acts
reqmore, goodbye, select, confirm, request,

inform, inform only, inform count, inform no match
compare, recommend, inform all,

suggest, inform no info, 9 acts as left

shared slots
name, type, area, near, price,

phone, address, postcode, pricerange
name, type, price,
family, pricerange,

specific slots
food,

goodformeal,
kids-allowed

hasinternet,
acceptscards,
dogs-allowed

screensizerange, ecorating,
hdmiport, hasusbport, audio,
accessories, color, screensize,
resolution, powerconsumption

isforbusinesscomputing.
warranty, battery, design,

batteryrating, weightrange,
utility, platform, driverange,

dimension, memory, processor

Table 2: Comparison between SCVAE and
SCLSTM. Both are trained with full dataset and
tested on individual domains

Metrics Method Restaurant Hotel TV Laptop Overall

ERR(%)
SCLSTM 2.978 1.666 4.076 2.599 2.964
SCVAE 2.823 1.528 2.819 1.841 2.148

BLEU
SCLSTM 0.529 0.642 0.475 0.439 0.476
SCVAE 0.540 0.652 0.478 0.442 0.478

PPL
SCLSTM 2.654 3.229 3.365 3.941 3.556
SCVAE 2.649 3.159 3.337 3.919 3.528

tional sentence level conditioning through z helps
to convey all desired attributes.

4.2.2 Limited Training Data
Fig. 3 shows BLEU and ERR results when the SC-
VAE and SCLSTM are trained on varying amounts
of data. The SCVAE has a lower ERR than the
SCLSTM across the varying amounts of training
data. For very slow amounts of data the SCVAE
outperforms the SCLSTM even more. In addition,
our model consistently achieves better results on
the BLEU metric.

4.2.3 K-Shot Learning
For the K-shot learning experiments, we trained
the model using all training examples from three
domains and only 300 examples from the target

Figure 3: Comparison between SCVAE and
SCLSTM with limited training data.

Table 3: Comparison between SCVAE and
SCLSTM in K-shot learning

Metrics Method Restaurant Hotel TV Laptop

ERR(%)
SCLSTM 13.039 5.366 24.497 27.587
SCVAE 10.329 6.182 20.590 20.864

BLEU
SCLSTM 0.462 0.578 0.382 0.379
SCVAE 0.458 0.579 0.397 0.393

PPL
SCLSTM 3.649 4.861 5.171 6.469
SCVAE 3.575 4.800 5.092 6.364

domain1. The target domain is the domain we test
on. As seen from Table 3, the SCVAE outperforms
the SCLSTM in all domains except hotel. This
might be because the hotel domain is the simplest
and the model does not need to rely on the knowl-
edge from other domains. The SCVAE strongly
outperforms the SCLSTM for the complex TV and
laptop domains where the number of distinct SRs
is large. This suggests that the SCVAE is better at
transferring knowledge between domains.

5 Conclusion

In this paper, we propose a semantically condi-
tioned variational autoencoder (SCVAE) for natu-
ral language generation. The SCVAE encodes in-
formation about both the semantic representation
and the sentence into a latent variable z. Due to a
newly proposed regularization method, the latent
variable z contains semantically meaningful infor-
mation. Therefore, conditioning on z leads to a
strong improvement in generating sentences with
all desired attributes. In an extensive comparison
the SCVAE outperforms the SCLSTM on a range
of metrics when training on different sizes of data
and for K-short learning. Especially, when testing
the ability to convey all desired information within
complex domains, the SCVAE shows significantly
better results.

1600 examples were used for laptop as target domain.
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Table 4: Semantic representation (SR) with ground truth (GT) and sentences generated by SCVAE

Restaurant Domain
SR inform(name=’la mediterranee’;food=’middle eastern’;kidsallowed=no;pricerange=cheap)
GT i have just the restaurant for you . it is called la mediterranee , it serves cheap middle eastern food and childs are not allowed
Gen1 la mediterranee serves middle eastern food in the cheap price range and does not allow childs
Gen2 la mediterranee is a cheap middle eastern restaurant that does not allow kids
Gen3 la mediterranee is cheaply priced restaurant serves middle eastern food and allow childs
Gen4 i would recommend la mediterranee . it is cheap middle eastern food , does not allow child
Gen5 la mediterranee does not allow kids , serves middle eastern food and it is cheap price

Hotel Domain
SR inform count(type=’hotel’;count=’2’;near=’marina cow hollow’;pricerange=’inexpensive’)
GT there are 2 other hotels near marina cow hollow that fit inexpensive your price range
Gen1 there are 2 inexpensive hotels near marina cow hollow
Gen2 there are 2 hotels near the marina cow hollow that are inexpensive
Gen3 there are 2 inexpensively priced hotel near marina cow hollow
Gen4 there are 2 inexpensive priced hotels near the marina cow hollow
Gen5 there are 2 hotels in the inexpensive price range near marina cow hollow

Television Domain
SR recommend(name=hymenaios 11;type=television;family=d1;hdmiport=1)
GT the hymenaios 11 is a television with 1 hdmi port in the d1 product family
Gen1 the name of hymenaios 11 is a television in the d1 family with 1 hdmi port
Gen2 hymenaios 11 is a television from the d1 product family with 1 hdmi port
Gen3 the hymenaios 11 television is a member of the d1 product family and has 1 hdmi port
Gen4 the hymenaios 11 television is part of the d1 family , and has 1 hdmi port
Gen5 the hymenaios 11 is a nice television in the d1 family with 1 hdmi port

Laptop Domain
SR inform no match(type=laptop;isforbusinesscomputing=true;driverange=medium;weightrange=mid weight)
GT no matches were found for a laptop search for business computing with a medium drive that falls in the mid weight range
Gen1 there is no laptop in the medium drive range that is mid weight range and are used for business use
Gen2 there are no laptops in the medium drive size range and is in the mid weight range . they are used for business computing
Gen3 sorry but there are no laptops that match for a medium drive range , mid weight weight range , and is for business computing
Gen4 there are no mid weight laptops with medium driver and are used for business computing

Gen5
unfortunately , we have no matches for your requirementss for a laptop in the mid weight range , that can be used for
business computing , and is in the medium drive range
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Abstract

The research described in this paper exam-
ines how to learn linguistic knowledge as-
sociated with discourse relations from un-
labeled corpora. We introduce an unsu-
pervised learning method on text coher-
ence that could produce numerical repre-
sentations that improve implicit discourse
relation recognition in a semi-supervised
manner. We also empirically examine two
variants of coherence modeling: order-
oriented and topic-oriented negative sam-
pling, showing that, of the two, topic-
oriented negative sampling tends to be
more effective.

1 Introduction

Shallow discourse parsing aims to automatically
identify discourse relations (e.g., comparisons) be-
tween adjacent sentences. When connectives such
as however explicitly appear, discourse relations
are relatively easy to classify, as connectives pro-
vide strong cues (Pitler et al., 2008). In contrast, it
remains challenging to identify discourse relations
across sentences that have no connectives.

One reason for this inferior performance is a
shortage of labeled instances, despite the diversity
of natural language discourses. Collecting anno-
tations about implicit relations is highly expensive
because it requires linguistic expertise. 1 A variety
of semi-supervised or unsupervised methods have
been explored to alleviate this issue. Marcu and
Echihabi (2002) proposed generating synthetic in-
stances by removing connectives from sentence
pairs. This idea has been extended in many works

1The Penn Discourse Treebank (PDTB) 2.0 cor-
pus (Prasad et al., 2008), which is the current largest corpus
for discourse relation recognition, contains only about 16K
annotated instances in total.

and remains a core approach in the field (Zhou
et al., 2010; Patterson and Kehler, 2013; Lan et al.,
2013; Rutherford and Xue, 2015; Ji et al., 2015;
Liu et al., 2016; Braud and Denis, 2016; Lan et al.,
2017; Wu et al., 2017). However, these meth-
ods rely on automatically detecting connectives in
unlabeled corpora beforehand, which makes it al-
most impossible to utilize parts of unlabeled cor-
pora in which no connectives appear.2 In addi-
tion, as Sporleder and Lascarides (2008) discov-
ered, it is difficult to obtain a generalized model
by training on synthetic data due to domain shifts.
Though several semi-supervised methods do not
depend on detecting connectives (Hernault et al.,
2010, 2011; Braud and Denis, 2015), these meth-
ods are restricted to manually selected features,
linear models, or word-level knowledge transfer.

In this paper, our research question is how to ex-
ploit unlabeled corpora without explicitly detect-
ing connectives to learn linguistic knowledge as-
sociated with implicit discourse relations.

Our core hypothesis is that unsupervised learn-
ing about text coherence could produce numerical
representations related to discourse relations. Sen-
tences that compose a coherent document should
be connected with syntactic or semantic rela-
tions (Hobbs, 1985; Grosz et al., 1995). In partic-
ular, we expect that there should be latent relations
among local sentences. In this study, we hypoth-
esize that parameters learned through coherence
modeling could contain useful information for
identifying (implicit) discourse relations. To ver-
ify this hypothesis, we develop a semi-supervised
system whose parameters are first optimized for
coherence modeling and then transferred to im-
plicit discourse relation recognition. We also em-
pirically examine two variants of coherence mod-

2For example, nearly half of the sentences in the British
National Corpus hold implicit discourse relations and do not
contain connectives (Sporleder and Lascarides, 2008).
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Figure 1: An example of order-oriented and topic-oriented negative sampling in coherence modeling.

eling: (1) order-oriented negative sampling and
(2) topic-oriented negative sampling. An example
is shown in Figure 1.

Our experimental results demonstrate that co-
herence modeling improves Macro F1 on implicit
discourse relation recognition by about 3 points on
first-level relation classes and by about 5 points
on second-level relation types. Coherence model-
ing is particularly effective for relation categories
with few labeled instances, such as temporal re-
lations. In addition, we find that topic-oriented
negative sampling tends to be more effective than
the order-oriented counterpart, especially on first-
level relation classes.

2 Coherence Modeling

In this study, we adopt the sliding-window ap-
proach of Li and Hovy (2014) to form a con-
ditional probability that a document is coherent.
That is, we define the probability that a given doc-
ument X is coherent as a product of probabilities
at all possible local windows, i.e.,

P (coherent|X, θ) =
∏

x∈X
P (coherent|x, θ), (1)

where P (coherent|x, θ) denotes the conditional
probability that the local clique x is coherent
and θ denotes parameters. Clique x is a tuple
of a central sentence and its left and right sen-
tences, (s−, s, s+). Though larger window sizes
may allow the model to learn linguistic properties
and inter-sentence dependencies over broader con-
texts, it increases computational complexity dur-
ing training and suffers from data sparsity prob-
lem.

We automatically build a dataset D = P ∪ N
for coherence modeling from an unlabeled corpus.
Here,P andN denote sets of positive and negative
instances, respectively. Given a source corpus C of

|C| sentences s1, s2, . . . , s|C|, we collect positive
instances as follows:

P = {(si−1, si, si+1) | i = 2, . . . , |C| − 1}. (2)

Text coherence can be corrupted by two aspects,
which correspond to how to build negative set N .

The first variant is order-oriented negative sam-
pling, i.e.,

N = {x′ | x′ ∈ φ(x) ∧ x ∈ P} (3)

where φ(x) denotes the set of possible permuta-
tions of x, excluding x itself.

The second variant is topic-oriented negative
sampling, i.e.,

N = {(s−, s′, s+) | s′ ∈ C ∧ (s−, s, s+) ∈ P}
(4)

where s′ denotes a sentence randomly sampled
from a uniform distribution over the entire cor-
pus C. We call this method topic-oriented be-
cause topic consistency shared across a clique
(s−, s, s+) is expected to be corrupted by replac-
ing s with s′.

3 Model Architecture

We develop a simple semi-supervised model with
neural networks. An overall view is shown in Fig-
ure 2. Our model mainly consists of three com-
ponents: sentence encoder E, coherence classi-
fier Fc, and implicit discourse relation classifier
Fr. The parameters of E are shared across the
two tasks: coherence modeling and implicit dis-
course relation recognition. In contrast, Fc and Fr

are optimized separately. Though it is possible to
develop more complex architectures (such as with
word-level matching (Chen et al., 2016), a soft-
attention mechanism (Liu and Li, 2016; Rönnqvist
et al., 2017), or highway connections (Qin et al.,
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1st-Level Relation Classes 2nd-Level Relation Types Coherence
Acc. (%) Macro F1 (%) Acc. (%) Macro F1 (%) Acc. (%)

IRel only 51.49 42.29 37.49 24.81 N/A
IRel + O-Coh (Small) 52.16 41.39 37.77 25.46 57.96
IRel + O-Coh (Large) 52.29 42.48 41.29 30.70 64.24
IRel + T-Coh (Small) 51.70 40.84 37.91 25.35 83.04
IRel + T-Coh (Large) 53.54 45.03 41.39 29.67 91.53

Table 1: The results of implicit discourse relation recognition (multi-class classification) and coher-
ence modeling (binary classification). IRel and O/T-Coh denote that the model is trained on implicit
discourse relation recognition and order/topic-oriented coherence modeling respectively. “Small” and
“large” correspond to the relative size of the used unlabeled corpus: 37K (WSJ) and 22M (BLLIP)
positive instances, respectively.

(unsupervised learning) (supervised learning)
discourse relation recognitioncoherence modeling

Figure 2: The semi-supervised system we devel-
oped. The model consists of sentence encoder E,
coherence classifier Fc, and implicit discourse re-
lation classifier Fr.

2016)), such architectures are outside the scope of
this study, since the effectiveness of incorporating
coherence-based knowledge would be broadly or-
thogonal to the model’s complexity.

3.1 Sentence Encoder

Sentence encoder E transforms a symbol se-
quence (i.e., a sentence) into a continuous vector.
First, a bidirectional LSTM (BiLSTM) is applied
to a given sentence of n tokens w1, . . . , wn, i.e.,

−→
h i = FwdLSTM(

−→
h i−1, wi) ∈ RD, (5)

←−
h i = BwdLSTM(

←−
h i+1, wi) ∈ RD (6)

where FwdLSTM and BwdLSTM denote forward
and backward LSTMs, respectively. We initial-
ize the hidden states to zero vectors, i.e.,

−→
h 0 =←−

h n+1 = 0. In our preliminary experiments, we
tested conventional pooling functions (e.g., sum-
mation, average, or maximum pooling); we found
that the following concatenation tends to yield

higher performances:

h =
(−→
h>L ,
←−
h>1
)>
∈ R2D. (7)

We use Eq. 7 as the aggregation function through-
out our experiments.

3.2 Classifiers
We develop two multi-layer perceptrons (MLPs)
with ReLU nonlinearities followed by softmax
normalization each for Fc and Fr. The MLP in-
puts are the concatenation of sentence vectors.
Thus, the dimensionalities of the input layers are
2D×3 and 2D×2 respectively. The MLPs consist
of input, hidden, and output layers.

4 Experiments

4.1 Preparation
We used the Penn Discourse Treebank (PDTB) 2.0
corpus (Prasad et al., 2008) as a dataset for implicit
discourse relation recognition. We followed the
standard section partition, which is to use Sections
2–20 for training, Sections 0-1 for development,
and Sections 21–22 for testing. We evaluate multi-
class classifications with first-level relation classes
(four classes) and second-level relation types (11
classes).

We used the Wall Street Journal (WSJ) ar-
ticles (Marcus et al., 1993)3 or the BLLIP
North American News Text (Complete) (Mc-
Closky et al., 2008)4 to build a coherence model-
ing dataset, resulting in about 48K (WSJ) or 23M
(BLLIP) positive instances. We inserted a spe-
cial symbol “〈ARTICLE BOUNDARY〉” to each

3We used the raw texts in LDC99T42 Treebank-3:
https://catalog.ldc.upenn.edu/LDC99T42

4https://catalog.ldc.upenn.edu/LDC2008T13
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Acc. (%) Macro F1 (%)
Rutherford and Xue (2015) 57.10 40.50
Liu et al. (2016) 57.27 44.98
Braud and Denis (2016)5 52.81 42.27
Wu et al. (2017) 58.85 44.84
IRel only 51.49 42.29
IRel only* 52.72 42.61
IRel + T-Coh (Large) 53.54 45.03
IRel + T-Coh (Large)* 56.60 46.90

Table 2: Comparison with previous works that
exploit unlabeled corpora on first-level relation
classes. An asterisk indicates that word embed-
dings are fine-tuned (which slightly decreases per-
formance on second-level relation types due to
overfitting).

Exp. Cont. Comp. Temp.
# of training data 6,673 3,235 1,855 582
IRel only 66.40 53.49 39.48 32.31
IRel + T-Coh 67.48 54.94 40.41 35.60

Table 3: Results on one-vs.-others binary clas-
sification in implicit discourse relation recogni-
tion. The evaluation metric is Macro F1 (%).
We evaluate on the first-level relation classes:
Expansion, Contingency, Comparison,
and Temporal.

article boundary. For the WSJ corpus, we split
the sections into training/development/test sets in
the same way with the implicit relation recogni-
tion. For the BLLIP corpus, we randomly sampled
10,000 articles each for the development and test
sets. Negative instances are generated following
the procedure described in Section 2. Note that
this procedure requires neither human annotation
nor special connective detection.

We set the dimensionalities of the word embed-
dings, hidden states of the BiLSTM, and hidden
layers of the MLPs to 100, 200, and 100, respec-
tively. GloVe (Pennington et al., 2014) was used
to produce pre-trained word embeddings on the
BLLIP corpus. To avoid overfitting, we fixed the
word embeddings during training in both coher-
ence modeling and implicit relation recognition.
Dropout (ratio 0.2) was applied to word embed-
dings and MLPs’s layers. At every iteration dur-
ing training in both tasks, we configured class-
balanced batches by resampling.

5The values are taken from Wu et al. (2017).

Figure 3: Results on implicit discourse rela-
tion recognition (first-level classes), with different
numbers of training instances. The error bars show
one standard deviation over 10 trials.

4.2 Results

To verify whether unsupervised learning on co-
herence modeling could improve implicit dis-
course relation recognition, we compared the
semi-supervised model (i.e., implicit discourse
relation recognition (IRel) + coherence model-
ing with order/topic-oriented negative sampling
(O/T-Coh)) with the baseline model (i.e., IRel
only). The evaluation metrics are accuracy (%)
and Macro F1 (%). We report the mean scores
over 10 trials. Table 1 shows that coherence mod-
eling improves Macro F1 by about 3 points in
first-level relation classes and by about 5 points
in second-level relation types. Coherence model-
ing also outperforms the baseline in accuracy. We
observed that the higher the coherence modeling
performance (see Small vs. Large), the higher the
implicit relation recognition score. These results
support our claim that coherence modeling could
learn linguistic knowledge that is useful for iden-
tifying discourse relations.

We also found that topic-oriented negative sam-
pling tends to outperform its order-oriented coun-
terpart, especially on first-level relation classes.
We suspect that this is because order-oriented co-
herence modeling is more fine-grained and chal-
lenging than topic-oriented identification, result-
ing in poor generalization. For example, there
could be order-invariant cliques that still hold co-
herence relations after random shuffling, whereas
topic-invariant cliques hardly exist. Indeed, train-
ing on order-oriented negative sampling con-
verged to lower scores than that of topic-oriented
negative sampling (see coherence accuracy).

Next, for reference, we compared our system
with previous work that exploits unlabeled cor-
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pora. As shown in Table 2, we found our model to
outperform previous systems in Macro F1. In this
task, Macro F1 is more important than accuracy
because the class balance in the test set is highly
skewed. Note that these previous models rely on
previously detected connectives in the unlabeled
corpus, whereas our system is free from such de-
tection procedures.

To assess the effectiveness of coherence mod-
eling on different relation classes, we trained and
evaluated the models on one-vs-others binary clas-
sification. That is, we treated each of the first-level
relation classes (4 classes) as the positive class and
others as the negative class. Table 3 shows that
coherence modeling is effective, especially for the
Temporal relation which has relatively fewer la-
beled instances than others, indicating that coher-
ence modeling could compensate for the shortage
of labeled data.

We also performed an ablation study to dis-
cover the performance contribution from coher-
ence modeling by changing the number of train-
ing instances used in implicit relation recognition.
Here, we assume that in real-world situations, we
do not have sufficient labeled data. We downsam-
pled from the original training set and maintained
the balance of classes as much as possible. As
shown in Figure 3, coherence modeling robustly
yields improvements, even if we reduced the la-
beled instances to 10%.

5 Conclusion

In this paper, we showed that unsupervised learn-
ing on coherence modeling improves implicit dis-
course relation recognition in a semi-supervised
manner. Our approach does not require detecting
explicit connectives, which makes it possible to
exploit entire unlabeled corpora. We empirically
examined two variants of coherence modeling and
show that topic-oriented negative sampling tends
to be more effective than the order-oriented coun-
terpart on first-level relation classes.

It still remains unclear whether the coherence-
based knowledge is complemental to those by pre-
vious work. It is also interesting to qualitatively
inspect the differences of learned properties be-
tween order-oriented and topic-oriented negative
sampling. We will examine this line of research in
future.
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Abstract

In this work, we propose an adversarial
learning method for reward estimation in
reinforcement learning (RL) based task-
oriented dialog models. Most of the cur-
rent RL based task-oriented dialog sys-
tems require the access to a reward signal
from either user feedback or user ratings.
Such user ratings, however, may not al-
ways be consistent or available in practice.
Furthermore, online dialog policy learning
with RL typically requires a large number
of queries to users, suffering from sample
efficiency problem. To address these chal-
lenges, we propose an adversarial learn-
ing method to learn dialog rewards directly
from dialog samples. Such rewards are
further used to optimize the dialog policy
with policy gradient based RL. In the eval-
uation in a restaurant search domain, we
show that the proposed adversarial dialog
learning method achieves advanced dialog
success rate comparing to strong baseline
methods. We further discuss the covariate
shift problem in online adversarial dialog
learning and show how we can address that
with partial access to user feedback.

1 Introduction

Task-oriented dialog systems are designed to as-
sist user in completing daily tasks, such as mak-
ing reservations and providing customer support.
Comparing to chit-chat systems that are usu-
ally modeled with single-turn context-response
pairs (Li et al., 2016; Serban et al., 2016), task-
oriented dialog systems (Young et al., 2013;
Williams et al., 2017) involve retrieving informa-
tion from external resources and reasoning over
multiple dialog turns. This makes it especially im-

portant for a system to be able to learn interac-
tively from users.

Recent efforts on task-oriented dialog systems
focus on learning dialog models from a data-
driven approach using human-human or human-
machine conversations. Williams et al. (2017)
designed a hybrid supervised and reinforcement
learning end-to-end dialog agent. Dhingra et
al. (2017) proposed an RL based model for infor-
mation access that can learn online via user inter-
actions. Such systems assume the model has ac-
cess to a reward signal at the end of a dialog, either
in the form of a binary user feedback or a con-
tinuous user score. A challenge with such learn-
ing systems is that user feedback may be inconsis-
tent (Su et al., 2016) and may not always be avail-
able in practice. Further more, online dialog pol-
icy learning with RL usually suffers from sample
efficiency issue (Su et al., 2017), which requires an
agent to make a large number of feedback queries
to users.

To reduce the high demand for user feedback
in online policy learning, solutions have been pro-
posed to design or to learn a reward function that
can be used to generate a reward in approxima-
tion to a user feedback. Designing a good re-
ward function is not easy (Walker et al., 1997) as
it typically requires strong domain knowledge. El
Asri et al. (2014) proposed a learning based re-
ward function that is trained with task completion
transfer learning. Su et al. (2016) proposed an
online active learning method for reward estima-
tion using Gaussian process classification. These
methods still require annotations of dialog ratings
by users, and thus may also suffer from the rating
consistency and learning efficiency issues.

To address the above discussed challenges, we
investigate the effectiveness of learning dialog re-
wards directly from dialog samples. Inspired by
the success of adversarial training in computer vi-
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sion (Denton et al., 2015) and natural language
generation (Li et al., 2017a), we propose an ad-
versarial learning method for task-oriented dialog
systems. We jointly train two models, a gener-
ator that interacts with the environment to pro-
duce task-oriented dialogs, and a discriminator
that marks a dialog sample as being successful
or not. The generator is a neural network based
task-oriented dialog agent. The environment that
the dialog agent interacts with is the user. Qual-
ity of a dialog produced by the agent and the user
is measured by the likelihood that it fools the dis-
criminator to believe that the dialog is a successful
one conducted by a human agent. We treat dia-
log agent optimization as a reinforcement learning
problem. The output from the discriminator serves
as a reward to the dialog agent, pushing it towards
completing a task in a way that is indistinguishable
from how a human agent completes it.

In this work, we discuss how the adversarial
learning reward function compares to designed re-
ward functions in learning a good dialog policy.
Our experimental results in a restaurant search do-
main show that dialog agents that are optimized
with the proposed adversarial learning method
achieve advanced task success rate comparing to
strong baseline methods. We discuss the impact
of the size of annotated dialog samples to the ef-
fectiveness of dialog adversarial learning. We fur-
ther discuss the covariate shift issue in interactive
adversarial learning and show how we can address
that with partial access to user feedback.

2 Related Work

Task-Oriented Dialog Learning Popular ap-
proaches in learning task-oriented dialog systems
include modeling the task as a partially observable
Markov Decision Process (POMDP) (Young et al.,
2013). Reinforcement learning can be applied in
the POMDP framework to learn dialog policy on-
line by interacting with users (Gašić et al., 2013).
Recent efforts have been made in designing end-
to-end solutions (Williams and Zweig, 2016; Liu
and Lane, 2017a; Li et al., 2017b; Liu et al., 2018)
for task-oriented dialogs. Wen et al. (2017) de-
signed a supervised training end-to-end neural dia-
log model with modularly connected components.
Bordes and Weston (2017) proposed a neural di-
alog model using end-to-end memory networks.
These models are trained offline using fixed di-
alog corpora, and thus it is unknown how well

the model performance generalizes to online user
interactions. Williams et al. (2017) proposed a
hybrid code network for task-oriented dialog that
can be trained with supervised and reinforcement
learning. Dhingra et al. (2017) proposed a rein-
forcement learning dialog agent for information
access. Such models are trained against rule-based
user simulators. A dialog reward from the user
simulator is expected at the end of each turn or
each dialog.

Dialog Reward Modeling Dialog reward es-
timation is an essential step for policy optimiza-
tion in task-oriented dialogs. Walker et al. (1997)
proposed PARADISE framework in which user
satisfaction is estimated using a number of dia-
log features such as number of turns and elapsed
time. Yang et al. (2012) proposed collaborative fil-
tering based method in estimating user satisfaction
in dialogs. Su et al. (2015) studied using convo-
lutional neural networks in rating dialog success.
Su et al. (2016) further proposed an online active
learning method based on Gaussian process for di-
alog reward learning. These methods still require
various levels of annotations of dialog ratings by
users, either offline or online. On the other side
of the spectrum, Paek and Pieraccini (2008) pro-
posed inferring dialog rewards directly from di-
alog corpora with inverse reinforcement learning
(IRL) (Ng et al., 2000). However, most of the IRL
algorithms are very expensive to run, requiring re-
inforcement learning in an inner loop. This hin-
ders IRL based dialog reward estimation methods
to scale to complex dialog scenarios.

Adversarial Networks Generative adversar-
ial networks (GANs) (Goodfellow et al., 2014)
have recently been successfully applied in com-
puter vision and natural language generation (Li
et al., 2017a). The network training process is
framed as a game, in which people train a gen-
erator whose job is to generate samples to fool a
discriminator. The job of a discriminator is to dis-
tinguish samples produced by the generator from
the real ones. The generator and the discrimina-
tor are jointly trained until convergence. GANs
were firstly applied in image generation and re-
cently used in language tasks. Li et al. (2017a)
proposed conducting adversarial learning for re-
sponse generation in open-domain dialogs. Yang
et al. (2017) proposed using adversarial learning in
neural machine translation. The use of adversarial
learning in task-oriented dialogs has not been well
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studied. Peng et al. (2018) recently explored us-
ing adversarial loss as an extra critic in addition
to the main reward function based on task com-
pletion. This method still requires prior knowl-
edge of a user’s goal, which can be hard to col-
lect in practice, in defining task completion. Our
proposed method uses adversarial reward as the
only source of reward for policy optimization in
addressing this challenge.

