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Introduction

Welcome to the 2nd Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage,
Social Sciences, Humanities and Literature. After a great joint event last year, we are happy to present
another lineup of high-quality papers at this year’s workshop. Everything you want to know about it
has been placed on-line (https://sighum.wordpress.com/events/latech-clfl-2018/). We accepted 64.3% of
submitted papers. You can appreciate the thematic variety in what follows.

We thank all submitters, congratulate those whose work appears here, and express our debt of gratitude
to the members of the program committee. We wish to single out one participant: Ted Underwood, who
has graciously accepted our invitation to be the workshop’s guest speaker.

Enjoy!

Beatrice, Stefania, Anna, Anna, Nils, Stan
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Invited Talk

Ted Underwood is a Professor of Information Science and English at the University of Illinois, Urbana-
Champaign. He has published widely on quantitative approaches to literary history, with articles in New
Literary History, Cultural Analytics, Representations, and Modern Language Quarterly. His research
currently focuses on questions about literary character, and ways of using machine learning to compare
situated historical perspectives. In 2019, the University of Chicago Press will publish his next book,
Distant Horizons: Digital Evidence and Literary Change.

Measurement and Human Perspective

Researchers who use quantitative methods to study culture may find themselves torn between two
approaches to knowledge. Quantitative disciplines often value generalizable methods that make different
frames of reference comparable. But humanists have long insisted that knowledge about culture is
irreducibly perspectival, relative to a particular vantage point. Of course, the tension between these two
approaches is not exactly a contradiction. Contemporary quantitative methods are sometimes flexible
enough to incorporate varied human perspectives as elements of a model. This talk will describe a
few recent projects that have attempted perspectival modeling, and reflect on opportunities for further
research.
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Abstract

We propose to study the evolution of concepts by learning to complete diachronic analogies be-
tween lists of terms which relate to the same concept at different points in time. We present a
number of models based on operations on word embedddings that correspond to different as-
sumptions about the characteristics of diachronic analogies and change in concept vocabularies.
These are tested in a quantitative evaluation for nine different concepts on a corpus of Dutch
newspapers from the 1950s and 1980s. We show that a model which treats the concept terms as
analogous and learns weights to compensate for diachronic changes (weighted linear combina-
tion) is able to more accurately predict the missing term than a learned transformation and two
baselines for most of the evaluated concepts. We also find that all models tend to be coherent
in relation to the represented concept, but less discriminative in regard to other concepts. Addi-
tionally, we evaluate the effect of aligning the time-specific embedding spaces using orthogonal
Procrustes, finding varying effects on performance, depending on the model, concept and evalu-
ation metric. For the weighted linear combination, however, results improve with alignment in a
majority of cases. All related code is released publicly.

1 Introduction

Research on the evolution of concepts is a long-standing topic within philosophy, history and linguistics.
However, recent work on the computational analysis of semantic change based on word embeddings
has surprisingly little to offer in this regard. Most work focuses on the meaning of individual words.
In comparison, there are only few contributions which analyze concepts and the changing vocabularies
which are used to express them (Kenter et al., 2015; Recchia et al., 2016).

The goal of this paper is to provide insights into how distributional semantics (Harris, 1954;
Firth, 1957), in particular word embeddings (Mikolov et al., 2013a; Levy et al., 2015), can be used to
analyze concept change. We propose to model concept change in terms of analogies between concept
vocabularies at different points in time. This extends well-established synchronic models of analogy
based on word embeddings (Mikolov et al., 2013b) to the diachronic case. We build on the underlying
parallelogram model of analogy (Rumelhart and Abrahamson (1973), cf. Chen et al. (2017)), assuming
that analogies of the type of “a is to b as c is to d“ can be described by linear relationships between
distributional representations of the four words. While parallelogram relationships can be found in other
vector representations as well (Levy and Goldberg, 2014), embeddings derived with skip-gram can be
considered a robust baseline for analogy tasks (Levy et al., 2015).

We detail our approach (Section 3) and propose a number of simple models to learn diachronic analo-
gies (Section 4) which are evaluated quantitatively (Section 6) on a corpus of historical Dutch newspapers
(Section 5). We report on two related experiments which are motivated by the intuition that diachronic
analogies should be coherent in regard to the represented concept and discriminative in regard to the
vocabulary of other concepts. All related code is released publicly1 .

This work is licensed under a Creative Commons Attribution 4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0/.

1https://gitlab.com/morlikowski/diachronic-analogies-code
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2 Related work: Distributional approaches to semantic change

Word-level semantic change. There is a great body of work which uses word vector represen-
tations to study changes in word semantics. Examples include Gulordava and Baroni (2011) or
Radinsky et al. (2011), while Kim et al. (2014) are among the first to use neural word embeddings
to analyze changes in word meanings. Kulkarni et al. (2015) use a similar approach, but automat-
ically identify points of meaning changes based on shifts in the mean of the respective time series.
Hamilton et al. (2016) and Dubossarsky et al. (2017) present methods to more precisely quantify trends
in changes of word meaning and address a central problem in using word embeddings for diachronic
analyses: They align the axes of the vector spaces from neighboring time periods using a mapping de-
rived with orthogonal Procrustes (Hamilton et al., 2016). This method will be presented in more detail
in Section 4.3.

Concept-level semantic change. There are a number of approaches to studying lexical semantic
change above the level of individual words. These include simple co-occurrence statistics or topic mod-
eling (Blei and Lafferty, 2006) which are only loosely related to our work based on word embeddings.
For example, Tan et al. (2017) present a topic modeling approach to study relations between ideas that
helps to detect gradual substitution and prevalence, or mutual fostering and coexistence.

Kenter et al. (2015) is a central reference point for our work, because they explicitly attempt to model
changes in concept meaning, use word embeddings and also adress their method at use cases from the
(digital) humanities. Most importantly, Kenter et al. (2015) also published a ground truth dataset for
quantitative evaluation. The authors present a method to trace concept vocabularies through a time-
stamped corpus based on a set of seed terms (few words, typically one or two) which is tailored towards
ad-hoc use over broad time periods. This method is also at the heart of the related systems presented in
Martinez-Ortiz et al. (2016b), Martinez-Ortiz et al. (2016a) and Wevers et al. (2015). The authors create
vector space models for overlapping periods of the corpus. They then use a number of graph-based
unsupervised algorithms that they combine in different ways to generate the final vocabularies. In their
evaluation, all their methods beat a baseline that outputs the n most related terms per queried time period
using a vector space trained on that period.

Recchia et al. (2016) present a variation of this method, but do not give evaluation results as they
report on work in progress of constructing more extensive ground truth data. Their method selects a fully
connected graph of k nodes that must contain all words in the previous time period (or seed terms for the
first time slice) and have the highest possible minimum edge weight.

3 Concept change as diachronic analogies

Following Kenter et al. (2015), we denote concepts as a set of terms, the concept vocabulary. Each term
in the concept vocabulary is represented using time-period-specific word embeddings which are derived
from training on slices of a time-stamped corpus. We distinguish concept terms which make up the
conceptual core (core concept terms) from the rest of the vocabulary (characterizing concept terms),
carrying forward Kenter et al.’s distinction of the core and the margin of concepts. For example, for the
concept of ECONOMIC EFFICIENCY, core terms might be efficiency and efficient, while characterizing
terms might be robotization, automatization or labor productivity. In our notion of diachronic concept
change, the characterizing terms are expected to change over time, while the surface forms of the core
terms are assumed to stay the same.

In previous approaches (Kenter et al., 2015; Recchia et al., 2016), the role of the time-specific vector
spaces is limited to providing a similarity metric that is used in constructing a weighted semantic graph.
Taking the concept vocabulary of the previous time period as input, similar terms are added to the graph
which is subsequently pruned based on a centrality measure to generate the new concept vocabulary.
In contrast, we are interested in utilizing the features of the time-specific vector spaces directly when
predicting concept change to allow for more detailed analyses and comparisons, using models which are
based on vector operations.

We reduce the problem of concept change to the problem of predicting valid characterizing terms for a
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core concept term given a respective characterizing term at an earlier point in time. More formally, given
the embedding of a core concept term ~at0 for a time period t0, the embedding for the same core concept
term ~at1 for a later time period t1 and the embedding of a characterizing term for the earlier period~bt0 ,
our goal is to predict the embedding for the missing characterizing term~bt1 with some function f :

~bt1 = f (~at0 ,
~bt0 ,~at1) (1)

In the following section, we will present and discuss a number of possible instantiations of f , which
are motivated by an inductive learning perspective on analogy (Cornuéjols and Ales-Bianchetti, 1998)
and methods of analogy recovery used in connection with word embeddings (Mikolov et al., 2013b).
Consequently, we view a 4-tuple (~at0 ,

~bt0 ,~at1 ,
~bt1) as constituting a loose diachronic analogy between

concept terms, for ECONOMIC EFFICIENCY e.g. “efficiency is to robotization at one point in time as
efficiency was to mechanization at an earlier point in time“.

Analogies between two word pairs are based on highly similar semantic relations among the words in
each pair (Turney, 2006). In our adaptation of analogies between concept terms, relational similarity is
implied by the assumption that both term pairs relate to the same concept. Note that the type of semantic
relation underlying our notion of diachronic concept analogies is rather generic, as it only describes
membership of a characterizing term in a concept.

4 Learning diachronic analogies

4.1 Baselines and models
This section describes two baselines and two preliminary models to learn to complete diachronic analo-
gies. Each model is based on different intuitions and assumptions about the characteristics of diachronic
analogies which will be detailed and subsequently tested in the quantitative evaluation.

No transfer baseline. As a naive baseline we set~bt1 =~at1 , which predicts the embedding of the core
concept term at t1 by effectively ignoring the previous time period. We refer to this model as the NO

baseline. It is intended to provide a minimal benchmark for model performance.

Linear combination baseline. The baseline described in equation (2) performs a linear combination of
the known term vectors to recover the fourth, unknown vector. This corresponds to the analogy recovery
method used by Mikolov et al. (2013b) without a search for the closest word vector in the vocabulary.
We refer to this model as the ADD baseline. It assumes a direct linear relationship between the analogy
vectors, even though the source and target vectors belong to vector spaces computed from two distinct
subsets of the corpus.

~bt1 =~bt0 −~at0 +~at1 (2)

Transformation. This model amounts to explicitly encoding the relation between the source terms as
a function and reapplying it to the target. The model encodes the assumption that the two vector spaces
are structurally similar, so that the same (geometric) relation holds in both instances. In the following, it
is referred to as TRANS. The model learns a transformation between the concept term vectors at t0 and
applies the same function to the core concept term at t1 to approximate the unknown term vector. This
means that we learn

~bt0 = At0 ·~at0 (3)

and then predict by reusing At0 on t1 as
~bt1 = At0 ·~at1 (4)

Weighted linear combination. The weighted linear combination model (equation 5) is equivalent to
the ADD baseline with weights attached to each word vector before combining them. We refer to this
system as the WEIGHTS model. In contrast to ADD, this model is based on the intuition that for di-
achronic analogies the model has to compensate for the displacement of vectors due to semantic change
when trying to complete the analogy based on the parallelogram assumption.

~bt1 = Bt0 ·~bt0 − At0 ·~at0 + At1 ·~at1 (5)

3



4.2 Training method
We view the equations in Section 4.1 as describing shallow neural networks which we implemented using
the framework PyTorch.2 The models are trained for 10 iterations over the training data using the Adam
optimization method (Kingma and Ba, 2014). The model’s error is measured using the cosine distance
between the predicted vector and a gold vector. Weights are initialized with an identity matrix, which
makes the output of the untrained TRANS model equal to the NO baseline and the untrained WEIGHTS

model equal to the ADD baseline. Other initialization strategies were tested (in particular random weights
and an identity matrix combined with small random values), but were not found to improve results.

4.3 Vector space alignment
For low-dimensional vector representations, specifically derived with skip-gram as used in the reported
experiments, vectors for the same word from different spaces can be arbitrary orthogonal transformations
(Hamilton et al., 2016). To counteract this problem, the authors frame the alignment of two matrices of
word embeddings as an orthogonal Procrustes problem and solve it using the closed form solution from
Schönemann (1966). As Bamler and Mandt (2017) point out, this method conceptualizes the differences
of diachronic word vectors as the result of a global rotation (introduced by the rotation-invariant cost
functions used in deriving the embeddings) and some semantic drift that becomes available for analysis
after alignment.

Note that aligned embeddings can only be computed for the intersection of the vocabularies of the two
time periods, discarding all words that occur only in one of the time periods. Thus, while the reasoning
of Hamilton et al. (2016) is convincing, we will empirically assess the effects of alignment in our task.

5 Data

In our experiments we use a dataset of Dutch newspaper articles digitized by the National Library of the
Netherlands with related ground truth data published by Kenter et al. (2015). In the following, we will
describe the data in more detail and will outline the performed data collection and preprocessing.

5.1 Ground truth data
Kenter et al. (2015) provide evaluation data for predictions of diachronic changes in concept vocabular-
ies, which we adapt slightly to generate diachronic analogies between concept terms. In their dataset,
for every 5-year interval, two domain experts (historians of contemporary history) rate the relevance of a
number of words in relation to a given set of concept terms (seed terms). This is done for 21 sets of seed
terms in total, each corresponding to a distinct concept. The rating scale goes in integer steps from −1
(not related) up to 2 (perfect match).

For each concept, we first choose a time interval t0 for the analogy source and an interval t1 for the
analogy target. We treat the seed terms as core concept terms and use them to derive the vectors ~at0 and
~at1 . The vectors ~at0 and ~at1 are derived from any term in the concept vocabulary with an average score
greater than a threshold τ .

For the ground truth dataset used in the reported experiments, we chose τ = 0, t0 = (1955,1959)
and t1 = (1985,1989). Note that an example can only be used in training and evaluation if there are
representations for every term in the analogy in the respective vector space. To be able to use as much of
the validation data as possible, we tried to obtain a corpus for training the embeddings as similar to the
one used by Kenter et al. (2015) as possible (see Section 5.2). Table 1 gives an overview of the concepts
that were used in the experiments after taking into account the effective number of analogies for each
and filtering out concepts with only few examples. In the following, we will mostly refer to individual
concepts by the last word of the concept core words, e.g. to the DUTCH CITIES concept by utrecht.

Besides presumably changing concepts, the evaluation set also includes concepts which are expected to
have stayed semantically stable over the evaluation period. These concepts are used to evaluate whether
the models are able to predict both semantic change and semantic constancy. In detail, concepts with a
tendency towards stability are utrecht, violen, boekje, beethoven and koeien. While diachronic analogies

2PyTorch 0.2.0, https://github.com/pytorch/pytorch/tree/v0.2.0
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Concept core words Description N Nemb

amsterdam, rotterdam, utrecht Dutch cities 7350 5940

neger, negers, negerin, kleurling (Discriminating) terms for black people 312 160

efficiency, efficiëntie Economic efficiency 1008 684

viool, violen Musical instruments 1682 1512

boek, boeken, boekje Writings and books 5472 4773

mozart, brahms, beethoven Famous composers 720 720

waterstofbom, waterstofbommen, Nuclear weapons 1440 540atoombom, atoombommen

koe, koeien Cattle farming 1380 900

jodenvervolging, deportatie, deportaties Persecution of jews 264 150

Table 1: Overview of all conceptual diachronic analogies in the dataset for 1955–1959 and 1985–1989
with concept core words and number of examples with untrimmed (N) and embedding vocabulary (Nemb)

between concept term embeddings seem to be primarily suitable to describe semantic change in the strict
sense, constancy can be expressed equally well in terms of smaller differences between vectors. In the
edge case of identical semantic spaces for two time periods, the assumed parallelogram between analogy
vectors becomes a line.

Note that while the number of examples is reduced by the embeddings’ vocabulary as influenced by
hyperparameters (cf. Nemb in Table 1), the number of examples already varies notably per concept on
the basis of the untrimmed corpus-specific vocabulary (N). Also, in the original dataset the number of
annotated words differs between the concepts. However, no systematic relation could be established
between the number of original annotations and the number of examples in the generated analogies, so
that the influence of the (effective) vocabulary seems to be decisive.

5.2 Koninklijke Bibliotheek Historical Newspaper Corpus
Kenter et al. (2015) train their embeddings on a subset (1950–1994) of the historical collection of digi-
tized Dutch newspapers which are archived by the Koninklijke Bibliotheek (KB), the National Library
of the Netherlands. Unfortunately, the exact corpus used by the authors is not available as there is no
self-contained dataset available for the KB historical newspapers corpus. The individual articles have to
be crawled using a set of related APIs which are only available after signing a contract with the KB due
to copyright restrictions of the newspapers’ content.

First, the complete set of article identifiers for a time period was crawled. Then a 10% sample was
drawn for full-text retrieval, resulting in about 500.000 articles for both selected periods. Tokeniza-
tion, sentence detection and normalization (lowercasing, stop word and punctuation removal) were ap-
plied using the spaCy library3 with a pretrained4 Dutch model. No lemmatization or stemming was
applied, following Kenter et al. (2015). Note that the resulting dataset is nevertheless different from
Kenter et al. (2015), as the collection changed in the meantime and also was not sampled in their work.
Our final corpus for t0 = (1955,1959) contains 8.527.393 sentences with 63.556.890 tokens in total.
The corpus for t1 = (1985,1989) contains 15.025.711 sentences with 113.813.461 tokens in total. Note
that for the later period the number of tokens is almost twice as much. Exemplary analysis showed that
articles in the 1980s tend to be longer, so that the number of sentences and tokens is higher.

For each period, word embeddings were trained using the implementations by the Gensim library5. In
correspondence with Kenter et al. (2015), we used the skip-gram architecture to train embeddings with
300 dimensions. We use a slightly different configuration, however, in particular negative sampling, a
subsampling threshold of 10−5, a context width of 4 and a minimum word count of 10.

3 https://github.com/explosion/spaCy/tree/v2.0.5
4Dutch multi-task CNN trained on the Universal Dependencies and WikiNER corpus, version 2.0.0,

https://github.com/explosion/spacy-models/releases/tag/nl core news sm-2.0.0
5Gensim 3.2.0, https://github.com/RaRe-Technologies/gensim/tree/3.2.0
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To align the coordinate axes of two word embeddings spaces as proposed by Hamilton et al. (2016),
we use a port of their code by Ryan Heuser that provides an interface to the Gensim library6.

6 Experiments and results

Despite relying on their data, we cannot compare our results directly to Kenter et al. (2015), due to the
differences in approach and evaluation period. Therefore, we evaluate the models presented in Section
4 intrinsically in two separate experiments: The first experiment tests how well the different systems
predict the missing vector~bt1 . Subsequently, we report on an experiment that evaluates how well these
vectors can be mapped back onto the vocabulary to receive human-readable lists of terms. These experi-
ments are designed to assess as to what extent the diachronic transformations applied result in semanti-
cally coherent as well as discriminative concepts at t1.

Results will be discussed and compared with and without alignment (cf. Section 4.3). Note that draw-
ing conclusions from this comparison is difficult, because the alignment inevitably changes the vocab-
ulary and thereby the composition of the dataset, so that we effectively compare across two different
datasets. However, given the decisive stance of Hamilton et al. (2016) on alignment for diachronic em-
bedding spaces, it seems important to evaluate its effects on the task.

We train and evaluate all four models separately for each concept listed in Table 1. As some concepts
only have few examples, all experiments are run in a k-fold cross-validation setting. We use k = 5 and
report scores averaged over all folds along with their standard deviation (in plots indicated by error bars).

6.1 Experiment 1: Predicting the missing analogy vector
To evaluate the prediction of the missing concept term, we use the cosine similarity between the predicted
and the label vector and average over all examples. For a set of analogies A, the predicted vector~bt1i

and
the label vector~b∗

t1i
for the i-th analogy, the average cosine similarity (COS) score is defined as

COS =
1
|A|

|A|
∑
i=1

~bt1i
·~b∗

t1i

‖~bt1i
‖2‖~b∗

t1i
‖2

(6)

Hence, this experiment addresses the coherence aspect in evaluating the diachronic transformations in
the sense that higher COS values indicate smaller distances between predicted and expected terms, thus
resulting in more coherent concept representations at t1.

Figure 1 shows the average cosine similarity scores of a 5-fold cross-validation for both aligned and
non-aligned vector spaces per concept for each of the models and baselines for the 1955–1959 and 1985–
1989 time intervals on the subset of the KB historical newspapers corpus described in Section 5.2.

For all concepts and models as well as irrespective of alignment, the standard deviation is very low,
indicating stable performance across folds.