3 Adversarial Learning for
Task-Oriented Dialogs

In this section, we describe the proposed adver-
sarial learning method for policy optimization in
task-oriented neural dialog models. Our objective
is to learn a dialog agent (i.e. the generator, G)
that is able to effectively communicate with a user
over a multi-turn conversation to complete a task.
This can be framed as a sequential decision mak-
ing problem, in which the agent generates a best
action to take at every dialog turn given the dialog
context. The action can be in the form of either
a dialog act (Henderson et al., 2013) or a natural
language utterance. We study on dialog act level
in this work. Let Uk and Ak represent the user in-
put and agent outputs (i.e. the agent act ak and the
slot-value predictions) at turn k. Given the current
user input Uk, the agent estimates the user’s goal
and select a best action ak to take conditioning on
the dialog history.

In addition, we want to learn a reward function
(i.e. the discriminator, D) that is able to provide
guidance to the agent for learning a better policy.
We expect the reward function to give a higher re-
ward to the agent if the conversation it had with the
user is closer to how a human agent completes the
task. Output of the reward function is the prob-
ability of a given dialog being successfully com-
pleted. We train the reward function by forcing it
to distinguish successful dialogs and dialogs con-
ducted by the machine agent. At the same time,
we also update the dialog agent parameters with
policy gradient based reinforcement learning us-
ing the reward produced by the reward function.
We keep updating the dialog agent and the reward
function until the discriminator can no longer dis-
tinguish dialogs from a human agent and from a
machine agent. In the subsequent sections, we de-
scribe in detail the design of our dialog agent and
reward function, and the proposed adversarial dia-
log learning method.

LSTM dialogue state, sk

Query results encoding, Ek

Slot value probs for 
each slot type, vk

System outputs 
at turn k - 1, Ak-1

User input encoding 
at turn k, Uk

Policy network 

System action 
at turn k, ak

Figure 1: Design of the task-oriented neural dia-
log agent.

3.1 Neural Dialog Agent

The generator is a neural network based task-
oriented dialog agent. The model architecture is
shown in Figure 1. The agent uses an LSTM re-
current neural network to model the sequence of
turns in a dialog. At each turn of a dialog, the
agent takes a best system action conditioning on
the current dialog state. A continuous form dialog
state is maintained in the LSTM state sk. At each
dialog turn k, user input Uk and previous system
output Ak−1 are firstly encoded to continuous rep-
resentations. The user input can either in the form
of a dialog act or a natural language utterance. We
use dialog act form user input in our experiment.
The dialog act representation is obtained by con-
catenating the embeddings of the act and the slot-
value pairs. If natural language form of input is
used, we can encode the sequence of words using
a bidirectional RNN and take the concatenation of
the last forward and backward states as the utter-
ance representation, similar to (Yang et al., 2016)
and (Liu and Lane, 2017a). With the user input
Uk and agent inputAk−1, the dialog state sk is up-
dated from the previous state sk−1 by:

sk = LSTMG(sk−1, [Uk, Ak−1]) (1)

Belief Tracking Belief tracking maintains the
state of a conversation, such as a user’s goals, by
accumulating evidence along the sequence of dia-
log turns. A user’s goal is represented by a list of
slot-value pairs. The belief tracker updates its es-
timation of the user’s goal by maintaining a proba-
bility distribution P (lmk ) over candidate values for
each of the tracked goal slot type m ∈ M . With
the current dialog state sk, the probability over
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candidate values for each of the tracked goal slot
is calculated by:

P (lmk |U≤k, A<k) = SlotDistm(sk) (2)

where SlotDistm is a single hidden layer MLP
with softmax activation over slot type m ∈M .

Dialog Policy We model the agent’s policy
with a deep neural network. Following the pol-
icy, the agent selects the next action in response
to the user’s input based on the current dialog
state. In addition, information retrieved from ex-
ternal resources may also affects the agent’s next
action. Therefore, inputs to our policy module are
the current dialog state sk, the probability distri-
bution of estimated user goal slot values vk, and
the encoding of the information retrieved from ex-
ternal sources Ek. Here instead of encoding the
actual query results, we encode a summary of the
retrieved items (i.e. count and availability of the
returned items). Based on these inputs, the policy
network produces a probability distribution over
the next system actions:

P (ak | U≤k, A<k, E≤k) = PolicyNet(sk, vk, Ek)
(3)

where PolicyNet is a single hidden layer MLP
with softmax activation over all system actions.

3.2 Dialog Reward Estimator

The discriminator model is a binary classifier that
takes in a dialog with a sequence of turns and out-
puts a label indicating whether the dialog is a suc-
cessful one or not. The logistic function returns
a probability of the input dialog being success-
ful. The discriminator model design is as shown in
Figure 2. We use a bidirectional LSTM to encode
the sequence of turns. At each dialog turn k, input
to the discriminator model is the concatenation of
(1) encoding of the user input Uk, (2) encoding of
the query result summary Ek, and (3) encoding of
agent output Ak. The discriminator LSTM output
at each step k, hk, is a concatenation of the for-
ward LSTM output

−→
hk and the backward LSTM

output
←−
hk: hk = [

−→
hk,
←−
hk].

Once obtaining the discriminator LSTM state
outputs {h1, . . . , hK}, we experiment with four
different methods in combining these state outputs
to generated the final dialog representation d for
the binary classifier:

BiLSTM-last Produce the final dialog repre-
sentation d by concatenating the last LSTM state

E1
U1

x x xx. . . . . . 

x

x
x

. . . . . .

Max Pooling

D(d)

A1 E2U2 A2 EKUK AK

d

. . . . . .

Figure 2: Design of the dialog reward estimator:
Bidirectional LSTM with max pooling.

outputs from the forward and backward directions:
d = [

−→
hK ,
←−
h1]

BiLSTM-max Max-pooling. Produce the fi-
nal dialog representation d by selecting the max-
imum value over each dimension of the LSTM
state outputs.

BiLSTM-avg Average-pooling. Produce the
final dialog representation d by taking the average
value over each dimension of the LSTM state out-
puts.

BiLSTM-attn Attention-pooling. Produce
the final dialog representation d by taking the
weighted sum of the LSTM state outputs. The
weights are calculated with attention mechanism:

d =

K∑

k=1

αkhk (4)

and

αk =
exp(ek)∑K
t=1 exp(et)

, ek = g(hk) (5)

g a feed-forward neural network with a single out-
put node. Finally, the discriminator produces a
value indicating the likelihood the input dialog be-
ing a successful one:

D(d) = σ(Wod+ bo) (6)

where Wo and bo are the weights and bias in the
discriminator output layer. σ is a logistic function.

3.3 Adversarial Learning with Policy
Gradient

Once we obtain a dialog sample initiated by the
agent and a dialog reward from the reward func-
tion, we optimize the dialog agent using REIN-
FORCE (Williams, 1992) with the given reward.
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The reward D(d) is only received at the end of a
dialog, i.e. rK = D(d). We discount this final re-
ward with a discount factor γ ∈ [0, 1) to assign a
rewardRk to each dialog turn. The objective func-
tion can thus be written as Jk(θG) = EθG [Rk] =

EθG
[∑K

t=k γ
t−krt − V (sk)

]
, with rk = D(d) for

k = K and rk = 0 for k < K. V (sk) is the state
value function which serves as a baseline value.
The state value function is a feed-forward neu-
ral network with a single-node value output. We
optimize the generator parameter θG to maximize
Jk(θG). With likelihood ratio gradient estimator,
the gradient of Jk(θG) can be derived with:

∇θGJk(θG) = ∇θGEθG [Rk]

=
∑

ak∈A
G(ak|·)∇θG logG(ak|·)Rk

= EθG [∇θG logG(ak|·)Rk]
(7)

where G(ak|·) = G(ak|sk, vk, Ek; θG). The ex-
pression above gives us an unbiased gradient es-
timator. We sample agent action ak following a
softmax policy at each dialog turn and compute
the policy gradient. At the same time, we update
the discriminator parameter θD to maximize the
probability of assigning the correct labels to the
successful dialog from human demonstration and
the dialog conducted by the machine agent:

∇θD
[
Ed∼θdemo

[log(D(d))] +

Ed∼θG [log(1−D(d))]
] (8)

We continue to update both the dialog agent and
the reward function via dialog simulation or real
user interaction until convergence.

4 Experiments

4.1 Dataset
We use data from the second Dialog State Track-
ing Challenge (DSTC2) (Henderson et al., 2014)
in the restaurant search domain for our model
training and evaluation. We add entity infor-
mation to each dialog sample in the original
DSTC2 dataset. This makes entity information a
part of the model training process, enabling the
agent to handle entities during interactive evalu-
ation with users. Different from the agent ac-
tion definition used in DSTC2, actions in our
system are produced by concatenating the act

Algorithm 1 Adversarial Learning for Task-
Oriented Dialog

1: Required: dialog corpus Sdemo, user simual-
tor U , generator G, discriminator D

2: Pretrain a dialog agent (i.e. the generator) G
on dialog corpora Sdemo with MLE

3: Simulate dialogs Ssimu between U and G
4: Sample successful dialogs S(+) and random

dialogs S(−) from {Sdemo, Ssimu}
5: Pretrain a reward function (i.e. the discrimi-

nator) D with S(+) and S(−) . eq 8
6: for number of training iterations do
7: for G-steps do
8: Simulate dialogs Sb between U and G
9: Compute reward r for each dialog in

Sb with D . eq 6
10: Update G with reward r . eq 7
11: end for
12: for D-steps do
13: Sample dialogs S(b+) from S(+)

14: Update D with S(b+) and Sb (with Sb
as negative examples) . eq 8

15: end for
16: end for

and slot types in the original dialog act output
(e.g. “confirm(food = italian)” maps to
“confirm food”). The slot values are captured
in the belief tracking outputs. Table 1 shows the
statistics of the dataset used in our experiments.

# of train/dev/test dialogs 1612/506/ 1117
# of dialog turns in average 7.88
# of slot value options

Area 5
Food 91
Price range 3

Table 1: Statistics of DSTC2 dataset.

4.2 Training Settings
We use a user simulator for our interactive train-
ing and evaluation with adversarial learning. In-
stead of using a rule-based user simulator as in
many prior work (Zhao and Eskenazi, 2016; Peng
et al., 2017), in our study we use a model-based
simulator trained on DSTC2 dataset. We follow
the design and training procedures of (Liu and
Lane, 2017b) in building the model-based simu-
lator. The stochastic policy used in the simula-
tor introduces additional diversity in user behavior

354



during dialog simulation.

Before performing interactive adversarial learn-
ing with RL, we pretrain the dialog agent and the
discriminative reward function with offline super-
vised learning on DSTC2 dataset. We find this
being helpful in enabling the adversarial policy
learning to start with a good initialization. The
dialog agent is pretrained to minimize the cross-
entropy losses on agent action and slot value pre-
dictions. Once we obtain a supervised training
dialog agent, we simulate dialogs between the
agent and the user simulator. These simulated di-
alogs together with the dialogs in DSTC2 dataset
are then used to pretrain the discriminative re-
ward function. We sample 500 successful dialogs
as positive examples, and 500 random dialogs as
negative examples in pretraining the discrimina-
tor. During dialog simulation, a dialog is marked
as successful if the agent’s belief tracking out-
puts fully match the informable (Henderson et al.,
2013) user goal slot values, and all user requested
slots are fulfilled. This is the same evaluation cri-
teria as used in (Wen et al., 2017) and (Liu and
Lane, 2017b). It is important to note that such
dialog success signal is usually not available dur-
ing real user interactions, unless we explicitly ask
users to provide such feedback.

During supervised pretraining, for the dialog
agent we use LSTM with a state size of 150. Hid-
den layer size for the policy network MLP is set as
100. For the discriminator model, a state size of
200 is used for the bidirectional LSTM. We per-
form mini-batch training with batch size of 32 us-
ing Adam optimization method (Kingma and Ba,
2014) with initial learning rate of 1e-3. Dropout
(p = 0.5) is applied during model training to pre-
vent the model from over-fitting. Gradient clip-
ping threshold is set to 5.

During interactive learning with adversarial RL,
we set the maximum allowed number of dialog
turns as 20. A simulation is force to terminated af-
ter 20 dialog turns. We update the model with ev-
ery mini-batch of 25 samples. Dialog rewards are
calculated by the discriminative reward function.
Reward discount factor γ is set as 0.95. These re-
wards are used to update the agent model via pol-
icy gradient. At the same time, this mini-batch of
simulated dialogs are used as negative examples to
update the discriminator.

4.3 Results and Analysis
In this section, we show and discuss our empir-
ical evaluation results. We first compare dialog
agent trained using the proposed adversarial re-
ward to those using human designed reward and
using oracle reward. We then discuss the impact
of discriminator model design and model pretrain-
ing on the adversarial learning performance. Last
but not least, we discuss the potential issue of co-
variate shift during interactive adversarial learning
and show how we address that with partial access
to user feedback.

4.3.1 Comparison to Other Reward Types
We first compare the performance of dialog agent
using adversarial reward to those using designed
reward and oracle reward on dialog success rate.
Designed reward refers to reward function that is
designed by humans with domain knowledge. In
our experiment, based on the dialog success crite-
ria defined in section 4.2, we design the following
reward function for RL policy learning:

• +1 for each informable slot that is correctly
estimated by the agent at the end of a dialog.

• If ALL informable slots are tracked correctly,
+1 for each requestable slot successfully han-
dled by the agent.

In addition to the comparison to human de-
signed reward, we further compare to the case of
using oracle reward during agent policy optimiza-
tion. Using oracle reward refers to having access
to the final dialog success status. We apply a re-
ward of +1 for a successful dialog, and a reward
of 0 for a failed dialog. Performance of the agent
using oracle reward serves as an upper-bound for
those using other types of reward. For the adver-
sarial reward curve, we use BiLSTM-max as the
discriminator model. During RL training, we nor-
malize the rewards produced by different reward
functions.

Figure 3 show the RL learning curves for mod-
els trained using different reward functions. The
dialog success rate at each evaluation point is cal-
culated by averaging over the success status of
1000 dialog simulations at that point. The pre-
train baseline in the figure refers to the super-
vised pretraining model. This model does not get
updated during interactive learning, and thus the
curve stays flat during the RL training cycle. As
shown in these curves, all the three types of reward
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Figure 3: RL policy optimization performance
comparing with adversarial reward, designed re-
ward, and oracle reward.

functions lead to improved dialog success rate
along the RL training process. The agent trained
with designed reward falls behind the agent trained
with oracle reward by a large margin. This shows
that the reward designed with domain knowledge
may not fully align with the final evaluation cri-
teria. Designing a reward function that can pro-
vide an agent enough supervision signal and also
well aligns the final system objective is not a triv-
ial task (Popov et al., 2017). In practice, it is of-
ten difficult to exactly specify what we expect an
agent to do, and we usually end up with simple
and imperfect measures. In our experiment, agent
using adversarial reward achieves a 7.4% improve-
ment on dialog success rate at the end of 6000 in-
teractive dialog learning episodes, outperforming
that using the designed reward (4.2%). This shows
the advantage of performing adversarial training in
learning directly from expert demonstrations and
in addressing the challenge of designing a good
reward function. Another important point we ob-
serve in our experiments is that RL agents trained
with adversarial reward, although enjoy higher
performance in the end, suffer from larger vari-
ance and instability on model performance during
the RL training process, comparing to agents us-
ing human designed reward. This is because dur-
ing RL training the agent interfaces with a moving
target, rather than a fixed objective measure as in
the case of using the designed reward or oracle re-
ward. The model performance only gradually gets
stabilized when both the dialog agent and the re-
ward function are close to convergence.

4.3.2 Impact of Discriminator Model Design
We study the impact of different discriminator
model designs on the adversarial learning perfor-
mance. We compare the four pooling methods de-
scribed in section 3.2 in producing the final dialog
representation. Table 2 shows the offline evalua-
tion results on 1000 simulated test dialog samples.
Among the four pooling methods, max-pooling
on bidirectional LSTM outputs achieves the best
classification accuracy in our experiment. Max-
pooling also assigns the highest probability to suc-
cessful dialogs in the test set comparing to other
pooling methods. Attention-pooling based LSTM
model achieves the lowest performance across all
the three offline evaluation metrics in our study.
This is probably due to the limited number of
training samples we used in pretraining the dis-
criminator. Learning good attentions usually re-
quires more data samples and the model may thus
overfit the small training set. We observe sim-
ilar trends during interactive learning evaluation
that the attention-based discriminator leads to di-
vergence of policy optimization more often than
the other three pooling methods. Max-pooling dis-
criminator gives the most stable performance dur-
ing interactive RL training.

Prediction Success Fail
Model Accuracy Prob. Prob.
BiLSTM-last 0.674 0.580 0.275
BiLSTM-max 0.706 0.588 0.272
BiLSTM-avg 0.688 0.561 0.268
BiLSTM-attn 0.652 0.541 0.285

Table 2: Performance of different discriminator
model design, on prediction accuracy and proba-
bilities assigned to successful and failed dialogs.

4.3.3 Impact of Annotated Dialogs for
Discriminator Training

Annotating dialogs for model training requires ad-
ditional human efforts. We investigate the im-
pact of annotated dialog samples on discrimina-
tor model training. The amount of annotated di-
alogs required for learning a good discrimina-
tor depends mainly on the complexity of a task.
Given the rather simple nature of the slot filling
based DSTC2 restaurant search task, we experi-
ment with annotating 100 to 1000 discriminator
training samples. We use BiLSTM-max discrimi-
nator model in these experiments. The adversarial
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Figure 4: Impact of discriminator training sample
size on RL dialog learning performance.

RL training curves with different levels of discrim-
inator training samples are shown in Figure 4. As
these results illustrate, with 100 annotated dialogs
as positive samples for discriminator training, the
discriminator is not able to produce dialog rewards
that are useful in learning a good policy. Learning
with 250 positive samples does not lead to con-
crete improvement on dialog success rate neither.
With the growing number of annotated samples,
the dialog agent becomes more likely to learn a
better policy, resulting in higher dialog success
rate at the end of the interactive learning sessions.

4.3.4 Partial Access to User Feedback
A potential issue with RL based interactive ad-
versarial learning is the covariate shift (Ross and
Bagnell, 2010; Ho and Ermon, 2016) problem.
The positive examples for discriminator training
are generated before the interactive learning cy-
cle based on the supervised pretraining dialog pol-
icy. During interactive RL training, the agent’s
policy keeps getting updated. The newly gener-
ated dialog samples based on the updated policy
may be equally good comparing to the initial set
of positive dialogs, but they may look very differ-
ent. In this case, the discriminator is likely to give
these dialogs low rewards as the pattern presented
in these dialogs is different to what the discrimi-
nator is initially trained on. The agent will thus
be discouraged to produce such type of successful
dialogs in the future with these negative rewards.
To address such covariate shift issue, we design a
DAgger (Ross et al., 2011) style imitation learn-
ing method to the dialog adversarial learning. We
assume that during interactive learning with users,
occasionally we can receive feedback from users

Figure 5: Addressing covariate shift in online ad-
versarial dialog learning with partial access to user
feedback.

indicating the quality of the conversation they had
with the agent. We then add those dialogs with
good feedback to the pool of positive dialog sam-
ples used in discriminator model training. With
this, the discriminator can learn to assign high
rewards to such good dialogs in the future. In
our empirical evaluation, we experiment with the
agent receiving positive feedback 10% and 20% of
the time during its interaction with users. The ex-
perimental results are shown in Figure 5. As illus-
trated in these curves, the proposed DAgger style
learning method can effectively improve the dia-
log adversarial learning with RL, leading to higher
dialog success rate.

5 Conclusions

In this work, we investigate the effectiveness
of applying adversarial training in learning task-
oriented dialog models. The proposed method
is an attempt towards addressing the rating con-
sistency and learning efficiency issues in online
dialog policy learning with user feedback. We
show that with limited number of annotated di-
alogs, the proposed adversarial learning method
can effectively learn a reward function and use that
to guide policy optimization with policy gradient
based reinforcement learning. In the experiment
on a restaurant search domain, we show that the
proposed adversarial learning method achieves ad-
vanced dialog success rate comparing to baseline
methods using other forms of reward. We further
discuss the covariate shift issue during interactive
adversarial learning and show how we can address
it with partial access to user feedback.
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Abstract

We present a new lexicon of English dis-
course connectives called DiMLex-Eng,
built by merging information from two an-
notated corpora and an additional list of
relation signals from the literature. The
format follows the German connective lex-
icon DiMLex, which provides a cross-
linguistically applicable XML schema.
DiMLex-Eng contains 149 English con-
nectives, and gives information on syn-
tactic categories, discourse semantics and
non-connective uses (if any). We report
on the development steps and discuss de-
sign decisions encountered in the lexicon
expansion phase. The resource is freely
available for use in studies of discourse
structure and computational applications.

1 Introduction

Discourse connectives are generally considered to
be the most reliable signals of coherence relations,
and they are widely used in a variety of NLP tasks
involving the processing of coherence relations,
such as discourse parsing (Hernault et al., 2010;
Lin et al., 2014), machine translation (Meyer et al.,
2011), text summarization (Alemany, 2005), or ar-
gumentation mining (Kirschner et al., 2015). Ac-
cordingly, corpora annotated for discourse con-
nectives and coherence relations have been devel-
oped for different languages.

In addition to discourse-annotated corpora, a
lexicon of discourse connectives, giving the list
of connectives for a language, along with useful
information about their syntactic and semantic-
pragmatic properties, can also serve as a valu-
able resource. Such lexicons were developed and
are becoming more and more available in dif-
ferent languages, beginning with German (Stede

and Umbach, 1998), later for Spanish (Briz
et al., 2008) and French (Roze et al., 2010), and
more recently for Italian (Feltracco et al., 2016),
Portuguese (Mendes et al., 2018) and Czech
(Mı́rovský et al., 2017).

We present a lexicon of English discourse con-
nectives called DiMLex-Eng, which is developed
as a part of the Connective-Lex database1 at the
University of Potsdam. It includes 149 connec-
tives, a large part of which was compiled from
the annotations of the Penn Discourse Treebank
2.0 (Prasad et al., 2008). We expanded that list to
include additional connectives from the RST Sig-
nalling Corpus (Das et al., 2015) and relational in-
dicators from a list supplied by Biran and Ram-
bow (2011). For organizing the entries in the lexi-
con, we use the format of DiMLex, a lexicon of
German connectives (Stede and Umbach, 1998;
Scheffler and Stede, 2016). For each entry in
DiMLex-Eng, we provide information on the pos-
sible orthographic variants of the connective, its
syntactic category, non-connective usage (if any),
and the set of discourse relations indicated by the
connective (with examples from corpora). We de-
scribe our criteria for filtering connective candi-
dates for inclusion in the lexicon, and give an out-
look on the relationship between connectives and
the broader range of ‘cue phrases’ or ‘AltLex’ ex-
pressions in language.

2 Sources of English connectives

2.1 The PDTB corpus connective list
The Penn Discourse Treebank corpus (PDTB,
Prasad et al., 2008) is the best-known resource for
obtaining English connectives. In the PDTB, con-
nectives are defined as discourse-level predicates
that take as their arguments two abstract objects
such as events, states, and propositions, and that

1http://connective-lex.info/
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number category number category

67 ADVP 2 NN
25 phrase 2 JJ
20 IN 2 INTJ
26 PP 1 VB
12 RB 1 RBR
8 CC 1 NNP
2 UCP 1 WHNP

Table 1: Distribution of syntactic types for con-
nectives in the PDTB.4

are generally expressible as clauses.2 In addition
to explicit connectives, the PDTB contains implicit
connectives: In the absence of an explicit connec-
tive, annotators insert an extra one that best signals
a relation between two discourse segments. The
PDTB also provides annotations of AltLex (alter-
native lexicalization) for instances where adding
an implicit connective would lead to a redundancy
in expressing the relation, since it is already con-
veyed by an indicative phrase.

The PDTB annotators were given the above-
mentioned definition of ‘connective’ and asked to
identify words/phrases that accord to this defini-
tion. In the end, 100 distinct connectives were
marked in the corpus. This list of words was later
routinely used by researchers working on shallow
discourse parsing in order to find connective can-
didates in text. However, since the list of connec-
tives is based on annotations of a particular corpus,
no claim of exhaustivity of this list was ever raised.
Since the corpus is annotated with parse trees and
sense relations, the distribution of syntactic types
and semantic relations attested for each connective
can also be extracted. Table 1 shows the overall
distribution of syntactic types for the connectives
in the PDTB (note that one connective can have
several syntactic types).

2.2 The RST Signalling Corpus

The RST Discourse Treebank (RST-DT, Carlson
et al., 2003) is the largest and most widely-used
corpus for developing discourse parsers for the
framework of Rhetorical Structure Theory (Mann

2In some exceptional cases, the arguments in the PDTB
can also be realized as non-clausal structures, such as VP
coordinates, nominalizations, or anaphoric expressions rep-
resenting abstract objects.

4‘Phrase’ indicates that the connective consists of more
than one partial tree; otherwise, the single category that dom-
inates the entire connective was chosen.

and Thompson, 1988). In contrast to the PDTB,
it does not contain any markup of connectives;
rather, it is restricted to representing the coherence
relations among text segments. Recently, however,
the RST-DT has been enriched with markup on re-
lation signals in the RST Signalling Corpus (Das
et al., 2015) (henceforth RST-SC): Going through
every coherence relation in the corpus manually,
the authors decided for each what signal (if any)
can be located in either of the two related spans,
which would aid the reader in identifying the rela-
tion. This goal leads to marking not only connec-
tives, but also other lexical, semantic, syntactic,
layout, or genre-based features. In the RST-SC,
about 18 percent of all the relations are indicated
by connectives or other discourse markers, which
are distributed over 201 different types.

2.3 RST-DT relational indicator list

Also aiming at identifying lexical signals of re-
lations, Biran and Rambow (2011) used a semi-
automatic approach: They extracted all instances
of relations (i.e., pairs of two text spans) from
the RST-DT, and automatically identified the most
indicative (1..4)-grams of words using a variant
of TF/IDF. The n-grams were ranked, and an
empirically-determined cutoff demarcated the list.
The authors were specifically interested in argu-
mentative relations and thus added a manual fil-
tering step for a relevant subset of RST rela-
tions. However, they made a list of 230 indica-
tors for all relations available.5 The indicators
range from one to four-word expressions, many of
which qualify as discourse connectives: conjunc-
tions (but, although), prepositional phrases (for in-
stance, in addition) or adverbials (probably).

The list also contains items belonging to differ-
ent lexical categories, such as nouns (statement,
result), verbs (concluded, to ensure) or other el-
ements which simply comprise random strings of
words and do not neatly represent any syntactic
constituents (e.g., and we certainly do, and just
as we). These items would be rejected as dis-
course connectives by any definition from the liter-
ature, and the procedure was of course not meant
to result in a list of connectives per se. Yet, us-
ing this procedure, one could expect to also find
quite a few proper connectives. As an explana-
tion of why their number is, however, relatively

5http://www.cs.columbia.edu/˜orb/code_
data.html
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small, note that relations are often realised with-
out any explicit connective, thus lowering their co-
occurrence numbers. Additionally, since a con-
nective can be ambiguous in terms of the senses
it represents, its distribution relative to one partic-
ular sense is less pronounced when it also accom-
panies other senses.

3 DiMLex

We chose to develop DiMLex-Eng using the for-
mat of the German DiMLex (DIscourse Marker
LEXicon).6 Its current version (Scheffler and
Stede, 2016) contains an exhaustive list of 275
German discourse connectives. Following Pasch
et al. (2003), (with one modification to be dis-
cussed in the next section), a connective in DiM-
Lex is defined as a lexical item x which has the
following properties: (i) x cannot be inflected; (ii)
the meaning of x is a two-place relation; (iii) the
arguments of this relation are propositional struc-
tures; (iv) the arguments can be expressed as sen-
tential structures. This definition is comparable to
the one used in the PDTB. Both frameworks con-
sider a connective as a relational signal taking two
semantic arguments.

For each entry, DiMLex provides a number of
features, characterizing its syntactic, semantic and
pragmatic behaviour. DiMLex has recently been
incorporated in the Connective-Lex database (see
Section 1), developed as part of the European
COST action TextLink7, and DiMLex-Eng is be-
ing included there as well.

4 Merging the sources into DiMLex-Eng

Our selection of entries in DiMLex-Eng follows
from what we consider as English discourse con-
nectives. The definition is partly based on that
used for German connectives in DiMLex (pro-
vided in Section 3), and further modified by in-
corporating some features from the annotation in
the PDTB. We consider a word or phrase x as a
connective in English if it has the following prop-
erties:
• x cannot be inflected.
• The meaning of x is a two-place relation.
• The arguments of this relation are abstract

objects (propositions, events, states, or pro-

6https://github.com/discourse-lab/
dimlex/

7http://www.textlink.ii.metu.edu.tr/
connective-lex

cesses).
• Usually, the arguments are expressed as

clausal or sentential structures. However,
they can also be expressed by phrasal struc-
tures (e.g., noun phrases beginning with con-
nectives like according to, because of, or
given) as long as they denote abstract objects.

Furthermore, we used the following two lexico-
graphic exclusion criteria to determine whether a
connecting phrase x which signals a coherence re-
lation (as defined above) warrants inclusion in the
lexicon as a connective entry:

1. x should be a fixed expression and cannot be
freely modified by inserting other material.

2. x is not semantically compositional with re-
spect to its component parts.

Criterion 1 excludes free phrases such as for
this reason which can be modified: for this excel-
lent reason, for these reasons, etc. Criterion 2 ex-
cludes phrases which consist of a connective and
an intensifier/adverb such as particularly if or es-
pecially when (here, only if and when are consid-
ered connectives with their own lexicon entries),
and also items comprising two connectives such
as and therefore or but at the same time. Accord-
ing to this criterion, however, phrases such as even
though and even if are considered to be distinct
connectives, since their meaning is not straightfor-
wardly compositional.

Once we decided on the definition of English
connectives, we began compiling the lexicon with
entries from the PDTB 2.0. We decided to include
all 100 explicit connectives from the corpus, be-
cause they adequately fulfill our definitional re-
quirements for connectives.

In the lexicon expansion phase, we first added
more connectives from the RST-SC (Das et al.,
2015). We observed that of the 100 PDTB con-
nectives included in the initial version of DiMLex-
Eng, 71 connectives are also found in the RST-SC,
adding up to 3.390 instances (of marker tokens or
phrases). More importantly, in the opposite direc-
tion, from the RST-SC, we added 46 connectives
(which do not occur in the PDTB) to DiMLex-
Eng. The resulting 146 entries cover 3.721 in-
stances in the RST-SC (an extra 331 compared to
the initial version of DiMLex-Eng). The RST-SC
contains 201 types (3.899 instances). Note that we
add only a subset of these to DiMLex-Eng due to
the restrictions on entries explained above. With
our extended lexicon, we now cover 117 of 201
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types (58%) and 3.721 of 3.899 instances (95%),
compared to 35% (types) and 87% (instances) for
the initial lexicon version that included just the
PDTB-based list.

In the final phase of entry collection, we con-
sulted the relational indicator list of Biran and
Rambow (2011), and screened out only those
items which satisfy our definition of discourse
connective. We found that of the 230 entries in
the Biran and Rambow list, seven items overlap
with our 44 entries already selected from the RST-
SC. Additionally, 12 of the 230 items were in the
list initially extracted from the PDTB 2.0. Upon
manual evaluation of the remaining 211 entries,
we found five more connectives that we added to
our lexicon.

5 Populating the lexicon entries

DiMLex-Eng includes significant lexicographic
information about the syntactic and semantic-
pragmatic properties of connectives. For syntac-
tic and other non-discourse features of a connec-
tive entry, it specifies: (i) possible orthographic
variants, (ii) ambiguity information (whether the
lexical item also has non-connective readings),
(iii) the syntactic category of the connective (see
Table 1; mainly: adverb, subordinating con-
junction/preposition, coordinating conjunction, or
phrase), (iv) possible coherence relations ex-
pressed by the connective, (v) examples8 of rela-
tions associated with the connective .

The semantic information about coherence re-
lations was derived from the observed corpus in-
stances in the cases of connectives from the PDTB
and RST-SC. That is, each entry lists all coherence
relations with which the connective occurred, to-
gether with frequency information.

For encoding the lexicographic features in
DiMLex-Eng, we use the format of DiMLex,
which provides a cross-linguistically applicable
XML schema. Figure 1 shows a representation of
the lexical entry for by contrast in DiMLex-Eng.
The entry shows that by contrast is a PP which
can be used to signal three possible coherence re-
lations: CONTRAST (occurring 11 out of 27 times
when by contrast was used as a connective in the
corpus), JUXTAPOSITION (12 times), and OPPO-
SITION (4). The lexicon is being extended with

8Mostly taken from the PDTB, RST-SC and Corpus
of Contemporary American English (https://corpus.
byu.edu/coca/)

corpus examples for each sense, where available.

6 Summary and Outlook

We have presented DiMLex-Eng, a lexicon of En-
glish discourse connectives, compiled from anno-
tated corpora and modeled after DiMLex, a lexi-
con of German discourse connectives. The con-
nectives in DiMLex-Eng are lexically frozen ex-
pressions (e.g., because, furthermore, since) that
correspond to what are described by Danlos et al.
(2018) as primary connectives (with respect to
their degree of grammaticalization). The knowl-
edge of such connectives along with their man-
ually curated syntactic and discourse attributes,
as the one offered by DiMLex-Eng, are valu-
able in areas such as language learning and con-
trastive discourse studies. Also, the connectives in
DiMLex-Eng, together with other coherence rela-
tion signals, can serve as a valuable resource for
discourse parsing and related applications.

Coherence relation signals, not necessarily re-
stricted to being discourse connectives, may also
comprise many other items, which are discussed
under the labels of cue phrase (Knott and Dale,
1994), secondary connective (Danlos et al., 2018),
AltLex expression (Prasad et al., 2008), or re-
lational indicator (Biran and Rambow, 2011).
These are more difficult to describe systematically
and hence are less amenable to a lexical treatment;
we leave it to future work to extend DiMLex-Eng
into this direction.

We would like to point out that using the ap-
proach of selecting words and phrases that fre-
quently co-occur with coherence relations, we find
only 24 words or phrases that fulfill the constraints
of true (primary) connectives, compared to the
complete lexicon of 149 entries. This seems to im-
ply that simple statistical co-occurrence measures
are not sufficient for identifying discourse connec-
tives, which must satisfy syntactic and semantic
criteria, as well.

Another approach for automatic generation of
discourse connective lexicons is by translational
mapping between parallel corpora, which we are
pursuing in ongoing work (Bourgonje et al., 2017),
following up on earlier studies such as that of Car-
toni et al. (2013). We hope to use this approach to
identify additional connectives for DiMLex-Eng
as well as establish and enhance correspondences
between DiMLex-Eng and other similar connec-
tive lexicons.

363



<entry id="67" word="by contrast">
<orths>

<orth canonical="0" orth_id="67o1" type="cont">
<part type="phrasal">By contrast</part>

</orth>
<orth canonical="1" orth_id="67o2" type="cont">

<part type="phrasal">by contrast</part>
</orth>

</orths>
<syn>

<cat>PP</cat>
<sem>

<pdtb2_relation anno_N="27" freq="11"
sense="Comparison.Contrast" />

</sem>
<sem>

<pdtb2_relation anno_N="27" freq="12"
sense="Comparison.Contrast.Juxtaposition" />

</sem>
<sem>

<pdtb2_relation anno_N="27" freq="4"
sense="Comparison.Contrast.Opposition" />

</sem>
</syn>

</entry>

Figure 1: DiMLex-Eng entry for the connective by contrast.
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Abstract

Spoken language understanding (SLU) by
using recurrent neural networks (RNN)
achieves good performances for large
training data sets, but collecting large
training datasets is a challenge, especially
for new voice applications. Therefore, the
purpose of this study is to maximize SLU
performances, especially for small train-
ing data sets. To this aim, we propose a
novel CRF-based dialog act selector which
chooses suitable dialog acts from outputs
of RNN SLU and rule-based SLU. We
evaluate the selector by using DSTC2 cor-
pus when RNN SLU is trained by less than
1,000 training sentences. The evaluation
demonstrates the selector achieves Micro
F1 better than both RNN and rule-based
SLUs. In addition, it shows the selector
achieves better Macro F1 than RNN SLU
and the same Macro F1 as rule-based SLU.
Thus, we confirmed our method offers ad-
vantages in SLU performances for small
training data sets.

1 Introduction

Spoken language understanding (SLU) was fur-
ther researched by using rule-based methods
(Bellegarda, 2013) and machine learning (ML)
(Tur et al., 2010). ML achieves good SLU perfor-
mances for large training data sets. However, ML-
based SLU with small training data results in poor
performances. Therefore, if we want to launch a
new spoken dialog service as fast as possible, we
cannot use ML-based SLUs as there is no time to
prepare sufficient training data.

The goal of this study is to maximize SLU
performances especially when the training data
size is small. To achieve this objective, we

propose a selection method which chooses a
suitable SLU either from rule-based or ML-
based SLUs depending on SLU output relia-
bility. While researchers have studied selec-
tion methods to choose a suitable SLU result
from plural SLUs by applying several algo-
rithms (Hahn et al., 2008; Katsumaru et al., 2009;
Karahan et al., 2003; Wang et al., 2002), most of
them focused on selectors that improve SLU per-
formances for large training data sets. However,
their selection methods did not take into account
the impact on performance for different training
data sizes, specifically, how a selector would work
on small training data.

Previous studies have evaluated SLU perfor-
mances by metrics such as Micro F1. Neverthe-
less, performance evaluation by only Micro F1 is
not suitable for practical dialog systems as these
systems must recognize all dialog acts that users
can say. In practical dialog systems, the distribu-
tion of dialog acts for actual user utterances is usu-
ally uneven. On this scenario, even if SLU com-
pletely fails to recognize some rare dialog acts, the
Micro F1 remains almost unchanged and that is
the main reason why systems cannot exclusively
rely on this metric.

Macro F1 is another common major metric in
SLU. Macro F1 computes an averaged Micro F1
of all dialog acts and decreases drastically when it
fails to recognize rare dialog acts. Thus, we eval-
uate Macro F1 as a better metric to confirm that a
selector can recognize all dialog acts.

This paper brings the following contributions to
the SLU subject. First, we propose a conditional
random fields (CRF) based selector which chooses
suitable SLU outputs either from rule-based or
ML-based SLUs. Second, we assess our selection
method with different sizes of training data for re-
current neural network (RNN) based SLU. Finally,
unlike most of previous studies, we evaluate SLU
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(a) Steps to create a semantic FST.
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(b) Steps of SLU after user utterance using semantic FST.

Figure 1: Rule-based SLU by using semantic finite
state transducers. <arb> is a symbol that accepts
any word. ε means no dialog acts are output.
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Figure 2: Model for dialog act selection.

performances by using not only Micro F1 but also
Macro F1.

Experiments validate our novel approach and
demonstrate that the proposed selector produces
better SLU performances (up to 10.1% Micro F1
and 19.2% Macro F1) than ML-based for small
training data sets and achieves “upper bound” of
SLU performances regardless of training data size.
This result confirms that our selector helps to im-
prove ML-based SLU performance even if we uti-
lize very limited training data.

2 SLU Algorithms

2.1 Rule-based Algorithm
Our rule-based SLU utilizes a SLU using fi-
nite state transducers (FST) modified from

(Ferreira et al., 2015) (Figure 1). SLU develop-
ers prepare templates that convert each dialog act
to chunks. Chunks are phrases that users may
say when they intend to perform the dialog acts.
The chunks are embedded to an FST which we
call “semantic FST” (Figure 1.a). The user utter-
ance is also converted to an utterance FST (Fig-
ure 1.b). Then, the method executes a FST com-
position operation (Mohri, 1997) between the ut-
terance FST and the semantic FST. Finally, the
method searches the shortest path within a com-
posed FST. The SLU results are the dialog acts
along the shortest path, i.e., a path with mini-
mal summed weights. Based on heuristics, dialog
acts generated from many words are more confi-
dent than the ones generated from just few words.
Thus, the semantic FST weights are adjusted to
prioritize dialog acts generated from many words.

2.2 RNN Algorithm

We used gated recurrent units (GRU) RNN
cells for ML-based SLU (Mesnil et al., 2015;
Zhang and Wang, 2016). Each GRU cell receives
one word and POS (Part-Of-Speech) tag. We con-
vert hidden states of a GRU to probabilities of di-
alog acts that the word belongs to. The algorithm
selects the dialog acts with maximum probabilities
from all words. The gathered dialog acts represent
SLU results. In previous studies, each RNN cell
outputs dialog acts with in/out/begin (IOB) tags.
Our GRU cell, however, outputs dialog acts with-
out IOB tags because this condition resulted in
better accuracies in a preliminary experiment.

2.3 Selection Algorithm

Figure 2 shows a selection model that receives
word and POS tag. In addition, it receives dialog
acts obtained from FST and RNN generated for a
corresponding word. Finally, the model outputs
probabilities of 4-class judgements: both dialog
acts are correct (BC), both dialog acts are incor-
rect (BI), FST outputs correct dialog act (FC), and
RNN outputs correct dialog act (RC). We imple-
ment this model by using CRF.

Figure 3 shows a pipeline of the selection algo-
rithm: (A) is for training of RNN SLU, (B) is for
training of a selection model, and (C) is for evalua-
tion. To obtain training data for a selection model,
we first input RNN training data to FST to get FST
SLU results. Besides, we do 10-fold cross valida-
tion for RNN SLU by using RNN training data to
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Figure 3: Pipeline for dialog act selection.
Table 1: Parameters of GRU RNN.

input embedded word (100 dim.)
POS tag (1-hot vector; 32 dim.)

output dialog act probability (538 dim.)
hidden layer bidirectional GRU

(100 nodes, 1-layer)
context window 1
dropout rate 0.1
batch size 8

make training inputs. These SLU results are used
for training of the selection model.

3 Evaluation

3.1 Dataset

We used a corpus from the Dialog State Track-
ing Challenge 2 (DSTC2), to evaluate our method
(Henderson et al., 2014). This corpus contains
transcribed sentences of user utterances for restau-
rant reservation dialogs. The sentences have
sentence-level dialog acts. From the sentence-
level dialog acts, we manually annotated word-
level dialog acts. The DSTC2 corpus has a train-
ing set of 11,677 sentences, a development set of
3,934, and a test set of 9,890. From the train-
ing set, we randomly chose sentences to create
training sets with various sentence sizes (100–
10,000). Distribution of dialog acts in DSTC2 cor-
pus is skewed; only 25% of dialog acts appeared
in 90% of sentences for both training and test sets.
The DSTC2 corpus has an “ontology” which de-
fines all dialog acts that user may say. This on-
tology defines 659 dialog acts. 649 dialog acts
are defined in forms of intent(slot=value), e.g.,
inform(food=chinese), deny(area=west), and con-
firm(pricerange=cheap). Other 10 dialog acts are
defined by only intent, e.g., affirm(), negate(), and
hello().

3.2 SLU Methods

RNN Table 1 shows the configuration of GRU
for RNN SLU. The GRU receives an embedded
word vector with 1-hot POS tag vector. The em-

bedding weights are initialized with normally dis-
tributed random numbers. The hidden states of a
GRU are converted to an output vector with dialog
acts probabilities, by multiplying a linear matrix
and softmax function. The dimension of an out-
put vector is 538 (537 acts and “no act” class) be-
cause the largest training set (10k sentences) con-
tains only 537 dialog acts. The hyper parameters
for RNN is determined based on SLU performance
in the development set. We terminate RNN train-
ing when Micro F1 on the development set is max-
imized.
FST We manually made 43 templates to con-
vert dialog acts in DSTC2 ontology to 975 chunks.
Figure 1.a step (1) shows template examples.
When a dialog act has a value, we create chunks
by embedding the value. Created chunks are con-
verted to a semantic FST.

3.3 Selection Method
The CRF-based selector uses the following input
features: word, POS tag, dialog act that FST SLU
outputs, and dialog act that RNN SLU outputs. It
also outputs a 4-class judgement (see Figure 2).
The CRF model is trained to maximize probabil-
ities that the selector outputs correct judgement
classes. Features and hyper parameters for train-
ing CRF are determined based on selection accu-
racies of dialog acts in the development set. A
window size for making features is set to 5. We
use 3-gram features within the window. During
evaluation, we choose dialog acts as follows. As-
suming that the selection model outputs maximum
probability in BI, we discard both dialog acts ob-
tained from FST and RNN SLUs. Otherwise, we
compare probabilities of FC and RC. For a larger
FC, we adopt a dialog act output from FST SLU.
In case RC is larger, we adopt a dialog act output
from RNN SLU. We use CRF++ (Kudo, 2013) for
training and evaluation of the selection model.

3.4 Training Data Expansion
Whitelaw et al. (2008) reported methods to in-
crease small training data for named entity recog-
nition by expanding them using entity dictionar-
ies. We used the same method to increase training
data for RNN by using the ontology in DSTC2.
Figure 4 illustrates the method to increase training
data. From one training sentence, we make ad-
ditional training sentences by replacing the value
of a dialog act and corresponding words with dif-
ferent ones. We added new sentences if the sen-
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Figure 4: Expansion of training data for RNN
training as baseline condition.
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(b) Macro F1
Figure 5: Evaluation results of SLU performances.

tences do not exist in the training data. By using
this method, for example, we increase the training
set with 100 sentences to 1.2k, and a set with 10k
sentences to 67k.

Experimental conditions are as follows.
FST SLU by FST.
RNN SLU by RNN.
RNN-E SLU by RNN trained using expanded
training data.
SEL Selection from FST and RNN.
SEL-E Selection from FST and RNN-E.

In SEL-E condition, RNN cross validation uses
expanded sentences as training data, and non-
expanded sentences as evaluation data.

3.5 Results
Figure 5 shows SLU performances. We first focus
on results for small training data sets (<1k). SEL
and SEL-E achieved better Micro F1 than others
(Figure 5.a). Especially, when training sentences
were less than 500, SEL achieved Micro F1 6.2–

10.1% better than ML-based SLU (RNN-E), and
2.8–3.3% better than FST SLU. SEL also resulted
in Macro F1 7.7–19.2% better than RNN-E (see
Figure 5.b). Although SEL resulted in Macro F1
slightly lower than FST in some small-sized train-
ing data, the decreasing rate was at most 1.2%
(FST 0.716, SEL 0.707 at 200 training sentences).
SEL-E resulted in Macro F1 with the biggest de-
creasing rate compared to FST (4.7% at 200 train-
ing sentences). Therefore, our approach suggests
that SEL is a suitable selection method to improve
SLU accuracies for small training data.

Next, we focus on results for large training data
sets (≥1k). SEL and SEL-E provided almost the
same Micro F1 as RNN-E. Meanwhile, SEL-E
achieved the best Macro F1 among all SLUs at
2k or larger training sentences. SEL-E improved
Macro F1 with rates of 1.1–3.6% from RNN-E.
Because SEL-E achieves the highest SLU perfor-
mances, our approach suggests that SEL-E is the
best selection method among the ones evaluated to
improve SLU accuracies at large training data.

4 Conclusion

This work aims to improve SLU performance for
small training data sets. We achieve this goal by
proposing a novel CRF-based dialog act selector
which chooses suitable SLU outputs either from
rule-based or ML-based SLUs. Other main con-
tributions are: novel selector method evaluation
for different training data sizes; and, SLU per-
formance assessment using Micro F1 and Macro
F1. Experimental results show that our selec-
tion methods achieve up to 10.1% Micro F1 and
19.2% Macro F1 performance improvements com-
pared to ML-based SLU for small training data.
For large training data, our proposed methods out-
perform state-of-the-art RNN SLU methods for
Macro F1 up to 3.6% while keeping Micro F1
equivalent to RNN SLU.

Consequently, our methods improve ML-based
SLU performances for training data having scarce
and abundant number of samples. This achieve-
ment opens up the possibility for fast launch of
new spoken dialog services even with limited data
available which was not possible before this work.

We also note that the best selection method is
different depending on the training data size. As
a follow-up paper, we will investigate selection al-
gorithms that consistently achieve “upper bound”
performances in all sizes of training data.
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Abstract

This paper explores the effect of emotional
speech synthesis on a spoken dialogue system
when the dialogue is non-task-oriented. Al-
though the use of emotional speech responses
has been shown to be effective in a limited
domain, e.g., scenario-based and counseling
dialogue, the effect is still not clear in the
non-task-oriented dialogue such as voice chat.
For this purpose, we constructed a simple di-
alogue system with example- and rule-based
dialogue management. In the system, two
types of emotion labeling with emotion es-
timation are adopted, i.e., system-driven and
user-cooperative emotion labeling. We con-
ducted a dialogue experiment where subjects
evaluate the subjective quality of the system
and the dialogue from multiple aspects such as
richness of the dialogue and impression of the
agent. We then analyze and discuss the results
and show the advantage of using appropriate
emotions for expressive speech responses in
the non-task-oriented system.

1 Introduction
Recently, spoken dialogue systems have been becom-
ing popular in various applications, such as a speech
assistant system in smartphones and smart speakers,
an information guide system in public places, and hu-
manoid robots. There have been a variety of studies
for developing spoken dialogue systems, and the sys-
tems are roughly grouped into two categories, task-
oriented and non-task-oriented systems, from the as-
pect of having a goal or not in the dialogue. Although
the task-oriented dialogue systems (Zue et al., 2000;
Kawanami et al., 2007) are important as practical ap-
plications, e.g., ticket vending and information guid-
ance, the role of the non-task-oriented systems is in-
creasing for more advanced human-computer interac-
tion (HCI) including voice chat.

There have been many studies related to the non-
task-oriented dialogue systems. Nakano et al. (2006)
tried to incorporate both task-oriented and non-task-
oriented dialogue functions into a humanoid robot us-

ing a multi-expert model. Dybala et al. (2010) pro-
posed an evaluation method of subjective features of
human-computer interaction using chatbots. Yu et al.
(2016) proposed a set of conversational strategies to
handle possible system breakdowns. Although these
studies enhance the performance of the dialogue sys-
tems, an important role is still missing from the view-
point of the system expressivity. Specifically, the sys-
tem cannot perceive and express para-linguistic infor-
mation such as emotions, which is completely different
from our daily communication.

Several studies have been presented where emo-
tions were taken into consideration in spoken dia-
logue systems. MMDAgent (Lee et al., 2013) is a
well-known open-source dialogue system toolkit where
emotional speech synthesis based on hidden Markov
models (HMMs) (Yoshimura et al., 1999) is incorpo-
rated and style modeling and style interpolation tech-
niques can be used for providing expressive speech
(Nose and Kobayashi, 2011). Su et al. (2014) have
combined situation and emotion detection with a spo-
ken dialogue system for health care to provide more
warming feedback of the system. Kase et al. (2015) de-
veloped a scenario-based dialogue system where emo-
tion estimation and emotional speech synthesis were
incorporated. However, the use of emotional speech
synthesis was not investigated in a non-task-oriented
dialogue system, and the effect of the emotions on the
dialogue is still unclear.

In this study, we develop a Japanese simple non-task-
oriented expressive dialogue system with text-based
emotion detection and emotional speech synthesis. We
then conduct a dialogue experiment in which partic-
ipants chat with the system and evaluate the perfor-
mance in terms of multiple subjective measures such as
richness and pleasantness of the conversation and ana-
lyze the result. We also examine the change of the pitch
variation of the users in the dialogue to investigate the
acoustic effect of the system expressivity on the utter-
ance of the users.

2 Overview of the Dialogue System
Figure 1 shows the flow of the dialogue system con-
structed for the experiment in Section 5. The speech
input is decoded to the text using a speech recog-
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Figure 1: Overview of our non-task-oriented dialogue system with system-driven/user-cooperative emotional
speech synthesis. The system or the user utterance is used alternatively for the emotion labeling in the case of
(a) the system-driven or (b) the user-cooperative systems, respectively.

Table 1: Dialogue example between a user and the sys-
tem. U and S denote user and system, respectively, and
E and R denote the types of the response generation,
i.e., example- and rule-based, respectively.

U Hi!
S Hello! Let’s talk about ball games. E
U All right!
S Is the basketball exciting? R
U I like watching basketball.
S That’s good, me too. R
U Do you like baseball?
S I don’t like baseball. R
U Why?
S I’ve never thought the reason. E
U I see.

nizer, Julius (Lee and Kawahara, 2009). In the dia-
logue management part, system responses are gener-
ated by combining example-based and typical rule-
based (Weizenbaum, 1966) response generation meth-
ods. First, query matching for the example-based re-
sponse generation is applied to the text using a dia-
logue example database that is constructed in advance.
Specifically, the decoded text is converted to a vector
using a bag of words, and cosine similarity is calcu-
lated between the text and the questions in the database.
If the similarity score is larger than or equal to a pre-
determined threshold, the answer corresponding to the
question having highest similarity is adopted as the sys-
tem utterance. Otherwise, the system utterance is gen-
erated by applying the prepared rules to the decoded
text, i.e., the user utterance. For the rule-based re-
sponse generation, nouns (e.g., baseball, pasta) and
subjective words (e.g., like, dislike, happy) are ex-
tracted from the user utterance and are used for the re-
sponse generation based on the rules. Table 1 shows an
example of the dialogue between a user and the system
where the system responses are generated using both
example- and rule-based methods.

After the response generation, emotion estimation,
in other words, emotion labeling, is performed us-

ing either the system or the user utterance to choose
the emotion to be used in the succeeding speech syn-
thesis. We call the emotion labeling with the sys-
tem and the user utterances “system-driven” and “user-
cooperative” labeling hereafter, which was also dis-
cussed in the previous study on scenario-based dia-
logue (Kase et al., 2015). Finally, emotional speech
synthesis based on HMMs is performed using the emo-
tion label and the corresponding emotion-dependent
acoustic model trained in advance. The details of the
emotion estimation and the emotional speech synthesis
are described in Sections 3 and 4, respectively.

3 Emotion Labeling Using System or
User Utterance

In both system-driven and user-cooperative emotion
labeling, the emotion category is estimated from the
content of the text (Guinn and Hubal, 2003), i.e., the
system or the user utterance in Figure 1, which was
previously used in (Kase et al., 2015). Basically, the
estimation of emotion category is based on matching
between words in a sentence and a database of emo-
tional expression words. Two data sources are ex-
ploited, one is an evaluation polarity dictionary of verbs
(Kobayashi et al., 2004), and the other is a sentiment
polarity dictionary of nouns (Takase et al., 2013), both
are for Japanese words. The expressions and words in
those dictionaries have either positive or negative po-
larity. Thus, if a sentence has a word or an expression
(a phrase) with positive or negative polarity, we give the
sentence “happy” or “sad” emotion, respectively. If no
such words and phrases are found, we give a “neutral”
emotion label. Several rules are employed for compli-
cated situation in the expression matching, as follows.

1. If the emotional expression in the database is a
phrase, the phrase is adopted only when all words
of the phrase coincide with the text.

2. If two or more expressions are matched, the last
expression is adopted.

3. If a negative expression is found such as “not
(nai in Japanese) “ after the match, we reverse

372



the polarity. Note that the negative expressions
in Japanese succeed the modified word, e.g.,
“tanoshiku nai (happy not)” means unhappy.

4 Emotional Speech Synthesis
In this study, we use emotional speech synthesis based
on HMMs which are widely used in the various re-
search fields. The choice is mainly because of the
computation cost in speech synthesis. The computa-
tion cost of HMM-based speech synthesis is relatively
low compared to the other existing synthesis meth-
ods such as synthesis techniques based on unit selec-
tion (Hunt and Black, 1996) and deep neural networks
(Zen et al., 2013). The low computation cost is essen-
tial to achieve the spoken dialogue system with smooth
interaction between the system and users. In addition, a
variety of expressive speech synthesis techniques have
been proposed in the HMM-based speech synthesis
(Nose and Kobayashi, 2011), which will enrich the di-
alogue system also in the future work.

In the HMM-based speech synthesis, speech samples
are modeled by the sequences of context-dependent
phone HMMs. Phonetic and prosodic contextual fac-
tors are used for the context. In the model training,
the HMM parameters are tied using state-based con-
text clustering with decision trees for each acoustic fea-
tures, i.e., spectral, excitation, and duration features.
The HMMs are then optimized using the EM algo-
rithm. In this study, we adopted style-dependent mod-
eling (Yamagishi et al., 2005) for the emotional speech
synthesis. In the synthesis phase, the input text is
converted to a context-dependent label sequence us-
ing text analysis, and the corresponding HMMs are
concatenated to create a sentence HMM. Finally, the
speech parameters are generated from the sentence
HMM using speech parameter generation algorithm
(Tokuda et al., 1995), and a waveform is synthesized
using a vocoder.

5 Dialogue Experiment
We conducted a dialogue experiment using several sys-
tems to confirm and investigate the effect of emotional
speech synthesis on the non-task-oriented dialogue sys-
tem.