The ADD baseline generally has a lower score than the NO baseline except for koeien and boekje with
alignment. Apparently a naive search in the neighborhood of the core concept term for the later period
is better than assuming a simple linear relationship between the terms across time periods. Alignment
improves the scores for the ADD baseline, but we see hardly any differences for NO. As the NO baseline
ignores the aligned space t0, the small differences in performance might be caused by the differences in
the dataset due to the altered vocabulary.

The results for TRANS are strongly influenced by alignment. With non-aligned spaces, the model is
worse than the NO baseline for all concepts. With aligned spaces, the score of the TRANS model is
dramatically higher than without, sometimes more than twice as high (boekje, utrecht), and consistently
beats both baselines. Apparently it is only beneficial to assume that the same transformation is applicable
to both vector spaces across time when their dimensions are aligned, so that the transformation will have
a similar effect.

WEIGHTS is the best performing model, sometimes with a notable margin. When using alignment,
we see hardly any improvements for WEIGHTS. Probably, in the non-aligned case the weights manage

6https://gist.github.com/quadrismegistus/ 09a93e219a6ffc4f216fb85235535faf
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Figure 1: Averaged (5-fold cross-validation) cosine similarities between predicted and label vector per
model and concept for aligned and non-aligned vector spaces

to compensate for the missing alignment to a high degree, so that the alignment does not add much.
Comparing these results to ADD, it seems to be beneficial to include the t0 embeddings for predicting
the missing vector at t1 only if weights are learned to account for the differences between the two vector
spaces. Comparing to the simple TRANS model, the performance without alignment is clearly superior,
but with alignment WEIGHTS is only slightly better.

6.2 Experiment 2: Using predicted vectors for vocabulary retrieval

In the following, we will report on experiments that evaluate how well the predicted vectors can be used
to retrieve meaningful word lists that help to study concept change. To perform the mapping from an
embedding to a term, the system takes a predicted vector and performs an n-nearest neighbor search
over all word embeddings of the t1 vector space using cosine similarity as proximity metric. In the
reported experiments, n = 10 is used. Note that this evaluation setting is comparatively hard for the
proposed models, as the vocabulary retrieval performance is not only determined by the quality of the
prediction, but also by the other vectors in the t1 space outside the set of vectors that are part of the ground
truth dataset. As these vectors were not seen by the model during training, performance inevitably is
influenced to an arbitrary degree by the specific concepts and embedding spaces used.

We evaluate the vocabulary retrieval performance in terms of the mean reciprocal rank (MRR)
(Voorhees, 1999) of the label terms in the ranked lists of vocabulary terms. For a set of analogies A
and the rank of the label term in the list of vocabulary terms for the i-th analogy ranki, the MRR is
defined as

MRR =
1
|A|

|A|
∑
i=1

1
ranki

(7)

When for any analogy the label term is not in the list of returned vocabulary terms (i.e., ranki is not
defined), the reciprocal rank 1

ranki
is set to 0. Hence, this experiment aims at assessing whether the

diachronic transformations applied yield a semantic space at t1 that effectively discriminates between
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Figure 2: Averaged (5-fold cross-validation) mean reciprocal rank scores (in percent) per model and
concept for aligned and non-aligned vector spaces

different concepts such that terms included in the vocabulary of a concept should be consistently ranked
higher than confounders from the vocabulary of other concepts, thus resulting in higher MRR scores.

Figure 2 shows MRR results per concept for each of the models and baselines using aligned and non-
aligned vector spaces computed for the same dataset and 5-fold cross-validation setting as in Section 6.1.
Overall, compared to Experiment 1, the results are much less uniform and stable. The ADD baseline
performs worse or comparable to the NO baseline. An exception is koeien with alignment. These overall
results for ADD are expected, since NO has higher COS scores than ADD for almost all concepts, inde-
pendent of alignment. Alignment has no clear effect on MRR scores for ADD. For some concepts (e.g.,
boekje) the baseline performs worse than non-aligned, for others (e.g., koeien) it performs better.

Surprisingly, without alignment TRANS often yields more relevant predictions than the two baselines,
even though its COS scores are mostly lower (cf. Figure 1). With aligned embedding spaces, the MRR
performance of TRANS shows very variable behavior. For some concepts, we see small improvements
with alignment, in the case of atoombommen it is even very large. For other concepts, we see a drop in
performance, sometimes very sharp as for beethoven or violen. This is a puzzling result, since we see
notable improvements in the cosine similarity score for TRANS when the vector spaces are aligned.

For most concepts, WEIGHTS performs best and often does so with a large margin – with or without
alignment. Exceptions are utrecht and boekje with a score below the baselines. Interestingly, while
applying rotational alignment only leads to negligible improvements in COS for WEIGHTS, the MRR
score is always higher with alignment than without, although for some concepts (e.g., kleurling) the
standard deviation increases exceptionally.

7 Discussion

Taken together, the vector transformations applied in our experiments in order to solve diachronic analo-
gies tend to produce robust and promising results with regard to local conceptual coherence (cf. Experi-
ment 1); however, the resulting conceptual spaces barely exhibit the property of discriminability between
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concepts (cf. Experiment 2).
Comparing the individual models’ performance, it is notable that while the differences between

TRANS and WEIGHTS in terms of COS are small with aligned axes, WEIGHTS has much higher MRR
scores for both aligned and non-aligned embeddings. This result is consistent for all concepts, so that the
WEIGHTS model is the best- performing system overall.

Due to its comparable performance with non-aligned embeddings, when training WEIGHTS, differ-
ences between the vocabularies of the two time periods could be included in the data (see section 4.3).
Because of this, WEIGHTS can also be applied to cases of concept change where words disappear from
the concept vocabulary or new ones are added. On the other hand, the TRANS model requires less com-
plex training data which only needs to contain conceptual word pairs for one time period. This allows
for more exploratory use cases where expert knowledge about concepts only exists for t0. Taking into ac-
count the often negative effect of alignment on MRR for TRANS, the embeddings should be non-aligned.
While we admittedly would expect less relevant term lists when using this model instead of WEIGHTS,
it should, according to the evaluation, nevertheless give better results than the baseline approaches.

As discussed in Section 5.1, our evaluation data contains concepts that exhibit semantic change as well
as ones that tend towards semantic stability. The results observed in Experiment 1 are largely unaffected
by this difference, which may suggest that the models are applicable to cases of diachronic change and
stability as well. This hypothesis is only partially corroborated in Experiment 2, though. From our
current analyses, we conjecture that the variance in performance across concepts is mostly explained
by concept size (cf. Table 1) rather than the difference between changing vs. stable concepts. A more
detailed investigation of these effects is left to future work.

8 Conclusions and outlook

We have introduced the task of completing diachronic analogies to analyze concept change. We have pre-
sented two learned models to recover diachronic analogies and tested them in a quantitative evaluation.
The experiments showed that, for most of the evaluated concepts, a model based on a weighted linear
combination of the analogous words’ embeddings is able to more accurately predict the missing vector
which also corresponds to more relevant terms than a learned transformation and two related baselines.
More specifically, we have evaluated the effect of a rotational alignment of the time-period-specific em-
bedding spaces, finding varying effects on performance, depending on the model, concept and evaluation
metric. For the weighted linear combination, however, results improve with alignment in the majority
of cases. In sum, it is beneficial for prediction of diachronic changes in concept vocabularies to treat
the concept terms as analogous when weights are learnt to compensate for diachronic drift. However,
while all models tend to be coherent in relation to the represented concept, they are only to some degree
discriminative in regard to the vocabulary of other concepts.

Future work should carry out more in-depth evaluations, annotating task-specific ground truth data and
exploring evaluation settings like zero-shot learning which has been show to obtain promising results in
related problems (cf. Hartung et al. (2017)). We also expect benefits from training with an objective
function which includes negative examples and relates more closely to MRR. Beyond this, we are inter-
ested in designing more complex and task-specific models. Not last, we plan to explore use cases based
on cooperation with scholars from the humanities. For example, we see potential in analysing how an
author’s use of specific concepts changes across works using a combination of both interpretative and
automatic methods of diachronic analogy recovery.
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Abstract

We describe a new project publishing a freely available online dictionary for Coptic. The dictio-
nary encompasses comprehensive cross-referencing mechanisms, including linking entries to an
online scanned edition of Crum’s Coptic Dictionary, internal cross-references and etymological
information, translated searchable definitions in English, French and German, and linked corpus
data which provides frequencies and corpus look-up for headwords and multiword expressions.
Headwords are available for linking in external projects using a REST API. We describe the
challenges in encoding our dictionary using TEI XML and implementing linking mechanisms to
construct a Web interface querying frequency information, which draw on NLP tools to recog-
nize inflected forms in context. We evaluate our dictionary’s coverage using digital corpora of
Coptic available online.

1 Introduction

Coptic is the final stage of the indigenous language of Egypt, spoken in Egypt in the first millennium
and used as a liturgical language of Christian Copts in Egypt and the Coptic diaspora today. Together
with Ancient Egyptian, the language of the hieroglyphs, it forms part of the longest continuously attested
language documentation of any language on Earth. Unlike Ancient Egyptian, Coptic is written with a
script derived from the Greek alphabet, with several letters added from the earlier Demotic script for
native sounds not found in Greek.

Although the Coptic corpus, attested in six main dialects, is vast, it is very much under-studied com-
pared with materials from contemporaneous Greek and Latin sources. The amount of freely available
data for Coptic online is still small (see Schroeder and Zeldes 2016), and published book editions of
Coptic texts are mostly limited to the main important literary works, covering only a fraction of the data
preserved in the language, including literary, documentary and epigraphic material. The situation for
Coptic lexicography on paper, by contrast, is more comprehensive, with Crum (2000 [1939]) and subse-
quent dictionaries offering excellent coverage of native Coptic words. More recently, progress has been
made in the lexicography of the abundant inventory of Greek and other loan words in Coptic (Almond et
al., 2013), and work is in progress in matching existing Egyptological resources, such as the Thesaurus
Linguae Aegyptiae (Seidlmayer and Hafemann, 2011) with equivalent Coptic entries (Feder, 2016).

At the same time, there has been a substantial gap in providing an openly available electronic dictio-
nary of Coptic linked with digital corpora to provide easy look-up functionality and frequency informa-
tion. The present paper describes a new project, the ‘Coptic Dictionary Online’ (CDO), which is freely
available and fully linked with the growing digital resources and NLP tools which are becoming available
for Coptic. We discuss issues in TEI XML (http://www.tei-c.org) representations for Coptic
data, unique issues arising from Coptic morphology, as well as linked open data standards, such as REST
API connectivity. We evaluate the coverage of our lexicon based on currently available corpus data.
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2 Related work

The dataset of the Coptic Dictionary Online is based on a part of the ‘Thesaurus Linguae Aegyptiae’
(TLA), provided by the Berlin-Brandenburg Academy of Sciences (BBAW). TLA is a digital offspring
of the long-term research project ‘Wörterbuch der Ägyptischen Sprache’ (Dictionary of the Egyptian
Language), started in 1897 at the Prussian Acedemy of Sciences (now BBAW). Following the paper
publication of the five volume Egyptian lexicon, the TLA began work on the digital edition of the dictio-
nary, which went online in 2004, with extensions including Demotic Egyptian and Coptic lemmas, but
not yet broadly covering the Coptic vocabulary targeted in this paper.

A second project, ‘Database and Dictionary of Greek Loanwords in Coptic’ (DDGLC), originally
based in Leipzig and since 2015 at the Freie Universität Berlin, has indexed Greek words in the attested
Coptic corpus. DDGLC data is organized around Greek lemmas and currently contains 4,971 Greek
source lemmas, 8,406 resulting Coptic lemmas and 100,106 ‘attestations’ of the latter. CDO plans to
integrate these to overcome a major drawback of current Coptic lexicographical projects, which disregard
non-Egyptian vocabulary (see Section 5).

The other most extensive lexicographical project is the lexicon by the Marcion project,1 which contains
11,437 head words indexing 87,169 items, and closely follows the printed edition of Crum’s dictionary.
This resource is not linked to corpora and NLP tools and does not offer a REST API or multilingual
definitions, but does include links to the scanned online version of Crum’s work, much like the CDO.

Finally, the situation for lexically tagged corpora is more limited: the currently largest open collection
of lemmatized and grammatically analyzed Coptic data is provided by the project Coptic Scriptorium,2

based at Georgetown University and the University of the Pacific, and open for querying via the ANNIS
web interface (Krause and Zeldes, 2016). The corpora encompass approximately 500,000 running tokens
of Coptic text, just under 20% of which has been manually checked (this data will be used for the
evaluation in Section 5). Scriptorium data is described in more detail further below, and is the source of
both linked frequency data and example look-up in the CDO project.

3 Lexical data representation

3.1 Coptic grammar

Coptic is an agglutinative Afro-Asiatic language, descended from the earlier highly inflected system
of Ancient Egyptian, which was more similar to Semitic languages. Originally, Coptic was written in
manuscripts in scriptio continua, without spaces between words, as shown in Figure 1. However, like
other languages of the Middle East, such as Arabic and Hebrew, modern conventions spell Coptic with
spaces between stressed word groups, known as bound groups (see Layton 2011 in detail). Bound groups
most often include only one content lexeme, usually either a noun or a verb, along with accompanying
clitic articles, auxiliaries, prepositions and object or possessor pronouns, and therefore do not receive
individual lexicon entries.

Figure 1: Excerpt from a manuscript of Shenoute’s Canon 5 in Three Folios at the National Library in Vienna showing text in
scriptio continua. Image: Österreichische Nationalbibliothek, http://data.onb.ac.at/rec/RZ00002466.

However, analyzing what constitutes a content item for dictionary entries is non-trivial, since within
each bound group, Coptic nominal compounds are uninterrupted and spelled together (unlike Arabic or

1http://marcion.sourceforge.net/dictionary/coptic.html
2http://copticscriptorium.org
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Hebrew), and verbal incorporation (see Grossman 2014) can often create complex lexical items contain-
ing multiple content morphemes (cf. English complex verbs such as ‘breastfeed’), which are often listed
in dictionaries as a complex item if they are frequent or have opaque senses. Both incorporation and
cliticization also lead to changes to verb and noun stems, as shown in the following examples.3 Example
(1) shows a bound group with a preposition, article and the noun ‘name’, while (2) shows a reduced form
of the same noun with a possessive 2nd person masculine singular clitic.

(1) /m:p:ran hm-p-ran ‘in-the-name’

(2) rnt=k rnt=k ‘name-your (SG.M)’

The noun’s form in (1) is referred to as ‘absolute’ (status absolutus), while in (2) it is in a bound-pronoun
state (also called status pronominalis; forms fused to a subsequent noun, rather than pronoun, take a third
possible form called status nominalis). Examples (3)-(5) show a verbal bound group, with stem reduction
via incorporation in (4), and nominalization of a complex verb in (5).

(3) a:f:/wtb

a-f-hōtb
PST-he-kill
‘he killed’

(4) /etb:#uxh

hetb-psychē
kill-soul
‘(to) soul-kill’
(incorporated)

(5) mnt:ref:/etb:#uxh

mnt-ref-hetb-psychē
ness-er-kill-soul
‘soul-killing’
(lit. ‘soul-kill-er-ness’)

The last example shows that incorporated verbs behave like normal verbs in allowing subsequent
derivations. Representing these forms consistently is challenging, as we discuss in the sections below.

3.2 Properties of lexicon composition
The coverage of the dataset used in the Coptic Dictionary Online is based on W. Crum’s ‘Coptic Dictio-
nary’ (2000 [1939]) and currently contains 8,042 words (“entries”) and 18,150 word forms. The Coptic
data follows the design of the combined Egyptian-Demotic-Coptic lexicon in the TLA, with the aim of
integrating the Coptic dataset to form a collection of all lexical items from 4,500 years of the language’s
recorded history. With regards to the coverage of the Coptic lexicon, CDO has two types of restrictions.
A lexeme may be absent:

• because it is absent in Crum’s dictionary (notably Greek and Arabic loan words)

• due to data model design despite being in Crum (bound forms of verbs and plural nouns; see below)

Here we outline the major principles behind the lexicon data composition and encoding, and provide
details on the ongoing extension of the project.

The backbone of entries from Crum in the CDO is extended with cross-references to the later Coptic
dictionaries of Westendorf (2008 [1965-1977]), Černý (1976), Vycichl (1983) and Cherix (2014). What
all these have in common is the absence of loanwords – a tradition in Coptic lexicography, going back
to the 18th century. Beginning from the Lexicon Aegyptiaco-Latinum of the Huguenot polymath Maturin
Veyssière de La Croze of 1721, lexicographers were interested primarily in ‘autochthonous’ Egyptian
vocabulary, and disregarded Greek and Arabic as ‘too familiar’ (Richter, 2017). Recent research has
challenged traditional conceptualizations of “loan words” as a classification of vocabulary separate or
distinct from “autochthonous” words, particularly in the multilingual context of Roman Egypt (Grossman
2013, Papaconstantinou 2010). The lack of loan words is one of the issues which CDO is currently
working on (see Section 5 on the impact of their absence, and Section 6 on future plans). Apart from
loan words, word forms available in Crum but missing in CDO include orthographic forms in Coptic
dialects other than Sahidic, the classical dialect supplying the reference forms in the dictionary, and
bound forms of Coptic words when used as clitics. Entries only attested in other dialects are included.4

3We follow the convention in Coptic studies of joining clitic lexical items in bound groups with hyphens, and clitic pronouns
with the ‘=’ sign.

4A pilot including all entries from Crum and all dialect forms for the letters alpha and beta has also been carried out, but due
to time constraints has not been extended to further letters.
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incorporated multi-word expression
ti-meeue give-thought, think ti-m-p-meeue give-of-the-thought, suggest
ti-erxot give-wound, to wound ti-n-ou-erxot give-of-a-wound, inflict a wound
kyi-bekhe get-wage, get-paid či-m-p-beke receive payment

Table 1: Incorporated complex verbs and unincorporated multi-word expressions.

Bound forms are exceptionally recorded only if the absolute (non-clitic) form is not available, as
is the case with inalienable possessed nouns, e.g. rat= rat- ‘foot (of)’. Inflected forms are also not
included, but are findable using automatic lemmatization (see Section 4.4). This means the small class of
morphological plurals is not listed (pluralization is usually indicated by the article), and the same applies
to stative verb forms (also called ‘qualitative’, distinct forms denoting a state resulting from the action,
rather than the action itself). Statives are entered if they are the only form of a verb attested in Coptic.

Verbal clitic status also determines spelling of verbal compounds in CDO: verbs in bound state fol-
lowed by incorporated objects are treated as morphemes, forming one lexical unit with the following
word, and are thus written together, though purely compositional productive formations are only in-
cluded if they have entries in Crum’s dictionary. Verbs in absolute state are treated as separate lexical
units and are written separately. Compounds in which absolute and bound state are indistinguishable are
treated as bound forms if they are not followed by prepositions.

Determining whether a complex verb form is considered a single entry depends on whether a bare noun
is incorporated without determiners in a generic reading (cf. ‘breastfeed’) vs. using a full nominal bound
group, e.g. with determiners, possessives or prepositions (cf. ‘feed with her breast’). Table 1 contrasts
similar items: incorporated single verbs, and multi-word expressions. Although the latter entries contain
information on object nouns, verb valency information is otherwise not included in the dictionary.