5.1 Experimental Procedure and Conditions
Ten subjects participated in the dialogue experiment
and evaluated the subjective quality of the system and
the dialogue. Each subject conducted a dialogue whose
topic was “ball game” twice. The duration was about
60 to 90 seconds in each dialogue. We constructed the
following four systems where different emotion label-
ing was adopted.

Baseline No emotion labeling (neutral)

System System-driven emotion labeling

User User-cooperative emotion labeling

Baseline System RandomUser

Dialogue

richness

Utterance

interest

Response

naturanlness

Agent

impression

Human

-likeliness

Dialogue

pleasantness

Overall

1 32 4

Score

Figure 2: Average subjective scores of the participants
for non-task-oriented dialogue to the four systems.

Random Random emotion labeling

Participants sat on a chair in a soundproof room and
conducted a dialogue with an agent in a laptop PC.
The visual of the agent was 10 cm high and 4 cm
wide, and only lip-sync was implemented with no fa-
cial expressions and motions. After the dialogue, par-
ticipants were asked about 1) richness of the dialogue,
2) pleasantness of the dialogue, 3) human-likeliness of
the agent, 4) impression of the agent, 5) naturalness of
the response, and 6) interest in the response. The rating
score is 1 for the lowest and 5 for the highest.

For the emotional speech synthesis, we used emo-
tional speech data of a professional female narrator
who uttered 503 phonetically balanced Japanese sen-
tences with neutral, joyful, and sad emotional ex-
pressions. The other basic conditions of the train-
ing and synthesis were the same as the previous study
(Yamagishi et al., 2005).

5.2 Results and Discussions
Figure 2 shows the average scores of the subjective rat-
ing for the four systems. From the results, we first
found a clear increase of the overall scores in the cases
of using system-driven and user-cooperative emotion
labeling compared to the baseline (no emotions) and
random emotion labeling. This result indicates that the
use of appropriate emotions in the synthetic speech re-
sponse improves the subjective performance also for
the non-task-oriented dialogue system.

Next, we conducted one-way ANOVA for the four
systems, where emotion labeling methods was a factor.
We found significant differences at a 5% level for the
richness of the dialogue (p < 0.001), pleasantness of
the dialogue (p = 0.025), human-likeliness of the agent
(p = 0.005), and impression of the agent (p = 0.001).
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Table 2: p-values of the multiple comparison test by
t-test with Bonferroni correction. The results with a
significant difference at 5% level are in a bold font.

Richness of the dialogue
System User Random

Baseline <0.001 <0.001 <0.001
System >1.000 0.239

User >1.000

Pleasantness of the dialogue
System User Random

Baseline 0.094 0.147 >1.000
System >1.000 0.224

User 0.335

Human likeliness of the agent
System User Random

Baseline 0.006 0.050 0.951
System >1.000 0.298

User >1.000

Impression of the agent
System User Random

Baseline 0.482 0.035 >1.000
System >1.000 0.057

User 0.002

From these results, we verified that the type of the emo-
tion labeling method actually affected the impression
of subjects to the agent and conversation. In contrast,
there are no significant differences in the naturalness of
the response (p = 0.242) and interest in the response
(p = 0.062) from the result of the one-way ANOVA.
We then conducted a multiple comparison test by t-test
with Bonferroni correction. Table 2 shows the p-values
of the test.

In the rating of the richness of the dialogue, the
three systems with emotions gave higher scores than
the baseline. This result indicates that the richness
is related to the variation of the emotions of the syn-
thetic speech responses. Although there is no signifi-
cant difference in the pleasantness of the dialogue, sev-
eral scores had the same tendency as the previous study
(Kase et al., 2015) in which the systems with the emo-
tion labeling based on emotion estimation gave higher
scores than the other systems. On the other hand, in
human-likeliness of the agent, the tendency was dif-
ferent from the result in (Kase et al., 2015), and the
system-driven labeling gave the highest score. A pos-
sible reason for this mismatch is that dialogue break-
down can occur in the non-task-oriented dialogue dif-
ferently from the scenario-based one. About the im-
pression of the agent, the user-cooperative system gave
a better score than the baseline and the random labeling
systems. Users tend to prefer the system that under-
stands the users’ emotional state and sympathizes with
them.

5.3 Prosodic Analysis of User Utterances
In the dialogue experiment, we recorded the user utter-
ances with 16 kHz sampling and 16 bit quantization.
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D
e

v
ia

ti
o

n
 (

c
e

n
t)

Subject ID

s1 s10s8s7s6s5s4s3s2

350

300

250

200

150

100

50

0

400

Figure 3: Mean values of the F0 deviations in each ut-
terance for respective subjects, s1 to s10, (except s9).

The utterances of one subject (s9) had a problem in
the recording, and hence we analyzed the 511 utter-
ances of nine subjects. In this study, we focused on the
fundamental frequency (F0) which is known to be the
most important speech parameter for emotional expres-
sion. F0s were extracted using the SWIPE algorithm
(Camacho, 2007) with 10-ms frame shift.

We calculated the deviations of F0s for the utter-
ances of respective subjects in each system. Figure 3
shows the mean values of the deviations for each sub-
ject. We conducted one-way ANOVA where the label-
ing method was a factor. Although we expected that
the emotional speech responses in a non-task-oriented
dialogue more affect the user utterances than that in the
scenario-based dialogue, there was no significant dif-
ference (p = 0.613) between the systems. One possi-
ble reason is that the naturalness of the system response
is still insufficient to draw out emotions of the users.

6 Conclusions
In this paper, we discussed the effect of emotional
speech synthesis on the non-task-oriented spoken dia-
logue system. We constructed dialogue systems with
system-driven and user-cooperative emotion labeling
and compared the subjective performance with the sys-
tems with no emotion and random emotion labeling.
Experimental results showed that the use of emotional
speech responses clearly improves the subjective scores
such as richness of the dialogue and impression of the
agent even when the dialogue is non-task-oriented. Im-
proving the performance of the emotion estimation us-
ing both system and user utterances is our future work.
The use of the acoustic information in the emotion es-
timation is also a remaining issue.
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Abstract

This paper presents a novel approach for
multi-task learning of language under-
standing (LU) and dialogue state tracking
(DST) in task-oriented dialogue systems.
Multi-task training enables the sharing of
the neural network layers responsible for
encoding the user utterance for both LU
and DST and improves performance while
reducing the number of network parame-
ters. In our proposed framework, DST op-
erates on a set of candidate values for each
slot that has been mentioned so far. These
candidate sets are generated using LU slot
annotations for the current user utterance,
dialogue acts corresponding to the preced-
ing system utterance and the dialogue state
estimated for the previous turn, enabling
DST to handle slots with a large or un-
bounded set of possible values and deal
with slot values not seen during training.
Furthermore, to bridge the gap between
training and inference, we investigate the
use of scheduled sampling on LU output
for the current user utterance as well as the
DST output for the preceding turn.

1 Introduction
Task-oriented dialogue systems interact with users
in natural language to accomplish tasks they have
in mind, by providing a natural language interface
to a backend (API, database or service). State of
the art approaches to task-oriented dialogue sys-
tems typically consist of a language understand-
ing (LU) component, which estimates the seman-
tic parse of each user utterance and a dialogue
state tracking (DST) or belief tracking component,
which keeps track of the conversation context and
the dialogue state (DS). Typically, DST uses the

System: Hello! How can I help?
Acts: greeting
User: Hello, book me a table for two at Cascal.
Intent: RESERVE RESTAURANT
Acts: greeting, inform(#people), inform(restaurant)
State: restaurant=Cascal,#people=two

System: I found a table for two at Cascal at 6 pm.
Does that work?

Acts: offer(time=6 pm)
User: 6 pm isn’t good for us. How about 7 pm?
Acts: negate(time), inform(time)
State: restaurant=Cascal,#people=two,

time=7 pm

Figure 1: A dialogue with user intent, user and
system dialogue acts, and dialogue state.

semantic parse generated by LU to update the DS
at every dialogue turn. The DS accumulates the
preferences specified by the user over the dialogue
and is used to make requests to a backend. The re-
sults from the backend and the dialogue state are
then used by a dialogue policy module to generate
the next system response.

Pipelining dialogue system components often
leads to error propagation, hence joint modeling
of these components has recently gained popular-
ity (Henderson et al., 2014; Mrkšić et al., 2017;
Liu and Lane, 2017), owing to computational ef-
ficiency as well as the potential ability to recover
from errors introduced by LU. However, combin-
ing joint modeling with the ability to scale to mul-
tiple domains and handle slots with a large set of
possible values, potentially containing entities not
seen during training, are active areas of research.

In this work, we propose a single, joint model
for LU and DST trained with multi-task learning.
Similar to Liu and Lane 2017, our model employs
a hierarchical recurrent neural network to encode
the dialogue context. Intermediate feature repre-
sentations from this network are used for identify-
ing the intent and dialogue acts, and tagging slots
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Utterance: Table for two at Olive Garden
↓ ↓ ↓ ↓ ↓ ↓

Slot Tags: O O B-# O B-rest I-rest

Figure 2: IOB slot tags for a user utterance. Slot
values # = two and rest = Olive Garden are ob-
tained from corresponding B and I tags.

in the user utterance. Slot values obtained using
these slot tags (as shown in Figure 2) are then used
to update the set of candidate values for each slot.
Similar to Rastogi et al. 2017, these candidate val-
ues are then scored by a recurrent scoring network
which is shared across all slots, thus giving an ef-
ficient model for DST which can handle new en-
tities that are not present in the training set - i.e.,
out-of-vocabulary (OOV) slot values.

During inference, the model uses its own pre-
dicted slot tags and previous turn dialogue state.
However, ground truth slot tags and dialogue state
are used for training to ensure stability. Aiming to
bridge this gap between training and inference, we
also propose a novel scheduled sampling (Ben-
gio et al., 2015) approach to joint language under-
standing and dialogue state tracking.

The paper is organized as follows: Section 2
presents related work, followed by Section 3 de-
scribing the architecture of the dialogue encoder,
which encodes the dialogue turns to be used as fea-
tures by different tasks in our framework. The sec-
tion also defines and outlines the implementation
of the LU and DST tasks. Section 4 describes our
setup for scheduled sampling. We then conclude
with experiments and discussion of results.

2 Related Work

The initial motivation for dialogue state tracking
came from the uncertainty in speech recognition
and other sources (Williams and Young, 2007),
as well as to provide a comprehensive input to
a downstream dialogue policy component decid-
ing the next system action. Proposed belief track-
ing models have ranged from rule-based (Wang
and Lemon, 2013), to generative (Thomson and
Young, 2010), discriminative (Henderson et al.,
2014), other maximum entropy models (Williams,
2013) and web-style ranking (Williams, 2014).

Language understanding has commonly been
modeled as a combination of intent and dia-
logue act classification and slot tagging (Tur and
De Mori, 2011). Recently, recurrent neural net-
work (RNN) based approaches have shown good

results for LU. Hakkani-Tür et al. 2016 used a
joint RNN for intents, acts and slots to achieve
better overall frame accuracy. In addition, mod-
els such as Chen et al. 2016, Bapna et al. 2017
and Su et al. 2018 further improve LU results by
incorporating context from dialogue history.

Henderson et al. 2014 proposed a single joint
model for single-turn LU and multi-turn DST to
improve belief tracking performance. However,
it relied on manually constructed semantic dictio-
naries to identify alternative mentions of ontology
items that vary lexically or morphologically. Such
an approach is not scalable to more complex do-
mains (Mrkšić et al., 2017) as it is challenging to
construct semantic dictionaries that can cover all
possible entity mentions that occur naturally in a
variety of forms in natural language. Mrkšić et al.
2017 proposed the NBT model which eliminates
the LU step by directly operating on the user ut-
terance. However, their approach requires iterat-
ing through the set of all possible values for a slot,
which could be large or potentially unbounded
(e.g. date, time, usernames). Perez and Liu 2017
incorporated end-to-end memory networks, as in-
troduced in Sukhbaatar et al. 2015, into state track-
ing and Liu and Lane 2017 proposed an end-to-
end model for belief tracking. However, these two
approaches cannot accommodate OOV slot values
as they represent DS as a distribution over all pos-
sible slot values seen in the training set.

To handle large value sets and OOV slot values,
Rastogi et al. 2017 proposed an approach, where a
set of value candidates is formed at each turn using
dialogue context. The DST then operates on this
set of candidates. In this work, we adopt a similar
approach, but our focus is on joint modeling of LU
and DST, and sampling methods for training them
jointly.

3 Model Architecture

Let a dialogue be a sequence of T turns, each
turn containing a user utterance and the preced-
ing system dialogue acts output by the dialogue
manager. Figure 3 gives an overview of our model
architecture, which includes a user utterance en-
coder, a system act encoder, a state encoder, a
slot tagger and a candidate scorer. At each turn
t ∈ {1, ..., T}, the model takes a dialogue turn and
the previous dialogue state Dt−1 as input and out-
puts the predicted user intent, user dialogue acts,
slot values in the user utterance and the updated
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Figure 3: Architecture of our joint LU and DST model as described in Section 3. xt is the sequence
of user utterance token embeddings, at is the system act encoding and blue arrows indicate additional
features used by DST as detailed in Section 3.8.

dialogue state Dt.
As a new turn arrives, the system act encoder

(Section 3.1) encodes all system dialogue acts in
the turn to generate the system dialogue act vector
at. Similarly, the utterance encoder (Section 3.2)
encodes the user utterance into a vector ute, and
also generates contextual token embeddings uto for
each utterance token. The state encoder (Section
3.3) then uses at, ute and its previous turn hidden
state, dt−1st , to generate the dialogue context vec-
tor dto, which summarizes the entire observed dia-
logue, and its updated hidden state dtst.

The dialogue context vector dto is then used by
the user intent classifier (Section 3.4) and user di-
alogue act classifier (Section 3.5). The slot tagger
(section 3.6) uses the dialogue context from previ-
ous turn dt−1o , the system act vector at and contex-
tual token embeddings uto to generate refined con-
textual token embeddings sto. These refined token
embeddings are then used to predict the slot tag
for each token in the user utterance.

The system dialogue acts and predicted slot tags
are then used to update the set of candidate values
for each slot (Section 3.7). The candidate scorer
(Section 3.8) then uses the previous dialogue state
Dt−1, the dialogue context vector dto and other
features extracted from the current turn (indicated
by blue arrows in Figure 3) to update the scores for
all candidates in the candidate set and outputs the

updated dialogue state Dt. The following sections
describe these components in detail.

3.1 System Act Encoder
Previous turn system dialogue acts play an impor-
tant role in accurate semantic parsing of a user ut-
terance. Each system dialogue act contains an act
type and optional slot and value parameters. The
dialogue acts are first encoded into binary vectors
denoting the presence of an act type. All dialogue
acts which don’t have any associated parameters
(e.g. greeting and negate) are encoded as a binary
indicator vector atutt. Dialogue acts with just a slot
s as parameter (e.g. request(date)) are encoded as
atslot(s), whereas acts having a candidate value c
for a slot s as parameter (e.g. offer(time=7pm)) are
encoded as atcand(s, c). These binary vectors are
then combined using equations 1-4 to obtain the
combined system act representation at, which is
used by other units of dialogue encoder (as shown
in Figure 3). In these equations, es is a trainable
slot embedding defined for each slot s.

atsc(s) = atslot(s)⊕ es ⊕ Σca
t
cand(s, c) (1)

a′tsc(s) = ReLU(W a
sc · atsc(s) + basc) (2)

atusc =
( 1

|St|
∑

s∈St

a′tsc(s)
)
⊕ atutt (3)

at = ReLU(W a
usc · atusc + bausc) (4)
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3.2 Utterance Encoder
The user utterance takes the tokens corresponding
to the user utterance as input. Special tokens SOS
and EOS are added at the beginning and end of
the token list. Let xt = {xtm ∈ Rud ,∀ 0 ≤ m <
M t} denote the embedded representations of these
tokens, where M t is the number of tokens in the
user utterance for turn t (including SOS and EOS).

We use a single layer bi-directional GRU recur-
rent neural network (Cho et al., 2014) with state
size du and initial state set to 0, to encode the user
utterance. The first output of the user utterance en-
coder is ute ∈ R2du , which is a compact represen-
tation of the entire user utterance, defined as the
concatenation of the final states of the two RNNs.
The second output is uto = {uto,m ∈ R2du , 0 ≤
m < M t, which is the embedded representation of
each token conditioned on the entire utterance, de-
fined as the concatenation of outputs at each step
of the forward and backward RNNs.

3.3 State Encoder
The state encoder completes our hierarchical dia-
logue encoder. At turn t, the state encoder gen-
erates dto, which is an embedded representation of
the dialogue context until and including turn t. We
implement the state encoder using a unidirectional
GRU RNN with each timestep corresponding to a
dialogue turn. As shown in Figure 3, the dialogue
encoder takes at⊕ute and its previous hidden state
dt−1st as input and outputs the updated hidden state
dtst and the encoded representation of the dialogue
context dto (which are the same in case of GRU).

3.4 User Intent Classification
The user intent is used to identify the backend with
which the dialogue system should interact. We
predict the intents at each turn to allow user to
switch intents during the dialogue. However, we
assume that a given user utterance can contain at-
most one intent and model intent prediction as a
multi-class classification problem. At each turn,
the distribution over all intents is calculated as

pti = softmax(Wi · dto + bi) (5)

where dim(pti) = |I|, Wi ∈ Rd×|I| and bi ∈
R|I|, I denoting the user intent vocabulary and
d = dim(dto). During inference, we predict
argmax(pti) as the intent label for the utterance.

3.5 User Dialogue Act Classification
Dialogue acts are structured semantic representa-
tions of user utterances. User dialogue acts are

used by the dialogue manager in deciding the next
system action. We model user dialogue act clas-
sification as a multilabel classification problem, to
allow for the presence of more than one dialogue
act in a turn (Tur and De Mori, 2011). At each
turn, the probability for act a is predicted as

pta = sigmoid(Wa · dto + ba) (6)

where dim(pta) = |Au|, Wa ∈ Rd×|Au|, ba ∈
R|Au|, Au is the user dialogue act vocabulary and
d = dim(dto). For each act α, pta(α) is interpreted
as the probability of presence of α in turn t. Dur-
ing inference, all dialogue acts with a probability
greater than tu are predicted, where 0 < tu < 1.0
is a hyperparameter tuned using the dev set.

3.6 Slot Tagging
Slot tagging is the task of identifying the presence
of values of different slots in the user utterance.
We use the IOB tagging scheme (Tjong Kim Sang
and Buchholz 2000, see Figure 2) to assign a label
to each token. These labels are then used to extract
the values for different slots from the utterance.

The slot tagging network consists of a single-
layer bidirectional LSTM RNN (Hochreiter and
Schmidhuber, 1997), which takes the contextual
token embeddings uto generated by the utterance
encoder as input. It outputs refined token embed-
dings sto = {sto,m,∀ 0 ≤ m < M t} for each to-
ken, M t being the number of tokens in user utter-
ance at turn t.

Models making use of dialogue context for LU
have been shown to achieve superior performance
(Chen et al., 2016). In our setup, the dialogue con-
text vector dt−1o encodes all the preceding turns
and the system act vector at encodes the system
dialogue acts preceding the user utterance. As
shown in Figure 3, dt−1o is used to initialize 1 the
hidden state (cell states are initialized to zero) for
the forward and backward LSTM recurrent units
in the slot tagger, while at is fed as input to the
tagger by concatenating with each element of uto
as shown below. We use an LSTM instead of a
GRU for this layer since that resulted in better per-
formance on the validation set.

stin = {uto,m ⊕ at, ∀ 0 ≤ m < M t} (7)

ste,bw, s
t
o,bw = LSTMbw(stin) (8)

ste,fw, s
t
o,fw = LSTMfw(stin) (9)

sto = sto,bw ⊕ sto,fw (10)

1After projection to the appropriate dimension.
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Let S be the set of all slots in the dataset. We
define a set of 2|S|+ 1 labels (one B- and I- label
for each slot and a single O label) for IOB tagging.
The refined token embedding sto,m is used to pre-
dict the distribution across all IOB labels for token
at index m as

pts,m = softmax(Ws · sto,m + bs) (11)

where dim(pts,m) = 2|S| + 1, Ws ∈ Rds×2|S|+1

and bs ∈ R2|S|+1, ds = dim(sto,m) is the output
size of slot tagger LSTM. During inference, we
predict argmax(pts,m) as the slot label for themth

token in the user utterance in turn t.

3.7 Updating Candidate Set
A candidate set Cts is defined as a set of values of
a slot s which have been mentioned by either the
user or the system till turn t. Rastogi et al. 2017
proposed the use of candidate sets in DST for ef-
ficiently handling slots with a large set of values.
In their setup, the candidate set is updated at ev-
ery turn to include new values and discard old val-
ues when it reaches its maximum capacity. The
dialogue state is represented as a set of distribu-
tions over value set V t

s = Cts ∪ {δ, φ} for each
slot s ∈ St, where δ and φ are special values
dontcare (user is ok with any value for the slot)
and null (slot not specified yet) respectively, and
St is the set of all slots that have been mentioned
either by the user or the system till turn t.

Our model uses the same definition and update
rules for candidate sets. At each turn we use the
predictions of the slot tagger (Section 3.6) and sys-
tem acts which having slot and value parameters
to update the corresponding candidate sets. All
candidate sets are padded with dummy values for
batching computations for all slots together. We
keep track of valid candidates by defining indi-
cator features mt

v(s, c) for each candidate, which
take the value 1.0 if candidate is valid or 0.0 if not.

3.8 Candidate Scorer
The candidate scorer predicts the dialogue state by
updating the distribution over the value set V t

s for
each slot s ∈ St. For this, we define three in-
termediate features rtutt, r

t
slot(s) and rtcand(s, c).

rtutt is shared across all value sets and is defined
by equation 12. rtslot(s) is used to update scores
for V t

s and is defined by equation 13. Further-
more, rtcand(s, c) is defined for each candidate
c ∈ Cts ⊂ V t

s using equation 14 and contains all
features that are associated to candidate c of slot s.

rtutt = dto ⊕ atutt (12)

rtslot(s) = atslot(s)⊕ [pt−1δ (s), pt−1φ (s)] (13)

rtcand(s, c) = atcand(s, c) ⊕ [pt−1c (s)]⊕
[mt

v(s, c), m
t
u(c)]

(14)

In the above equations, dto is the dialogue con-
text at turn t output by the state encoder (Section
3.3), atutt, a

t
slot(s) and atcand(s, c) are system act

encodings generated by the system act encoder
(Section 3.1), pt−1δ (s) and pt−1φ (s) are the scores
associated with dontcare and null values for
slot s respectively. pt−1c (s) is the score associated
with candidate c of slot s in the previous turn and
is taken to be 0 if c 6∈ Cts. mt

v(s, c) are variables
indicating whether a candidate is valid or padded
(Section 3.8). We define another indicator feature
mt
u(c) which takes the value 1.0 if the candidate

is a substring of the user utterance in turn t or
0.0 otherwise. This informs the candidate scorer
which candidates have been mentioned most re-
cently by the user.

r′tslot(s) = rtutt ⊕ rtslot(s) (15)

lts(δ) = FF 1
cs(r

′t
slot(s)) (16)

lts(c) = FF 2
cs(r

′t
slot(s)⊕ rtcand(s, c)) (17)

pts = softmax(lts) (18)

Features used in Equations 12-14 are then used
to obtain the distribution over V t

s using Equations
15-17. In the above equations, lts(δ) denotes the
logit for dontcare value for slot s, lts(c) denotes
the logit for a candidate c ∈ Cts and lts(φ) is a
trainable parameter. These logits are obtained by
processing the corresponding features using feed-
forward neural networks FF 1

cs and FF 2
cs, each

having one hidden layer. The output dimension
of these networks is 1 and the dimension of the
hidden layer is taken to be half of the input dimen-
sion. The logits are then normalized using softmax
to get the distribution pts over V t

s .

4 Scheduled Sampling
DST is a recurrent model which uses predictions
from the previous turn. For stability during train-
ing, ground truth predictions from the previous
turn are used. This causes a mismatch between
training and inference behavior. We use sched-
uled sampling (Bengio et al., 2015) to bridge this
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Figure 4: Illustration of scheduled sampling for training the candidate scorer. The left figure shows the
two locations in our setup where we can perform scheduled sampling, while the plot on the right shows
the variation of sampling probabilities pc and pD with training step. See Section 4 for details.

mismatch. Scheduled sampling has been shown to
achieve improved slot tagging performance on sin-
gle turn datasets (Liu and Lane, 2016). Figure 4
shows our setup for scheduled sampling for DST,
which is carried out at two different locations - slot
tags and dialogue state.

The performance of slot tagger is critical to
DST because any slot value missed by the slot tag-
ger will not be added to the candidate set (unless
it is tagged in another utterance or present in any
system act). To account for this, during training,
we sample between the ground truth slot tags (c̄tu)
and the predicted slot tags (ctu), training initially
with c̄tu (i.e. with keep probability pc = 1) but
gradually reducing pc i.e. increasingly replacing
c̄tu with ctu. Using predicted slot tags during train-
ing allows DST to train in presence of noisy can-
didate sets.

During inference, the candidate scorer only has
access to its own predicted scores in the previous
turn (Equations 13 and 14). To better mimic this
setup during training, we start with using ground
truth previous scores taken from D̄t−1 (i.e. with
keep probability pD = 1) and gradually switch to
Dt−1, the predicted previous scores, reducing pD.

Both pc and pD vary as a function of the training
step k, as shown in the right part of Figure 4; only
ground truth slot tags and dialogue state are used
for training i.e. pc and pD stay at 1.0 for the first
kpre training steps, and then decrease linearly as
the ground truth slot tags and state are increasingly
replaced by model predictions during training.

5 Experiments
The major contributions of our work are two-fold.
First, we hypothesize that joint modeling of LU
and DST results in a computationally efficient
model with fewer parameters without compromis-
ing performance. Second, we propose the use of
scheduled sampling to improve the robustness of
DST during inference. To this end, we conduct
experiments across the following two setups.

Separate vs Joint LU-DST - Figure 3 shows the
joint LU-DST setup where parameters in the utter-
ance encoder and state encoder are shared across
LU tasks (intent classification, dialogue act clas-
sification and slot tagging) and DST (candidate
scoring). As baselines, we also conduct experi-
ments where LU and DST tasks use separate pa-
rameters for utterance and state encoders.

Scheduled Sampling - We conduct scheduled
sampling (as described in Section 4) experiments
in four different setups.
1. None - Ground truth slot tags (c̄tu) and previous

dialogue state (D̄t−1) are used for training.
2. Tags - Model samples between ground truth

(c̄tu) and predicted (ctu) slot tags, sticking to
ground truth previous state.

3. State - Model samples between ground truth
(D̄t−1) and predicted (Dt−1) previous state,
sticking to ground truth slot tags.

4. Both - Model samples between D̄t−1 and Dt−1

as well as between c̄tu and ctu.
In the last three setups, we start sampling from

predictions only after kpre = 0.3 kmax training
steps, as shown in Figure 4.
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5.1 Evaluation Metrics
We report user intent classification accuracy, F1
score for user dialogue act classification, frame ac-
curacy for slot tagging and joint goal accuracy and
slot F1 score for DST. During DST evaluation, we
always use the predicted slot values and the dia-
logue state in the previous turn. Slot frame accu-
racy is defined as the fraction of turns for which all
slot labels are predicted correctly. Similarly, joint
goal accuracy is the fraction of turns for which the
predicted and ground truth dialogue state match
for all slots. Since it is a stricter metric than DST
slot F1, we use it as the primary metric to identify
the best set of parameters on the validation set.

5.2 Datasets
We evaluate our approaches on two datasets:
• Simulated Dialogues2 - The dataset, described

in Shah et al. 2017, contains dialogues from
restaurant (Sim-R) and movie (Sim-M) do-
mains across three intents. A challenging as-
pect of this dataset is the prevalence of OOV
entities e.g. only 13% of the movie names in
the dev/test sets also occur in the training data.
• DSTC2 - We use the top ASR hypothesis and

system dialogue acts as inputs. Dialogue act
labels are obtained from top SLU hypothesis
and state labels for requestable slots. DS labels
are obtained from state labels for informable
slots. We use a semantic dictionary (Hender-
son et al., 2014) to obtain ground truth slot tags.
We also use the semantic dictionary to canoni-
calize the candidate values since the slot val-
ues in the dialogue state come from a fixed set
in the DSTC2 dialogues and may be different
from those present in the user utterance.

5.3 Training
We use sigmoid cross entropy loss for dialogue
act classification and softmax cross entropy loss
for all other tasks. During training, we minimize
the sum of all task losses using ADAM optimizer
(Kingma and Ba, 2014), for 100k training steps
with batches of 10 dialogues each. We used grid-
search to identify the best hyperparameter values
(sampled within specified range) for learning rate
(0.0001 - 0.005) and token embedding dimension
(50 - 200). For scheduled sampling experiments,
the minimum keep rate i.e. pmin is varied between

2Dataset available at http://github.com/google-research-
datasets/simulated-dialogue/

0.1 - 0.9 with linear decay. The layer sizes for the
utterance encoder and slot tagger are set equal to
the token embedding dimension, and that of the
state encoder to half this dimension.

Slot Value dropout - To make the model ro-
bust to OOV tokens arising from new entities not
present in the training set, we randomly replace
slot value tokens in the user utterance with a spe-
cial OOV token with a probability that linearly in-
creases from 0.0 to 0.4 during training.

6 Results and Discussion

Table 1 shows our results across the two setups
described in Section 5, for the Simulated Dia-
logues datasets. For Sim-R + Sim-M, we ob-
serve that the joint LU-DST model with sched-
uled sampling (SS) on both slot tags and dialogue
state performs the best, with a joint goal accuracy
of 73.8% overall, while the best separate model
gets a joint goal accuracy of 71.9%, using SS only
for slot tags. Even for the no-SS baselines, the
joint model performs comparably to the separate
model (joint goal accuracies of 68.6% and 68.7%
respectively), indicating that sharing results in a
more efficient model with fewer parameters, with-
out compromising overall performance. For each
SS configuration, our results comparing separate
and joint modeling are statistically significant, as
determined by the McNemar’s test with p < 0.05.

On the Sim-R dataset, the best joint model ob-
tains a joint goal accuracy of 87.1%, while the best
separate model obtains 85.0%. However, we ob-
serve a significant drop in joint goal accuracy for
the Sim-M dataset for both the joint model and
the separate model as compared to Sim-R. This
can partly be attributed to the Sim-M dataset being
much smaller than Sim-R (384 training dialogues
as opposed to 1116) and that the high OOV rate of
the movie slot in Sim-M makes slot tagging per-
formance more crucial for Sim-M. While SS does
gently bridge the gap between training and testing
conditions, its gains are obscured in this scenario
possibly since it is very hard for DST to recover
from a slot value being completely missed by LU,
even when aided by SS.

For the two datasets, we also observe a signif-
icant difference between the slot frame accuracy
and joint goal accuracy. This is because an LU er-
ror penalizes the slot frame accuracy for a single
turn, whereas an error in dialogue state propagates
through all the successive turns, thereby drasti-
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Table 1: Experiments and results on test set with variants of scheduled sampling on separate and joint
LU-DST models, when trained on Sim-M + Sim-R.

Eval Set SS Intent Dialogue Act Slot Frame Joint Goal DST Slot
Setup Accuracy F1 Score Accuracy Accuracy F1 Score

Sep Joint Sep Joint Sep Joint Sep Joint Sep Joint

Sim-R None 0.999 0.997 0.956 0.935 0.924 0.919 0.850 0.846 0.951 0.952
Tags 0.998 0.998 0.936 0.957 0.917 0.922 0.805 0.871 0.936 0.962
State 0.999 0.998 0.931 0.939 0.919 0.920 0.829 0.852 0.935 0.951
Both 0.994 0.998 0.948 0.919 0.917 0.916 0.829 0.849 0.942 0.953

Sim-M None 0.991 0.993 0.966 0.966 0.801 0.800 0.276 0.283 0.806 0.817
Tags 0.993 0.994 0.970 0.967 0.895 0.801 0.504 0.262 0.839 0.805
State 0.996 0.970 0.964 0.955 0.848 0.799 0.384 0.266 0.803 0.797
Both 0.989 0.996 0.970 0.959 0.887 0.860 0.438 0.460 0.805 0.845

Sim-R + None 0.996 0.996 0.959 0.944 0.890 0.885 0.687 0.686 0.902 0.906
Sim-M Tags 0.996 0.997 0.946 0.960 0.910 0.888 0.719 0.698 0.902 0.905

State 0.996 0.990 0.940 0.943 0.899 0.886 0.702 0.683 0.897 0.899
Both 0.993 0.997 0.954 0.931 0.909 0.900 0.717 0.738 0.894 0.915

cally reducing the joint goal accuracy. This gap
is even more pronounced for Sim-M because of
the poor performace of slot tagger on movie slot,
which is often mentioned by the user in the begin-
ning of the dialogue. The relatively high values of
overall DST slot F1 for Sim-M for all experiments
also corroborates this observation.

Table 2: Reported joint goal accuracy of model
variants on the DSTC2 test set.

Model Separate Joint
No SS 0.661 0.650
Tags only SS 0.655 0.670
State only SS 0.661 0.660
Tags + State SS 0.656 0.658
Liu and Lane 2017 - 0.73
Mrkšić et al. 2017 - 0.734

Table 2 shows our results on the DSTC2 dataset,
which contains dialogues in the restaurant domain.
The joint model gets a joint goal accuracy of
65.0% on the test set, which goes up to 67.0% with
SS on slot tags. Approaches like NBT (Mrkšić
et al., 2017) or Hierarchical RNN (Liu and Lane,
2017) are better suited for such datasets, where the
set of all slot values is already known, thus elimi-
nating the need for slot tagging. On the other hand,
our setup uses slot tagging for candidate genera-
tion, which allows it to scale to OOV entities and
scalably handle slots with a large or unbounded set

of possible values, at the cost of performance.
Analyzing results for scheduled sampling, we

observe that for almost all combinations of met-
rics, datasets and joint/separate model configura-
tions, the best result is obtained using a model
trained with some SS variant. For instance, for
Sim-M, SS over slot tags and state increases joint
goal accuracy significantly from 28.3% to 46.0%
for joint model. SS on slot tags helps the most
with Sim-R and DSTC2: our two datasets with
the most data, and low OOV rates, while SS on
both slot tags and dialogue state helps more on the
smaller Sim-M. In addition, we also found that slot
value dropout (Section 5.3), improves LU as well
as DST results consistently. We omit the results
without this technique for brevity.

7 Conclusions

In this work, we present a joint model for language
understanding (LU) and dialogue state tracking
(DST), which is computationally efficient by way
of sharing feature extraction layers between LU
and DST, while achieving an accuracy compa-
rable to modeling them separately across multi-
ple tasks. We also demonstrate the effectiveness
of scheduled sampling on LU outputs and previ-
ous dialogue state as an effective way to simulate
inference-time conditions during training for DST,
and make the model more robust to errors.
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Abstract

This paper proposes a new weighting
method for extending a dyad-level mea-
sure of convergence to multi-party dia-
logues by considering group dynamics in-
stead of simply averaging. Experiments
indicate the usefulness of the proposed
weighted measure and also show that in
general a proper weighting of the dyad-
level measures performs better than non-
weighted averaging in multiple tasks.

1 Introduction

Entrainment is the tendency of speakers to begin
behaving like one another in conversation. The
development of methods for automatically quanti-
fying entrainment in text and speech data is an ac-
tive research area, as entrainment has been shown
to correlate with outcomes such as success mea-
sures and social variables for a variety of phenom-
ena, e.g., acoustic-prosodic, lexical, and syntactic
(Nenkova et al., 2008; Reitter and Moore, 2007;
Mitchell et al., 2012; Levitan et al., 2012; Lee
et al., 2011; Stoyanchev and Stent, 2009; Lopes
et al., 2013; Lubold and Pon-Barry, 2014; Moon
et al., 2014; Sinha and Cassell, 2015; Lubold et al.,
2015). One of the main measures of entrainment is
convergence which is the main focus of this paper.
Within a conversation, convergence measures the
amount of increase in similarity of speakers over
time in terms of linguistic features (Levitan and
Hirschberg, 2011).

While most research has focused on quantifying
the amount of entrainment between speaker pairs
(i.e., dyads), recent studies have started to develop
measures for quantifying entrainment between
larger groups of speakers (Friedberg et al., 2012;
Danescu-Niculescu-Mizil et al., 2012; Gonzales
et al., 2010; Doyle and Frank, 2016; Litman et al.,

2016; Rahimi et al., 2017a). To date, mainly sim-
ple methods such as unweighted averaging have
been used to move from dyads to groups (Gon-
zales et al., 2010; Danescu-Niculescu-Mizil et al.,
2012; Litman et al., 2016).

However, because multi-party interactions are
more complicated than dyad-level interactions, it
is not clear that the contribution of all group mem-
bers should be weighted equally. For example,
to account for participation differences, Friedberg
et al. proposed a weighting method based on the
number of uttered words of each dyad (Friedberg
et al., 2012), although this did not yield perfor-
mance improvements compared to simple averag-
ing. Rahimi et al. (Rahimi et al., 2017b) pro-
vided examples of group-specific behaviors that
were not properly quantified using simple averag-
ing. While this case study nicely identified poten-
tial problems with prior measures, their observa-
tions were only based on a few example dialogues
and no solutions were proposed.

In this paper, we propose a new weighting
method to normalize the contribution of speak-
ers based on group dynamics. We explore the ef-
fect of our method, participation weighting, and
simple averaging when calculating group conver-
gence from dyads. We conclude that our proposed
weighted convergence measure performs signif-
icantly better on multiple benchmark prediction
and regression tasks that have been used to eval-
uate convergence in prior studies (De Looze et al.,
2014; Lee et al., 2011; Jain et al., 2012; Rahimi
et al., 2017a; Doyle et al., 2016; Lee et al., 2011).

2 Convergence for Multi-Party Dialogue

The convergence measure that we extend in this
paper is adopted from prior work. Originally, con-
vergence between dyads (Levitan and Hirschberg,
2011) was measured by calculating the difference

385



between the dissimilarity of speakers in two non-
overlapping time intervals. If the dissimilarity in
the second interval was less than in the first, the
pair was said to be converging.

Extending this work, multi-party conver-
gence (Litman et al., 2016) was measured using
Non-Weighted (NW) averaging of each pairs’ con-
vergence, as shown in Equations 1 and 2:

GroupDifft =

∑
∀i 6=j∈group(|fi,t − fj,t|)
|group| ∗ (|group| − 1)

(1)

ConvNW = GroupDifft1 −GroupDifft2 (2)

GroupDifft corresponds to average group differ-
ences calculated for linguistic feature f in time in-
terval t for all pairs (i,j). The convergence is the
difference between GroupDiffs in two intervals.

In the next subsections, we introduce two
weighted variations of these formulas: a base-
line based on participation ratios (Friedberg et al.,
2012), and a method based on group dynamics.

2.1 Weighting Based on Participation
The idea behind this approach is that the weights
for speakers that may have talked very little should
be reduced. In prior work on multi-party lexi-
cal entrainment (Friedberg et al., 2012), speaker
participation was measured by number of uttered
words; the participation ratios of speaker pairs
were then used as the weights.

Since our work focuses on acoustic-prosodic
entrainment, we measure speaker participation
by amount of speaking time. The Participation
Ratio (PR) of each speaker in a given tempo-
ral interval is their total speech time divided by
the duration of the interval including silences.
Speech and silence periods are automatically an-
notated using Praat (Boersma and Heuven, 2002).
The Participation-based Weighted (PW) average
of convergence for all pairs p in a group is then
computed as follows:

ConvPW =

∑
∀p∈group(Convp ∗ PRp)

Nump

∑
∀p∈group PRp

(3)

Nump indicates number of pairs, and Participa-
tion Ratio for a pair, PRp, for the two intervals
is the sum of PRs for both speakers and in both
intervals. Finally, convergence for pair p = (i, j)
and for two disjoint intervals t1 and t2 is calculated
as in Equation 4:

Convp=(i,j) = (|fi,t1 − fj,t1 | − |fi,t2 − fj,t2 |) (4)

Figure 1: A group in which all speakers except
Speaker2 are converging to each other.

2.2 Weighting Based on Group Dynamics
Although participation-based weighting decreases
the contribution of less active speakers when cal-
culating group convergence, it does not take group
convergence dynamics into account. Rahimi et al.
(Rahimi et al., 2017b) argue that it might instead
be better to decrease the contribution of speak-
ers whose convergence behaviors differ from the
rest of the group (e.g., Speaker2 in Figure 1). To
tackle this issue, we use weighting to decrease the
contribution of outlier speakers. In particular, we
propose that the weight for a speaker should be the
percentage of individuals who have the same con-
vergence behavior as the speaker.

Equation 5 defines our proposed Group
Dynamic-Based Weighted (GDW) convergence
measure:

ConvGDW =
∑

g∈G

|g|
|N | ∗

∑
i∈g

∑
j 6=i∈N Convij

|Numpair|
(5)

G is a set including three categories: G =
{Converging,Diverging,MixedBehavior}, g
is a set of all individuals who belong to a cate-
gory in G, |N | is the number of all speakers in the
group, and |Numpair| is the number of pairs.

Consider the example in Figure 1. There are 12
pairs (6 unique pairs since convergence is a sym-
metric measure). Each speaker is in three unique
pairs with the other three members of the group.

If all conversational pairs that a speaker is in-
volved in have positive convergence values, the
speaker is converging to the group and has the
Converging category. If all involved pairs have
negative value, the speaker is diverging from the
group. Else, the speaker has a mixed-behavior.

The weight for each category is the number of
speakers who have corresponding behavior nor-
malized by the group size. For example, in a group
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where all members diverge from each other, the
weights will be: converging = 0, diverging =
1, and mixedBehavior = 0. For the group
in Figure 1, weights are: converging = 0,
diverging = 1/4, and mixedBehavior = 3/4.
So, the group convergence for this example is as
follows, where C(i) is shortened for sum of pair
convergences for speaker i:

ConvGDW = 0 ∗ 0 +
1

4
∗ C(2)

+
3

4
∗ [C(1) + C(3) + C(4)] (6)

3 Data

To evaluate the utility of weighting based on group
dynamics, we measure acoustic-prosodic conver-
gence in the Teams Corpus (Litman et al., 2016).
The corpus includes audio files for 62 teams of 3
or 4 individuals playing a cooperative board game
in two sessions. First games (Game1) take signif-
icantly longer than second games (Game2) (27.1
vs. 18.4 minutes, p < .001) and are in chronolog-
ical order. The teams are disjoint in participants.
We break each game into four equal intervals1 (in-
cluding silences) and choose the first and last in-
tervals to compute convergence for eight acoustic-
prosodic features: maximum (max), mean, and
standard deviation (SD) of pitch; max, mean, and
SD of intensity; local jitter2; and local shimmer3.
The features are extracted from each of the first
and last intervals for each speaker in each team.

Individually taken self-reported pre- and post-
game surveys are available for both sessions,
including: (1) favorable social outcome mea-
sures (perceptions of cohesion, satisfaction, po-
tency/efficacy and perceptions of shared cogni-
tion), and (2) conflict measures (task, process, and
relationship conflicts). Since favorable measures
have high correlations, we z-scored each separate
outcome and averaged these scores to make a sin-
gle omnibus favorable group perception scale and
then averaged them for each team to create a team-
level Favorable measure. Since process conflict
was the only conflict measure that could be split at
the median without making arbitrary choices 4, we
z-scored the process conflict and averaged it in the

1Any method of breaking the games to compare two dis-
joint intervals can be used.

2The average absolute difference between the amplitudes
of consecutive periods, divided by the average amplitude.

3The average absolute difference between consecutive pe-
riods, divided by the average amplitude.

4The median split is required for our classification tasks.

groups to construct a team-level Process Conflict
measure. Favorable and Process Conflict will be
used to evaluate the quality of the different conver-
gence measures from Section 2.

4 Experiments and Discussion

Our experimental evaluations use two tasks that
have been used for convergence measure evalua-
tions in previous studies (De Looze et al., 2014;
Lee et al., 2011; Jain et al., 2012; Rahimi et al.,
2017a; Doyle et al., 2016; Lee et al., 2011).

Predicting Social Outcomes: Our first task ex-
amines how the NW, PW, and GDW measures of
acoustic-prosodic convergence (independent vari-
ables) relate to the social outcome measures (de-
pendent variables) from Section 3. This is sim-
ilar to prior studies which have evaluated con-
vergence in terms of predicting outcomes (Doyle
et al., 2016; Lee et al., 2011; Rahimi et al., 2017a).
We hypothesize that the group-dynamic weighted
convergence measure will outperform the non-
weighted and participation-based measures.

First, we train a hierarchical multiple regression
with each of the three groups of convergence mea-
sures, added once in the first level and the other
time in the second, to measure if the second level
predictors significantly improve the explanation of
variance. We only keep predictors with significant
coefficients when presenting the models.5

For Process Conflict, the results show that all
NW, PW, and GDW predictor groups are as good
as each other; no matter which group is entered in
the first level, the predictors in the second level do
not significantly improve model fit.

For Favorable, neither PW nor NW in the
second level significantly improves performance.
However, Table 1 shows that adding the GDW
measures at the second level significantly im-
proves a model with only NW features at the first
level. The amount of variance explained in Model
2 is significantly above and beyond Model 1,
∆R2 = 0.048, ∆F (2, 119) = 3.179, p = 0.045.
The reverse order, GDW at first level and NW at
the second level, shows that the improvement at
the second level is not significant, ∆R2 = 0.031,
∆F (2, 119) = 2.068, p = 0.131. These results
indicate that the proposed weighted (GDW) con-
vergence (for intensity max and SD) are the best

5To control for the effect of first versus second dialogue
(game) for each group, we also included an independent vari-
able for game. However, the coefficient was never significant.
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Independent Vars M1 (β) M2 (β)
Intensity max (NW) 0.248* -0.164
Intensity SD(NW) -0.055 -0.479+
Intensity max(GDW) 0.430+
Intensity SD(GDW) 0.457+

R2 0.063 0.110
F 4.034* 3.678*

Table 1: Hierarchical regression results with inten-
sity max and SD convergence as independent, and
Favorable as dependent, variables. The NW mea-
sures are added in the first level and GDW mea-
sures in the second level. Significant / trending
results if p-value is < 0.05 (*) or < 0.1 (+).

Favorable Process Conflict
Majority 50 53
NW 50 66.93
PW 53.23 67.74+(GDW)
GDW 62.90** 62.90
GDW+PW 58.87 66.13

Table 2: LOOCV prediction accuracies of bi-
nary favorable social outcome and process conflict
variables. (**) indicates GWD model significantly
outperforms both PW and NW models. (+) indi-
cates PW improvement over GDW is trending.

predictors of the favorable social outcome com-
pared with the other two measures of convergence.

Next, we reduce the task from regression to
a binary classification by splitting the two social
outcome variables at the median. We perform
Leave-One-Out Cross-Validations (LOOCV) us-
ing a logistic regression (L2) algorithm and all
eight acoustic-prosodic features to predict binary
outcomes. The results in Table 2 show that the
GWD model significantly6 outperforms both PW
and NW models to predict the favorable social out-
come. In the prediction of process conflict, the
PW model outperforms both NW and GDW mod-
els and its improvement over GDW is trending.

In sum, the results in both tables support our hy-
pothesis for the favorable social outcome, where
the proposed GDW convergence measure is a bet-
ter predictor of the outcome. For process conflict,
we do not see any significant difference.

Predicting Real Dialogues: The existence of
entrainment should not be incidental. To evaluate
this criteria, we use permuted versus real conver-
sations as in (De Looze et al., 2014; Lee et al.,
2011; Jain et al., 2012). We hypothesize that GDW
will be the best convergence measure for distin-

6Corrected paired t-test was performed to address instance
dependency from both games (Nadeau and Bengio, 2000).

All Game1 Game2
Majority 50 50 50
NW 54.43 60.48 49.19
PW 53.62 58.06 51.61
GDW 54.03 67.74*+ 48.39

Table 3: Accuracies using the linear SVM models
and LOOCV to predict real conversations. (+) in-
dicates GWD outperforms NW with p = 0.06 , (*)
indicates GWD outperforms PW with p = 0.004.

guishing real versus permuted dialogues.
For each of the 124 game sessions, we con-

struct artificially permuted versions of the real dia-
logues as follows. For each speaker, we randomly
permute the silence and speech intervals extracted
by Praat. Next, we measure convergence for all
the groups with permuted audios. We perform a
leave-one-out cross-validation experiment to pre-
dict real conversations using the convergence mea-
sures. We examined several classification algo-
rithms including logistic regression; linear SVM
was the only one that showed significant results.

The “All” results in Table 3 show that none of
the models significantly outperform the majority
baseline. To diagnose the issue, we perform the
prediction on each game separately. The proposed
GDW model significantly outperforms other mod-
els for Game 1. However, for Game 2, none of
the results are significantly different. One reason
might be that convergence occurs quickly during
Game 1, and there is not much convergence occur-
ring at Game 2. Thus, there is no significant dif-
ference between permuted and not permuted con-
vergence for any of the features during Game 2.

5 Conclusion

In this paper, we introduced a new weighted
convergence measure for multi-party entrainment
which utilizes group convergence dynamics to
weight pair convergences. Experimental results
show that the proposed weighted measure is more
predictive for two evaluation tasks used in prior
entrainment studies: predicting favorable social
outcomes and predicting real versus permuted
conversations. In future work we plan to apply the
proposed weighted convergence measure to fea-
tures other than acoustic-prosodic, e.g., lexical.
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Abstract

Concept definition is important in lan-
guage understanding (LU) adaptation
since literal definition difference can eas-
ily lead to data sparsity even if different
data sets are actually semantically corre-
lated. To address this issue, in this paper,
a novel concept transfer learning approach
is proposed. Here, substructures within lit-
eral concept definition are investigated to
reveal the relationship between concepts.
A hierarchical semantic representation for
concepts is proposed, where a semantic
slot is represented as a composition of
atomic concepts. Based on this new hi-
erarchical representation, transfer learning
approaches are developed for adaptive LU.
The approaches are applied to two tasks:
value set mismatch and domain adapta-
tion, and evaluated on two LU bench-
marks: ATIS and DSTC 2&3. Thorough
empirical studies validate both the effi-
ciency and effectiveness of the proposed
method. In particular, we achieve state-of-
the-art performance (F1-score 96.08%) on
ATIS by only using lexicon features.

1 Introduction

The language understanding (LU) module is a
key component of dialogue system (DS), pars-
ing user’s utterances into corresponding seman-
tic concepts (or semantic slots 1). For example,
the utterance “Show me flights from Boston to
New York” can be parsed into (from city=Boston,
to city=New York) (Pieraccini et al., 1992). Typ-
ically, the LU is seen as a plain slot filling task.

∗The corresponding author is Kai Yu.
1Slot and concept are equal in LU. They will be mixed in

the rest of this paper to some extent.

Figure 1: An example of hierarchical structure
to represent semantic slot with atomic concepts.
There are three levels in this structure. The plain
slot SLOT (transfer airport of the inbound flight)
can be represented as a tuple of atomic concepts
sequentially.

With sufficient in-domain data and deep learning
models (e.g. recurrent neural networks, bidirec-
tional long-short term memory network), statis-
tical methods have achieved satisfactory perfor-
mance in the slot filling task recently (Kurata et al.,
2016; Vu, 2016; Liu and Lane, 2016).

However, retrieving sufficient in-domain data
for training LU model (Tur et al., 2010) is unre-
alistic, especially when the semantic slot extends
or dialogue domain changes. The ability of LU ap-
proaches to cope with changed domains and lim-
ited data is a key to the deployment of commercial
dialogue systems (e.g. Apple Siri, Amazon Alexa,
Google Home, Microsoft Cortana etc).

In this paper, we investigate substructure of
semantic slots to find out slot relations and pro-
mote data reuse. We represent semantic slots with
a hierarchical structure based on atomic concept
tuple, as shown in Figure 1. Each semantic
slot is composed of different atomic concepts,
e.g. slot “from city” can be defined as a tu-
ple of atoms [“from location”,“city name”],
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Figure 2: An example of mismatched LU datasets
labelled with [value: slot]. FC refers to
“from city”. TC refers to “to city”.

and “date of birth” can be defined as
[“date”,“birth”].

Unlike the traditional slot definition on a plain
level, modeling on the atomic concepts helps iden-
tify linguistic patterns of related slots by atom
sharing, and even decrease the required amount
of training data. For example, the training and
test sets are unmatched in Figure 2, whereas the
patterns of atomic concepts (e.g. “from”, “to”,
“city”) can be shared.

In this paper, we investigate the slot filling task
switching from plain slots to hierarchical struc-
tures by proposing the novel atomic concept tuples
which are constructed manually. For comparison,
we also introduce a competitive method which
automatically learns slot representation from the
word sequence of each slot name. Our meth-
ods are applied to value set mismatch and domain
adaptation problems on ATIS (Hemphill et al.,
1995) and DSTC 2&3 (Henderson et al., 2013) re-
spectively. As shown in the experimental results,
the slot-filling based on concept transfer learning
is effective in solving the value set mismatch and
domain adaptation problems. The concept transfer
learning method especially achieves state-of-the-
art performance (F1-score 96.08%) on the ATIS
task.

The rest of the paper is organized as follows.
The next section is about the relation to prior work.
The atomic concept tuple is introduced in section
3. The proposed concept transfer learning is then
described in section 4. Section 5 describes a com-
petitive method with slot embedding derived from
the literal descriptions of slot names. In section
6, the proposed approach is evaluated on the value
set mismatch and domain adaptation problems. Fi-
nally, our conclusions are presented in section 7.

2 Related Work

Slot Filling in LU Zettlemoyer and Collins (2007)
proposed a grammar induction method by learn-
ing a Probabilistic Combinatory Categorial Gram-
mar (PCCG) from logical-form annotations. As a

grammar-based method, PCCG is close to a hier-
archical concepts structure in grammar generation
and combination. But this grammar-based method
does not possess high generalization capability for
atomic concept sharing, and heavily depends on a
well-defined lexicon set.

Recent research on statistical slot filling in LU
has been focused on the Recurrent Neural Net-
work (RNN) and its extensions. At first, RNN out-
performed CRF (Conditional Random Field) on
the ATIS dataset (Yao et al., 2013; Mesnil et al.,
2013). Long-short term memory network (LSTM)
was introduced to obtain a marginal improvement
over RNN (Yao et al., 2014). After that, many
RNN variations were proposed: encoder-labeler
model (Kurata et al., 2016), attention model (Liu
and Lane, 2016; Zhu and Yu, 2017) etc. However,
these work only predicted the plain semantic slot,
not the structure of atomic concepts.

Domain Adaptation in LU For the domain
adaptation in LU, Zhu et al. (2014) proposed
generating spoken language surface forms by us-
ing patterns of the source domain and the ontol-
ogy of the target domain. With regard to the
unsupervised LU, Heck and Hakkani-Tur (2012)
exploited the structure of semantic knowledge
graphs from the web to create natural language
surface forms of entity-relation-entity portions of
knowledge graphs. For the zero-shot learning of
LU, Ferreira et al. (2015); Yazdani and Hender-
son (2015) proposed a model to calculate similar-
ity scores between an input sentence and semantic
items. In this paper, we focus on the extension of
slots with limited seed data.

3 Atomic Concept Tuples

Although concept definition is one of the most cru-
cial problems of LU, there is no unified surface
form for the domain ontology. Even for the same
semantic slot, names of this slot may be quite dif-
ferent. For example, the city where the flight de-
parts may be called “from city”, “depart city” or
“from loc.city name”. Ontology definitions from
different groups may be similar but not consistent,
which is not convenient for data reuse. Mean-
while, semantic slots defined in traditional LU sys-
tems are on a plain level, while there is no structure
to indicate their relation.

To solve this problem, we propose to use atomic
concepts to represent the semantic slots. Atomic
concepts are exploited to break down the slots. We
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represent the semantic slots as atomic concept tu-
ples (Figure 1 is an example). The semantic slot
composed of these atomic concepts can keep a uni-
fied resource for concept definition and extend the
semantic knowledge flexibly.

We propose a criteria to construct atomic con-
cept manually. For a given vocabulary C of the
atomic concepts, a semantic slot s can be repre-
sented by a tuple [c1, c2, ..., ck], where ci ∈ C is in
the i-th dimension and k is tuple length. In partic-
ular, a “null” atom is introduced for each dimen-
sion. Table 1 illustrates an example of slot rep-
resentation on the ATIS task. To avoid a scratch
concept branch, we make a constraint:

Ci ∩ Cj = {null}, 1 ≤ i 6= j ≤ k

where Ci (1 ≤ i ≤ k) denotes all possible atomic
concepts which exist in dimension i (i.e. ci ∈ Ci).
The concept tuple is ordered.