The guidelines for handling complex verbs correspond to the word segmentation practices in current
corpora available from the project Coptic Scriptorium (see Section 2), and therefore facilitate compati-
bility with corpus look-up and frequency data (see Section 4.3), as well as interoperability with existing
NLP tools for Coptic (Zeldes and Schroeder, 2016). However there are a number of cases in which bound
forms are accompanied by explicitly or implicitly specific nouns that are represented as entries in Crum’s
dictionary, but are segmented apart by NLP tools and corpora based on their outputs:

• Verbs with possessed nouns: kyn-rat= ‘search (lit. find one’s foot)’, meh-hēt= ‘fill one’s belly’

• Fixed verb + article + noun: r-p-ke ‘do another (thing)’, r-t-kyot ‘be like, lit. do the likeness (of)’

• Verbs bound with compound prepositions (preposition + possessed noun + suffix): r-ha-čō= ‘go
towards (do to head of)’, r-hi-čn- ‘be over (do on head of)’

We expose the lexical units in such compounds using XML encoding in the element oRef, described
in the next section. Summing up, the current limitations of the lexicon are:

• no loan words, and dialect forms usually included only if not attested in Sahidic

• bound forms only if unattested in absolute form, and stative only if verb is unattested in infinitive

• no inflected forms of nouns (but see Section 4.4 on auto-redirecting from most inflected forms)

3.3 Properties of lexicon encoding
CDO is encoded in XML, managed using the Python libraries ElementTree and LXML, as well as
Xpath queries. Data integrity is validated by an XSD Schema, developed as a subset of the TEI’s Dic-
tionary module.5 The basic element is <entry>, defined by standard spelling, part of speech and
5See http://www.tei-c.org/release/doc/tei-p5-doc/en/html/DI.html. TEI’s dictionary module is also
viewed by Romary (2015) as a standard serialization of the Lexical Mark-up Framework (ISO, 2008). For the CDO’s lat-
est schema, see https://github.com/KELLIA/dictionary/blob/master/xml/Coptic_Lemma_Schema.
xsd, which represents our underlying conceptual UML model, cf. Routledge et al. (2002).
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gender information, and senses: only one <form type="lemma">, <pos> and <gen> element
(gender) is allowed per entry (meaning feminine derivations receive separate entries) and at least one
<sense> element is required. At the same time, multiple orthographical variants (<form>) and mean-
ings (<sense>) are possible in one entry. Entries belong to the superordinate entity <superentry>,
which corresponds to Crum’s dictionary entry, uniting lemmas derived from the same root in Coptic. The
schema is outlined in Figure 2.6

entry

form (1..n) @type="lemma": reference form for the entry

form

orth (1): orthographic form

usg (1): dialect information

oRef (0..n): internal segmentation of ‘multi words’

gramGrp (1): grammar info relating to the form

subc (0..n): grammatical subcategory (e.g. ‘status pronominalis’)

gramGrp (1): grammar info relating to the entry

pos (1): part of speech (e.g. ‘verb’)

subc (0..n): grammatical subcategory (e.g. ‘stative’)

gen (0..1): grammatical gender

gram (0..n): cross-reference to collocated adverbs and prepositions

number (0..1): grammatical number

etym (0..n): etymology info

ref (0..n): @type="greeklemma": greek lemma info

xr (0..n): cross-reference to other entries (e.g. absolute forms of bound verbs)

sense (1..n): definitions – implemented in 3 languages

cit (1-3): @type="translation"

quote (1)

cit (1):

bibl (1): bibliography

Figure 2: Hierarchy of the entry element in the XSD schema

Grammatical information can be set on both the ‘entry’ and on the ‘form’ level. The boundedness sta-
tus information is encoded within form, e.g. <subc>Status nominalis</subc>, while informa-
tion pertaining to inflected forms belongs to the entry level, e.g. for stative forms: <pos>Vb.</pos>
with the subcategory <subc>Qualitativ</subc>. The <gram> tag provides information about
prepositions and adverbs collocated with a given verb. The values available in elements such as <pos>,
<subc> and <usg> (dialects) are controlled by the vocabulary set in the XSD Schema.

Each entry and each form have unique IDs. The <xr> tag is currently used for cross-referencing the
absolute form of lexical verbs appearing as bound in complex entries. However, multi-word expressions
also encode all of their constituents (including function words): the multi-word expression is listed
spelled together inside <orth>, but separated in the element <oRef>, as in (6) for the expression
he-p-ouō ‘inquire, lit. find-the-news’:

6We follow the mapping in Romary (2015) between LMF concepts and corresponding TEI elements as follows:

LMF component TEI representation LMF component TEI representation
LexicalEntry <entry/> writtenForm <orth/>
Lemma <form type="lemma"/> partOfSpeech <pos/>
Word Form <form type="inflected"/> grammaticalNumber <number/>
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(6) <orth>/epouw</orth> <oRef>/e p ouw</oRef>

This segmentation information will be used below to search for multi-word entries in corpus data.

4 Web interface

4.1 User interface design

To facilitate efficient search, the lexicon’s XML files are compiled into a SQL database providing records
for each entry, with multiple orthographic forms grouped into super-entries, which correspond to Crum’s
entries.7 Each record contains the dictionary information such as orthographic forms, morphological
information, definitions in English, French and German, and etymological and bibliographic information.
A record also contains both a unique entry number and a super-entry number used to link it to related
entries based on Crum’s groupings. We then designed an online interface to search this database and
view entries. From the search page, users may search any combination of:

• Coptic word form/regular expression (with a virtual keyboard option to enter Coptic characters)

• Dialect (using Crum’s dialect sigla, subject to the restrictions mentioned above)

• Part-of-Speech tag (using Scriptorium NLP tags, mapped onto the TLA’s model; see below)

• Definition, with options to search for the exact sequence entered or for definitions containing all
words entered in any order, as well as an option to search a specific one of the three definition
languages, or any language. Regular expressions are also allowed.

To reconcile the different part of speech tags used by the TLA’s data model and Coptic Scriptorium’s
model, we have collapsed tags for some of the more fine grained tag distinctions. This is necessary,
among other things, for the benefit of NLP-tool based look-up (see Section 4.4). Currently, users can
limit searches to the following options:

• A - any auxiliary (merges Scriptorium/TLA)

• ART - articles

• C - any of the so called ‘converters’, a mor-
phological class of Coptic conjunctions

• CONJ - all other, independent conjunctions

• N - nouns, collapses common and proper
nouns

• NEG - negations

• NUM - numerals

• pronouns - demonstrative (PDEM), interrog-
ative (PINT), personal (PPER), possessive
(PPOS)

• PREP - prepositions

• PTC - particles

• V - collapses all verbal tags, including finite,
non-finite, imperative and ‘verboids’

The original grammar info encoded in XML (using German terms) is displayed along with the Coptic
Scriptorium part of speech tags. In addition to the main search page, shown in Figure 3a, a Quick Search
is available in the navigation bar at the top of any page. Users can enter any combination of Coptic
words and English, French and German words to search the word form and definitions, respectively.
These, too, support regular expressions, and space-delimited search words are automatically classified as
either Coptic (for search in the entries themselves) or not (for search in the definitions).8

7An anonymous reviewer has inquired about the possibility of encoding the database version of the lexicon in RDF format –
this is certainly possible and the adoption of a SQL database is in no way a principled decision, but rather one of convenience.
We regard the XML representation as the primary serialization of the lexicon’s data model and use the tabular SQL schema
only internally as an index for the search interface.

8We do not currently classify non Coptic words as English, French or German, but rather match non-Coptic script words in all
definition languages.
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When a search uniquely identifies an entry, it takes the user directly to the entry page, which displays
the word’s form or forms, each with morphological information, dialect if available, and ANNIS fre-
quency information (see Section 4.3). Each entry page also contains Scriptorium part of speech tags, the
definitions in all three languages for each sense, as well as any etymological and bibliographic informa-
tion, including cross-reference links. If there are other entries in the same super-entry, they are linked in
a ‘See Also’ section at the bottom of the entry page. When a search has more than one result, users are
taken to a page which lists up to 100 matches, displaying Coptic forms and English definitions for each.
Users can click on any of these Coptic words to go to the associated entry page.

(a) Main search form

(b) Entry with frequency information for kwt kōt ‘build’.

Figure 3: CDO web interface.

4.2 Corpus query link up

The dictionary is linked to freely available corpora provided by the Coptic Scriptorium project (http:
//copticscriptorium.org), which currently include over 500,000 tokens from 16 corpora con-
taining over 700 Coptic documents. Each entry page provides a link to a lemma search in all corpora for
each form specified by an <orth> element (i.e. a single entry page will have multiple search links if
there are multiple variant forms). Conversely, Scriptorium corpora offer links to the CDO for all lemmas,
which connect to the relevant entry pages whenever available (see Section 6 for some limitations).

One challenge in implementing the linking capacity is dealing with differences in segmentation for
lemma definitions in the dictionary, and existing segmentation standards used in the corpora based on
current NLP tools for Coptic. Several types of mismatch are possible – an entry may: 1. specify a
variant not considered a lemma in the corpora due to normalization; 2. be a multiword expression, with
more than one lemma in the corpora; or 3. contain added words not included in the head word proper,
e.g. collocated prepositions.

To overcome the first difficulty, we automatically harvest the list of available lemmas in the current
version of the corpora using the REST API provided by Coptic Scriptorium’s ANNIS web interface.
Single word dictionary items not attested in the corpora as lemmas can then fall back to searching on the
word form level instead of the lemma level, which may include the desired form.9

The second problem is more complex, but can be addressed using the <oRef> tags in the dictionary
XML files. The contents of these tags indicate a space-delimited segmentation for multiword entries,

9A further option of using fuzzy search to find unknown inflected forms is not currently supported, but remains a possibility for
future development.
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which are then searched for as a sequence of (possibly inflected) word forms. Since a multiword ex-
pression often contains inflected forms, the linked search uses the word form level of the corpora, rather
than a sequence of lemmas. A reverse look-up for multiword expressions in the corpora is not yet im-
plemented: the corpora are currently lemmatized with the Coptic NLP pipeline (Zeldes and Schroeder,
2016), which always assigns token-wise lemmas; however, we are considering how ‘secondary lemmas’
may be introduced whenever corpora contain sequences of words which are attested as dictionary entries.

Finally, for the third problem above, we currently suppress collocated elements in search queries. For
example, for the entry kwt (ebol) ‘build (out)’, we omit the optional adverb given in brackets, and
simply search for the verb ‘build’ by itself. This approach produces more search results than might be
intended, and a better solution for these cases in the future would be desirable (see Section 6).

4.3 Corpus frequency information

Using the same corpora and REST API above, we collect frequency information for all dictionary
<orth> elements in their capacity as both word forms and lemmas. We then rank words by frequency
and offer users, for each word form, the frequencies and ranks of the item being viewed, as shown in Fig-
ure 3b. Tied ranks are shared across items, i.e. there can be multiple entries with lemma rank 100, if mul-
tiple items are tied for this position. A limitation of using corpus frequencies is that the corpora are not
truly aligned in an intelligent way to dictionary entries, and are not sense disambiguated, i.e. homonyms
all contribute to one frequency pool for each orthographic string. This is unlike cross-reference links to
Crum’s dictionary, which point to page numbers based on actual senses.

Notwithstanding this limitation, frequencies can be useful to users and used to decide how likely it
is that an unclear passage contains a possible word, or to prioritize learning high frequency items when
studying the language. While frequency information cannot be used for searches yet, we plan to expose it
to searches as well as building frequency visualizations to make the data more interactive and accessible.

4.4 NLP and lemma look-up

Since inflected forms are not included in the dictionary, users searching for them will not find any results.
Although this is generally not an issue for users coming in from linked corpora (since links point to
lemmatized forms), users who manually enter inflected forms will run into this problem.

To circumvent this issue, we use all possible outputs of the same lemmatizer used by the NLP pipeline
from Zeldes and Schroeder (2016), without context information. Since morphologically inflected items
in Coptic are largely closed-class, and productive stem-altering inflection is rare, the possible responses
from the lemmatizer virtually always contain the correct analysis. This means that users can find singular
entries for nouns with morphological plurals, or infinitive forms in searches for stative verbs, etc.

Linking from the corpora to the dictionary also depends on correct lemmatization, which, unlike the
‘multiple options’ look-up strategy, is deterministic (the corpora contain a single ‘gold’ lemma). This
lemma is generally correct in manually annotated corpora, but also very likely to be correct for auto-
matically annotated corpora, if automatic segmentation of word forms was correct. The lemmatization
accuracy of the NLP pipeline on correctly segmented text is 97.23% (see Zeldes and Schroeder 2016),
though automatic segmentation accuracy is currently lower, at about 94.5%.

5 Evaluation

In order to evaluate the coverage of our dictionary, we use the publicly available corpora from the Cop-
tic Scriptorium project (http://copticscriptorium.org/). We restrict the evaluation to the
manually annotated corpora of literary Coptic and remove items overlapping lacunae from damaged
manuscripts, and items not in Coptic script, as well as punctuation. The remaining data covers over
74,000 gold segmented running lexical items in Coptic, of which about 6,500 are foreign loanwords, not
currently part of the target language covered by the dictionary, and 775 of which are proper names, which
are mostly not covered. Table 2 gives the rate of coverage for tokens and types, as well as the numbers
when loan words and proper names are not penalized.
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tokens types
covered total % covered total %

all lemmas 65,347 74,744 87.43 1,079 2,602 41.47
names ok 66,273 74,744 88.67 1,264 2,602 48.58
foreign ok 71,763 74,744 96.01 1,976 2,602 75.94
both ok 72,689 74,744 97.25 1,991 2,602 76.52

Table 2: Lexicon coverage on 80K lexical items from Coptic Scriptorium corpora.

The table shows that, for proficient users who can identify the need to look up foreign words in a Greek
dictionary, and the presence of proper names, coverage at the token level is very good, with less than 3%
of tokens in the corpora that might need to be in the dictionary (native common nouns) not being found.
The situation is considerably worse for beginners, who may not be able to distinguish Greek words, and
we are therefore planning to integrate loan words into the lexicon soon (see Section 6).

Looking at the type coverage, the situation is more partial: about 23.5% of native types are not covered.
Given the high token coverage of the native vocabulary, it is clear that the remaining types without
coverage are a large number of rare items. This is due to the ‘long tail’ of productive formations, created
via incorporation, derivation and compounding processes, as shown in Section 3.1. We are therefore
considering linking the morphologically analyzed sub-parts of words, which are outputted by the Coptic
NLP pipeline’s morphological analyzer, which are currently not linked. An evaluation of coverage using
this strategy remains outstanding.

6 Conclusion and outlook

This paper has presented the Coptic Dictionary Online, a freely available, linked lexical resource for
Coptic with definitions in English, French and German, cross-references to the main paper Coptic dic-
tionary by W. Crum as well as other dictionaries, and frequency information connected to corpus search
in a collection of open access digitized texts. The coverage of the lexicon for lexicalized native items
is high, corresponding to all entries in Crum’s dictionary, and if foreign words and names are ignored,
covering over 97% of non-punctuation tokens in running text.

At the same time, integration of loan word definitions is a high priority for future work. A total of
8,406 Coptic lemmas of Greek loanwords, recorded by the DDGLC project (Almond et al., 2013), has
just been integrated into our data set in May, and is currently being prepared for release after conversion
to the TLA’s entry semantics (checking spelling, grammatical information, and recording the source
Greek lemmas). We also intend to integrate non-Sahidic vocabulary, compiled by W. P. Funk but as yet
unpublished online, in the near future.

A further goal is integrating links for multi-word entries from corpora, and linking units smaller than
words for productive derivations and incorporation. This development will require separate evaluation
and is expected to increase our coverage of the remaining lexical types from the native Coptic vocabulary.
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Abstract

We present a data-driven approach to detect periods of linguistic change and the lexical and
grammatical features contributing to change. We focus on the development of scientific English
in the late modern period. Our approach is based on relative entropy (Kullback-Leibler Diver-
gence) comparing temporally adjacent periods and sliding over the time line from past to present.
Using a diachronic corpus of scientific publications of the Royal Society of London, we show
how periods of change reflect the interplay between lexis and grammar, where periods of lexical
expansion are typically followed by periods of grammatical consolidation resulting in a balance
between expressivity and communicative efficiency. Our method is generic and can be applied
to other data sets, languages and time ranges.

1 Introduction

The awareness of the necessity and possibilities of large scale analysis of the temporal dynamics of cul-
tural phenomena has risen considerably in the last two decades or so in a number of scientific disciplines,
including literary studies, musicology, biology and marketing research. One common challenge is to de-
termine the periods of change. For example, to detect periods of stylistic change in popular music Mauch
et al. (2015) use data-driven methods from bioinformatics based on a set of predefined audio features; or
for periodization of prose texts van Hulle and Kestemont (2016) use stylometric methods with selected
function words.

Here, we come from the perspective of language and linguistics. Specifically, we are interested in the
formation of discourse types and registers. Focusing on scientific writing in the period of late Modern
English (1700-1900) — the period in which scientific writing evolved as a distinctive discourse type
(Atkinson, 1999; Bazerman, 1988) — we want to test the hypothesis that scientific writing became in-
creasingly specialized, expert-oriented and geared towards communicative efficiency (Halliday, 1988).
Linguistic reflexes are expected in vocabulary expansion, notably in the area of terminology, and consol-
idation in grammatical usage. Therefore, we consider both the lexical and the grammatical level as well
as their interplay.

While there is a long tradition in diachronic, corpus-based analysis (see Nevalainen (2006) for an
overview), time periods and linguistic features considered are typically predefined, thus introducing pos-
sible biases. To avoid this, we have designed a data-driven approach based on the information-theoretic
measure of relative entropy by which we can both detect features involved in diachronic linguistic change
and discern the time periods change(s) occur(s). Our approach is generic and can be applied to any di-
achronic data set with any type of linguistic feature.

Following a more detailed presentation of related work (Section 2), we describe our approach in Sec-
tion 3. In Section 4, we report our results capturing important aspects of change in language use in the
scientific domain. Section 5 provides a brief summary of our main results and an outlook on follow-up
studies.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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2 Related work

The traditional linguistic method of describing temporal change in language use is to start with a set of
preselected linguistic features and inspect their frequency distributions across predefined time spans (cf.
Nevalainen (2006) for an overview in the area of corpus linguistics). While clearly providing interest-
ing and relevant descriptive insights on changing language use, this kind of approach is biased in two
regards. First, features are selected on the basis of the human analyst’s educated guesses about which
linguistic features are subject to change with a view to high-frequency features (e.g. Atkinson (1999),
Banks (2008), Biber and Finegan (1989), Biber and Gray (2016), Degaetano-Ortlieb et al. (2014), Fanego
(1996), Michel et al. (2011), Moskowich and Crespo (2012), Rissanen et al. (1997), Teich et al. (2016)).
Other frequency bands, while potentially relevant, are not considered. Second, the time spans are typ-
ically predefined, too. For example, for a period of two to three hundred years under consideration,
typically 20 or 50-year periods are selected. This approach may obscure trends present in the data and
prevent the exact periodization of a given change or set of changes.

To remedy these drawbacks, more exploratory, data-driven approaches have been argued for. In
corpus-linguistics, Gries and Hilpert (2008) propose a specific clustering approach which they apply
to the historical development of English. In van Hulle and Kestemont (2016) stylometry methods are
applied to the periodization of literary works of Samuel Beckett. Popescu and Strapparava (2013) use
a statistical approach for the characterization of epochs. Within the field of computational sociolinguis-
tics, various techniques (such as topic modeling, correlations, regression) are tested for applicability to
sociological questions and interpretability of the features involved in variation (see e.g., McFarland et
al. (2013), O’Connor et al. (2011), Eisenstein (2018)). A recent strand of data-driven approaches for
the analysis of diachronic change applies information-theoretic divergence measures. In particular, the
use of relative entropy, implemented as Kullback-Leibler Divergence (KLD) or its symmetrical vari-
ant Jensen-Shannon Divergence (JSD) (Kullback and Leibler, 1951), as a measure of changes in the
probability distribution over linguistic features has proven effective. For example, Hughes et al. (2012)
measure stylistic influence in the evolution of literature and Klingenstein et al. (2014) analyze to what
extent the ways of talking in criminal trials differed between violent and nonviolent offenses over time.
Or Bochkarev et al. (2014) use KLD to compare change in the frequency distribution of words within one
language and a symmetric version to compare changes across languages in the Google Books Corpus.
Also working on the Google Books data set, Pechenick et al. (2015) use JSD to assess the corpus’ valid-
ity for analysis of cultural and linguistic evolution. Furthermore, Fankhauser et al. (2014) demonstrate
the applicability of KLD for corpus comparison at large, showing KLD on various corpora (including
the Brown corpora), and provide an interactive visualization for exploratory inspection of (degrees of)
divergence between corpora as well as the items (here: words) contributing to the divergence. In our
own previous work, besides other applications such as intra-textual variation across sections of research
articles from biology (Degaetano-Ortlieb and Teich, 2017), we have used KLD to analyze the linguistic
development of scientific writing over time considering pre-defined time periods (50 years) and com-
parison to general English to discern change specific to scientific writing (Degaetano-Ortlieb and Teich,
2016; Degaetano-Ortlieb et al., 2018; Degaetano-Ortlieb and Strötgen, 2018). In particular, we found
major changes going on around the period of 1750-1800.

We build on this work and extend the existing approaches by capturing periods of change, i.e. deter-
mining when a change occurs rather than a priori setting specific periods. Most similar to our approach
is the recent study of Barron et al. (2018) on debates held in the French Revolution’s first parliament
using KLD between sequential speeches considering the notions of novelty (abrupt change), transience
(novelty of the past), and resonance (novelty minus transience). While they only employ the aggregated
KL divergence, we consider the contribution of individual linguistic features to KL divergence. On this
basis, we are able to determine which features are involved in change at different linguistic levels and to
inspect how different linguistic levels interact to allow for a balanced information density in (scientific)
communication. Thus, our approach addresses the above mentioned drawbacks — predefined periods
and preselected features — and provides a generic, exploratory method for periodization combining
feature detection and period determination on the basis of one mechanism.
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3 Method

3.1 Royal Society Corpus

The data set we use is the Royal Society Corpus (RSC) (Kermes et al., 2016), consisting of the journal
publications of the Transactions and Proceedings of the Royal Society of London – the first and longest-
running English periodical of scientific writing. The RSC has approx. 32 million running tokens and
around 10.000 documents, spanning from 1665 (first publication) to 1869. It is encoded for text type
(article, abstract), author, title, date of publication, and time periods (decades, fifty years). Linguistic
annotation is provided at the levels of tokens (with normalized and original forms), lemmas, and parts
of speech using TreeTagger (Schmid, 1995), achieving 95.1% on normalized word forms (normalization
is based on VARD; see Baron and Rayson (2008)). The corpus is hosted by a CLARIN-D repository1,
which provides a free download as a vertical text format (vrt). The RSC provides a well-suited test bed
for periodization, as it spans approx. two centuries and there are a number of linguistic studies on some
parts of this material (e.g. Biber and Finegan (1997), Atkinson (1999), Banks (2008)). As we detected
major changes around the period of 1750-1800 in previous studies (Degaetano-Ortlieb and Teich, 2016;
Degaetano-Ortlieb et al., 2018), we select texts from 1700 to 1850 for periodization with a cut off of
five occurrences per document to exclude (especially for the older documents) OCR errors and other
possible biases. Table 1 lists by decade the number of lemmas and part-of-speech (POS) trigrams used
to approximate the lexical and grammatical level, respectively, as well as the number of types of lemmas
and POS trigrams.

decade lemmas POS trigrams
1700 407,801 2,905
1710 261,143 2,605
1720 283,123 2,578
1730 307,049 2,114
1740 538,567 4,494
1750 626,685 8,725
1760 507,820 9,828
1770 855,618 20,751
1780 827,720 18,562
1790 809,482 23,966
1800 971,271 18,550
1810 808,536 15,766
1820 809,682 17,388
1830 1,567,919 43,794
1840 1,237,025 36,633
types 15,611 1,154

Table 1: Number of lemmas and POS trigrams in the RSC per decade and number of types for each.

3.2 Method of periodization at different linguistic levels

We exemplify our proposed method for periodization with Kullback-Leibler Divergence (KLD) consid-
ering two linguistic levels – lexical and grammatical – without preselecting single linguistic features. For
the lexical level we use all lemmas (unigrams) occurring at least five times in a document. The grammat-
ical level is captured by sequences of three parts of speech (POS trigrams, e.g. noun-preposition-noun)
again with a minimum of five occurrences per document. Trigrams were chosen as shorter sequences
tend to not reflect grammatical structures, longer sequences lead to quite sparse data. To further avoid
possible POS tagging errors, in the extraction procedure nouns were restricted to a size of >2 charac-
ters. Furthermore, we exclude POS trigrams consisting of characters constituting sentence markers (e.g.
fullstops, colons), brackets, symbols (e.g. equal signs), and words tagged as foreign words. By looking
at lemmas, we capture vocabulary changes and by looking at POS trigrams we capture changes in gram-
matical use. Note however that any kind of linguistic unit could be used (phoneme, morpheme, word,
etc).

1https://fedora.clarin-d.uni-saarland.de/rsc
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Relative entropy or Kullback-Leibler Divergence (KLD; Kullback and Leibler (1951)) is a method of
comparing probability distributions measuring the number of additional bits needed to encode a given
data set A when a (non-optimal) model based on a data set B is used (cf. Equation (1)).

D(A||B) =
∑

i

p(featurei|A)log2
p(featurei|A)

p(featurei|B)
(1)

Applied to the comparison of language corpora, KLD gives us an indication of the degree of difference
between corpora measured in bits as well as the features that are primarily associated with a difference,
i.e. those features that need (relatively) high amounts of additional bits for encoding2. In the models we
employ, difference in vocabulary size is controlled for by representing the data sets by ngram language
models smoothed with Jelinek-Mercer smoothing and lambda 0.05 (cf. Zhai and Lafferty (2004) and
Fankhauser et al. (2014)).

To detect periods of change using KLD, we slide over the time line of the corpus to find relative peaks
or troughs in relative entropy which are taken to indicate a change. For this we select a starting year
(e.g. 1720) and a sliding window (e.g. 2 years). We then use KLD to compare preceding (pre period)
and subsequent years (post period) from the sliding window. Defining the size of the sliding window
depends on the data set used. In our case, as publications do not appear yearly in the Proceedings of the
Royal Society, we use a minimum of a 2-year sliding window. For other text types, such as news texts,
for example, the sliding window could be based on months or even days. The bigger the sliding window
based on a particular data set the less fine-grained the observed changes will be. A further parameter
to be set is the time range of comparison for pre and post periods, which again has to be set according
to the data set used and the aimed periodization. In our case, we use a period range of 20 and 10 years
in which we assume changes to occur. Note that KLD is asymmetric and we are only interested in the
direction from post to pre as we aim to determine periodization from past to present in the development
of scientific writing. Thus, we measure divergence only between post (after sliding window) and pre
(before sliding window) as shown in Equation (2).

D(post||pre) =
∑

i

p(uniti|post)log2
p(uniti|post)
p(uniti|pre)

(2)

Based on this, we build KLD models for lemmas and POS trigrams to observe divergences at lexical and
grammatical levels, respectively. For both linguistic levels, we use all lemmas/POS trigrams for modeling
that occur at least five times in a document. For each window, KLD models are created comparing post
with pre periods. For the analysis we use 2-, 5-, and 10-year windows inspecting 10- and 20-year ranges.

Moreover, the individual contribution (discriminative power) of a feature to relative entropy allows us
to observe which features are involved in change. The higher the KLD value of a feature (here: lemma
or POS trigram), the more discriminative the feature is for the post period (see Equation (3)).

Dfeature(post||pre) = p(feature|post)log2
p(feature|post)
p(feature|pre) (3)

We then also test if there is a significant difference between the relative frequencies of a feature in the
pre and post periods by an unpaired Welch’s t-test (see equation (3) with var denoting the variance and
n the number of documents in a corpus).

t =
meanpre −meanpost√

(
varpre
npre

+
varpost
npost

)
(4)

Thus, for each post with pre period comparison, we obtain a list of those features that contribute most
to the distinction of a post period (high KLD value) and which pass the significance test (p-value<0.05).

2Note that KLD is an asymmetric measure, i.e. there may be a significant difference between a data set A and B when B is
used as a basis for encoding but not necessarily when A is used as a basis. Also, the features responsible for a difference may
be different ones.
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Figure 1: Relative entropy based on KLD for
post vs. pre periods for lemmas (with parameters

set at a 2-year window and 20-year period).
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Figure 2: Relative entropy based on KLD for
post vs. pre periods for POS trigrams (with pa-

rameters set at a 2-year window and 20-year period).

In addition, at the lexical level to select from these lists those lemmas that show the greatest variation
in terms of their contribution over time, we calculate the standard deviation of the KLD value of each
lemma across all comparisons. At the grammatical level, as the set of possible options is more confined,
we consider all discriminative and significant POS trigrams but still rank them by the standard deviation
over time.

Given a data set of the features’ occurrences across time (e.g. by years, months, days), the periodization
procedure is operationalized with the software environment R (R Development Core Team, 2010) with
a script allowing to select the window and period range and run the process automatically. The R code
will be released upon publication through Github via a link on https://stefaniadegaetano.com/.

4 Change of language use in scientific writing (18th and 19th century)

We present the results of application of the described method on the time period of 1700-1850 of the
Royal Society Corpus at the lexical and grammatical levels. The focus is on comparison of post periods
with pre periods, tracing the development of scientific writing over time. For this, we inspect different
parameters as described in Section 3.2. For both analyses, we consider (1) overall diachronic trends, (2)
when possible changes occur, and (3) which features contribute to changes.

4.1 Overall diachronic trends at the lexical and grammatical level

First, we want to investigate which diachronic trends we can observe over time in scientific writing across
different linguistic levels.

At the lexical level, Figure 1 shows KLD values plotted on the time line based on lemmas (with a 2-
year window and 20-year slices of pre and post periods). The general tendency shows peaks and troughs
in KLD, i.e. periods of lexical expansion (where a post period shows higher KL divergence from a pre
period) are followed by periods of lexical consolidation (where a post period shows lower KL divergence
from a pre period). We can observe that there are smaller peaks around the 1740s, 1750s, and a major
peak around the end of the 18th century followed by a trough in KLD and again an increase in the early
19th century. For example, considering the year 1795 (here: 2-year window (1795-1796)), KL divergence
between the 20 years following (post) and the 20 years preceding (pre) the window is 0.39 bits, while
considering 1805 it drops to 0.27 bits. Thus, around 1795 we have a period of lexical expansion, while
around 1805 we have a period of consolidation.

Let us now consider the grammatical level approximated by POS trigrams. In Figure 2, we clearly see
a declining tendency of KLD at the grammatical level, i.e. over time grammatical usage consolidates in
comparison to a more varied usage in the past. Comparing Figure 1 with 2, while at the lexical level
we have waves of expansion and consolidation, at the grammatical level there is a strong tendency of
consolidation. This tendency becomes even more pronounced from the mid 18th century onwards. The
formation of the scientific register and processes of professionalization (Ure, 1982; Biber and Gray,
2011; Halliday, 1988) are presumably reflected here. In fact, from 1751 onwards the Proceedings of the
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Royal Society started to have a reviewing process.
In summary, we can deduce that the lexical and grammatical levels play different roles in the develop-

ment of scientific writing in the RSC. The consolidation of the grammatical level might be a counterbal-
ance to the phases of expansion at the lexical level. In the next sections, we present a detailed account
on which lemmas and grammatical structures contribute to periods of change occurring at both levels.

4.2 Lexical contributions to periods of change

In a second step, we investigate which lemmas contribute most to the observed differences by selecting
lemmas based on their discriminative power as described in Section 3.2. To consider how different time
windows and ranges might impact the results, we will consider windows of 2, 5, and 10 years with 20
and 10 years of pre and post periods.

Figure 3 shows lemmas contributing to periods of change over time across window sizes (years be-
tween a pre and post period) and ranges (of pre and post periods compared by KLD)3. Across the window
sizes, the general trend remains relatively stable, with specific lemmas contributing to periods of change.
From around 1725 to 1745 lemmas related to the field of electricity are distinct (light blue: electricity,
electrify, wire). From the mid 18th century to the beginning of the 19th century a whole field arises
that marks the discovery of oxygen (orange) with air, nitrious, dephlogisticated, gas marking the begin-
ning of this research field driven by experiments and oxide, oxygen, hydrogen marking the terminology
building process around the new field. In fact, a landmark paper on the discovery of oxygen by Joseph
Priestley in 1774 entitled Observations on different kinds of air brought about a series of publications in
the Royal Society dedicated to this new strand of research. Towards the mid 19th century biology terms
arise (cell, corpuscule).

Tuning the period range allows us to inspect the data further (compare Figure 3 (c) and (d), 20-year
range vs. 10-year range, respectively). For example, a period of change related to the solar system
(purple: sun, venus, limb, parallax) is better captured with a smaller range (10 years, Figure 3 (d)). Thus,
while some periods of change are more persistent (e.g. the discovery of oxygen) and can thus be captured
by using wider ranges (e.g. 20 years), others (such as new observations on the solar system) are more
transient and therefore can be better detected by more narrow comparisons of ranges (e.g. 10 years).
Also detectable at the 10-year window (see Figure 3 (d)) are variants of use: oxygen vs. oxygene, where
the latter was distinctively used but only for a small period of time (from 1790-1820), while oxygen was
increasingly used over time and became the standard variant. Thus, this allows us to observe competing
forms or lexemes.

A further major change takes place around the end of the 18th century, where besides words related
to terminology as discussed so far, the function words the and of, reflecting the use of nominal phrases,
drastically increase their discriminative power for the post period as well as the verb be, which might
reflect here a relational use (such as e.g. X is Y).

These diachronic tendencies across the inspected time frame show how at the lexical level, specific
terms become typical of a time period marking strands of terminological evolution which can be at-
tributed to groundbreaking events in the world (such as the discovery of oxygen). The rise and fall in
discriminative power of function words seems to indicate changes in the use of grammatical structures.
To observe whether this is really the case and which grammatical structures are involved in change, we
inspect changes at the grammatical level by approximating grammatical structures with POS trigrams.

4.3 Grammatical structures contributing to periods of change

To inspect which POS trigrams have significantly contributed to changes over time, we again plot the
individual KLD value of each discriminative POS trigram on the time line (see Figure 4 showing the 5-
year window). A major change in the use of discriminative POS trigrams takes place between the 1740s
and 1760s. Here, nominal phrase patterns with prepositions (DT NN IN, NN TO DT), coordinating con-
junctions (NN CC NN) and possessives (IN NP POS) are discriminative. Both nominal phrase patterns
reflect a conventionalized usage of general nouns combined with the prepositions of and to (e.g. the end

3Selection of 100 distinctive lemmas ranked by standard deviation across time are displayed (see Section 3.2).
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(a) 2-year window, 20-year range
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(b) 10-year window, 20-year range
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(c) 5-year window, 20-year range
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Figure 3: Lemmas contributing to periods of change for different window sizes and period ranges.
The higher the KLD value the higher the pattern’s contribution to the overall KL divergence. The KLD values are based

on comparison between a post vs. pre period (D(post||pre)) to inspect change from past to present. Positive values reflect

distinctness for post, negative values distinctness for pre. Selection of 100 distinctive lemmas ranked by standard deviation

across time are displayed.

of, a letter from, the time of for the DT NN IN pattern; with regard/respect to for the IN NN TO pattern).
The possessive pattern reflects the peaks shown at the lexical level where the ’s and the lemmas related
to the solar system mark a period of change.

After this major period of change, from the 1750s onwards individual patterns become typical that
can be related to specific grammatical structures. First, a nominal compound pattern followed by a
preposition (NN NN IN) becomes typical around the 1750s (e.g. zenith distance of, logarithm sine of ),
which appears again as distinct after 1810 (e.g. knife edge of the pendulum) with a greater variation of
use (around 10 vs. 30 instances of at least 5 occurrences). Around the 1760s a comparative pattern arises
(VBZ JJR IN; with realizations such as is greater than, is less than, is more than).

At the same time a particularly interesting pattern reflecting relational or passive clauses (JJ NN VBZ)
is discriminative, used to define specific types of materials such as air, acid, fluid etc. (e.g. inflammable
air is pure phlogiston, dephlogisticated air is only water deprived of phlogiston) or to explain what these
materials are used for (e.g. nitrous air is mixed with, alkaline air is saturated by). This pattern is closely
related to the beginnings of early modern chemistry marked by the discovery of oxygen as shown at
the lexical level. A constant increase of KLD value of this relational pattern might also indicate an
increasing need for specification in this new research field (i.e. defining what it is exactly that has been
discovered). As the field around oxygen became established, one may think that also the need for this
specification pattern may no longer exist. However, in terms of frequency (see Figure 5) it rises steeply
from 1760 to 1780, has a period of stagnation between 1780 and 1830, rising again afterwards. Thus,
it rises considerably in frequency due to the need to elaborate on the findings of this new research field
around chemistry (rising period). This pattern then becomes established in scientific writing (stagnation
period). The decline in KLD confirms this tendency: the pattern is no longer discriminative for a post
vs. pre by 1790s, as it is similarly used in both pre and post slices.
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Figure 4: Grammatical structures (approximated by POS trigrams) contributing to periods of change.
The higher the KLD value the higher the pattern’s contribution to the overall KL divergence. The KLD values are based

on comparison between a post vs. pre period (D(post||pre)) to inspect change from past to present. Positive values reflect

distinctness for post, negative values distinctness for pre. Selection of 100 distinctive lemmas ranked by standard deviation

across time are displayed.

Starting around the 1780s longer noun phrases with a plural head (DT NNS IN) become discriminative
(such as the effects/observations/results of ) pointing to scientific outcomes. Around the 1790s and 1800s
the terminological pattern ‘noun of noun’ (NN IN NN) is typical (with realizations such as centre of
gravity, carbonate of lime, phosphate of lime, oxide of iron, sulphate of iron). If we compare this again
with the lexical level (see Figure 3), we can see how after specific terms were established, grammatical
structures arise around these terms. This terminological pattern is also reflected in the discriminative
power of the preposition of at the lexical level (see Figure 3). By considering the level of grammar
(approximated here with POS trigrams), we have a clearer picture of the changes that have occurred in
terms of grammatical structures.

Starting from the late 1780s, the discriminative power of the nominal pattern DT NN IN rises again,
this time not only marking conventionalized usage by particular expressions (such as the quantity of or
the number of ) but also terminological usage by terms establishing themselves in that period (such as the
center of gravity, the bulb of the thermometer, the temperature of the air).

At the beginning of the 19th century, there is again a rise of specific nominal patterns with prepositions
(NN IN DT, NN NN IN, IN DT JJ). The first two patterns (NN IN DT and NN NN IN) both reflect longer
nominal phrases related to terminology (e.g. length of the second pendulum, part of the nervous system,
knife edge of the pendulum). The IN DT JJ pattern instead marks a rise of functional expressions pointing
to contrast/comparison (e.g. at the same time, on the other hand) and elaboration (e.g. in the same way,
in the same manner).

Comparing our findings to previous accounts on the Proceedings and Transactions of the Royal Society
(PTRS), we are clearly in line a.o. with Halliday (1988) and Atkinson (1999), who showed a shift from
an involved to an informational style of writing between the 17th and 19th century based on a manual
and a multi-dimensional analysis, respectively, reflected in higher nominal style in the later productions.
In Degaetano-Ortlieb et al. (2018) we confirm this finding using a data-driven approach. In this paper, we
were able to show when particular nominal patterns reflecting informational style become distinctive in
comparison to earlier periods and how their use is intertwined with changes occurring at the lexical level.
In summary, the diachronic tendencies at the grammatical level, first, show a major period of change
around the 1750s marked by a strong contribution of patterns related to conventionalized style of writing
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(of and to prepositional phrases, conjunctive and possessive phrases). Second, this period is followed by
rise of individual lexico-grammatical patterns over time due to needs driven by expansions at the lexical
level, on the one hand, and further lexical conventionalization of the patterns, on the other hand. Thus,
in comparison to previous work, we are able to detect when and possibly why particular patterns become
distinctive showing not only reflections of specialization in the formation of terminology but also of
conventionalization in particular lexically confined grammatical patterns.

5 Summary and outlook

We have presented a generic, data-driven approach based on Kullback-Leibler Divergence (KLD) for
detecting features involved in diachronic linguistic change and discerning periods of change without
pre-selection of features and periods. Our method is illustrated on the Royal Society Corpus, showing
which features are involved in change and observing periods of change in scientific writing. The features
detected indicate two types of change, lexical expansion and grammatical consolidation. Note here that
while the first type of change relates to low-frequency instances, it is a highly distinctive feature over
time — a fact that a traditional frequency-based approach would have missed.

What we can also see from our sample analysis is that changes proceed in waves — a wave of lexical
expansion is typically followed or partially paralleled by reduction in grammatical variation, thus indi-
cating the continuous effort to balance expressivity and communicative efficiency. In this way, rational
language users make sure that, while language use changes, communication remains successful. Lexis
and grammar thus show a nice symbiosis in enhancing expressivity and maintaining communicative
efficiency.