In general, atomic concepts can be classified
into two categories, one is value-aware and the
other is context-aware. The principle for defin-
ing slot as a concept branch is: lower dimension
less context-aware. For example, “city name” and
“airport name” depend on rare context (value-
aware). They should be located in the first dimen-
sion. “from location” depends on the context like
a pattern of “a flight leaves [city name]”, which
should be in the second dimension. The atomic
concept tuple shows the inner relation between
different semantic slots explicitly.

slot atomic concept tuple
city [city name, null]
from city [city name, from location]
depart city [city name, from location]
arrive airport [airport name, to location]

Table 1: An example of slot representation by
atomic concepts.

Therefore, the procedure of constructing atomic
concept tuples for slots can be divided into the fol-
lowing steps.

• Firstly, we build a vocabularyC of the atomic
concepts for all the slots. By analyzing the
conceptual intersection of different slots, we
can split the slots into smaller ones which
are called atomic concepts. After that, each
slot is represented as a set of atomic concepts
which are not ordered.

• Secondly, we gather the atoms into differ-
ent groups. Atomic concepts from the same
group should be mutually exclusive. There-
fore we can investigate the inner relation and
outer relation of these groups.

• Finally, each group is associated with one
dimension (Ci) of the atomic concept tu-
ple. The groups are ordered depending on
whether they are value-aware or context-
aware.

4 Concept Transfer Learning

The slot filling is typically considered as a se-
quence labelling problem. In this paper, we only
consider the sequence-labelling based slot filling
task. The input (word) sequence is denoted by
w = (w1, w2, ..., wN ), and the output (slot tag) se-
quence is denoted by s = (s1, s2, ..., sN ). Since a
slot may be mapped to several continuous words,
we follow the popular in/out/begin (IOB) repre-
sentation (e.g. an example in Figure 3).

Figure 3: An example of annotation for slot filling.

The typical slot filling task predicts a plain slot
sequence given a word sequence, dubbed as plain
slot-filling (PS).

In this paper, the popular bidirectional LSTM-
RNN (BLSTM) is used to model the sequence la-
beling problem (Graves, 2012). It can be ex-
ploited to capture both past and future features
for a specific time frame. The BLSTM reads the
input sentence w and generates N hidden states
hi =

←−
hi ⊕

−→
hi , i ∈ {1, .., N}:

←−
hi = b(

←−−
hi+1, ewi);

−→
hi = f(

−−→
hi−1, ewi)

where
←−
hi is the hidden vector of the backward pass

in BLSTM and
−→
hi is the hidden vector of the for-

ward pass in BLSTM at time i, b and f are LSTM
units of the backward and forward passes respec-
tively, ew denotes the word embedding for each
word w, and ⊕ denotes the vector concatenation
operation. We write the entire operation as a map-
ping BLSTMΘw (Θw refers to the parameters):

(h1...hN ) = BLSTMΘw(w1...wN ) (1)

Therefore, the plain slot filling defines a distri-
bution over slot tag sequences given an input word
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Figure 4: The proposed method about the atomic-concepts based slot filling. A slot is considered as a
tuple of atomic concepts, e.g. “from city” is represented as [“city name”,“from loc”]. Multiple output
layers are utilized to predict different atoms (including IOB schema). We involve two architectures: a) the
AC assumes that the output layers are independent, b) while the ACD makes a dependence assumption.

sequence:

p(s|w) =
N∏

i=1

p(si|hi)

=

N∏

i=1

softmax(Wo · hi)T δsi

(2)

where the matrix Wo (output layer) consists of the
vector representations of each slot tag, the symbol
δd is a Kronecker delta with a dimension for each
slot tag, and the softmax function is used to esti-
mate the probability distribution over all possible
plain slots.

4.1 Atomic-Concepts Based Slot Filling
The slot is indicated as an atomic concept tuple
based on hierarchical concept structure. Slot fill-
ing is considered as a concept-tuple labelling task.

(a) Atomic concept independent
Slot filling can be transferred to a multi-task se-

quence labelling problem, regarding these atomic
concepts independently (i.e. AC). Each task pre-
dicts one atomic concept by a respective output
layer. Thus, the slot filling problem can be for-
mulated as

p(s|w) =
N∏

i=1

[p(IOBi|hi)
k∏

j=1

p(cij |hi)]

where the semantic slot si is represented by an
atomic concept branch [ci1, ci2, ..., cik], and IOBi

is the IOB schema tag at time i. As illustrated
in Figure 4(a), the semantic slot “from city” can
be represented as [“city name”,“from loc”]. The

prediction of IOB is regarded as another task
specifically. All tasks share the same parameters
except for the output layers.

(b) Atomic concept dependent
Atomic concepts can also be regarded depen-

dently (i.e. ACD) so that atomic concept predic-
tion depends on the former predicted results. The
slot filling problem can be formulated as

p(s|w)

=

N∏

i=1

[p(IOBi|hi)p(ci1|hi)
k∏

j=2

p(cij |hi, ci,1:j−1)]

where ci,1:j−1 = (ci,1, ..., ci,j−1) is the predicted
result of former atomic concepts of slot tag si,
indicating a structured multi-task learning frame-
work.

In this paper, we make some simplifications on
concept dependence. We predict atomic concept
only based on the last atomic concept, as shown in
Figure 4(b).

4.2 Training and Decoding
Since our approach is a structured multi-task
learning problem, the model loss is summed over
each task during training. For the domain adapta-
tion, we firstly gather training data from the source
domain and seed data from the target domain to
be a union set. Subsequently, the union data is fed
into the slot filling model.

During the decoding stage, we combine pre-
dicted atomic concepts with probability multipli-
cation. The evaluation is made on the top-best hy-
pothesis. Although the atomic-concepts based slot
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filling may predict an unseen slot. We didn’t per-
form any post-processing but considered the un-
seen slot as a wrong prediction.

5 Literal Description of Slot Name

In the section, we introduce a competitive system
which uses the literal description of the slot as an
input of the slot filling model. The literal descrip-
tion of slot used in this paper is the word sequence
of each slot name, which can be obtained automat-
ically. As the names of relative slots may include
the same or similar word, the word sequence of
slot name can also help reveal the relation between
different slots. Therefore, it is very meaningful to
compare this method with the atomic concept tu-
ples involving human knowledge.

Figure 5: The proposed framework of slot filling
based on the literal description of the slot. The
literal description of a slot is the word sequence
of slot name which can be obtained automatically,
e.g. “from city” is represented as a word sequence
of “from city”. Another BLSTM in the orange dot-
ted circle is exploited to derive softmax embed-
dings from the slot names.

The architecture of this competitive system is il-
lustrated in Figure 5. First, it assumes that each
slot name is a meaningful natural language de-
scription so that the slot filling task is tractable
from the input word sequence and slot name. Sec-
ond, another BLSTM model is applied to derive
softmax embedding from the slot names. In this
method, we also split the slot filling task into IOB
tag prediction and slot name prediction. In other
words, the slot tag si is broken down into IOBi

and slot name SNi, e.g. the slot tag “B-from city”
is split into “B” and “from city”. The details are
indicated below.

With the BLSTM applied on the input sequence,
we have hidden vectors hi, i ∈ {1, .., N} as shown
in Eqn. (1). This model redefines the distribution

over slot tag sequences given an input word se-
quence, compared with Eqn. (2):

p(s|w) =
N∏

i=1

p(IOBi|hi)p(SNi|hi)

where p(IOBi|hi) predicts the IOB tag and
p(SNi|hi) makes a prediction for the slot name.
We define

p(SNi|hi) = softmax(W · hi)T δSNi

where W ∈ RA×B is a matrix, hi ∈ RB is a vec-
tor, A is the number of all different slot names.
The matrix W consists of the embedding of each
slot name (i.e. each row vector of W with length
B).

To capture the slot relation within different
slot names, we apply another BLSTM model (as
shown in the orange dotted circle of Figure 5) onto
the word sequence (literal description) of each slot
name. For the j-th slot name (j ∈ {1, .., A}) with
a word sequence xj = (xj1, ..., x

j
Nj

), we have

←−
vjn = lstmb(

←−−
vjn+1, exj

n
);
−→
vjn = lstmf (

−−→
vjn−1, exj

n
)

where
←−
vjn is the hidden vector of the backward pass

and
−→
vjn is the hidden vector of the forward pass at

time n (n ∈ {1, .., Nj}), ex denotes the word em-
bedding for each word x. We take the tails of both
backward and forward pass as the slot embedding,
i.e.

Wj =
←−
vj1 ⊕

−→
vjNj

where Wj is the j-th row vector of matrix W .
The relative slots using the same or similar word

in slot naming will be close in the space of slot
embedding inherently. Therefore, this method is
a competitive system to the atomic concept tuples.
We will show the comparison in the following sec-
tion.

6 Experiments

We evaluate our atomic-concept methods on two
tasks: value set mismatch and domain adaptation.

Value set mismatch task evaluates the general-
ization capability of different slot filling models.
In a language understanding (LU) system, each
slot has a value set with all possible values which
can be assigned to it. Since the semantically anno-
tated data is always limited, only a part of values

395



is seen in the training data. Will the slot filling
model perform well on the unseen values? To an-
swer this question, we synthesize a test set by the
values mismatched with the training set of ATIS
corpus. Our methods may take advantages of the
prior knowledge about slot relations based on the
atomic concepts and the literal descriptions of slot
names.

Domain adaptation task evaluates the adapta-
tion capability of our methods when they meet
new slots in the target domain. In this task, a seed
training set of the target domain is provided. How-
ever, it is very limited: 1) some new slots may
not be covered; 2) not all contexts are covered for
each new slot. The atomic-concepts based method
would alleviate this problem. Each slot is de-
fined as a tuple of atomic concepts in our method.
Therefore, it is possible to learn an unseen slot of
the target domain if its atomic concepts exist in the
data of the source domain and the seed data of the
target domain. It is also possible to see more con-
texts for a new slot if its atomic concepts exist in
the source domain which has much more data.

6.1 Value Set Mismatch

ATIS corpus has been widely used as a benchmark
by the LU community. The training data consists
of 4978 sentences and the test data consists of 893
sentences.

In this task, we perform an adaptation for un-
matched training and test sets, in which there are
many unseen slot-value pairs in the test set (Figure
2 is an example). It is a common problem in the
development of commercial dialogue system since
it is impossible to collect data covering all possible
slot-value pairs. We simulate this problem on the
ATIS dataset (Hemphill et al., 1995) by creating
an unmatched test set (ATIS X test).

ATIS X test is synthesized from the standard
ATIS test set by randomly replacing the value of
each slot with an unseen one. The unseen value
sets are collected from the training set according
to bottom-level concepts (e.g. “city name”, “air-
port name”). For example, if the value set of
“from city” is {“New York”, “Boston”} and the
value set of “to city” is {“Boston”}, then the un-
seen value for “to city” is “New York”. The test
sentence “Flights to [xx:to city]” can be replaced
to “Flights to [New York:to city]”. Finally, the
ATIS X test gets the same sentence number to the
standard ATIS test set.

6.1.1 Experimental Settings
We randomly selected 80% of the training data for
model training and the remaining 20% for valida-
tion. We deal with unseen words in the test set
by marking any words with only one single occur-
rence in the training set as 〈unk〉. We also con-
verted sequences of numbers to the string DIGIT,
e.g. 1990 is converted to DIGIT*4 (Zhang and
Wang, 2016). Regarding BLSTM model, we set
the dimension of word embeddings to 100 and the
number of hidden units to 100. For training, the
network parameters are randomly initialized in ac-
cordance with the uniform distribution (-0.2, 0.2).
Stochastic gradient descent (SGD) is used for up-
dating parameters. The dropout with a probability
of 0.5 is applied to the non-recurrent connections
during the training stage.

We try different learning rates by grid-search in
range of [0.008, 0.04]. We keep the learning rate
for 100 epochs and save the parameters that give
the best performance on the validation set. Finally,
we report the F1-score of the semantic slots on the
test set with parameters that have achieved the best
F1-score on the validation set. The F1-score is cal-
culated using CoNLL evaluation script. 2

6.1.2 Experimental Results and Analysis
Table 2 summarizes the recently published results
on the ATIS slot filling task and compares them
with the results of our proposed methods on the
standard ATIS test set. We can see that RNN
outperforms CRF because of the ability to cap-
ture long-term dependencies. LSTM beats RNN
by solving the problem of vanishing or explod-
ing gradients. BLSTM further improves the re-
sult by considering both the past and future fea-
tures. Encoder-decoder achieves the state-of-the-
art performance by modeling the label dependen-
cies. Encoder-labeler is a similar method to the
Encoder-decoder. These systems are designed to
predict the plain semantic slots traditionally.

Compared with the published results, our
method outperforms the previously published F1-
score, illustrated in Table 2. AC gets a marginal
improvement (+0.15%) over PS by predicting the
atomic concepts independently instead of the plain
slots. Moreover, ACD predicts the atomic con-
cepts dependently, gains 0.50% (significant level
95%) over the AC. Worth to mention that ACD
achieves a new state-of-the-art performance of the

2http://www.cnts.ua.ac.be/conll2000/chunking/output.html
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Model ATIS ATIS X test

CRF (Mesnil et al., 2013) 92.94 –
RNN (Mesnil et al., 2013) 94.11 –
LSTM (Yao et al., 2014) 94.85 –
BLSTM (Zhang and
Wang, 2016)

95.14 –

Encoder-decoder (Liu and
Lane, 2016)

95.72 –

Encoder-labeler (Kurata
et al., 2016)

95.66 –

Encoder-decoder-pointer
(Zhai et al., 2017)

95.86 –

Encoder-decoder∗ 95.79 79.84
BLSTM∗ (PS) 95.43 79.59
PS + dict-feats 95.57 80.74
AC 95.58 80.90
ACD 96.08 86.16
Slot name embedding 95.52 81.49

Table 2: Comparison with the published results
on the standard ATIS task, and evaluation on
ATIS X test. (∗ denotes our implementation.)

standard slot-tagging task on the ATIS dataset,
with only the lexicon features 3.

Our methods are also tested on the ATIS X test
to measure the ability of generalization. For
comparison, we also apply dictionary features (n-
gram indication) of value sets (e.g. some kind of
gazetteers) collected from training data into the PS
model (i.e. PS+dict-feats in Table 2). From Ta-
ble 2, we can see that: 1) The plain slot filling
models (PS, Encoder-decoder) are not on par with
other models. 2) The atomic-concepts based slot
filling gets a slight improvement over the PS with
dict-feats, considering the concepts independently
(AC). 3) The atomic-concepts based slot fillings
(ACD gains a large margin over AC, considering
the concepts dependently. 4) The method based
on slot name embedding (described in Section 5)
achieves a slight improvement than AC, which im-
plies that it is possible to reveal the relationship
between slots automatically.

3There are other published results that achieved better per-
formance by using Name Entity features, e.g. Mesnil et al.
(2013) got 96.24% F1-score. The NE features are manually
annotated and strong information. So it would be more mean-
ingful to use only lexicon features. Meanwhile, several other
works can obtain competitive results by using the intent clas-
sification as another task for joint training, e.g. Liu and Lane
(2016) achieved 95.98% F1-score. In this paper, we consider
the slot filling task only.

Case study: As illustrated in Table 3, the
plain slot filling (PS) predicts the label of “late”
wrongly, whereas the atomic-concepts based slot
fillings (i.e. AC and ACD) get the accurate an-
notation. The word of “late” is never covered by
the slot “period of day” in the training set. It is
hard for the plain slot filling (PS) to predict an un-
seen mapping correctly. Luckily, the “late” is cov-
ered by the family of the slot “period of day” in
the training set, e.g. “arrive time.period of day”.
Therefore, AC and ACD can learn this by model-
ing the atomic concepts separately.

6.2 Domain Adaptation

Our methods are also evaluated on the DSTC 2&3
task (Henderson et al., 2013) which is considered
to be a realistic domain adaptation problem.

DSTC 2 (source domain) comprises of dia-
logues from the restaurant information domain in
Cambridge. We use the dstc2 train set (1612 di-
alogues) for training and the dstc2 dev (506 dia-
logues) for validation.

DSTC 3 (target domain) introduces the tourist
information domain about restaurant, pubs and
coffee shops in Cambridge, which is an extension
of DSTC 2. We use seed data dstc3 seed (only 11
dialogues) as the training set of the target domain.

DSTC3 S test: In this paper, we focus on three
new semantic slots: “has tv, has internet, chil-
dren allowed”. 4 They only exist in the DSTC 3
dataset and have few appearances in the seed data.
A test set is chosen for specific evaluation on these
new semantic slots, by gathering all the sentences
(688 sentences) whose annotation contains these
three slots and randomly selecting 1000 sentences
irrelevant to these three slots from the dstc3 test
set. This test set is named as DSTC3 S test (1688
sentences).

The union of a slot and action is taken as a plain
semantic slot (e.g. “confirm.food=Chinese”),
since each slot is tied with an action (e.g. “in-
form”, “deny” and “confirm”) in DSTC 2&3. The
slot and action are taken as atomic concepts. For
the slot filling task, only the semantic annotation
with aligned information is kept, e.g. the semantic
tuple “request(phone)” is ignored. We use tran-
scripts as input, and make slot-value alignment by

4For each slot of “has tv, has internet, chil-
dren allowed”, the semantic annotation “request(slot)”
is replaced with “confirm(slot=True)”. Then we have
the slot-tagging format, e.g. ”does it have [televi-
sion:confirm.has tv]”.
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Reference ... could get in [boston:city name] [late:period of day] [night:period of day]
PS ... could get in [boston:city name] [late:airport name] [night:period of day]
AC ... could get in [boston:city name] [late:period of day] [night:period of day]
ACD ... could get in [boston:city name] [late:period of day] [night:period of day]

Table 3: Examples show how concept transfer learning benefits. We use [value:slot] for annotation.

string matching simply.

6.2.1 Experimental Results and Analysis
The experimental settings are similar to the
ATIS’s, whereas the seed data in DSTC 3 is also
used for validation.

Model Training set F1-score
PS dstc3 seed 83.52
PS dstc2 train + dstc3 seed 89.57
AC dstc3 seed 83.58
AC dstc2 train + dstc3 seed 91.98

ACD dstc2 train + dstc3 seed 92.15

Table 4: The performance of our methods evalu-
ated on the DSTC3 S test.

The performance of our methods in the DSTC
2&3 task is illustrated in Table 4. We can see that:
1) By incorporating the data of the source domain
(dstc2 train), PS and AC achieve improvements
respectively. 2) AC gains more than PS by mod-
eling the plain semantic slot as atomic concepts.
The atomic concepts promote the associated slots
to share input features for the same atoms. 3) The
atomic-concepts based slot filling considering the
concepts dependently (ACD) gains little (0.17%)
over AC considering the concepts independently.
It may be due to the small size of dstc3 seed.

Case study: Several cases from these mod-
els (trained on the union set of dstc2 train and
dstc3 seed) are also chosen to explain why the
atomic-concepts based slot filling outperforms the
typical plain slot filling, as shown in Table 5. From
the above part of Table 5, we can see PS pre-
dicts a wrong slot. Because the grammar “does it
have [something]” is only for the plain slot “con-
firm.hastv” in the seed data. From the below part
of Table 5, we can see that only ACD which con-
siders the concepts dependently predicts the right
slot. Since “confirm.childrenallowed” never ex-
ists in the seed data, PS can’t learn patterns about
it. Limited by the quantity of the seed data, AC
also doesn’t extract the semantics correctly.

Reference does it have [internet:confirm.hasinternet]
PS does it have [internet:confirm.hastv]
AC does it have [internet:confirm.hasinternet]
ACD does it have [internet:confirm.hasinternet]
Reference do they allow [children:confirm.CA]
PS do they allow [children:CA]
AC do they allow [children:CA]
ACD do they allow [children:confirm.CA]

Table 5: Examples show how concept transfer
learning benefits. CA denotes childrenallowed.

7 Conclusion

To address data sparsity problem of language un-
derstanding (LU) task, we present a novel method
of concept definition based on well-defined atomic
concepts. We present the concept transfer learn-
ing for slot filling on the atomic concept level to
solve the problem of adaptive LU. The experi-
ments on the ATIS and DSTC 2&3 datasets show
our method obtains promising results and outper-
forms the traditional slot filling, due to the knowl-
edge sharing of atomic concepts.

The atomic concepts are constructed manually
in this paper. In future work, we want to explore
more flexible concept definition for concept trans-
fer learning of LU. Moreover, we also propose a
competitive method based on slot name embed-
ding which can be extracted from the literal de-
scription of the slot name automatically. The ex-
perimental result shows that it lays foundation for
finding a more flexible concept definition method
for adaptive LU.
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Grégoire Mesnil, Xiaodong He, Li Deng, and Yoshua
Bengio. 2013. Investigation of recurrent-neural-
network architectures and learning methods for spo-
ken language understanding. In INTERSPEECH,
pages 3771–3775.

Roberto Pieraccini, Evelyne Tzoukermann, Zakhar
Gorelov, J-L Gauvain, Esther Levin, C-H Lee, and
Jay G Wilpon. 1992. A speech understanding sys-
tem based on statistical representation of semantics.
In Acoustics, Speech, and Signal Processing, 1992.
ICASSP-92., 1992 IEEE International Conference
on, volume 1, pages 193–196. IEEE.

Gokhan Tur, Dilek Hakkani-Tür, and Larry Heck.
2010. What is left to be understood in atis? In Spo-
ken Language Technology Workshop (SLT), 2010
IEEE, pages 19–24. IEEE.

Ngoc Thang Vu. 2016. Sequential convolutional neu-
ral networks for slot filling in spoken language un-
derstanding. In 17th Annual Conference of the In-
ternational Speech Communication Association (In-
terSpeech).

Kaisheng Yao, Baolin Peng, Yu Zhang, Dong Yu, Ge-
offrey Zweig, and Yangyang Shi. 2014. Spoken lan-
guage understanding using long short-term memory
neural networks. In 2014 IEEE Spoken Language
Technology Workshop (SLT), pages 189–194. IEEE.

Kaisheng Yao, Geoffrey Zweig, Mei-Yuh Hwang,
Yangyang Shi, and Dong Yu. 2013. Recurrent neu-
ral networks for language understanding. In INTER-
SPEECH, pages 2524–2528.

Majid Yazdani and James Henderson. 2015. A model
of zero-shot learning of spoken language under-
standing. In Conference on Empirical Methods in
Natural Language Processing, pages 244–249.

Luke S. Zettlemoyer and Michael Collins. 2007. On-
line learning of relaxed ccg grammars for parsing to
logical form. In EMNLP-CoNLL 2007, Proceedings
of the 2007 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Compu-
tational Natural Language Learning, June 28-30,
2007, Prague, Czech Republic, pages 678–687.

Feifei Zhai, Saloni Potdar, Bing Xiang, and Bowen
Zhou. 2017. Neural models for sequence chunking.
In AAAI, pages 3365–3371.

Xiaodong Zhang and Houfeng Wang. 2016. A joint
model of intent determination and slot filling for
spoken language understanding. In the Twenty-Fifth
International Joint Conference on Artificial Intelli-
gence (IJCAI-16).

Su Zhu, Lu Chen, Kai Sun, Da Zheng, and Kai
Yu. 2014. Semantic parser enhancement for dia-
logue domain extension with little data. In Spoken
Language Technology Workshop (SLT), 2014 IEEE,
pages 336–341. IEEE.

Su Zhu and Kai Yu. 2017. Encoder-decoder with
focus-mechanism for sequence labelling based spo-
ken language understanding. In IEEE International
Conference on Acoustics, Speech and Signal Pro-
cessing(ICASSP), pages 5675–5679.

399



Proceedings of the SIGDIAL 2018 Conference, pages 400–409,
Melbourne, Australia, 12-14 July 2018. c©2018 Association for Computational Linguistics

 
 
 

  

 Cogent: A Generic Dialogue System Shell Based on a Collaborative 

Problem Solving Model 

 

Lucian Galescu, Choh Man Teng, James Allen, Ian Perera 

Institute for Human and Machine Cognition (IHMC) 

40 S Alcaniz, Pensacola, FL 32502, USA 

{lgalescu,cmteng,jallen,iperera}@ihmc.us 

 

 

Abstract 

The bulk of current research in dialogue 

systems is focused on fairly simple task 

models, primarily state-based. Progress on 

developing dialogue systems for more 

complex tasks has been limited by the lack 

generic toolkits to build from. In this paper 

we report on our development from the 

ground up of a new dialogue model based 

on collaborative problem solving. We im-

plemented the model in a dialogue system 

shell (Cogent) that allows developers to 

plug in problem-solving agents to create 

dialogue systems in new domains. The 

Cogent shell has now been used by several 

independent teams of researchers to devel-

op dialogue systems in different domains, 

with varied lexicons and interaction style, 

each with their own problem-solving back-

end. We believe this to be the first practical 

demonstration of the feasibility of a CPS-

based dialogue system shell. 

1 Introduction 

Many areas of natural language processing have 

benefited from the existence of  tools and frame-

works that can be customized to develop specific 

applications. In the area of dialogue systems, 

there are few such tools and frameworks and they 

mostly remain focused on simple tasks that can 

be encoded in a state-based dialogue model (see, 

e.g., Williams et al., 2016 and the Dialogue State 

Tracking Challenge
1
). In this category some of 

the more expressive approaches to dialogue mod-

eling  are based on the information state (Cooper, 

1997); notable toolkits include TrindiKit (Larsson 

and Traum, 2000) and its open-source successor 

trindikit.py (Ljunglöf, 2009), and OpenDial 

(Lison and Kennington, 2016). 

                                                      
1 https://www.microsoft.com/en-us/research/event/dialog-

state-tracking-challenge/ 

Unfortunately, there is a dearth of tools for de-

veloping mixed-initiative dialogue systems that 

involve complex back-end reasoning systems. 

Early theoretical work of SharedPlans (Grosz and 

Kraus, 1996; Lochbaum et al., 1990) and plan-

based dialogue systems (e.g., Allen and Perrault, 

1980; Litman and Allen, 1987) laid good founda-

tions. The Collaborative Problem Solving (CPS) 

model (Allen et al., 2002) seemed to promise a so-

lution but that model has never been implemented 

in a truly domain-independent way. Ravenclaw 

(Bohus and Rudnicky, 2009) is a plan-based dia-

log management framework that has been used to 

develop a number of dialogue systems. Its dia-

logue engine is task-independent and includes a 

number of generic conversational skills; however, 

its behavior is driven by task-specific dialogue 

trees, which have to be implemented anew for 

every application.  

Dialogue management involves understanding 

the intention of the user’s contributions to the dia-

logue, and deciding what to do or say next. It is 

the core component of a dialogue system, and typ-

ically requires significant development effort for 

every new application domain. We believe that di-

alogue managers based on models of the collabo-

rative problem solving process offer the highest 

potential for flexibility and portability. Flexibility 

refers to the ability to cover the full range of natu-

ral dialogues users may want to engage in, and 

portability refers to how easy it is to customize or 

modify a system to work in new domains 

(Blaylock, 2007).  

In this paper we describe a new, domain-

independent dialogue manager based on the CPS 

model, and its implementation in an open-source 

dialog system shell (Cogent
2
). To demonstrate its 

flexibility, we also describe briefly a few dialogue 

systems for different domains. 

                                                      
2 https://github.com/wdebeaum/cogent 
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2 Collaborative Problem Solving 

When agents are engaged in solving problems to-

gether, they need to communicate to agree on 

what goals to pursue and what steps to take to 

achieve those goals, negotiate roles, resources, 

etc. To underscore its collaborative aspect, this 

type of joint activity has been called Collaborative 

Problem Solving (CPS). Modeling the type of dia-

logue agents engage in during CPS must, there-

fore, take into account the nature of the joint ac-

tivity itself. In the early 2000s, Allen and col-

leagues described a preliminary plan-based CPS 

model of dialogue based on an analysis of an 

agent’s collaborative behavior at various levels: 

 An individual problem-solving level, 

where each agent manages its own problem-

solving state, plans and executes individual 

actions, etc.;  

 A collaborative problem-solving level, 

which models and manages the joint or col-

laborative problem-solving state (shared 

goals, resources, situations); 

 An interaction level, where individual 

agents negotiate changes in the joint prob-

lem-solving state; and, finally, 

 A communication level, where speech acts 

realize the interaction level acts. 

This model was refined in a series of publications, 

and several prototype systems were developed for 

illustration (Allen et al., 2002; Blaylock and Al-

len, 2005; Allen et al., 2007; Ferguson and Allen, 

2007), all based on the TRIPS system (Allen et 

al., 2000).  