In a wider perspective, our research is a contribution to information-theoretic accounts of language
use with rational communication as an explanatory framework, adding to it a diachronic perspective (cf.
Hume and Mailhot (2013) for related work in phonology). In future work, we plan to look at register-
mixed language as a reflection of ‘general’ language and longer time ranges using the proposed method,
going over attested periods of evolution of the English language, starting from Early Modern English to
Late Modern English and contemporary English, in order to observe long-term, more persistent gram-
matical changes. For lexical development, we are currently exploring measures of vocabulary expansion
from a paradigmatic perspective on the basis of word embeddings, both for scientific as well as ‘gen-
eral’ language (cf. Hamilton et al. (2016), Fankhauser and Kupietz (2017a), and Fankhauser and Kupietz
(2017b) for related work).
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Abstract

Should writers “avoid clichés like the plague”? Clichés are said to be a prominent characteristic
of “low brow” literature, and conversely, a negative marker of “high brow” literature. Clichés may
concern the storyline, the characters, or the style of writing. We focus on cliché expressions, ready-
made stock phrases which can be taken as a sign of uncreative writing. We present a corpus study
in which we examine to what extent cliché expressions can be attested in a corpus of various kinds
of contemporary fiction, based on a large, curated lexicon of cliché expressions. The results show
to what extent the negative view on clichés is supported by data: we find a significant negative
correlation of -0.48 between cliché density and literary ratings of texts. We also investigate
interactions with genre and characterize the language of clichés with several basic textual features.
Code used for this paper is available at https://github.com/andreasvc/litcliches/

1 Introduction

What makes certain novels literary? Insofar as this is ascribed to the text itself, the text is said to exhibit
the phenomenon of literariness: the hypothesized linguistic and formal properties that distinguish literary
language from other language (Baldick, 2008). Others point to the prestige that publishers and critics
confer (Bourdieu, 1996). Empirical support for literariness as a textual property is presented by van
Cranenburgh and Bod (2017), who present machine learning experiments predicting literary ratings based
on a wide range of textual features. This paper zooms in on the contribution of one particular feature,
clichéd language.

A direct way to investigate literariness would be to define a way to measure its particular properties such
as creative, original use of language. This is the aim of the Formalist tradition, which holds that poetic
language distinguishes itself from standard language by the phenomena of foregrounding and defamiliar-
ization (Mukarovsky, 1964). However, these phenomena seem difficult to operationalize computationally,
at least without the collection of detailed human judgments. Text analysis can demonstrate how well a
large number of textual features (such as bag of word models and syntactic features) predicts literariness,
but due to the large number of features, the resulting model is hard to interpret (van Cranenburgh and Bod,
2017). By contrast, unoriginal language use can be readily detected, since it is by definition commonly
attested in data. Therefore we opt to investigate clichés as a negative marker of literariness.

Clichés in literature can manifest themselves at various levels such as narrative, style, and characters.
We focus on cliché expressions at the sentence level since they are the most amenable to automatic analysis
using textual search.

2 Definitions & datasets

We define cliché expressions as follows:

Definition. A cliché expression is a fixed, conventionalized multi-word expression which has become
overused to the point of losing its original meaning or effect.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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Let’s unpack the main terms in this definition:

fixed: the expression in the form that is recognized cannot be changed, or only to a limited degree by
filling in specified open slots.

conventionalized: i.e., the phrase is recognized by many speakers as a unit, instead of being put together
word for word.

overused: this aspect is crucial but subjective and therefore harder to pin down. Many other multi-word
expressions are accepted as a normal part of the lexicon, while cliché expressions are marked as
formulaic, tired, unoriginal, etc.

Cook and Hirst (2013) state that “a cliché is a kind of ersatz novelty or creativity that is, ipso facto,
unwelcome or deprecated by the reader.” The term ‘overused’ might suggest that there is some range
of acceptable frequency for expressions, but this limit seems hard to determine; the cliché-hood of an
expression rests on a tacit, cultural judgment.

The cliché expressions we focus on are semantically compositional and syntactically regular, without
non-literal meaning. However, since they are conventionalized, their use provides evidence that the author
did not construct the expression word for word, but took a shortcut by employing a ready-made stock
phrase. The occurrence of such expressions may therefore be taken as a negative marker for creativity and
originality.

To operationalize the question of cliché-hood we use a cliché lexicon with 6,641 Dutch cliché expres-
sions provided to us. This dataset is the source for a published collection of clichés (van Wingerden and
Hendriks, 2015). In collecting this set of expressions, the focus was not on expressions that are established
sayings or figures of speech, but rather formulaic commonplaces for mundane situations—language that
does not necessarily stand out by itself but is recognizable as clichéd by how typical it is for a particular
social situation.

We determine the frequencies of the clichés in a corpus of contemporary novels and relate them to the
results of a survey investigating literary evaluations of the novels among the general public. The aim is to
see whether the prevalence of cliché expressions offers insights into literary evaluations. For example, to
what extent the intuition that less literary texts contain more clichés holds up.

The dataset of novels was the subject of a large online reader survey (about 14k participants), to
obtain judgments of literary and general quality. This survey was conducted as part of the project The
Riddle of Literary Quality,1, investigating the textual characteristics of contemporary literature. The 401
recent Dutch novels (as well as works translated into Dutch) were the best selling and most lent books in
2007–2012. The corpus contains literary novels as well as genre novels such as thrillers and romantic
novels. The participants were presented with the author and title of each novel, and for novels they had
read were asked to provide ratings on a 7-point Likert scale from definitely not to highly literary. 96 % of
the novels have 50 or more ratings. In the following, we use the mean of a novel’s ratings as its literary
evaluation.

As reference corpora we will also look at Lassy Small and cgn. Lassy Small (Van Noord, 2009) consists
of written text (e.g., newswire and and Wikipedia text). cgn (van der Wouden et al., 2002) is a corpus of
spoken language.

3 Matching cliché expressions

The process of searching through a corpus for a predefined lexicon of expressions is an instance of
Multi-Word Expression (MWE) identification (Kulkarni and Finlayson, 2011; Constant et al., 2017).

We tokenize both the clichés and the novels to obtain a format of one cliché/sentence per line with
space-separated tokens. Not all clichés consist of a fixed sequence of words; an informal notation is
used allowing for optional and variable elements. In order to work with this notation, we formalize it
into regular expressions. The following shows examples of the notation and its translation into regular
expressions:

1Cf. http://literaryquality.huygens.knaw.nl
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(1) a. Optional phrases: (. . . )
(Kijk,) dat bedoel ik nou.
(Look,) that’s what I mean.
(Kijk , )?dat bedoel ik nou

b. Open slots: [. . . ]
Geen [bier] meer voor jou!
No more [beer] for you!
Geen ([-\w+]* ){1,3}meer voor jou

c. Variables: X, Y
Y, zoals X dan zou zeggen.
Y, as X would say.
\w+ , zoals \w+ dan zou zeggen

d. Alternatives: A/B
Daar zit een boek/artikel in!
That’s material for a book/paper!
Daar zit een (boek|artikel) in

The vast majority of cliché expressions in this dataset consist of full sentences (indicated by capital-
ization and sentence-ending punctuation). To avoid spurious partial matches, expressions with an initial
capital either have to occur at the start of a sentence, or at the start of quoted speech: (ˆ|’ ). Similarly,
expressions with sentence-ending punctuation have to end with a form of sentence- or quote-ending
punctuation: [.?!’"].2 To increase recall, leading and trailing interjections are made optional. Accented
characters (which can be used for emphasis) are also accepted in unaccented form. Where different forms
of pronouns are possible, all alternatives are allowed (e.g., the possessive first personal pronoun mijn and
its contraction m’n).

Some aspects cannot be translated precisely. When the alternatives span multiple words, the scope is
not specified, so these have been edited manually. For lack of more specific criteria, and to ensure the
regular expressions can be matched efficiently, we allow sequences of 1 to 3 words in open slots. Lastly,
some clichés involve mini-dialogues; since we match on a per-sentence basis in the novels, these clichés
will never be found.

After translating the clichés to regular expressions we remove duplicates. A handful of expressions are
removed because they are too generic and generate too many matches (in these cases their cliché-hood
depends on intonation or other contextual factors that cannot be automatically detected with textual
matching). The resulting list of 5,771 patterns are counted across the whole corpus. We use Google’s RE2
library to match the patterns efficiently using Deterministic Finite-State Automata.

4 Counting clichés in novels

Counting clichés in a corpus of texts results in a document-pattern matrix of occurrence counts. See
Table 1 for the most frequent cliché expressions and expressions without any matches.

In order to get a picture of the overall rate of clichés, we sum the counts for all clichés in each novel,
and normalize them for a fixed length (10,000 sentences) to get the cliché density of a text. This value is
used to compute the correlation with the target value. See Figure 1 for the results. For both the literary
ratings and quality there is a significant correlation (see the following section for how the strength of this
correlation compares to other textual features). The plots show that most novels with a high number of
clichés are non-literary. The highly literary novel De Buurman (the neighbor) by Voskuil is the strongest
exception to this. This novel contains an exceptionally large proportion of dialogue, and the author is
noted for his realistic depiction of arguments. In this case the use of clichés could well be a conscious
stylistic choice (contrasting with the characterization of clichés as typically signalling ersatz creativity).
On the other hand, novels with few clichés may or may not be literary. In other words, clichés are a

2A reviewer pointed out that these restrictions may bias the results toward specific authors or genres. In order to rule this out,
we ran the experiments without these constraints, such that expressions only have to start and end at word boundaries. This did
not have a substantial effect on the rates of clichés for any of the genres.
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Figure 1: A simple regression of the number of clichés with literary ratings (left) and general quality
ratings (right).

(2) a. Weet je het zeker ? (307)
Are you sure?

b. Is dat zo ? (245)
Is that so?

c. Waar heb je het over ? (231)
What are you talking about?

d. Laat maar . (140)
Forget it.

e. Is dat alles ? (139)
Is that all?

f. Dat meen je niet . (101)
You can’t be serious.

g. Dat dacht ik al . (101)
I thought so.

(3) a. Je moet wel kunnen zien dat je op vakantie
geweest bent.
It has to be clearly visible that you went on
vacation.

b. Zit ik in de weg?
Am I in your way?

c. Er staat nergens dat het niet mag.
It doesn’t say anywhere that it’s not allowed.

d. Ik voel de bui al hangen.
I feel the storm is coming.

Table 1: Left: The cliché expressions with highest frequency.
Right: Examples of clichés without matches in any of the novels.

negative marker of literariness. For example, 50 shades of grey, the least literary novel, has relatively few
cliché expressions for novels with a similar rating, and falls below the regression line.

To compare the rate of clichés across genres and domains, Table 2 shows an overview aggregated across
the main genres in the corpus and two reference corpora. The genres are derived from publisher-assigned
categorizations of the novels. ‘Fiction’ are novels marketed as literary fiction. ‘Other’ is a mix of genres
that did not fit in the other three and does not form a coherent category. We will therefore focus on
analyzing Fiction, Suspense, and Romantic.

Especially the Romantic genre contains a larger number of clichés: twice as much as the Fiction genre.
It also has more repetition of clichés than would be expected from the total number: the number of clichés
that occur more than once is more than twice that of the Fiction genre. This is also confirmed by the lower
type-token ratio—a ratio of 1 indicates that each type of cliché expression occurs only once; i.e., the lower
the ratio, the more repetition. The violin plot in Figure 2 illustrates the genre differences and the variation
within each genre. Fiction and Suspense, while having a different mean, show a similar distribution, with
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texts sentences
clichés per

10,000 sents.

clichés per
10,000 sents.,

freq ą 1

cliché
type-token

ratio

Novels 401 9,658.77 22.49 4.9 0.91
- Fiction 161 7,768.16 18.42 2.95 0.95
- Suspense 185 10,288.5 23.22 5.39 0.89
- Romantic 40 11,047.5 36.09 8.94 0.86
- Other 15 11,607.4 24.93 6.89 0.86

Reference
- Written 1 52,157 0.38 0 1
- Spoken 1 70,277 9.25 4.41 0.63

Table 2: Overview of cliché occurrences. The rows with novels show the mean.
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Figure 2: A violin plot of the number of clichés by genre.

outliers of novels that have more clichés (up to 65 and 80, respectively). The Romantic genre has a mean
that is skewed closer to its maximum.

The reference corpora contain a much lower rate of clichés, which is probably attributable to their
domain and either lack of informal dialogue (Lassy Small), or transcription of disfluencies and punctuation
preventing matches (cgn).

5 Baselines features

We now consider simple baseline features, to characterize the language of cliché expressions and to see
how clichés compare and relate to simpler features when predicting literary ratings. By simple we mean
features that can be extracted from surface features without a trained model, as would be required for e.g.,
pos tagging, parsing, or named entity resolution. We consider the following four features:

Mean sentence length (number of tokens)
Common vocabulary the percentage of tokens part of the 3000 most common words in a large reference

corpus. We use word counts from Sonar 500, a 500 million word corpus part of Lassy Large.
Direct speech the percentage of sentences with direct speech punctuation.
Compression ratio the number of bytes when the text is compressed divided by the uncompressed size.

We use bzip2 compression with the highest compression setting.
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% direct speech Comp. ratio % Common vocab. mean sent. len.

Cliches 58.4 0.259 96.7 4.29
Novels 34.0 0.314 83.3 12.1
- Fiction 27.7 0.318 82.4 13.4
- Suspense 36.7 0.311 83.7 11.3
- Romantic 42.8 0.311 84.5 11.5
- Other 35.7 0.307 84.0 12.2

Reference
- Written 14.3 0.373 73.4 9.96
- Spoken (0.00)* 0.335 81.1 7.62

Table 3: Simple textual features compared across the clichés, novels, and reference corpora. The rows
with novels show the mean. *The speech corpus does not transcribe direct speech with quotation marks.

The first two features represent a coarse measure of sentence and word complexity, respectively, similar
to traditional readability measures (e.g., Flesch, 1948). If literary novels would be more difficult to read, we
would expect a large correlation with these. Direct speech is relevant since most cliché expressions occur
in dialogue, which is therefore a potential confounding factor. Compression ratio, by operationalizing
repetitiveness, may also act as a proxy for cliché density, similar to the n-gram method we will look at in
the next section (although it does not exploit an external reference corpus).

Table 3 compares the textual features for the clichés found in the novels, the novels themselves, and
reference corpora. For each type of feature, clichés stand out as having simpler language: they consist
almost exclusively of common words, are more repetitive (a lower compression ratio indicates more
repetitiveness), and contain shorter sentences. The high percentage of direct speech for clichés indicates
that the majority of matched clichés occurred as part of direct speech in the novels where they were found.
Compared to the differences between genres, the contrast with clichés is much more dramatic.

These features can also be compared as predictors for the survey ratings; see Table 4. The degree to
which a novel is seen as literary is better correlated with the textual features than general quality, as was
observed before using clichés. This indicates that this difference between the predictability of literary and
quality ratings is not specific to clichés. The simplest feature, sentence length, has the highest correlation,
although cliché expressions have a still higher absolute correlation (-0.48 vs. 0.40).

Ratings Cliché
Literary Quality density

Cliché density -0.48* -0.32* 1
Mean sentence length 0.40* 0.25* -0.46*
Common vocabulary -0.31* -0.17* -0.48*
Direct speech -0.38* -0.03 0.45*
Compression ratio 0.32* 0.05 -0.29*

Table 4: Correlation coefficients for simple textual features against survey ratings and cliché density. *
indicates a significant result with p ! 0.001.

Table 4 also shows the correlation coefficients of the number of clichés compared to the simple baseline
features. All correlations are significant, and the results are in line with expectations: novels with longer
sentences have less clichés, more dialogue and more simple vocabulary is associated with more clichés,
and a novel that is more compressible (a low ratio) tends to have more clichés.

Since the simple features are correlated with the number of clichés, these features are not independent
(i.e., they are collinear). On the other hand, the fact the clichés have a higher correlation with the literary
ratings shows that clichés pick up on more than the above features. This suggests that in addition to the
quantity of dialogue, the quality is also relevant, and the number of clichés appears to be a proxy for
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the latter. Concretely, literary and non-literary authors exhibit a different rate of clichés given the same
amount of dialogue—literary authors tend to use less cliché expressions.

It could also be the case that the different genres employ different kinds of clichés. To investigate
this, we inspected the top 10 most common clichés for each genre, and contrasted their frequencies. We
normalize the frequencies, i.e,. the counts of each cliché are summed for each genre, and divided by the
number of books, to obtain the expected frequency per novel in the genre. The clichés occurring in Fiction
novels are common across all genres. A few clichés are common in both Suspense and Romantic, but not
Fiction:

(4) a. Waar heb je het over?
What are you talking about?

b. Is dat zo?
Is that true?

Only the Romantic genre has several characteristic clichés that are rare in the two other genres:

(5) a. Dat meen je niet!
You can’t be serious!

b. Dacht ik al.
I already thought so.

c. Doe niet zo raar.
Don’t act so strange.

d. Ik red me wel.
I can take care of myself.

We conclude that, except for these outliers, the types and frequencies of clichés attested in the different
genres are generally comparable.

An interesting question beyond the scope of this paper is whether certain novels may deliberately use
clichés for certain parts or characters, as opposed to the clichés being part of the general style of the novel.

6 The n-gram distribution of clichés

Our approach of relying on a list of cliché expressions can be contrasted with Cook and Hirst (2013),
who present an automated method of assessing whether a text is clichéd, using n-gram frequencies as
a proxy. Their method uses n-gram frequencies from a large reference corpus and does not require an
explicit list of cliché expressions. This implies that their method can only confirm a high density of cliché
expressions, but not inspect the expressions themselves or analyze the number of types and counts for
each expression. We will test their method to see if the results hold up with our cliché lexicon and corpus.

The method of Cook and Hirst (2013) is a corpus-based heuristic for cliché density based on the
distribution of n-gram frequencies. We replicate their results on Dutch using n-gram counts from the
700 million word Lassy Large corpus (Van Noord, 2009); only counts of 2 and higher are included.
The n-gram counts were extracted using Colibri (van Gompel and van den Bosch, 2016). Note that our
reference corpus is significantly smaller than the one used by Cook and Hirst (2013), which consists of 1
trillion words.

We will use this reference corpus to compare three samples of text. The first two are written and spoken
text from Lassy small and cgn. The third sample of text is the set of cliché expressions, i.e., a sample with
100 % cliché density. Since the cliché dataset itself consists of templates containing variable and optional
elements, we extract n-gram counts from a list of 2457 cliché occurrences as attested in our corpus of
novels.

Figure 3 shows a comparison of n-grams from the list of clichés versus samples from the spoken and
written reference corpora. The plots are histograms, shown as line plots to facilitate comparison. Each
histogram shows the absolute counts in a text sample (y-axis) of all n-gram tokens with a certain log
count in the large reference corpus (x-axis). Only counts of 2 and up are shown (i.e., hapax legomena and
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Figure 3: Histogram plots of n-gram distributions across several text samples. The x-axis bins the n-grams
according to their frequency in a large reference corpus; the y-axis compares the absolute counts in several
text samples.
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Figure 4: Histogram plots for the log count of n-grams in two novels without cliché matches (Dorrestein,
Springer), one literary novel with many clichés (Voskuil), and the cliché lexicon.
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n-grams not found in the reference corpus are not plotted). Each text sample, written, spoken, and clichés,
contains approximately the same number of tokens, to ensure that the n-gram counts are comparable.

We observe characteristic peaks for the clichés in the mid to high frequency range, similar to those
reported by Cook and Hirst (2013); this is most clearly visible for 2–4 grams. The distributions of the
n-gram frequencies in the text samples are significantly different according to a Wilcoxon rank sum test
(p ! 0.001).

Differences with the graphs of Cook and Hirst (2013) are attributable to the fact that they use a larger
corpus, and use only n-gram counts of 40 and up, while we use a threshold of 2 on a smaller corpus.
Despite the differences clichés do appear to exhibit a readily identifiable frequency profile with n-grams
s.t. n ą 1.

Cook and Hirst (2013) argue that the n-gram heuristic is better because it is not possible to say whether
the sample of 1,988 English clichés at their disposal has sufficient coverage. However, this is a precision-
recall trade-off. A manually curated dataset may have limited recall, but will yield higher precision (i.e.,
will contain fewer false positive). Moreover, the n-gram technique cannot be used to detect whether a
particular set of clichés is present in a large text, and the clichés cannot be located; the n-gram method
is therefore coarse grained. Finally, while the n-gram distributions can be used as a proxy for detecting
clichéd language, it is not clear whether the peaks reflect clichéd language specifically, or perhaps more
generally informal and colloquial language.

In Section 4, we found that two novels do not have any matches from the cliché lexicon at all. To
confirm that this is not caused by a lack of coverage in the cliché lexicon, we use the n-gram distribution
method to confirm that these novels do not contain clichéd language. Cf. Figure 4 for the histograms of
the two novels without cliché matches, a highly literary novel with many clichés, and the cliché dataset
itself. The two novels without cliché matches indeed do not show the characteristic peaks of clichés, while
the novel with many clichés has a similar shape as the cliché lexicon.

7 Conclusion

We conducted a large-scale corpus study of cliché expressions in novels and reference texts. We confirmed
the intuition that novels judged as more literary tend to use less cliché expressions, and found a relatively
robust effect. Clichés predominantly occur as part of dialogue and consist of short sentences with simple
language. The cliché density of a text is correlated with several textual features such as sentence length,
common words, and amount of dialogue, but the overlap is partial and the density of clichés is a better
predictor of literariness than these other textual features. Non-literary genres such as suspense and
romantic novels were found to contain more clichés.