One of the main benefits of this model is that 

linguistic interpretation and high-level intention 

recognition  could be performed independently of 

the individual problem-solving level, whose con-

tribution to interpretation would be to specialize 

the higher-level intentions into concrete problem-

solving actions and verify that such actions make 

sense. The corollary is that in this model the back-

end problem solvers would be insulated from the 

need to worry about linguistic issues.  

On this basis, it should be possible to create a 

generic dialogue system shell with only domain-

independent components. Other developers, not 

necessarily specialists in NLU or dialogue sys-

tems, could use this shell to build, relatively 

quickly, intelligent dialogue systems for collabo-

rative tasks in various domains. The various pro-

totypes of TRIPS CPS-based systems referenced 

above did not fulfill this promise. In each, the CPS 

level was integrated fairly tightly with the indi-

vidual problem-solving level for the application 

domain, and they were all developed by the same 

team. Thus, even though each such prototype im-

plemented (a version of) the CPS model and used 

the same platform for NLU, the ultimate goal of 

creating a domain-independent dialogue shell that 

others could customize to develop independently 

dialogue systems has so far remained elusive. 

Similarly, the CPS-based dialogue manager in 

SAMMIE (Becker et al., 2006) also aimed for 

domain independence but never quite realized it 

(Blaylock, 2007). 

 In the rest of the paper we will report on our 

attempt to develop a generic dialogue shell based 

on the CPS model. We start with a description of 

the general architecture of a dialogue system 

based on the CPS model. Then, we will describe  

our dialogue manager, with a focus on its interface 

with the domain-specific problem solving agent. 

Finally, we give some details on six prototype dia-

logue systems developed using our dialogue shell, 

five of which were developed by independent 

teams of researchers. 

3 CPS-based Dialogue Systems 

A collaborative conversational agent must under-

stand a user’s utterances, that is, obtain a represen-

tation of the meaning of the utterance, recognize 

its intention, and then reason with this intention to 

decide what to do and/or say next. Finally, the sys-

tem must convert its own intentions into language 

and communicate them to the user. 
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 Figure 1 shows a conceptual diagram of the di-

alogue system we envision. This follows the 

common separation of a conversational agent’s 

functionality into interpretation, behavior and 

generation, but where the separation lines are is 

critical for realizing the idea of isolating domain-

independent from domain-specific processing. We 

take the output of NL Understanding (assumed 

here to have broad lexical, syntactic and semantic 

coverage) to be a domain-independent semantic 

representation of the user’s utterance (a communi-

cative act), expressed in terms of a domain-

independent ontology. Intention recognition is 

performed by the CPS agent, which takes into ac-

count the discourse context and converts commu-

nicative acts into abstract communicative inten-

tions. These communicative intentions need to be 

further evaluated with respect to the actual prob-

lem-solving state, so they are not fully interpreted 

until they reach the problem solving agent. This 

agent is responsible for the domain-specific be-

havior – hereafter we will refer to it as the Behav-

ioral Agent (BA) – and for operationalizing the 

communicative intentions into actions (which may 

involve planning, acting on the world, updating its 

knowledge of the situation, etc.). An autonomous 

BA should be able to plan and act on its own, but 

neither the BA nor the user can singlehandedly 

decide on the status of collaborative goals without 

a commitment from the other party. The BA ex-

presses its attitude towards shared goals by send-

ing to the CPS agent its own communicative in-

tentions, which the CPS agent will use to update 

the collaborative state and generate communica-

tive acts for NL generation (such as accepting or 

rejecting a goal, or proposing a new one). 

Customization: Figure 1 includes, on the left 

side, a number of resources needed by our ideal 

dialogue system: (1) a broad lexicon for NL un-

derstanding; (2) a general-purpose (upper-level) 

ontology; and, optionally, (3) a domain ontology. 

Even a state-of-the-art broad coverage parser, 

with an extensive domain-independent high-level 

ontology and lexicon, will not contain all the word 

senses and concepts needed for every application 

domain. Additionally, the general ontology con-

cepts need to be mapped onto the domain ontolo-

gy used by the back-end problem solvers.  

Lastly, NL generation from semantic represen-

tations of communicative acts is a difficult prob-

lem, with no general solutions. Many task-

oriented dialogue systems employ template-based 

techniques, which can lead to satisfactory, if 

somewhat repetitive text realizations. Such tem-

plates are tailored for the application domain. 

It may appear that customizing a generic dia-

logue shell to specific applications involves a con-

siderable amount of work. Nevertheless, we be-

lieve these customization tasks are easier to ac-

complish and require less linguistic expertise than 

building a dialogue manager for every application, 

let alone building domain-specific natural lan-

guage understanding components. 

4 Our CPS Model  

Let us now turn to the details of our new instantia-

tion of the CPS model. Unlike prior work on CPS-

based dialogue management, we focus on the in-

terface between the CPS agent (CPSA) and the 

BA. This allows us to directly address the issue of 

domain-independence that posed difficulties in 

other approaches (e.g., Blaylock, 2007). 

The CPSA computes communicative intentions 

based on the communicative acts resulting from 

the NLU component. These communicative inten-

tions are realized in our model as CPS Acts, repre-

sented as a pair <ACI, CONTEXT>, where ACI 

represents the abstract communicative intention 

and CONTEXT represents the semantic content of 

the act in a knowledge representation language. 

Where there is no ambiguity we will omit 

CONTEXT and denote CPS acts by their ACI only.  

In the following subsections we will describe 

the set of CPS acts we have devised so far, 

grouped by the manner in which they affect the 

collaborative state. 

 

Figure 1: Conceptual architecture of a CPS-based 

dialogue system 
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4.1 CPS Acts Related to Problem-Solving 

Objectives 

The CPS Model defines an objective as an inten-

tion that is driving the agent’s current behavior  

(Allen et al., 2002). An objective can be proposed 

by either agent, provided they are ready to commit 

to it. We represent the intention to commit to an 

objective via the CPS act ADOPT. For example, if 

the user starts a conversation with “Let’s build a 

tower”, this results in the following CPS act: 

(ADOPT :id O1 :what C1 :as (GOAL)) 

Here, O1 represents a unique, persistent identifier 

for the shared objective proposed via this act (all 

objectives are assigned an identifier). C1 is an 

identifier indexed into the CONTEXT of this CPS 

act (i.e., it refers to an event of building a tower). 

Additionally, the act also indicates the relation be-

tween this objective and any pre-existing objec-

tives. In this example, the relation was identified 

as GOAL, indicating that this is a top-level objec-

tive (we will discuss later other types of relations 

between objectives available in our model). 

Once  an objective has been jointly committed 

to, either agent can propose to drop their com-

mitment to it, via a CPS act called ABANDON. Or, 

they might propose to shift focus from the active 

objective (the one currently driving the agents’ 

behavior), by an act called DEFER, which will re-

sult in the objective becoming inactive. A proposal 

to bring an inactive objective back into an active 

state an agent results in a SELECT act. Finally, an 

agent can propose that an objective should be   

considered completed, via a RELEASE act. All the-

se four acts only take as an argument the objec-

tive’s unique identifier, for example: (ABANDON 
:id O1). 

Note that all of these four acts can be proposed, 

indicating the agent’s intentional stance towards 

their commitment to that objective. The user per-

forms a proposal via a speech act. The same inten-

tion may be expressed by different surface speech 

acts. Going back to our example, the objective of 

building a tower together can be expressed via a 

direct proposal ("Let's build a tower"); a question 

(“Can we build a tower?”); or an  indirect speech 

act (“I think we should build a tower”). The CPSA  

recognizes the user intent in all these variants, us-

ing the surface speech act and other linguistic cues 

present in the communicative act it receives from 

NLU). Thus, they all result in the same ADOPT act 

as above. 

If, on the other hand, the BA wants to propose that 

an objective be jointly pursued, say that it wants 

to start working on O1 by a subgoal O2 of placing 

a block on the table, it can do so via a PROPOSE 

act, whose content is the intention to commit to 

that objective: 

(PROPOSE :content (ADOPT :id O2 
 :what C2 :as (SUBGOAL :of O1))) 

where C2 is indexed into the CONTEXT of the act 

for a representation of the event of placing a block 

on the table. Upon receiving this act, the CPSA 

will update the collaborative state to reflect the 

BA’s intention to commit to O2, and formulate a 

communicative act for NLG to realize the pro-

posal in a system utterance. 

For a proposal to result in a shared objective,  

the two agents must agree to commit to it. The 

CPSA is responsible for gathering the agreements 

of both the user and the BA. When the CPSA rec-

ognizes that the user is proposing an objective, it 

will first send an EVALUATE act to the BA, whose 

content is the proposed objective, e.g.,: 

(EVALUATE :content (ADOPT :id O1 
 :what C1 :as (GOAL)) 

This act creates an obligation on the part of the 

BA to evaluate whether it is able to commit to it in 

the current situation, and, if so, respond by signal-

ing agreement (ACCEPTABLE), rejection 

(REJECTED), or, when it cannot even interpret 

what the objective is, a failure (FAILURE). For 

example, the BA’s agreement, that is, its intention 

to commit to the objective proposed by the user, 

would be communicated via: 

(ACCEPTABLE :content (ADOPT :id O1 
 :what C1 :as (GOAL)) 

Since the user has already signaled their inten-

tion to commit to the objective by proposing it, on 

receiving from the BA that the objective is 

ACCEPTABLE, the CPSA knows that there is mu-

tual agreement, decides that that the objective is 

now adopted, and sends back to the BA the fol-

lowing CPS act: 

(COMMIT :content (ADOPT :id O1 
 :what C1 :as (GOAL)) 

to signal that now there is a joint commitment to 

O1. This creates an obligation on the part of the 

BA to pursue O1 in whatever manner it deems ap-

propriate. 
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 When we have a system-proposed objective, such 

as O2 above, if the user expresses their acceptance 

(“Yes”, “Sure”, “I can handle that”, etc.), the 

CPSA will recognize this as completing the 

agreement, and then it would adopt the objective 

and send the COMMIT act to the BA. 

Having described in some detail how objectives 

are created, and how the CPSA decides that there 

is joint commitment to them, let us turn briefly to 

some of the details that we brushed over. 

Relations between objectives: We mentioned 

above two relations between the objective current-

ly under consideration and the prior objectives (ei-

ther previously adopted ones, or ones that have 

been discussed but are still being negotiated), 

namely GOAL and SUBGOAL. Currently the CPSA 

can infer two more. One is MODIFICATION, used 

when one of the agents is expressing an intention 

of changing in some manner a prior objective (for 

example, if one of the agents had suggested plac-

ing a blue block on the table, the other agent 

might suggest placing a red block instead). The 

second one we call ELABORATION, and is used by 

the CPSA to signal that it has insufficient 

knowledge to decide whether the objective under 

discussion is really a subgoal or a modification of 

another one, or, perhaps a new top-level goal. It is 

possible, however, that the BA may be able to use 

its more detailed knowledge of the situation to 

make that determination. Thus, upon receiving an 

objective marked as an elaboration of another one, 

if the BA deems it acceptable, it has the obligation 

to clarify the relation as well.  

Rejections and failures: If a user proposes an 

objective, presumably they have an expectation 

that the objective is achievable. If the BA rejects 

it, the user will likely not be satisfied with a sim-

ple “No”. Similarly, if the BA fails to understand 

the objective (or if it encounters any other type of 

failure, e.g., while trying to perform some action), 

the system should be able to explain what hap-

pened. Thus, the REJECTED and FAILURE CPS 

acts have features for optionally specifying a rea-

son and a possible way of repairing the situation. 

The reason for rejection/failure is one of a rela-

tively small set of predefined ones (e.g., 

UNKNOWN-OBJECT, FAILED-ACTION), and it is 

expected that the NLG component will make use 

of it to generate more helpful utterances. As for 

how to repair the situation, this can be an alterna-

tive objective, that the BA is ready to commit to, 

which could be either a modification of the reject-

ed one, or, perhaps, an objective which, if real-

ized, would make the rejected objective accepta-

ble. For example, if the user wanted to build an 

all-blue 5-block tower, but the BA has only 4 blue 

blocks, it would reject the goal (INSUFFICIENT-
RESOURCES), but it could suggest as an alterna-

tive that a 4-block blue tower would be an achiev-

able alternative. This might be realized as “Sorry, 

I don’t have enough blocks for that, but we can 

build a 4-block blue tower.”. If the user accepts 

(“OK”), the CPSA will immediately commit to the 

suggested objective. 

4.2 CPS Acts Related to Situations 

Collaborative problem solving requires not only 

joint commitments to certain objectives, but also a 

set of shared beliefs about the situation. These 

shared beliefs occasionally need to be updated. 

One agent may inform the other of a fact that they 

believe the other should know. This may come 

about unprompted or as a result of being asked. 

The CPS Model offers little guidance on how such 

acts fit in, even though they are very common in 

conversation. The examples given seem to suggest 

an interpretation of questions and simple asser-

tions based on plan recognition (Allen, 1979), 

which is a tall order, particularly for a domain-

independent dialogue manager. When agent A in-

forms agent B of a fact P, this indicates A’s imme-

diate intention that B knows P. Similarly, if A asks 

B whether P is true (an ask-if speech act) or  what 

object satisfies P (an ask-wh speech act), A’s im-

mediate intention is that B informs A of those par-

ticular facts (Allen and Perrault, 1980). Getting at 

the intentions behind these immediate intentions 

requires fairly sophisticated, often domain-

specific reasoning (in our implementation the 

CPSA can do that to some extent via abstract task 

models, but, due to space limitations, we will not 

discuss it here). Therefore, we created a small set 

of CPS acts for representing the intentions to im-

part and request knowledge about situations.  

In our model, an assertion of a fact results in 

the following CPS act: 

(ASSERTION :id A3 :what C3 
 :as (CONTRIBUTES-TO :goal O1)) 

where C3 is an identifier pointing to a representa-

tion of the content of the assertion in the 

CONTEXT of the CPS act. The relation between 

an ASSERTION act and an existing objective (or 

NIL if no such objective exists) is an underspeci-
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fied one, of contributing somehow to it. The BA 

needs to decide, if it accepts A3, how this addition 

will change its understanding of the situation and 

affect O1 or any other (adopted) objective. 

For ask-if questions the CPSA will produce the 

following act: 

(ASK-IF :id A4 :query Q4 
 :as (QUERY-IN-CONTEXT :goal O1)) 

Here Q4 is an identifier pointing to a representa-

tion (in the CONTEXT of the CPS act) of a state-

ment to be evaluated for its truth value.  

For ask-wh questions the CPSA produces acts 

in the following format: 

(ASK-WH :id A5  
  :what W5 :query Q5 :choices S5  
  :as (QUERY-IN-CONTEXT :goal O1)) 

This expresses the intention of knowing the value 

of an entity (W5), possibly restricted to a set of 

choices (S5), that makes a proposition (Q5) true. 

As before, all these identifiers should be given ap-

propriate descriptions in the CONTEXT. This act 

can thus represent the intention expressed by a 

question such as “What color should we use for 

the first block, blue or red?”.  

Finally, an answer to a question takes the fol-

lowing form: 

  (ANSWER :to A5  
  :what W5 :query Q5 :value V6  
  :justification J6) 

This indicates the value V6 (e.g., blue) for the en-

tity W5 makes the statement Q5 true (we should 

use blue for the first block), in response to the 

CPS act with the identifier A5. If the answer is in 

response to an ASK-IF act, V6 can only be TRUE 

or FALSE. Optionally, a justification (J6) may be 

added to show how the answer came about. 

It is important to note that we treat these inten-

tions as special types of objectives, that can be-

come adopted, active, etc., just like other objec-

tives. For example, if one of these CPS acts is ini-

tiated by the user, the act must be evaluated by the 

BA. If it deems the act ACCEPTABLE, the CPSA 

will commit to working on it (updating the sys-

tem’s beliefs, or answering the question). If origi-

nating from the BA, the act must be proposed 

first, and realized through a communicative act.  

 Side effects: We noted above that updating the 

system’s beliefs about the situation may affect the 

status of existing objectives. Insofar as the BA is 

capable of foreseeing these effects, it ought to in-

form the CPSA so the collaborative state can be 

updated. Any such changes would result in an ob-

ligation to inform the user. In our model we use an 

additional feature for the ACCEPTABLE act (see 

previous section), for describing the effect. Its 

value is an objective to be proposed. For example, 

if, in the context of the shared objective of build-

ing a tower, the system asks “Who is going to 

move the blocks?”, and the user says “I will”, this 

answer has the side effect of modifying the exist-

ing objective (in this case specializing it to include 

the identity of the builder). The system’s ac-

ceptance of the answer will necessarily imply the 

acceptance of the modification as well, and the 

CPSA will update the collaborative state accord-

ingly. 

4.3 CPS Acts Related to Initiative and Exe-

cution 

Another important role of the CPSA in managing 

the dialogue is to negotiate initiative. To facilitate 

an orderly conversation, it restricts both the timing 

and the magnitude of the BA’s ability to affect the 

collaborative state. It does so via a special CPS 

act, called WHAT-NEXT, which takes a single ar-

gument: the identifier of an adopted shared objec-

tive (usually the one that is active). This act can be 

sent to the BA whenever there are no pending up-

dates to the collaborative state, and no outstanding 

communicative acts to process or to wait on. In ef-

fect, by sending this act, the CPSA transfers the 

task initiative to the BA, which gives it the chance 

to, ultimately, influence discourse initiative as 

well. The BA has the obligation to respond with a 

single update to the collaborative state, presuma-

bly the one with the highest priority. This re-

striction is critical, because it frees the CPSA from 

the need to consider too many options about what 

to do and say next, a decision that, in many situa-

tions, would require domain-specific knowledge. 

The BA’s reply to a WHAT-NEXT depends on its 

own private problem-solving state. It may be that 

it has done some planning and, as a result, it wants 

to propose a way of making progress towards ac-

complishing the active objective. It may be that it 

does not have sufficient information to make pro-

gress, in which case it may formulate an intention 

to ask the user to provide the information. Or,  if 

the active objective is a question, it may have 

come up with an answer;  that update would prob-
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ably get very high priority. All these possibilities 

are handled by acts we have already discussed. 

One other possibility is that the BA is currently 

not doing any reasoning, but simply acting on the 

active objective, or has accomplished it. Updates 

to the status of an objective are communicated via 

a special CPS act, which takes the following form: 

(EXECUTION-STATUS :goal A1  
 :status GS) 

Here GS is an expression that indicates the status 

of the goal. Currently it can be one of three indica-

tors:  

1. DONE, which signifies that A1 was ac-

complished. CPSA will create a commu-

nicative act to inform the user, and, if the 

user agrees, releases the objective. 

2. WORKING-ON-IT, which indicates that 

the BA is actively pursuing A1, but it will 

take more time. The CPSA may decide to 

inform the user, and creates a trigger for 

itself to check back later.  

3. WAITING-FOR-USER, which indicates 

that the BA cannot make progress on A1 

because it is waiting for the user to act on 

it (or another objective that A1 depends 

on). As a result, the CPSA will construct a 

communicative act to prompt the user. 

This CPS act also allows the BA to communicate 

partial execution status (that it has executed some 

actions, though it has not accomplished the objec-

tive yet), but we leave those details out of this dis-

cussion. 

5  The Cogent System  

We implemented our CPS model as a component 

in the TRIPS system (Allen et al., 2000), which 

has recently been released in the public domain 

under a GNU GPL License.  

 The TRIPS system comes with a broad cover-

age parser (Allen and Teng, 2017) with an exten-

sive grammar and an effective 100,000+ word 

semantic vocabulary defined in terms of a 4000 

concept domain-independent ontology. It operates 

in concert with a suite of statistical preprocessing 

components, performing tasks such as part-of-

speech tagging, named entity recognition, and 

identification of likely constituent boundaries. 

These preprocessed inputs are provided to the 

core TRIPS parser as advice.  The parser con-

structs from the input a logical form, which is a 

semantic representation that captures an unscoped 

modal logic (Manshadi et al., 2008). The logical 

form includes the surface speech act, semantic 

types, semantic roles for predicate arguments, and 

dependency relations.  

TRIPS also includes an interpretation manager 

that converts the logical forms into communica-

tive acts, performing language-based intention 

recognition and normalizing different surface 

forms.  

We packaged the TRIPS NLU components (in-

cluding the lexicon and ontology) with our CPS 

agent, thereby creating a dialogue system shell, 

which we call Cogent. This system does not in-

clude a BA or an NLG component (Cogent’s 

components are surrounded with a dashed line in 

Figure 1). Thus, it is a true domain-independent 

shell, not a system that can be adapted to other 

domains. It can carry out very minimal conversa-

tions because social conversational acts such as 

greetings are handled in a domain-independent 

manner in the CPSA. But, ultimately, the purpose 

of the shell is to be used to create domain applica-

tions. The success of the task we set to accomplish 

is whether this shell can be and is used by inde-

pendent developers to develop operational dia-

logue systems in domains of their choice.  

As discussed in the previous section, the CPS 

acts and the obligations they engender establish a 

protocol that developers of behavioral agents must 

implement. Other than that, we believe the CPSA 

offers functionality to develop different styles of 

conversational agents (user-driven, system-driven 

or fully mixed-initiative). The developers also 

must implement their own NL Generation compo-

nent, for reasons that we touched upon earlier. 

Of note, by default all CPS acts have their con-

tents expressed in the TRIPS ontology. We are al-

so providing a tool for mapping concepts in the 

TRIPS ontology to domain ontologies. We have 

adapted the TRIPS interpretation manager to use 

these mappings to produce content in the domain 

ontology, to make it easier for the Behavioral 

Agents to interpret the CONTEXT associated with 

each CPS act. The details of the ontology map-

ping tool and the mappings it creates are, howev-

er, beyond the scope of this paper. 

6 Systems Implemented in Cogent 

We describe briefly six system prototypes that 

have been built using Cogent as the base frame-
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work; thus, they all use the same CPS agent de-

scribed above. In all cases, the developers of these 

prototypes used the protocol described above to 

create behavioral agents that, in turn, act as inte-

grators of other problem solvers. The descriptions 

of these systems are going to be necessarily brief; 

the interested reader is encouraged to follow the 

references to get a better understanding of their 

capabilities and the kinds of dialogues they sup-

port (unfortunately, not all systems have been 

published yet). All these systems have been de-

veloped as part of DARPA’s Communicating with 

Computers (CwC) program
3
. 

Cabot: This is a mixed-initiative system for 

planning and execution in the blocks world, the 

tasks being of jointly building structures (Perera et 

al., 2017). Both the user and the system can come 

up with their own goals, and, if necessary, they 

will negotiate constraints on those structures (size, 

colors, etc.) so all the goals can be completed. 

They also negotiate their roles in building these 

structures (“architect” or “builder”). This system 

uses a 2D simulated version of the blocks world. 

The examples used in this paper are from interac-

tions with this system. 

Cabot-L: This system learns names and struc-

tural properties of complex objects in a physically 

situated blocks world scenario (Perera et al., 2017; 

Perera et al., 2018). The user teaches the system 

by providing examples of structures together with 

descriptions in language. The system has capabili-

ties to perceive the world and detect changes to it, 

and can ask the user questions about various fea-

tures of the structures, to learn a general model. 

To validate the inferred model, the user can then 

show additional examples and ask the system to 

classify them and explain its reasoning. The user 

and the system can interact via either written or 

spoken language. 

BoB: This system acts as an assistant biologist. 

It has fairly extensive knowledge of molecular bi-

ology and can assist the user by responding to in-

quiries about properties of genes, proteins, molec-

ular mechanisms, their relationship to cellular 

processes and disease, building and visualizing 

complex causal models, running simulations on 

these models to detect their dynamic properties, 

etc. To manage this wide range of problem-

solving behaviors, BoB’s BA integrates a variety 

of agents with specific expertise.  
                                                      
3 https://www.darpa.mil/program/communicating-with-

computers 

Musica: This system uses a computational 

model of music cognition, as well as knowledge 

about existing pieces of music, to help a human 

composer create and edit a musical score (Quick 

and Morrison, 2017).  

SMILEE: This system acts as a partner for 

playing a cooperative game (Kim et al., 2018). 

The game involves placing pieces (blocks) on a 

board to create complex symmetrical configura-

tions. Players alternate, but each player can hold 

their turn for multiple rounds. Each player has 

some freedom to be creative with respect to the 

configuration being pursued (it is not set in ad-

vance). Thus, they have to negotiate turn taking, 

and they can ask for explanations to achieve a 

shared understanding about the properties of the 

configuration being created. 

Aesop: A system for building animated stories. 

The user acts as a director, and can choose scenes, 

props, characters, direct them what to do, etc. Es-

sentially, the system provides a dialogue interface 

to a sophisticated system for creating visual narra-

tives. 

Of note, these systems work in several applica-

tion domains, with varying interaction styles. 

Musica and Aesop currently work mostly in fixed-

initiative mode (user tells the system what to do). 

All others involve varying degrees of mixed ini-

tiative. While Cabot is a more traditional planning 

domain, it is interesting to note that all others in-

volve fairly open-ended collaborative tasks, for 

which the ultimate goal is learning or creating 

something new. BoB is notable for the fact that it 

is helping the user learn new knowledge, by help-

ing to formulate and evaluate biological hypothe-

ses (which may even lead to new scientific dis-

coveries). 

Importantly, with the exception of Cabot-L, 

which was developed by our team, all others were 

developed by independent teams (the BAs for 

Cabot and BoB were developed by a single team, 

though the latter also involved collaboration with 

a  large group of biologists and 

bioinformaticians). We helped those teams under-

stand how our tools work and the meaning of the 

CPS acts (especially to the early adopters, who 

did not have the benefit of much documentation), 

but we had no role in deciding what problem-

solving behaviors they should or should not im-

plement, how to implement them and so on. Two 

of the systems (BoB and Musica) required addi-

tions to our surface NLP components (mainly add-
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ing domain-specific named entity recognizers) 

and some additional ontology concepts and map-

pings; we provided those customizations. The ver-

sion of the TRIPS Parser we started with proved 

to be fairly robust, but we did have to adapt it in 

response to failures reported by the dialogue sys-

tem developers. Nevertheless, these enhancements 

were not domain-specific – that is, the same par-

ser, with the same grammar, is used for all sys-

tems.  

In all systems, developers used custom tem-

plate-based NLG. 

7 Summary and Discussion 

In this paper we reported on the development of a 

new domain-independent dialogue manager based 

on the collaborative problem solving model. We 

packaged this dialogue manager with a suite of 

broad coverage natural language understanding 

components (from the TRIPS system) and created 

a new, domain-independent CPS-based dialogue 

system shell. This shell has been used by several 

independent teams of researchers to develop dia-

logue systems in a variety of application domains, 

with different conversational styles. We believe 

this to be the first successful implementation of a 

domain-independent dialogue system shell based 

on the CPS model (or any other model of equiva-

lent complexity).  

We do not claim the CPSA to be complete, 

however. For example, it can sometimes detect an 

ambiguity in the user’s intention and generate a 

clarification question, but its abilities in this re-

gard are fairly limited. BoB has demonstrated 

some limited handling of hypotheticals (in what-if 

questions) at the problem-solving level, but the 

CPSA itself does not yet track hypothetical situa-

tions. We expect that, with wider adoption, we 

will inevitably be confronted with the need to im-

prove both our model and its implementation.  

As noted above in reference to BoB and 

Musica, for domains requiring adaptation of the 

NLU components, language specialists are still 

needed. We have not yet endeavored to create 

tools that would make it easier for dialogue sys-

tem developers to adapt/improve themselves the 

NLU components. 

Our current focus is on evaluating the robust-

ness of the intention recognition functionality of 

the CPSA. 
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Abstract

One important problem in task-based con-
versations is that of effectively updat-
ing the belief estimates of user-mentioned
slot-value pairs. Given a user utterance,
the intent of a slot-value pair is captured
using dialog acts (DA) expressed in that
utterance. However, in certain cases, DA’s
fail to capture the actual update intent of
the user. In this paper, we describe such
cases and propose a new type of seman-
tic class for user intents. This new type,
Update Intents (UI), is directly related to
the type of update a user intends to per-
form for a slot-value pair. We define five
types of UI’s, which are independent of
the domain of the conversation. We build
a multi-class classification model using
LSTM’s to identify the type of UI in user
utterances in the Restaurant and Shopping
domains. Experimental results show that
our models achieve strong classification
performance in terms of F-1 score.