The collection of Dutch cliché expressions exhibits a distinctive n-gram frequency profile, confirming
results of previous research. Individual (unigram) word counts of clichés are unremarkable compared to
reference texts, but higher order n-grams show a markedly different frequency profile.

Several interesting open questions remain. In general, what makes a particular expression a cliché
expression? While we identified some basic characteristics of clichéd language, it would be interesting to
try to model clichéhood directly. In the particular case of literariness, it is interesting to dive deeper into
specific qualitative aspects, such as in what situations a cliché may be more or less desirable stylistically.
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Abstract

We show how to classify the phrasing of readout poems with the help of machine learning
algorithms that use manually engineered features or automatically learnt representations. We
investigate modern and postmodern poems from the webpage lyrikline, and focus on two exemplary
rhythmical patterns in order to detect the rhythmic phrasing: The Parlando and the Variable Foot.
These rhythmical patterns have been compared by using two important theoretical works: The
Generative Theory of Tonal Music and the Rhythmic Phrasing in English Verse. Using both, we
focus on a combination of four different features: The grouping structure, the metrical structure,
the time-span-variation, and the prolongation in order to detect the rhythmic phrasing in the two
rhythmical types. We use manually engineered features based on text-speech alignment and
parsing for classification. We also train a neural network to learn its own representation based on
text, speech and audio during pauses. The neural network outperforms manual feature engineering,
reaching an f-measure of 0.85.

1 Literary Motivation and Introduction

Many theorists of modern poetry claim that accounts of meter touch on only a very limited part of the
rhythmic structures and effects of modern and postmodern poems. For this reason, existing tools for the
digital analysis of meter in poetry (Metricalizer (Bobenhausen, 2011)) do not capture the whole range of
rhythmic features of modern poetry. Mainly the theory of Rhythmic Phrasing in English Verse (RPEV),
developed by Richard Cureton, offers a detailed formalization of these rhythmic features, including a
set of rules and a number of scanned examples. The RPEV draws heavily on music theory, mainly
the Generative Theory of Tonal Music (GTTM), conceived by music theorist Fred Lerdahl and linguist
Ray Jackendoff (Lerdahl and Jackendoff, 1983). Deeply influenced by Chomsky’s generative grammar,
they developed a musical grammar based on similar tree structure-style hierarchical organization uniting
musical “phrase groupings”. Such a grouping distinguishes the notion of phrases as relatively closed,
self-contained musical units from that of the articulated phrasing associated with performance. An
example of such a group is the musical phrase: “the smallest musical unit that conveys a more or less
complete musical thought. Phrases vary in length and are terminated at a point of full or partial repose,
which is called a cadence.” (White, 1976, pp. 43-44).

Richard Cureton’s theory on Rhythmic Phrasing in English Verse is truly the most important application
of GTTM to poetry. This becomes evident in the hierarchical system used in both theories. The GTTM
from Lerdahl and Jackendoff is based on four hierarchical systems that shape our musical intuitions:
(1) The Grouping structure is based on the hierarchical segmentation of the musical piece into motives
and phrases. (2) The Metrical structure identifies the regular alternation of strong and weak beats at a
number of hierarchical levels, differing between the beat and the time span between two beats. Both
structures explain the so-called “time-span segmentation”. (3) The Time-span reduction combines the
information gleaned from these metrical and grouping structures. This is illustrated in a tree structure-style
hierarchical organization uniting time-spans at all temporal levels. (4) The Prolongational reduction
provides our “psychological” awareness of tensing and relaxing patterns in a given musical piece: In
a strong prolongation, the roots, bass notes, and melodic notes are identical which effects the feeling
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of continuity and progression, caused by a movement towards relaxation. Following this hierarchical
system by Lerdahl and Jackendorff, Richard Cureton has divided the poetic rhythm into three (not
four) components: meter, grouping and prolongation (Cureton, 1992, pp. 124). The meter contains the
perception of beats in regular patterns, the grouping refers to the linguistic units gathered around a single
climax or peak of prominence, and the prolongation refers to the anticipation and overshooting of a
goal, the experience of anticipation and arrival, such as the end of a line in an enjambment. Rhythmic
prolongation is a matter of connected, goal-oriented motion, for example in the prosodic phrasing of
an enjambment, where the line-break is felt as a linear extension of the sentence before the end of the
sentence is reached in the next line.

Cureton’s rhythm theory involves the interrelationship of these three components within a strictly
hierarchical structure. A rhythm consists of a series of local events or units that are perceived as more
or less prominent elements within longer events or units, which in turn are perceived as more or less
prominent elements within even longer events or units, and so on to the entire poem. The analysis of
phrase movements for Cureton involves examining the interaction of grouping and prolongation in a
hierarchical organization. Cureton represents grouping hierarchies by a tree diagram (borrowed from
linguistics) or an equivalent bracketing around each group. One of the examples he examines at length
is a passage from W. C. Williams’ poem Paterson. In Paterson V (1958) as well as in his late volumes
The Desert Music (1954), and Journey to Love (1955), Williams developed the “triadic line,” also known
as the Variable Foot. It is based on the idea that, despite the different number of syllables per line, all
the lines are isochronic, because all lines are based on a similar phrase/clause. In his readings, Williams
emphasized the isochronicity of the lines by interrupting each by a regular breathing pause.

1.1 Applying Rhythmic Phrasing to Readout Poetry Analysis
In our research, we analyzed a large number of German poems following this rhythmical type. One
example is the following poem of Ernst Jandl – Beschreibung eines Gedichts (Jandl, 1982, pp. 129) –
which uses the Variable Foot and is shown in Figure 1a:

bei geschlossenen lippen
ohne bewegung in mund und kehle
jedes einatmen und ausatmen
mit dem satz begleiten
langsam und ohne stimme gedacht
ich liebe dich
so daß jedes einziehen
der luft durch die nase
sich deckt mit diesem satz
jedes ausstoßen der luft durch die nase
das ruhige sich heben
und senken der brust

Jandl uses the Variable Foot and its breath-controlled line, which divides the syntax into a phrase or clause
per line. That each line corresponds to exactly one single breath unit, causing a short break – a breathing
space – at the end of each line, can be seen in Figure 1a: There is a characteristic gap at the end of the first
line.

With regards to similar “phrase groupings” in modern and postmodern poetry, we compared the
Variable Foot with a distinct but similar pattern, also using a sub-category below the sentence-level, that is
a phrase/clause in each line. This second rhythmical pattern is called the Parlando, which was also very
common in postwar German poetry. It was developed by the German poet Gottfried Benn. The Parlando
is a prosodic style similar to the litany, using a similar orientation towards everyday speech in order to
express the speaker’s spontaneous feelings. A prominent example is Benn’s poem “Teils-Teils” (Benn,
2006, pp. 317) which is shown in Figure 1b:

In meinem Elternhaus hingen keine Gainsboroughs
wurde auch kein Chopin gespielt
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(a) Variable Foot pattern: Ernst Jandl’s “beschreibung eines gedichtes” (English: description of a poem)

(b) Parlando pattern: Gottfried Benn’s “TEILS-TEILS” (English: Half Here, Half There)

Figure 1: Two examples of the styles: poem text on the left, visualization of the first two lines on the right.

ganz amusisches Gedankenleben
mein Vater war einmal im Theater gewesen
Anfang des Jahrhunderts
Wildenbruchs »Haubenlerche«
davon zehrten wir
das war alles.

Both patterns – Variable Foot and Parlando – use a similar line arrangement, based on a colon in
each line, as long as nearly each line has an enjambment: However, the Parlando makes no use of the
breath-controlled line. Both patterns had a strong impact on German poetry beginning in the same period,
the 1960s and 1970s. The exemplary analysis is particularly devoted to the GTTM, respectively to RPEV
(Cureton, 1992) which is based on the GTTM. The GTTM and the RPEV both offer a very fruitful
framework for the manual and digital analysis of these rhythmic patterns and for the specific “tonality” of
(post-)modern poems. Given this theory, both poetic patterns use a similar line arrangement and a similar
kind of prolongation, caused by the incomplete syntax at the end of nearly each line: the meaning runs
over from one poetic line to the next. But in the Parlando style the poet does not emphasize the stops
at the end of each line, in difference to those poets using the Variable Foot pattern. This can be clearly
observed when listening to the audio recordings of both patterns.

With regards to the two patterns Cureton offered a new insight by “defining these line-terminal syntactic
expectations as mid-level prolongational energies” (Cureton, 1992, pp. 153): Both patterns involve the
experience of anticipating a goal at the end of each line, caused by the enjambment and its connection to
the second part of the sentence in the following line. So both patterns use prolongation in nearly every
line. But only the Parlando ignores this prolongation and its enjambment by arriving immediately at the
goal in the next line. Only in the Parlando, the authors reading includes a time-span reduction.

1.2 Research Question and Hypothesis
We focus on structural similarities between tonality and cadences in music as well as poetic languages
by using hermeneutical and computational methods. Our aim is to detect the tonality-like features of
rhythmical patterns in a corpus of modern readout poetry and to use such features for classification.
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Given that literary theory establishes contrastive features that differentiate the given styles (as outlined
above and to be detailed below), we expect that we can automatically extract such features from the poems
using language and speech processing tools and use them for classification. We contrast this approach to
one where a hierarchical neural network (NN) learns its own representations based on the poetic source
(text, speech, and pause between lines), rendering manual feature engineering and extraction unnecessary.

2 Database

In the project Rhythmicalizer (www.rhythmicalizer.net), we want to offer a theoretical as well as
digital framework for the automatic recognition of rhythmical patterns in modern and postmodern poetry.
We use a large collection of modern and postmodern readout poetry taken from our partner lyrikline
(www.lyrikline.org) which hosts contemporary international poetry as audio files (read by the
authors themselves) and texts (original versions & translations). The digital material covers more than
10, 800 poems by more than 1, 200 international poets from 80 different languages. This work investigates
only poems written in German. The philological scholar (third author) in our project collected from the
website poems written in German that belonged to either of the two patterns based on his experience in
literary study and analysis. The total number of poems in this study is 68 from 24 poets (34 poems in
each class). To deal with the low amounts of data, we use 10-fold cross-validation in the experiments
reported below.

3 Classification Based on Manually Engineered Features

Our manually engineered features make use of a number of speech and text processing tools: We use a
text-speech aligner (Baumann et al., 2018b), which implements a variation of the SailAlign algorithm
(Katsamanis et al., 2011) to create an alignment of the written poems and spoken recordings in order to
extract temporal features, in particular pauses. While overall the alignment coverage of the tool is quite
high, we did not check the accuracy of the alignments.

On the textual side, we detected the syntactic features, in particular the words’ Part-of-Speech (PoS), in
order to identify those poems (Parlando and Variable Foot) using a “dismemberment of the line”(Berry,
1997, pp. 880) by separating the sentences into a nominal phrase and a verbal phrase. We use the
Stanford parser (Rafferty and Manning, 2008) to parse the written text of poems, parsing each line
in isolation. Poems are difficult material due to the absence of punctuation, special characters, and
unexpected upper-/lowercasing which all introduce errors in the parsing process.

As could be seen in Figure 1, Variable Foot introduces longer pauses between lines. Different features
including pause and parser information used in the classification process. Three feature sets are utilized:
The pause feature set contains two features (the the average pause length at the end of each line as
well as between words). Based on the parser output, we compute three features (the poem’s number of
lines, number of lines with a finite verb, and number of lines with punctuation) as the parser feature set.
The pause+parser feature set includes five features which are a combination of pause as well as parser
features. We experimented with several classification algorithms (AdaBoostM1, IBk, SimpleLogistic, and
RandomTree) in the WEKA toolkit (Hall et al., 2009) and settled for AdaBoostM1 (Freund and Schapire,
1996) which yielded the best results (see (Hussein et al., 2018) for more details).

4 Neural Network-based Representation Learning

We train a neural network that learns to derive and represent features relevant for differentiating the
patterns on its own. Inspired by Yang et al. (2016; Tsaptsinos (2017), we build a hierarchical attention
network that encodes each line of a poem using a bidirectional recurrent network based on gated recurrent
units (Cho et al., 2014) and inner attention (Liu et al., 2016). The result for each line is then combined
by another bidirectional recurrent layer into a poem representation that is used for the final classification
layer. Our model is implemented in dyNet (Neubig et al., 2017). Further details on the model are available
in (Baumann et al., 2018a).

We use three variants for the input into the network: (a) only the text character sequence of each line,
(b) we add acoustics of each line based on MFCCs and encoded similarly to the characters, and (c) we
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Table 1: Results (weighted f-measure) for both approaches.

classifier and feature engineering NN and representation learning
pause parser pause+parser text text+speech text+speech+pause
0.59 0.69 0.62 0.65 0.85 0.85

add acoustics of the pause following the line before the next line.
This method only requires a line-by-line text-audio alignment and no further text processing tools.

While characters are not informative by themselves, the model is theoretically able to learn textual features
such as the ones identified in manual feature engineering based on their character sequences.

5 Results and Discussion

In the Parlando subcorpus, we find per average 37 lines, 18 lines with finite verbs, and 25 lines using
a punctuation. In the Variable Foot subcorpus, the same distribution is 20, 10, and 11. This indicates
that the poetic lines in both classes do hardly contain complete sentences and that these poems belong to
both classes: Parlando and Variable Foot. The results of classifying poems as dominated by Parlando or
Variable Foot are presented in Table 1. As can be seen, the classifier using manually engineered features
yielded the best results by using only the parser information (f-measure is 0.69) which is unexpected
given that pauses identify the Variable Foot pattern, according to theory. The classification results indicate
that the method based on neural networks outperforms the manually engineered features, in particular
when taking speech (and pausing) into account. The NN that uses only text is inferior to manual parsing
features. This indicates that the neural network is better able to make use of information contained in the
speech audio than can be captured by traditional feature-engineering approaches.

6 Conclusion and Future Work

We presented an experiment for the classification of rhythmical patterns in modern and postmodern poetry
by analyzing a corpus of readout poems using machine learning techniques (using manually engineered
feature or representation learning). We compared these rhythmical features with rhythmic phrasing in
readout poetry and focused on two important rhythmical patterns (Parlando and Variable Foot). We used
different sets of manually engineered features based on pause and parser information for classification. We
found that parser features outperform pause features, although the latter should have been favored based on
theoretical insight. Furthermore, we find that the feature-less neural networks-based approach outperforms
the methods based on manually derived features. This indicates that elaborate feature engineering can be
offset by representation learning capabilities of neural networks.

In the future, we hope to understand better the aspects of a poem that are encoded in its representation.
A total of 18 rhythmical patterns are defined till now by the philological scholar. We want to analyze and
classified other rhythmical patterns.
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Abstract

Word choice is dependent on the cultural context of writers and their subjects. Different words are
used to describe similar actions, objects, and features based on factors such as class, race, gender,
geography and political affinity. Exploratory techniques based on locating and counting words
may, therefore, lead to conclusions that reinforce culturally inflected boundaries. We offer a new
method, the DualNeighbors algorithm, for linking thematically similar documents both within
and across discursive and linguistic barriers to reveal cross-cultural connections. Qualitative and
quantitative evaluations of this technique are shown as applied to two cultural datasets of interest
to researchers across the humanities and social sciences. An open-source implementation of the
DualNeighbors algorithm is provided to assist in its application.

1 Introduction

Text analysis is aided by a wide range of tools and techniques for detecting and locating themes and
subjects. Key words in context (KWiC), for example, is a method from corpus linguistics for extracting
short snippets of text containing a predefined set of words (Luhn, 1960; Gries, 2009). Systems for
full text queries have been implemented by institutions such as the Library of Congress, the Social
Science Research Network, and the Internet Archive (Cheng). As demonstrated by the centrality of
search engines to the internet, word-based search algorithms are powerful tools for locating relevant
information within a large body of textual data.

Exploring a collection of materials by searching for words poses a potential issue. Language is known
to be highly dependent on the cultural factors that shape both the writer and subject matter. As concisely
described by Foucault (1969), “We know perfectly well that we are not free to say just anything, that
we cannot simply speak of anything, when we like or where we like; not just anyone, finally, may speak
of just anything.” Searching through a corpus by words and phrases reveals a particular discourse or
sub-theme but can make it challenging to identify a broader picture. Collections with multilingual data
pose an extreme form of this challenge, with the potential for important portions of a large corpus to go
without notice when using traditional search techniques.

Our works build off of recent research in word embeddings to provide a novel exploratory recom-
mender system that ensures recommendations can cut across discursive and linguistic boundaries. We
define two similarity measurements on a corpus: one based on word usage and another based on mul-
tilingual word embeddings. For any document in the corpus, our DualNeighbors algorithm returns the
nearest neighbors from each of these two similarity measurements. Iteratively following recommenda-
tions through the corpus provides a coherent way of understanding structures and patterns within the
data.

The remainder of this article is organized as follows. In Section 2 we first give a brief overview of
prior work in the field of word embeddings, recommender systems, and multilingual search. We then
provide a concise motivation and algorithmic description of the DualNeighbors algorithm in Sections 3
and 4. Next, we qualitatively (Section 5) and quantitatively (Section 6) assess the algorithm as applied

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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Table 1: Nearest neighbors of the English word “school” in a multilingual embedding space.

to (i) a large collection of captions from an iconic archive of American photography, and (ii) a collection
of multilingual Twitter news feeds. Finally, we conclude with a brief description of the implementation
of our algorithm.

2 Related Work

2.1 Word Embeddings
Given a lexicon of terms L, a word embedding is a function that maps each term into a p-dimensional
sequence of numbers (Mikolov et al., 2013b). The embedding implicitly describes relationships between
words, with similar terms being projected into similar sequences of numbers (Goldberg and Levy, 2014).
Word embeddings are typically derived by placing them as the first layer of a neural network and updating
the embeddings by a supervised learning task (Joulin et al., 2017). General purpose embeddings can be
constructed by using a generic training task, such as predicting a word as a function of its neighbors,
over a large corpus (Mikolov et al., 2013a). These embeddings can be distributed and used as an input to
other text processing tasks. For example, the pre-trained fastText embeddings provide 300-dimensional
word embeddings for 157 languages (Grave et al., 2018).

While there is meaningful information in the distances between words in an embedding space, there
is no particular significance attached to each of its dimensions. Recent work has drawn on this degree
of freedom to show that two independently trained word embeddings can be aligned by rotating one
embedding to match another. When two embeddings from different languages are aligned, by way of
matching a small set of manual translations, it is possible to embed a multilingual lexicon into a common
space (Smith et al., 2017). Table 1 shows the nearest word neighbors to the English term ‘school’ in six
different languages. The closest neighbor in each language is an approximate translation of the term;
other neighbors include particular types of schools and different word forms of the base term.

2.2 Word Embedding Recommendations
The ability of word embeddings to capture semantic similarities make them an excellent choice for
improving query and recommendation systems. The word movers distance of Kusner et al. (2015) uses
embeddings to describe a new document similarity metric and Li et al. (2016) uses them to extend
topic models to corpora containing very short texts. Works by Ozsoy (2016) and Manotumruksa et al.
(2016) utilize word embeddings as additional features within a larger supervised learning task. Others
have, rather than using pre-trained word embeddings, developed techniques for learning item embeddings
directly from a training corpus (Barkan and Koenigstein, 2016; Vasile et al., 2016; Biswas et al., 2017).

Our approach most closely builds off of the query expansion techniques of Zamani and Croft (2016)
and De Boom et al. (2016). In both papers, the words found in the source document are combined with
other terms that are close within the embedding space. Similarity metrics are then derived using standard
probabilistic and distance-based methods, respectively. Both methods are evaluated by comparing the
recommendations to observed user behavior.
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2.3 Multilingual Cultural Heritage Data
Indexing and linking multilingual cultural heritage data is an important and active area of research.
Much of the prior work on this task has focused on the use of semantic enrichment and linked open data,
specifically through named entity recognition (NER). Named entities are often written similarly across
languages, making them relatively easy points of reference to link across multilingual datasets (Pappu
et al., 2017). De Wilde et al. (2017) recently developed MERCKX, a system for combining NER and
DBpedia for the semantic enrichment of multilingual archive records, built off of a multilingual extension
of DBpedia Spotlight (Daiber et al., 2013). To the best of our knowledge, multilingual word embeddings
have not been previously adapted to the exploration of cultural heritage datasets.

3 Goal and Approach

Our goal is to define an algorithm that takes a starting document within a corpus of texts and recom-
mends a small set of thematically or stylistically similar documents. One can apply this algorithm to a
particular text of interest, select one of the recommendations, and then re-apply the algorithm to derive
a new set of document suggestions. Following this process iteratively yields a method for exploring and
understanding a textual corpus. Ideally, the collection of recommendations should be sufficiently diverse
to avoid getting stuck in a particular subset of the corpus.