1 Introduction

An important part of dialog management in dia-
log systems is to detect the type of update to be
performed for a slot after every turn in order to
keep track of the dialog state. (The dialog state re-
flects the user goals specified as slot-value pairs.)
User dialog acts (Young, 2007) express the user’s
intents towards slots mentioned in the conversa-
tion. They are extracted in the spoken language
understanding (SLU) module and are utilized by
the downstream state tracking systems to update
belief estimates (Williams et al., 2013; Lee and
Stent, 2016; Henderson et al., 2014c). However,

∗The work was done when the author was at Yahoo Re-
search, Oath Inc.

currently used dialog acts do not capture the up-
date intended by the user in the following cases:
1. Implicit denials: User denials for slot-values
are expressed using the “deny” and “negate” di-
alog acts. However, these acts only address ex-
plicit negations/denials such as “no”, “I do not
want 〈slot-value〉’. But a user may express denial
for a value implicitly. Consider utterances 8 and
9 in Table 1 where a user adds and removes peo-
ple from a slot, PNAMES, which contains names
of people going to an event. Current SLU systems
would detect the “inform” dialog act in both utter-
ances and, hence, would miss the (implicit denial)
“remove” update.
2. Updates to numeric slots: Numeric slots are
the slots whose values can be increased and de-
creased in addition to getting set/replaced. Since
dialog acts do not capture the “increase” and “de-
crease” intents towards a numeric value, such up-
dates cannot be handled using dialog acts alone.
For example, consider utterances 4, 5 and 6 in Ta-
ble 1 where the value of a numeric slot, NGUEST
(number of guests in an invite), is set, increased
and decreased respectively. The dialog act ex-
pressed in these utterances is “inform” which does
not convey the update type.
3. Preference for slot values: The “inform” dia-
log act specifies values for slots but does not take
into account the preferences for any particular slot
value(s). Consider utterances 1, 2 and 3 in Table 1
where the location slot (LOC) is referred. In utter-
ance 2, the user is equally interested in the three
locations (“Ross”, “Napa” and “San Jose”). How-
ever, in utterance 3 the user prefers “Gilroy” over
other values and intends to replace the old values
with “Gilroy”. Clearly, the SLU output does not
capture this change in the user intent.

We posit that identifying the above intents in
user utterances as a part of SLU would improve es-
timation of user goals in task based dialogs. To ad-
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Id User utterance Expected SLU output SLU output with update intents

Task: Restaurant search

1 Find French restaurants in Ross and
Napa.

inform(LOC=Ross|Napa) inform(append(LOC=Ross|Napa))

2 Show some in San Jose too. inform(LOC=San Jose) inform(append(LOC=San Jose))
3 Show me in Gilroy instead. inform(LOC=Gilroy) inform(replace(LOC=Gilroy))

Task: Restaurant reservation

4 Book a table for 4 at Olive Gardens. inform(NGUEST=4) inform(replace(NGUEST=4))
5 Add 4 more seats. inform(NGUEST=4) inform(increaseby(NGUEST=4))
6 Can you remove 2 seats. inform(NGUEST=2) inform(decreaseby(NGUEST=2))
7 Actually make it for 5. inform(NGUEST=5) inform(replace(NGUEST=5))

Task: Restaurant reservation

8 Invite Joe, Mike and John for drinks at
SoMar today.

inform(PNAMES=[John
&Mike& Joe])

inform(append(PNAMES=Joe&Mike
&John))

9 Take Joe off the list. inform(PNAME=Joe) inform(remove(PNAMES=Joe))

Table 1: Example user-bot conversations with only user utterances. For illustration, only the relevant
slots are shown in the SLU output.

dress the above issues, we propose five generic up-
date intents (UI’s) which are directly related to the
type of update expressed by the user: Append, Re-
move, Replace, IncreaseBy and DecreaseBy, and
build a model to identify them in a user utterance.
Table 2 defines the five UI’s. We model the prob-
lem of identifying UI’s as a multi-class classifi-
cation. For a user utterance, we classify UI’s for
all the slot-values present in the utterance into one
of the five classes. We treat an utterance as a se-
quence of tokens and slot-values, and perform se-
quence labeling using LSTM’s for the classifica-
tion. It should be noted that the focus of this work
is on identifying the UI’s in user utterance and not
on investigating the mechanisms of using them for
belief tracking, which is part of our larger goal.

UI’s are generic in nature and independent of
the dialog domain. Given a slot type (such as nu-
meric), they can be applied to any slot of that type.
This enables transfer learning across similar slots
in different domains. To demonstrate this, we ex-
periment with two domains (shopping and restau-
rants) and define three types of slots: 1. Numeric
slots, 2. Conjunctive multi-value (CMV) slots, and
3. Disjunctive multi-value (DMV) slots (explained
in Section 3.1.1). We then delexicalize slot-values
in user utterances with the corresponding slot type
(not slot name) and conduct cross-domain train-
ing and testing experiments. Experimental results
demonstrate strong classification performance in
individual domains as well as across domains.

Contributions: 1) We propose a new semantic
class of slot-specific user intents (UI’s) which are

directly related to the update a user intends to per-
form for a slot. 2) The proposed UI’s enable effec-
tive updates to slots. 3) Our models predict UI’s
with high accuracy. 4) We present a novel delex-
icalization approach which enables transfer learn-
ing of UI’s across domains.

2 Related Work

Although we are not aware of any prior work on
identifying update intents, our current work is re-
lated to dialog act identification and dialog state
tracking. Here, we review works in these two ar-
eas and contrast them against ours.
Dialog act identification: Dialog acts (DA)
in an utterance express the intention of their
speaker/writer. Identifying DA types has been
found to be useful in many natural language pro-
cessing tasks such as question answering, sum-
marization, and spoken language understanding
(SLU) in dialog systems. A variety of DA’s
have been proposed for specific application tasks
and domains, such as email conversations (Co-
hen et al., 2004), online forum discussions (Bha-
tia et al., 2012; Kim et al., 2010), and dialog sys-
tems (Young, 2007). The latter is relevant to this
work. In dialog systems, DA’s are used to infer
a user’s intention towards either the slots or the
conversation in general. Some of the DA’s used
in dialog systems are inform, confirm, deny, and
negate. Previous works on DA identification in
dialog systems have used a range of approaches
like n-grams based utterance level SVM classi-
fier (Mairesse et al., 2009), SVM classifier built
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on weighted n-grams using word confusion net-
works incorporating ASR uncertainties and dia-
log context (Henderson et al., 2012), log linear
models (Chen et al., 2013), and recurrent neural
networks (Hori et al., 2015, 2016; Ushio et al.,
2016). This work is similar to DA identification
in the sense that both the UI’s and the DA’s ex-
press certain semantics in the utterance and are in-
dependent of the dialog domain. However, there
are important differences: 1) DA’s mainly reflect
the intent towards the conversation; however, UI’s
convey the type of update a user wants to a par-
ticular slot. 2) DA’s can be slot-independent (such
as hello, negate, etc.) whereas UI’s are always de-
fined with respect to a slot.
Dialog State Tracking: Dialog state tracking
(DST) entails updating the conversation state (also
known as belief state) after every dialog turn. A
conversation state is a probability distribution over
competing user goals which are expressed in the
form of slot-value pairs. For a user utterance, DST
relies on SLU to get a list of k-best hypotheses of
DA’s and slot-value pairs expressed in the utter-
ance. To update the belief state, DST approaches
utilize DA’s by using their SLU confidence scores
as features (Ren et al., 2013; Kim and Banchs,
2014), encoding the DA’s using n-gram vectors
weighted by the SLU confidence scores (Hen-
derson et al., 2014c; Mrkšić et al., 2015), and
using rule-based updates (Lee and Stent, 2016).
Recently, efforts have been made to bypass the
SLU output and learn update mechanisms directly
from user utterance (Mrksic et al., 2017). Though
DA’s are important for updating belief state, as ex-
plained in Section 1, certain updates like implicit
denials, numeric updates, and slot preferences are
not handled by the DA’s used in the dialog systems
literature. UI’s, on the other hand, are proposed to
address this problem. The work by Hakkani-Tür
et al. (Hakkani-Tür et al., 2012) on identifying ac-
tion updates in a multi-domain dialog system is
closely related to the current work. Some of their
action updates are similar to UI’s. However, unlike
the current work, they did not deal with numeric
updates and did not distinguish between types of
multi-value slots (explained in Section 3.1.1).

3 Approach

In task-based dialogs, users complete a task by
giving sequences of utterances in which they spec-
ify slot-values with corresponding intents. Dialog

UI Type Definition

Append Append a specified value to the slot.

Remove Remove a specified value from the slot.

IncreaseBy Increase a value of a slot by a specified amount.

DecreaseBy Decrease a value of a slot by a specified amount.

Replace Replace the value of a slot by a specified value.

Table 2: Types of update intents and their defini-
tions.

systems extract this information using dialog act
detection and slot-filling as part of SLU. The most
common and helpful intents for completing a task
are setting a value for a slot and denying a par-
ticular value for a slot. Traditionally, these two
intents are determined by the inform and deny di-
alog acts. However, as explained in Section 1, a
user may not always set and deny a value explic-
itly. While denials can be implicit, relative pref-
erences can also be provided for slot-value(s). In
case of numeric slots, user can set a value by in-
crementing or decrementing the previous values of
slots. All these common scenarios are not handled
by the inform and deny dialog acts.

In this work, we propose a new set of slot-
specific intents which are directly related to the
type of update expressed towards the slot. We call
these intents update intents or UI’s. The UI’s ex-
press five common types of updates:
1. Append: A user specifies a value or multiple
values for a multi-value slot. This is equivalent to
“appending” the specified value(s) to a multi-value
slot. (Refer to Section 3.1.1 for the definition of
multi-value and numeric slots).
2. Remove: A user denies a value or multiple
values for a multi-value slot implicitly or explic-
itly. This is equivalent to “removing” the specified
value(s) from a multi-value slot.
3. Replace: A user specifies a preference for a
slot value in case of multi-value slots. In case of
numeric (single value) slots, this intent expresses
setting and re-setting of a slot value (Utterances
4 and 7 in Table 1). This UI is defined with re-
spect to the slot-value for which the preference is
expressed. For example, in the utterance “I would
prefer San Jose over Gilroy” the UI for San Jose is
replace, whereas for Gilroy it is remove. Note that
in case of multi-value slots, replace cannot be de-
composed into a combination of an “append” and
a “remove” update when the “remove” intent is
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not specified. For example, in “I would prefer San
Jose” there is no “remove” intent and, hence, sim-
ply using the “append” intent for San Jose would
not extract the preference for San Jose.

4. IncreaseBy: A user specifies a value by which
a particular numeric slot’s value is to be increased.

5. DecreaseBy: A user specifies a value by which
a particular numeric slot’s value is to be decreased.

Table 1 shows examples of the above five UI’s.
The third column shows the expected SLU output
with UI’s.

Okay forget Sunnyvale Try Cupertino instead

LSTM LSTM LSTM LSTM LSTM LSTM

sum sum sum sum sum sum

Bi-LSTM
Encoder

Embeddings
Layer

Delexicalization

Input

Softmax
Layer

TOKEN TOKEN REMOVE TOKEN REPLACE TOKENLabels

Okay forget LOCATION Try LOCATION instead

LSTM LSTM LSTM LSTM LSTM LSTM

Figure 1: Model architecture

3.1 Modeling

Given a user utterance, the goal is to determine
UI’s for all the slot-values present in it. We formu-
late this task as a classification problem. Given a
user utterance and the mentioned slot-values, clas-
sify the update intents for all the slot-values in one
of the five classes: Append, Remove, Replace, In-
creaseBy and DecreaseBy.

We model the above problem as a sequence la-
beling task. We treat a user utterance as a se-
quence of words and slot-values. The labels for
slot-values are the corresponding UI’s whereas
for words (which are not slot-values), we de-
fine a generic label “TOKEN”. For model opti-
mization and error computation, we do not con-
sider the “TOKEN” labels. Figure 1 describes
our model architecture. We used Bidirectional
LSTMs (Graves and Schmidhuber, 2005) for se-
quence labeling. For input representation, we
used GloVe word embeddings (Pennington et al.,
2014). For regularization, we used dropout and
early stopping. We give more details about model
parameters in Section 5.

3.1.1 Learning Across Domains

In many cases, it is not possible to list all the val-
ues of a slot in the ontology. Even if the values are
listed, it may not be practical to generate a training
data containing all the values, if there are too many
values for the slot. In such cases, it is beneficial to
unlink the learning from particular slot-values and
link it, instead, to the slot itself. This is because the
word patterns used to refer to values of the same
slot are similar and hence can be shared across
the values. For example, a user would use simi-
lar word patterns to refer to values of slot “LOCA-
TION”. One way to do this is by replacing slot-
values in utterances with the name of the slot. This
is also called delexicalization and has been used
successfully in many previous works (Henderson
et al., 2014c; Mrkšić et al., 2015). In our model,
we also delexicalize slot-values with the name of
the slot as shown in Figure 1.

Delexicalization with slot names is helpful in
generalizing to slot-values not seen in the train-
ing data in one domain. However, it cannot be
used for cross-domain generalization as different
domains may not share the same slots. To address
this problem, we define three generic slot types de-
pending upon the values (numeric/non-numeric) a
slot can take and whether a slot can take multiple
values simultaneously (list-based) or not:
1. Numeric slot: Slots whose values can be in-
creased and decreased. NGUEST in Table 1 is
a numeric slot. A numeric slot is a single value
slot, i.e., “appending” and “removing” (multiple)
values are not allowed for numeric slots. This
slot supports IncreaseBy, DecreaseBy and Replace
UI’s.
2. Disjunctive multi-value (DMV) slot: Slots
which can take multiple values only in disjunction,
i.e., when user specifies those values as options.
In a restaurant search domain, examples of DMV
slots are location and cuisine. LOC slot in Table 1
is a DMV slot.
3. Conjunctive multi-value (CMV) slots: These
are list type slots which can take multiple values in
conjunction. Examples are slots containing names
of people going to an event, items in a shopping
list, etc. Slot PNAMES in Table 1 is a CMV slot.
Both CMV and DMV slots support Append, Re-
move and Replace UI’s.

Different domains may not share same slots but
they often share slots with same types. For exam-
ple, list of groceries in the shopping domain and
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list of people in a dinner invite in the restaurant
domain are of type CMV. Similarly, the number of
guests in a dinner reservation and the number of
items of a particular grocery are of type numeric.
If we delexicalize slot-values with slot types, we
can transfer learning for a slot type in one domain
to the same slot type in another domain.

There can be cases where there are different
ways (word patterns) to specify updates to two
slots even if they are of the same type, because of
differences in the corresponding domains or some
other reason. For example, lets say slots S1 and S2

are in different domains but share the same slot-
type S and we have training data for slot S1. S1

and S2 have similarities owing to their common
slot-type but have certain differences in the ways
users can express update intents for them. In such
a case, to generate training data for S2, we would
need data capturing the differences between the
two slots because the examples with common fea-
tures are already contained in S1’s training data.
Generating this additional data is easier than gen-
erating the full data for S2. The amount of addi-
tional data required will depend upon the degree
by which the slots (S1 and S2) differ. When ap-
plied to a large number of slots and domains, this
strategy would significantly reduce the time and
effort that goes into data generation. To demon-
strate this, we conduct training and testing ex-
periments on two domains, restaurants and online
shopping, and report results in Section 5.2.

4 Data Preparation

To evaluate our approach, we needed dialogs con-
taining numeric, CMV, and DMV slots in the
domain ontology along with the proposed up-
date intents expressed in user utterances. Exist-
ing datasets with annotated dialog acts such as
WOZ 2.0 (Wen et al., 2017), ATIS (Dahl et al.,
1994), Switchboard DA corpus 1, Dialog State
Tracking Challenge (DSTC) datasets (Henderson
et al., 2014a; Williams et al., 2013; Henderson
et al., 2014b) and ICSI meeting recorder DA cor-
pus (Shriberg et al., 2004) did not satisfy these re-
quirements. DSTC 2 and DSTC 3 datasets con-
tained DMV slots but not the CMV (list-based
slots) and numeric slots 2. DSTC 4 (Kim et al.,
2015), DSTC 5 (Kim et al., 2016) and DSTC

1http://compprag.christopherpotts.net/
swda.html

2The pricerange slot in DSTC2 and 3 is a categorical (and
not a numeric) slot with a fixed set of values

6 (Boureau et al., 2017) introduced a new set of
speech acts which contains “HOW MUCH” act
for the numeric price range and time slots. How-
ever, the act only supports the Replace UI and not
the IncreaseBy and DecreaseBy UI’s. Moreover,
the three datasets are not public. Therefore, we
generated our own datasets.

We generated user utterances in two domains:
restaurants and online shopping. In each domain,
eight human editors generated user utterances in-
dependent of each other. The sets of editors were
different across the two domains. Table 3 explains
the slots used in the two domains. For each do-
main, we defined certain tasks which are listed in
Table 4. Editors wrote conversations to complete
those tasks. Since this was not a real dialog sys-
tem, editors were asked to assume appropriate bot
responses based on their requests such as “Okay”,
“Added”, “Removed”, “Done” during the conver-
sation. Also, since the focus was on identifying
update intents and not on the overall SLU, (dialog
act detection, slot-filling, etc.), we did not build
our own custom slot-tagger and, instead, asked the
editors to annotate the slot-values with the corre-
sponding slot name in addition to the update in-
tents. Here is a sample annotation for the task
“restaurant reservation”.

Drop

NGUEST︷ ︸︸ ︷
one︸︷︷︸

DecreaseBy

person,

PNAMES︷ ︸︸ ︷
Joe︸︷︷︸

Remove

can′t make it.

For the shopping domain, 305 conversations
with 1308 user utterances were generated. For the
restaurant domain, 280 conversations with 1323
user utterances were generated. The distribution
of utterances among editors is 96, 110, 212, 79,
176, 258, 211 and 166 for the shopping domain.
For the restaurant domain, the editorial distribu-
tion is 322, 181, 116, 106, 143, 107, 109 and 239.
The distribution of Append, Remove, Replace, In-
creaseBy and DecreaseBy UI’s for restaurant do-
main is 1022, 301, 601, 92, 112 respectively. The
corresponding distribution for the shopping do-
main is 1249, 241, 521, 297, 90. Note that, an
utterance may have more than one UI.

5 Experiments and Results

5.1 Experimental Setting

We implement the proposed architecture in Sec-
tion 3 using Keras (Chollet et al., 2015), a
high-level neural networks API, with the Tensor-
flow (Abadi et al., 2015) backend. Training is
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Slot Type Definition

Restaurants

PNAMES CMV List of names of people in a reserva-
tion.

NGUEST Numeric Number of people in a reservation.
MENUITEMS CMV List of menu items to be ordered.
CUISINE DMV Type of cuisine.
LOCATION DMV Location (city) of restaurant.

Shopping

GITEMS CMV List of grocery items.
QTY Numeric Quantity of a particular (grocery or

apparel) item.
ASTORE DMV Apparel shopping store.
AITEMS CMV List of apparels.
COLOR DMV Color of apparel.
SIZE DMV Size of apparel.

Table 3: List of slots, their type and definitions in
the restaurant and shopping domains.

done by mini-batch RMSProp (Hinton et al., 2012)
with a fixed learning rate. In all our experiments,
mini-batch size is fixed to 64. Training and infer-
ence are done on a per-utterance level. The em-
bedding layer in the model is initialized with 300-
dimensional Glove word vectors obtained from
common crawl (Pennington et al., 2014). Embed-
dings for missing words are initialized randomly
with values between −0.5 and 0.5.
Evaluation: Using a random split of train and test
sets would have examples from the same editor in
both train and test sets which would bias the es-
timation. Therefore, we split our data into eight
folds corresponding to the eight editors, i.e., each
fold contains examples from only one of the ed-
itors. To evaluate our models, we train and vali-
date on the data from seven folds and test the per-
formance on the held-out (eighth) fold. We run
this experiment for each editor, i.e., eight times,
and average results across the eight folds. For
validation, we use 15% of the training data. We
use precision, recall and F-1 score to report the
performance of our classifiers. Overall classifica-
tion performance metrics are computed by taking
the weighted average of the metrics for individual
classes. A class’s weight is the ratio of the number
of instances in it to the total number of instances.
Parameter tuning: In each experiment, 15% of
the current training set is utilized as a development
set for hyper-parameter tuning and the model with
best setting is applied to the test set to report the
results. We tune learning rate, dropout via grid
search on the development set. In addition, we uti-

lize early stopping to avoid over-fitting. The opti-
mal hyper-parameter settings for our classification
experiments (reported in Table 5) is dropout =
0.3, learningrate = 0.001 for the restaurants
domain and dropout = 0.25, learningrate =
0.001 for the shopping domain.
Baseline: We used n-grams based multinomial lo-
gistic regression as a baseline. N-grams based
models have been extensively used in text classi-
fication (Biyani et al., 2016, 2013, 2012). Such
models have also been found to be effective as
semantic tuple classifiers for dialog act detection
and slot filling tasks (Chen et al., 2013; Hender-
son et al., 2012). Since there can be multiple
slot-values and, hence, multiple UI’s expressed in
a user utterance, the entire utterance cannot be
used to extract n-grams for all the expressed UI’s.
Therefore, we segment user utterances into rele-
vant contexts for the slot-values and classify the
contexts into one of the five UI classes. A context
for a value is an ordered list of words which are
indicative of the update to be performed for the
value. We use two approaches for segmentation
based on the k words window approach: a) hard
segmentation, b) soft segmentation. In the first ap-
proach, we assign the words around the value to
its context based on the following constraints:
1. If an utterance contains only one value, the en-
tire utterance is taken as the context for the value.
2. If there are n words (s.t. n < 2k) between two
slot values then the preference is given to the right
value. That is, k words are assigned to the context
of the right value and n− k words are assigned to
the context of the left value.
3. All the words to the left of the first value (in the
utterance) are added to the value’s context. Simi-
larly, all the words to the right of the last value are
added to its context.

In soft segmentation, we do not perform a hard
assignment of the words, between the two values
to the context of one of the values. Instead, we en-
code the words into one of these categories based
on its position with respect to the value and if it
is in between two values (and let the model learn
weights for words in each category): 1) towards
left of a value and between two values, 2) towards
right of a value and between two values, 3) to-
wards left of a value, 4) towards right of a value.

We extracted unigrams and bigrams from the
context of slot-values. We experimented with dif-
ferent window sizes and k=2 gave the best results.
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Task Informable slots Supported update intents Example user utterances

Restaurants

Search location, cuisine Append, Remove, Replace. Utterances 1 to 3 in Table 1
Reservation pnames, nguest All UI’s Utterance 4 to 7 in Table 1
Order food menuitems Append, Remove, Replace. 1. Order a cheese burger and a coke can. 2. Can

you do a diet coke.

Shopping

Grocery gitems, qty All UI’s 1. One dozen white eggs and one pound of apples.
2. Add two more pounds of apples.

Apparel aitems, astore, color,
size, qty

All UI’s. 1. Show me blue sweaters at Target. 2. I think
black will suit better.

Table 4: Tasks in the two domains with corresponding info slots, supported update intents and example
utterances. Slot-values in the utterances are in italics.

Class Prec. Re. F-1 #Instances

Restaurants

Append 90.64 92.86 91.74 1022
Remove 85.66 81.40 83.48 301
Replace 89.05 93.34 91.15 601
IncreaseBy 95.29 88.04 91.53 92
DecreaseBy 96.88 83.04 89.42 112

Overall 90.02 90.65 90.27 2128

Shopping

Append 92.22 95.26 93.72 1245
Remove 85.71 74.69 79.82 241
Replace 85.63 82.50 84.04 520
IncreaseBy 98.30 97.31 97.80 297
DecreaseBy 91.36 82.22 86.55 90

Overall 90.86 90.18 90.45 2393

Table 5: Classification results on the two domains.

5.2 Results

In this section, we present the results of our clas-
sification and domain-independence experiments.

5.2.1 Classification Results
Table 5 shows the classification results on the
two domains. For both the domains, our model
achieves more than 90% overall F-1 scores. Per-
class results are also strong. The Append, Re-
place, and IncreaseBy classes achieve more than
91% F-1 scores for the restaurant domain. For the
shopping domain, IncreaseBy is the best perform-
ing class (97% F-1) followed by Append and De-
creaseBy. Despite having significantly fewer ex-
amples compared to the other classes, IncreaseBy

Method Prec. Re. F-1

Restaurants

1.Baseline(soft) 84.28 82.84 81.96
2.Baseline(hard) 85.74 84.96 84.32
3.Model-delex 90.661,2 85.141,2 87.741,2

4.Model 90.021,2 90.651,2,3 90.271,2,3

Shopping

1.Baseline(soft) 82.62 81.12 79.86
2.Baseline(hard) 82.81 81.55 80.32
3.Model-delex 86.301,2 82.10 84.051,2

4.Model 90.861,2,3 90.181,2,3 90.451,2,3

Table 6: Comparison of different classification
models on the two domains. Superscripts’ de-
note statistical significance over the corresponding
model with a p-value of 0.05 or less. Model-delex
is the proposed model without delexicalization.

and DecreaseBy perform very well. One of the
reasons for this behavior could be that after delex-
icalization, for these two classes, there is only one
slot (QTY in shopping and NGUEST in restau-
rants) for which the model learns the patterns.
Other than these two classes, this slot is shared
by the Replace class. Hence, given a delexical-
ized numeric slot-value, the model needs to dis-
criminate between these three classes whose rela-
tive distribution is much smoother than the over-
all distribution of the five classes. For the other
delexicalized slot-values, the model discriminates
between Append, Remove and Replace, where the
majority class has a much higher number of exam-
ples than the minority Remove class. Hence, we
see that the Append class performs significantly
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Figure 2: Restaurant as out-domain and shopping
as in-domain.

better than the Remove class.
We also compare our model with the two base-

lines explained in Section 5.1. Table 6 presents
these results. We see that the proposed model
significantly outperforms the two baselines. This
shows that for UI classification, contextual infor-
mation around a slot-value is captured much more
effectively using sequence models than static clas-
sifiers. We also experimented with our model
without delexicalization to verify the gains it
brings. As can be seen, delexicalization does im-
prove the performance in both domains.

5.2.2 Domain Independence Results

We conducted experiments to explore if learning
of UI’s in a domain can be used to predict UI’s in
a different domain. We use one of the domains as
the “in-domain” (where learning is transferred to)
and the other as the “out-domain” (where learning
is transferred from). For this experiment, we set
aside 20% of the in-domain data as the test set. At
each step, we use 15% of the training data as the
validation set. We explored two settings:
1. Combined-training: In this setting, we start by
training our model on the entire out-domain data
and then, incrementally, add a fraction (10%) of
the in-domain data (left after taking out the test
data) to the current training data, retrain the model
(from scratch) on the combined data.
2. Pre-training: Here, we train a model on
the out-domain data and fine-tune it with the in-
domain data. At each step, we add a fraction
(10%) of the in-domain data to the current training
data and refit the pre-trained out-domain model on
it by initializing the model weights to the weights
of the model trained on the out-domain data.
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Figure 3: Shopping as out-domain and restaurant
as in-domain

Figures 2 and 3 report the results of these two
settings. For Figure 2, the model trained only
on the out-domain (restaurant) data achieves F-1
score of more than 80% on the in-domain test set.
As we add more in-domain data, the F-1 score in-
creases. With only 30% of the in-domain data, we
get 89% F-1 score. Also, we see that pre-training
and combined-training have similar performances.

For Figure 3, the out-domain model achieves a
much lower F-1 score on the in-domain data. This
shows that the transfer is not symmetric. This
could be due to the PNAME slot, which has no
similar slots in the shopping domain. There is
also a difference between the performance curve
of pre-training and combined-training. This indi-
cates that fine-tuning a pre-trained model is harder
than combined training when patterns are not cov-
ered by the out-domain data.

6 Conclusions and Future Work

We proposed a new type of slot-specific user in-
tents, update intents (UI’s), that are directly re-
lated to the type of update a user intends for a
slot. The UI’s address user intents containing im-
plicit denials, numeric updates and preferences for
slot-values, which are not handled by the currently
used dialog acts. We presented a sequence label-
ing model for classifying UI’s. We also proposed a
method to transfer learning of UI’s across domains
by delexicalizing slot-values with their slot types.
For that, we defined three generic slot types. Ex-
perimental results showed strong performance for
UI classification and promising results for the do-
main independence experiments. In the future, we
plan to explore mechanisms to utilize the UI’s in
belief tracking.
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