Our approach to producing document recommendations, the DualNeighbors algorithm, constructs two
distinct similarity measurements over the corpus and returns a fixed number of closest neighbors from
each similarity method. The first measurement uses a standard TF-IDF (term-frequency, inverse doc-
ument frequency) matrix along with cosine similarity. We call the nearest neighbors from this set the
word neighbors; these assure that the recommendations include texts that are very similar and relevant
to the starting document. In the second metric we replace terms in the search document by their closest
M other terms within a word embedding space. The transformed document is again compared to the
rest of the corpus through TF-IDF and cosine similarity. The resulting embedded neighbors allow for an
increased degree of diversity and connectivity within the set of recommendations. For example, using
Table 1, the embedding neighbors for a document using the term “school” could include texts referencing
a “university” or “kindergarten”.

The DualNeighbors algorithm features two crucial differences compared to other word-embedding
based query expansion techniques. Splitting the search explicitly into two types of neighbors allows for
a better balance between the connectivity and diversity of the recommended documents. Also, replacing
the document with its closest word embeddings, rather than augmenting as other approaches have done,
significantly improves the diversity of the recommended documents. Additionally, by varying the number
of neighbors displayed by each method, users can manually adjust the balance between diversity and
relevance in the results. The effect of these distinctive differences are evaluated in Table 3 and Section 6.

4 The DualNeighbors Algorithm

Here, we provide a precise algorithmic formulation of the DualNeighbors algorithm. We begin with a
pre-determined lexicon L of lemmatized word forms. For simplicity of notation we will assume that
words are tagged with their language, so that the English word “fruit” and French word “fruit” are dis-
tinct. Next, we take a (possibly multilingual) p-dimensional word embedding function, as in Section 2.1.
For a fixed neighborhood size M , we can define the neighborhood function as a function f that maps
each term in L to a set of new terms in the lexicon by associating each word in L with its M closest
(Euclidiean) neighbors. The DualNeighbors algorithm is then given by:

1. Inputs: A textual corpus C, document index of interest ĩ, a lexicon L, word neighbor function f , and
desired number word neighbors Nw and embedded neighbors Ne to return.

2. First, apply tokenization, lemmatization, and part-of-speech tagging models to each element in the
input corpus C. Filter the word forms to those found in the set L. Then write the corpus C as

C = {ci}ni=1, ci = {wi,ki}ki , wi,ki ∈ L, 1 ≤ ki ≤ |L| (1)
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3. For each document i and element j in the lexicon, compute the n × |L| dimensional binary term
frequency matrix Y and TF-IDF matrix X according to

Yi,j =

{
1, lj ∈ ci
0, else

Xi,j = Yi,j × log
n∑
i Yi,j

. (2)

4. Simlarly, compute the embedded corpus E as

E = {ei}, ei =
⋃

ki

f(wki). (3)

Define the the embedded binary term frequency matrix Y emb and TF-IDF matrix Xemb as

Y emb
i,j =

{
1, li ∈ ei
0, else

Xemb
i,j = Y emb

i,j × log
n∑
i Yi,j

. (4)

5. Compute the n× n document similarity matrices S and Semb using cosine similarity, for i 6= i′, as

Si,i′ = Xi′X
t
i/
√
Xt

iXi Semb
i,i′ = Xemb

i′ Xt
i/
√
Xt

iXi, (5)

where Xi is the ith row vector of the matrix X and Si,i and Semb
i,i are both set to zero.

6. Output: The recommended documents associated with document ĩ are given by:

TopN
(
Nw, Si,̃i

)⋃
TopN

(
Ne, S

emb
i,̃i

)
(6)

where TopN(k, x) returns the indices of the largest k values of x.

In practice, we typically start with Step 2 of the algorithm to determine an appropriate lexicon L
and cache the similarity matrices S and Semb for the next query. In implementation and examples, the
multilingual fastText word embeddings of (Grave et al., 2018) used. Details of the implementation of the
algorithm are given in Section 7.

5 Qualitative Evaluation

5.1 FSA-OWI Captions
Our first example applies the DualNeighbors algorithm to a corpus of captions attached to approximately
ninety thousand photographs taken between 1935 and 1943 by the U.S. Federal Government through
the Farm Security Administration and Office of War Information (Baldwin, 1968). The collection re-
mains one of the most historically important archives of American photography (Trachtenberg, 1990).
The majority of captions consist of a short sentence describing the scene captured by the photographer.
Photographic captions mostly come from notes taken by individual photographers; the style and lexicon
is substantially variable across the corpus.

An example of the connections this method gives are shown in Table 2. For example, the word neigh-
bors of the caption about the farming of carrots consists of other captions related to carrots. The embed-
ding neighbors link to captions describing other vegetables, including pumpkins, cucumbers and turnips.
Because of the correlation between crop types and geography, the embedding neighbors allow the search
to extend beyond the U.S. South into the Northeast. Similarly, the caption about fiestas (a Spanish
term often used to describe events in Hispanic/Latino communities) becomes linked to similar festivals
in other locations by way of its embedding neighbors. By also including a set of word neighbors, we
additionally see other examples of events within various communities across the Southwestern U.S..

Figure 1 shows the images along with the captions for a particular starting document. In the first row,
the word neighbors show depictions of two older African American midwives, one in rural Georgia by
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Figure 1: Example visualization of the DualNeighbors algorithm. Item 1 is the starting point, items 2-4
are the first three word neighbors, and 5-8 are the first four embedding neighbors.

Jack Delano in 1941 and another by Marion Post Walcott in 1939. The second row contains captions and
images of embedding neighbors. Among these are two Fritz Henle photographs of white nurses training
to assist with an appendectomy, taken in New York City in 1943. These show the practice of medicine
in the U.S. from two different perspectives. Using only straightforward TF-IDF methods, there would
otherwise have been no obvious link between these two groups of images. The two sets were taken over
a year apart by different photographers in different cities. None of the key terms in the two captions
match each other. It would be difficult for a researcher looking at either photograph to stumble on the
other photograph without sifting through tens of thousands of images. The embedding neighbors solves
this problem by linking the two related but distinct terms used to describe the scenes. Both rows together
reveal the wide scope of the FSA-OWI corpus and the broad mandate given to the photographers. The
DualNeighbors algorithm, therefore, illuminates connections that would be hidden by previous word-
based search and recommender systems.

5.2 News Twitter Reports

Our second corpus is taken from Twitter, consisting of tweets by news organizations in the year 2017
(Littman et al., 2017). We compare the center-left British daily newspaper The Guardian and the center-
right daily French newspaper Le Figaro. Twenty thousand tweets were randomly selected from each
newspaper, after removing retweets and anything whose content was empty after removing hashtags and
links. We used a French parser and word embedding to work with the data from Le Figaro and an English
parser and embedding to process The Guardian headlines (Straka et al., 2016).

In Table 2 we see two examples of the word and embedding nearest neighbors. The first tweet shows
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Caption Top-3 Word Neighbors Top-3 Embedding Neighbors
Grading and bunching
carrots in the field. Yuma
County, Arizona

• Bunching carrots in the field.
Yuma County, Arizona

• Roadside display of pumpkins
and turnips and other vegetables
near Berlin, Connecticut

• Bunching carrots. Imperial
County, California

• Hartford, Connecticut... Mrs.
Komorosky picking cucumbers

• Bunching carrots, Edinburg,
Texas

• Pumpkins and turnips near
Berlin, Connecticut

Brownsville, TX. Charro
Days fiesta. Children.

• Brownsville, Texas. Charro
Days fiesta.

• Picnic lunch at May Day-Health
Day festivities...

• Visitor to Taos fiesta, New Mex-
ico

• Spectators at childrens races,
Labor Day celebration ...

• Bingo at fiesta, Taos, New Mex-
ico

• Detroit, Michigan. Child in tod-
dler go-cart

Imperial Brands share-
holders revolt over
CEO’s pay rise

• Evening Standard urged to de-
clare Osborne’s job with Uber
shareholder

• Bruno Le Maire Wall Street
pour attirer les investisseurs ...

• Uber CEO Travis Kalanick
should have gone years ago

• Pierre Berg : Le Monde perd
l’un de ses actionnaires

• £37bn paid to shareholders
should have been invested

• Le pacte d’actionnaires de STX
France en question

Cannes 2017: Eva Green
and Joaquin Phoenix on

• Five looks to know about from
the SAG red carpet

• Festival de Cannes 2017: Bella
Hadid, rouge écarlate sur le tapis

the red carpet • Baftas 2017: the best of the red
carpet fashion

• À New York, tapis rouge pour
Kermit la grenouille

• Emmys 2016 fashion: the best
looks on the red carpet

• Sur tapis rouge

Table 2: Two FSA-OWI captions and two tweets from the Guardian versus Le Figaro corpora along with
the top-3 word and embedding neighbors.

how the English word “shareholders” is linked both to its closest direct translation (“actionnaires”) as
well as the more generic “investisseur”. In the next example the embedding links the search term to its
most direct translation. “Red carpet” becomes “tapis rouge”. Once translated, we see that the themes
linked to by both newspapers are similar, illustrating the algorithm’s ability to traverse linguistic bound-
aries within a corpus. Joining headlines across these two newspapers, and by extension the longer articles
linked to in each tweet, makes it possible to compare the coverage of similar events across national, lin-
guistic, and ideological boundaries. The connections shown in these two examples were only found
through the use of the implicit translations given by the multilingual word embeddings as implemented
in the DualNeighbors algorithm.

6 Quantitative Evaluation

6.1 Connectivity

We can study the set of recommendations given by our algorithm as a network structure between doc-
uments in a corpus. This is useful because there are many established metrics measuring the degree of
connectivity within a given network. We will use five metrics to understand the network structure in-
duced by our algorithm: (i) the algebraic connectivity, a measurement of whether the network has any
bottlenecks (Fiedler, 1973), (ii) the proportion of document pairs that can be reached using edges, (iii)
the average minimum distance between connected pairs of documents, (iv) the distribution of in-degrees,
the number of other documents linking into a given document (Even and Tarjan, 1975), and (v) the dis-
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FSA-OWI Twitter
Nw Ne λ2 u.c. dist din0.9 ego0.1 λ2 u.c. dist din0.9 ego(3)0.1

12 0 0.002 25.1% 9.8 27 17 · 57.6% 7.3 25 16
Q

.R
ep

la
ce

m
en

t 11 1 0.011 15.7% 8.4 26 77 0.028 11.1% 7.3 26 84
10 2 0.023 15.5% 8.1 25 124 0.046 11.0% 7.2 27 110
9 3 0.038 16.3% 7.9 24 158 0.056 12.2% 7.1 28 129
8 4 0.047 17.8% 7.8 23 189 0.070 14.6% 7.0 29 134
7 5 0.056 20.4% 7.8 22 217 0.077 17.0% 7.0 29 139
6 6 0.061 23.8% 7.8 20 238 0.085 20.6% 7.0 30 137

Q
.E

xp
an

si
on

11 1 0.002 26.8% 9.2 26 50 0.028 21.0% 8.2 25 61
10 2 0.002 31.7% 9.3 25 53 0.024 31.7% 8.9 25 68
9 3 0.002 35.5% 9.6 24 56 0.020 42.5% 10.2 26 65
8 4 0.002 40.8% 9.8 22 59 0.010 54.2% 15.8 26 61
7 5 0.003 47.0% 10.8 21 62 0.013 59.9% 2.3 26 56
6 6 0.004 52.9% 10.4 20 64 0.014 60.3% 1.5 25 51

Table 3: Connectivity metrics for similarity graphs. All examples relate each item to twelve neighbors,
with Nw word neighbors and Ne embedding neighbors. For comparison, we show the results using both
query replacement (as described in the DualNeighbors algorithm) and with the query expansion method
suggested in the papers discussed in Section 2.2. The metrics give the (undirected) spectral gap λ2,
the proportion of directed pairs of items that are unconnected across directed edges (u.c.), the average
distance (dist) between connected pairs of items, the 90th percentile of the in-degree (din0.9), and the 10th
percentile of the number of neighbors within three links (ego(3)0.1).

tribution of third-degree ego scores, the number of documents that can be reached by moving along three
or fewer edges (Everett and Borgatti, 2005). The algebraic connectivity is defined over an undirected
network; the other metrics take the direction of the edge into account.

Table 3 shows the five connectivity metrics for various choices of Nw and Ne. All of the examples
use a total of 12 recommendations for consistency. Generally, we see that adding more edges from
the (query expansion) word embedding matrix produces a network with a larger algebraic connectivity,
lower average distance between document pairs, and larger third-degree ego scores. The distribution of
in-degrees becomes increasingly variable, however, as more edges get mapped to a small set of hubs
(documents linked to from a very large number of other documents). These two effects combine so that
the most connected network using both corpora have 10 edges from word similarities and 2 edges from
the word embedding logic. Generally, including at least one word embedding edges makes the network
significantly more connected. The hubness of the network slowly becomes an issue as the proportion of
embedding edges grows relative to the total number of edges.

To illustrate the importance of using query replacement in the word embedding neighbor function,
the table also compares our approach (query replacement) to that of query expansion. That is, what
happens if we retain the original term in the embedding neighbor function f , as used in Equation 3, rather
than replacing it. Table 3 shows that the query replacement approach of the DualNeighbors algorithm
provides a greater degree of connectivity across all five metrics and any number of embedding neighbors
Ne. Therefore, this modification serves as an important contribution and distinguishing feature of our
approach.

6.2 Relevance

It is far more difficult to quantitatively assess how relevant the recommendations made by our algorithm
are to the starting document. The degree to which an item is relevant is subjective. Also, our goal is to
find links across the corpus that share thematic similarities but also cut across languages and discourses,
so a perfect degree of similarity between recommendations is not necessarily ideal. In order to make
a quantitative assessment of relevancy, we constructed a dataset of 3, 000 randomly collected links be-
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FSA-OWI Twitter
Pos. TF-IDF Emb. TF-IDF Emb.
1-3 0.88% 2.66% 6.34% 9.52%
4-8 1.27% 2.54% 9.09% 10.32%
9-12 5.17% 3.16% 9.40% 13.55%

Table 4: Taking a random sample of 3000 links from each corpus, the proportion of links between terms
that were hand-coded as ‘invalid’ organized by corpus, neighbor type, and the position of the link in the
list of edges. See Section 6.2 for the methodology used to determine validity.

tween documents from each of our two corpora. We hand-labelled whether or not the link appeared
to be ‘valid’. This was done according to whether the links between any of the terms used to link the
two texts together used the terms in the same word sense. For example, we flagged as an invalid con-
nection a link between the word “scab” used to describe a skin disease and “scab” as a synonym for
strikebreaker. While a link being ‘valid’ does not guarantee that there will be an interesting connection
between two documents, it does give a relatively unambiguous way of measuring whether the links found
are erroneous or potentially interesting.

The results of our hand-tagged dataset are given in Table 4, with the proportion of invalid links grouped
by corpus, edge type, and the position of the edge within the list of possible nearest neighbors. Overall,
we see that the proportion of valid embedding neighbors is nearly as high as the word neighbors across
both corpora and the number of selected neighbors. This is impressive because there are many more ways
that the word embedding neighbors can lead to invalid results. The results of Table 4 illustrate, however,
that the embedding neighbors tend to find valid links that use both the source and target words in the
same word sense. This is strong evidence that the DualNeighbors algorithm increases the connectivity
of the recommendations through meaningful cross-discursive and multilingual links across a corpus.

7 Implementation

To facilitate the usage of our method in the exploration of textual data, we provide an open-source
implementation of the algorithm in the R package cdexplo.1 The package takes raw text as an input and
produces an interactive website that can be used locally on a user’s computer; it therefore requires only
minimal knowledge of the R programming language. For example, if a corpus is stored as a CSV file
with the text in the first column, we can run the following code to apply the algorithm with Nw equal to
10 and Ne equal to 2:

library(cdexplo)
data <- read.csv("input.csv")
anno <- cde_annotate(data)
link <- cde_dual_neigh(anno, nw = 10, ne = 2)
cde_make_page(link, "output_location")

The source language and presence of metadata, including possible image URLs, will be automatically
determined from the input, but can also be manually specified. The image in Figure 1 is a screen-shot
from the output of the package applied to the FSA-OWI caption corpus.

8 Conclusions

We have derived the DualNeighbors algorithm to assist in the exploration of textual datasets. Qualitative
and quantitative analyses have illustrated how the algorithm cuts across linguistic boundaries and im-
proves the connectivity of the recommendation algorithm without a significant decrease to the relevancy
of the returned results.

Language is impacted by cultural factors surrounding the writer and their subject. Syntactic and
lexical choices serve as strong signals of class, race, education, and gender. The ability to connect and
transcend the boundaries constructed by language while exploring textural data offers a powerful new

1The package can be downloaded and installed from https://github.com/statsmaths/cdexplo

57



approach to the study of cultural datasets. Our open-source implementation assists in the application
of the DualNeighbors approach to new corpora. Furthermore, the computed recommendations can be
directly adapted as a recommendation algorithm for digital public projects, allowing the exploratory
benefits afforded by our technique to be available to a wider audience.

One avenue for extending the DualNeighbors algorithm is to further refine the process of constructing
a lexicon and corresponding word embedding. Most of the errors we detected in the experiment in
Section 6.2 were the result of proper nouns and noun phrases that do not make sense when embedding
each individual word. Recent work has shown that better pre-processing can alleviate some of these
difficulties Trask et al. (2015). We also noticed, particularly over the jargon-heavy Twitter news corpus,
that many key phrases were missing from our embedding mapping. Research on sub-word Bojanowski
et al. (2017) and character level embeddings Santos and Zadrozny (2014); Zhang et al. (2015) could be
used to address terms that are outside of the specified lexicon.
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Abstract

Measuring similarity is a basic task in information retrieval, and now often a building-block for
more complex arguments about cultural change. But do measures of textual similarity and dis-
tance really correspond to evidence about cultural proximity and differentiation? To explore that
question empirically, this paper compares textual and social measures of the similarities between
genres of English-language fiction. Existing measures of textual similarity (cosine similarity on
tf-idf vectors or topic vectors) are also compared to new strategies that strive to anchor textual
measurement in a social context.

1 Introduction

Computational methods appeal to humanists partly because they promise to shed light on long-standing
questions about the pace and direction of historical change. One popular approach to this topic begins
by measuring the similarities between documents (or document parts). Researchers then interpret textual
similarity as evidence of social continuity, and textual distance as evidence of change.

Distance has been measured in a range of ways. Researchers often topic model their corpus first—
hoping, perhaps, to produce a measure of distance fitted to the patterns of a specific corpus. Once texts
are translated into topic vectors, the vectors may be compared using cosine similarity or KL divergence.
These methods have recently been used to make arguments about literary and political influence (Jockers,
2013; Barron et al., 2018) and about the pace of change in popular music (Mauch et al., 2015).

The key link in these arguments is the premise that measurements of textual (or acoustic) distance
can be used as a proxy for human judgments about social difference. The assumption is not baseless:
researchers have shown that simple textual models can detect cultural categories like genre (Kessler et
al., 1997; Kim et al., 2017). So we do know that social differences leave a textual trace. But the converse
proposition is less well supported: we don’t know that all textual differences will be relevant to a given
cultural or political question. The rise of contractions in the 18th century, for instance, is not usually
considered a revolution in English literature.

To make its historical significance clearer, textual distance could be measured in relation to specific
reference points that define a space of socially meaningful variation. This is easy to achieve when
researchers are interested in a single category. To measure divergence from a particular paradigm of
science fiction, for instance, researchers can just train a model of the genre using novels that 1950s
reviewers labeled “science fiction.” If the model is accurate, we know it has defined a space of textual
differences that mattered in relation to one point of reference.

But in practice, historians are often more interested in changes that transform the reference points
themselves. Genres are not stable. A scholar might wonder, for instance, whether fantasy and science
fiction are more distinct today than they were before The Lord of the Rings. Since questions of this kind
involve the relative positions of multiple generic reference points, it is not immediately obvious how they
would be solved with a supervised model. Instead, scholars have to fall back on generalized distance
measures, hoping that those measures will roughly correspond to socially meaningful differences.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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This paper aims to test that assumption. How rough is the “rough correspondence” between textual
similarity and social proximity? The paper will:

1. Introduce evidence about the social proximity of genres in nineteenth- and twentieth-century fiction.

2. Use that evidence to ask whether prevailing measures of textual distance correspond to anything
outside the text.

3. And finally, introduce new measures of distance that rely on the triangulation of multiple social
reference points instead of generalized comparisons between text vectors.

To avoid misunderstanding: the “distances” discussed here will be statistical distances, but not often
distance metrics in a strict sense (Cha, 2007). They may not, for instance, be limited to positive values.

2 Data

The underlying data for this paper comes from HathiTrust Digital Library, which contains more than
16 million volumes. Using a mixture of metadata and predictive modeling, we identified 210,305 of
those volumes as English-language fiction. Over the course of the past century or so, those books were
assigned to subject and genre categories by librarians, using a controlled vocabulary maintained by the
Library of Congress. But the controlled vocabulary governing categorization has changed enormously
over the last century.

2.1 Mutability of genre categories

Computational methods are often tested on a limited context—say, newsgroups in the 1990s—where
categories can be treated as stable. But in many domains that interest historians, this is not true.

The categorization of fiction is a good example. This article will measure the textual differences
between “genres.” But the concept of genre lacks a consensus definition. Linguists like Biber and
Conrad (2009) may describe genres by enumerating the “expected textual conventions” that define them
(144). But sociologists often bracket textual content, in order to understand genres simply as “sets of
artworks classified together on the basis of perceived similarities” (DiMaggio, 1987). The social act
of classification itself is foregrounded, and the hypothesis that those classifications are founded on real
formal characteristics is left as a conjecture.

Both approaches to genre have validity; a researcher needn’t make a final decision between them. But
it is important to recognize that genre is a multifaceted concept that has been used differently in different
communities. This slipperiness only increases as we move back in time. In fact, it has not always been
clear that the category of genre should be central to the classification of books. By the late 19th century,
“subject headings” had become common in libraries (Stone, 2000). But it took longer for librarians to
start categorizing books by genre. At first, genres were often treated as subjects (Miller, 2000). Instead
of describing works of early-20th-century fiction as examples of “Historical fiction” or “Love stories,”
for instance, catalogers described them as books about “History” or “Man-woman relationships”—as
if they were nonfiction. In the past thirty years, catalogers have applied genre labels to fiction more
consistently, but books cataloged earlier usually still have subject headings rather than genre labels.
Audience designations (“Juvenile fiction”) and forms (“Short stories”) are also still promiscuously mixed
with genre categories.

In short, genres are typical of the categories that interest humanists: they are tangled up with time, for
reasons that have as much to do with the history of observers as with the history of the object. A fuller
history of genre might draw on a wider range of sources—publishers, for instance, and book reviewers.
But the underlying challenge would remain the same: different observers have divided the world of
fiction in different ways. We may strongly suspect that novels under the subject heading “Detectives”
will resemble those later assigned to the genre category “Mystery fiction.” But this is an empirical
question about the continuity of social practices.
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2.2 Social proximity

One way to test the affinities of genres is to measure the overlap between categories in the library itself.
Books can carry multiple tags for genre and subject; if certain tags tend to be assigned to the same books,
we might infer that those pairs of categories are related in practice. A loosely similar approach is adopted
in Wu et al. (2010). Digital libraries provide plenty of overlapping categories, because they often include
multiple copies of a book, cataloged in different libraries. After deduplication, the 210,305 volumes
we began with boil down to 138,164 distinct titles, each of which might carry tags assigned by several
different hands.

To quantify the tendency to overlap, we calculated pointwise mutual information for every combina-
tion of categories a and b. PMI is often used to measure the strength of collocations. In this context,
however, it potentially overlooks the problem that categories may have disjoint chronological distribu-
tions. If the subject category “History” was only assigned before 1980, and then got replaced by the
genre category “Historical fiction,” the two categories might rarely coincide, and appear unrelated.

We addressed this problem in several ways. First, we calculated the probabilities that are components
of PMI only within a random sample t of volumes selected to have the same chronological distribution
as a ∪ b. We also added a small constant (0.1) to the counts of (a, b) for Laplace smoothing, since the
distance from a count of zero to a count of one can be very large in sparse data. The net effect of these
changes was to increase PMI for chronologically disjoint categories.

pmi(a; b) = log
p(a, b|t)

p(a|t)p(b|t) (1)

Finally, we supplemented empirical evidence with strong priors about pairs of categories where a genre
term and a subject term were identical or closely related. (We expect the subject heading “Horror,” for
instance, to be closely related to the genre category “Horror.”)

Even after this adjustment, there are reasons to doubt that we can capture all the relations between
genres by measuring the intersection of categories in a library. Two genres in themselves very different
might happen to hybridize a lot, producing anomalously high PMI. Moreover, collisions between genres
are sparse: in 223 of 496 comparisons, there was no overlap at all between a and b.

So PMI based on library metadata should not be taken as ground truth about the real relations between
genres. No single oracle can be trusted on that question. Rather, we have many different ways to compare
genres, and we want to inquire about the degree of correlation between them. The advantage of a measure
based on cataloging practices is simply that it doesn’t rely directly on the text; it thus gives us a yardstick
plausibly independent from the textual measures we want to evaluate.

2.3 Textual evidence

While social proximity was calculated using the entire set of 138,164 titles, textual distances were calcu-
lated for a smaller sample, balanced so we would have the same number of examples of each category.
We selected twenty genre categories and twelve subject headings, for a total of 32 categories. For each
category, we randomly drew 100 volumes as a primary sample.

Because genre categories intersect, it often happened that some volumes randomly selected as “War
fiction” also carried the tag “Love stories.” The intersection of genres is a real social fact, and researchers
shouldn’t ignore it. But because our measure of social proximity was explicitly based on the size of this
intersection, we didn’t want textual comparisons to be dominated by the same factor: in that case, we
might no longer have two independent measures of similarity. To permit comparison between strictly
non-overlapping samples, we selected supplementary groups of books tagged (for instance) “War-Not-
Love” and “Love-Not-War,” which could be used to replace books carrying both tags.

We also selected two completely random samples of fiction to be used as contrast sets in predictive
modeling. Adding together all of these samples, we had 6846 volumes of fiction.

Word frequencies for all these books (even for books under copyright) are publicly available from
HathiTrust Research Center (Capitanu et al., 2016). Because works of fiction sometimes begin with
nonfiction introductions, we ignored the first 10% and last 5% of pages in each volume. A few categories
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of individually rare tokens were consolidated into a single collective feature: for instance, all Arabic
numbers became “#arabicnumber.”

3 Methods

We evaluated three different measures of the textual distance between genres, looking in each case at the
correlation with social evidence of genre proximity.

3.1 Tf-idf vectors
One well-established measure of the distance between documents multiplies the frequency of each term
by its inverse document frequency (Jones, 1972). Distance is usually measured by taking the cosine
between the vectors thereby constructed.

We adapted this to make comparisons between genres by summing the term frequencies of all 100
volumes in the primary sample for each genre to produce a collective term-frequency vector. The top
10,000 words, by document frequency, were considered.

3.2 Topic vectors
It has recently become more common for researchers to estimate cultural change by topic modeling
a corpus and comparing topic vectors (Jockers, 2013; Barron et al., 2018). This is in part simply a
dimension-reduction strategy, but researchers may also hope that topic vectors will produce a more
significant measure of distance. However, it is not entirely clear what kind of significance is being
maximized. The generative logic of LDA doesn’t in itself guarantee that topics will be optimal for any
particular discriminative task (Lacoste-Julien et al., 2009). Social evidence about genre similarity allows
us to ask how much is really added by the topic modeling step.

We used the scikit-learn implementation of Latent Dirichlet Allocation (Pedregosa et al., 2011). Re-
moving a standard list of English stopwords gave us a lexicon of 28,443 words. A model with 100 topics
was selected. Topic vectors were then constructed in several different ways:

1. A naı̈ve approach simply summed the topic vectors for the 100 volumes in the primary sample for
each genre; this was analogous to the construction of tf-idf vectors, although it tended to weight
books more evenly (where the tf-idf method had given more weight to longer volumes).

2. To more carefully ensure that our measure of similarity was not defined by the size of the intersec-
tion between genres, we also made comparisons between the symmetric differences of genre sets.
This required constructing a different topic vector for each comparison. For instance, we had to
exclude volumes bearing the tag “War fiction” when “Love stories” were compared to that genre,
but then exclude a different set of books when “Love stories” were compared to “Bildungsromans.”

3. We also constructed a third set of genre vectors where the topic vector for each volume was first
centered by subtracting the running average vector for its position on the timeline. This allowed
us to factor out differences produced purely by chronology, and compare genres in terms of their
difference from the prevailing norm in each period.

3.3 Comparing the predictions of supervised models
So far we have envisioned cultural “distances” as comparisons between vectors in a single shared space.
The angle between “Bildungsromans” and “Short stories” may differ from the angle between “Bil-
dungsromans” and “Juvenile fiction,” but both comparisons are made in a space defined by the same
set of features (whether topics or words). However, the assumption of a shared space might not be justi-
fied. The features that distinguish novels from short stories could simply stop mattering when we turn to
the orthogonal contrast between adult and juvenile audiences. One way to acknowledge this is to train a
different supervised model for each genre. By assigning different weights to features, supervised models
acknowledge that distances are measured, not just in different directions, but in different spaces.

Predictive models could be used to measure distance in several ways. One approach would train a
separate model to distinguish each pair of categories, and interpret accuracy (or AUC) as a form of
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Figure 1: Pearson correlation between textual similarity and evidence of social proximity. Error bars
cover a 95% confidence interval (Zuo, 2018; Wickham, 2009).

distance. But this approach has several disadvantages. Accuracy and social differentiation seem unlikely
to have a linear relationship: it could be much harder to go from 90% to 95% accuracy than from 50%
to 55%. Also, a direct comparison between categories would make it difficult to factor out confounding
variables, as we factored out the time axis in 3.2.3 above.

So we chose instead to “center” all models on a random sample of fiction with the same distribution
across time as the genre category being modeled. Model A (of genre a) learns to distinguish short stories
from a random sample of fiction; model B (of genre b) learns to distinguish juvenile fiction from another
random sample (with a different chronological distribution). The number of features and regularization
constant for regularized logistic regression are tuned by grid search. Then we apply each model to the
works used in the other, and compare the way they rank the books by probability of belonging to a or b.
This produces two Spearman correlation coefficients; before they can be averaged, they need to undergo
Fisher’s z-transformation—in effect, arctanh. So the distance d between a and b is

d(a; b) = −1

2
(arctanh(spearman(p(a|A), p(a|B)))+arctanh(spearman(p(b|B), p(b|A)))) (2)

Initial experiments on a toy sample revealed that this measure has a linear relationship to random dilution
of data. So Fisher’s z-transformation is not just a convenience for averaging; it gives correlation coeffi-
cients an unbounded distribution that may be appropriate for a measure of statistical distance. However,
other measures might be equally appropriate. For instance, given a well-calibrated probabilistic model,
Pearson correlation can be substituted for Spearman in equation (2).

4 Results

The measures discussed in Section 3 were used to estimate textual distances for all distinct pairings of
the 32 categories selected in Section 2—except self-comparisons, which were ignored. (Subtracting self-
comparisons, n = 496.) Different measures of textual distance were compared to the estimates of social
distance produced by calculating PMI on genre labels. (Since PMI is actually a measure of proximity,
we reversed the sign to interpret it as a distance.)

The Pearson correlations of different textual measures with our social benchmark are shown in Fig-
ure 1. This is admittedly an imperfect evaluative strategy. To understand how these results might confirm
or weaken specific methodological priors, details need to be inspected more closely.
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Figure 2: Multidimensional scaling on distances
inferred from topic vectors (3.2.2).
Genres colored by mean publication date.

Figure 3: Multidimensional scaling on distances
inferred from predictive models (3.3). Genres
colored by mean publication date.

4.1 Social and textual measures of distance do correlate
Prevailing practice in cultural analytics relies on comparisons between topic vectors (Jockers, 2013;
Barron et al., 2018; Mauch et al., 2015). These measures correlated with social measures of distance
at r = .33 to r = .38, a moderately strong effect size. It is difficult to say exactly how pleased or
concerned we should be by correlations around .35, because the social evidence itself is sparse and
fallible. We don’t know that it’s a gold standard, and thus don’t know how closely textual distances
should be approximating it. But it would certainly have been concerning to discover that social and
textual measures didn’t correlate at all!

4.2 Overlapping genres did not significantly distort results
Excluding the intersection of genres—to avoid potential circularity in our comparisons—greatly com-
plicated this study. But in the end, this precaution made little difference. Allowing genres to overlap
gave one method (3.2.1) a slight advantage, but the effect was dwarfed by date adjustment or predictive
modeling on non-overlapping genres.

4.3 Topic modeling did make a difference
Cosine similarity on raw tf-idf vectors performed significantly worse than the other methods. It appears
that topic modeling does tend to foreground lexical choices that have social significance. However, this
effect might depend as much on corpus construction as it does on the algorithm. In this case, for instance,
topics were inferred from a corpus that had been selected to represent generic differences with evenly-
sized samples. Many genres would not have been well represented in a purely random sample, and topics
inferred from that sample might not have been as well suited to the discrimination of genres.

Note also that a goal of even coverage may not entirely resolve this problem: some empirical evidence
suggests that topic models covering a long timeline tend to give a finer-grained description of documents
toward the center of the timeline, exaggerating distances there. If this turns out to be a general pattern, it
would be a significant problem for diachronic research, deserving further investigation.

4.4 Limiting the form of distance being measured is vital for historical significance
The question posed in this experiment concerned differences between genres. We couldn’t assume that
those differences were entirely independent of time; e.g. Westerns came along almost a century after
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historical novels, so the difference between those categories may be partly chronological. But we had
reason to suspect that transformation of the English language would often be a confounding variable,
obscuring the textual similarities between categories with generic kinship.

For instance, the subject category “Humor” contains volumes with a mean publication date of 1925;
it’s one of the earlier categories applied to fiction. But the genre category “Humor” has a mean date
of 1990; as we mentioned in Section 2, genres don’t get described as genres until relatively late in the
history of cataloging. The mere passage of time will create many linguistic differences between these
groups of books, yet our priors would probably place the categories relatively close to each other.

As you can see on the left side of Figure 2, distances inferred from topic vectors (3.2.2) don’t suc-
ceed in placing “Humor” and “Subj: Humor” next to each other. Instead, this space looks suspiciously
dominated by a chronological gradient.

By contrast, distances inferred from predictive models place “Humor” close to “Subj: Humor” and
“Historical” novels close to “Subj: History.” Because our predictive models always use a random contrast
set that matches the chronological distribution of the genre category being modeled, the confounding
variable of time is partly factored out of distance measurements. Something similar can be achieved by
adjusting topic vectors for time (3.2.3).

Note, however, that this choice doesn’t compel us to ignore chronological differences. Some genres
do change more across time than others. In Figure 3 you may notice that “Fantasy” and “Subj: Fantasy”
are relatively remote, compared to, say, “Mystery” and “Subj: Detective.” Existing literary scholarship
already suggests that the detective story crystallized earlier than the modern fantasy genre, and remained
more stable across the last two centuries (Rachman, 2010). 19th-century fantasy, for instance, can be
difficult to distinguish from children’s literature (Levy and Mendlesohn, 2016). When a genre changes
rapidly, different samples will differ from a random contrast set in different ways, even though the con-
trast sets always match the chronological distribution of the genre. Genres that change rapidly should
thus be expected to cover a lot of space in our map.

Figure 4: Multidimensional scaling on distances in-
ferred from PMI on labels assigned by librarians.

This sort of detailed inspection is an essen-
tial supplement to the quantitative evaluation in
Figure 1. Social distances inferred from library
metadata are perhaps best understood as an ini-
tial sanity check; if those measures of social con-
tiguity didn’t correlate with textual distances at
all, we would need to reconsider this whole re-
search program. But it is not safe to assume that
any sample of social evidence constitutes firm
ground truth about the real similarities of gen-
res.

In fact, readers might also want to skeptically
inspect the social evidence we have been using
as a benchmark for textual distances. Figure 4
makes this possible. Casual inspection is vulner-
able to confirmation bias, but in the present au-
thor’s judgment this map is clearly preferable to
Figure 2. For instance, “Novel” and “Short sto-
ries” ought to be fairly remote categories; Fig-
ure 2 put them too near each other. On the other
hand, it is far from clear that Figure 4 fits our pri-
ors better than Figure 3. Categories like “Mys-

tery” and “Subj: Detective” ought to be closer than they appear in the social map.
Ironically, Figure 4 is based on priors specifying, for instance, that “Mystery” and “Subj: Detective”

should be relatively close. But they were only priors, and therefore had to compromise with the evidence
provided by library metadata. Figure 3, which relies purely on textual evidence and not on our priors,
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actually conforms to those priors more closely. Moreover, it provides surprises that retrospectively make
sense (e.g. “Bildungsroman” is close to “Juvenile” fiction.) Evidence of this kind tends to demonstrate
that predictive models provide reliable guidance about the relationships between genres. One can have
roughly the same amount of confidence in time-adjusted topic vectors (the method described in 3.2.3).
The value of the other three measures of textual distance is more dubious. On inspection, it seems
likely that those distance matrices are dominated by a chronological gradient that doesn’t correspond to
readers’ intuitions about the relationships between categories. In other words, the gap between the top
two methods in Figure 1, and the bottom three methods, may be bigger than it appears.

Problems of this kind are fairly common. Researchers inquiring about textual distance often tacitly
expect to measure certain kinds of distance, and tacitly expect other kinds to be factored out. Measure-
ment will become more reliable if those tacit assumptions are made explicit. In this case, time was the
problem—and time is definitely a common problem in historical inquiry. But other research projects,
inquiring about the pace of stylistic change for instance, may confront a converse problem. Time might
become the topic of interest, and the distribution of texts across genres might become the confounding
variable. The solutions explored here would still be applicable. For instance, to factor generic differ-
ences out of a question about time, one wouldn’t necessarily have to hold genre distribution constant
across the timeline (and risk distorting the corpus). Instead, one could train predictive models where the
genre distribution of the random contrast set matches the genre distribution of the decade modeled. That
strategy can reduce confounds while still acknowledging that genre and time are interwoven.

5 Conclusions

This paper asks whether the assumptions underpinning contemporary work in cultural analytics hold up
to empirical scrutiny. Broadly, it has answered “yes.” Textual distances do correlate with independent
measures of social affinity. And topic modeling a corpus probably does improve that correlation.

On the other hand, there are also reasons for caution here. Figure 2 suggests that topic modeling cannot
in itself replace reflection on confounding variables. Unless researchers explicitly limit the range of
differences that interest them, general measurements of “stylistic change” may indiscriminately register
linguistic drift, the rise of a new genre, or a shift in the underlying gender balance of authorship.

This paper has not prescribed a particular response to the problem; two different methods performed
well in this experiment, and other solutions are imaginable. However, the strong performance of super-
vised models (r = .45) does hint that they have under-exploited potential as measures of distance.

Figure 5: Distance between models of fantasy and
science fiction, expressed as a percentage of the
text that would need to be randomly altered to pro-
duce the measured loss of correlation.

Supervised learning is usually explained as if it
aimed simply to reproduce existing ground truth.
If this were true, supervised models would find lit-
tle application in the humanities. Humanists are
often posing questions where reliable ground truth
is not yet available (and perhaps never will be).
“Accuracy” would be a naı̈ve goal.

However, predictive models don’t need to be
contained in that naı̈ve frame. In this paper,
for instance, models of science fiction were ap-
plied to fantasy—not because we expected them
to be right, but to measure divergent assumptions.
Training a predictive model can translate a static
set of examples into a measure of distance, and
thereby put concepts in dialogue with each other.

Our goal in this experiment was simply to de-
velop a measure of the distance between genres that corresponds to literary intuition, because it uses
evidence about the genres themselves to define “distance.” But once we have done that, it becomes pos-
sible to pose questions where we don’t have intuitive answers. Figure 5, borrowed from a forthcoming
project, hints that the genres of science fiction and fantasy have been converging in the last thirty years.
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Predictive models can also give scholars a way of comparing different perspectives on genre. Instead of
taking library metadata as authoritative, we can draw lists of examples from the conflicting practices of
critics or reviewers, and compare the resulting models.

How widely could this method be applied? The history of genre may initially appear to be an odd
special case, where we happen to have labeled categories. The methods that work for genre may seem
unlikely to be useful for more open-ended questions about historical change.

But labels come in many forms. Time itself is a label. For instance, one might ask, “How quickly has
science fiction changed over the last century?” and answer by comparing models of the genre trained on
different segments of the timeline.

The task of measuring distance in a supervised way, triangulating from multiple reference points, needs
better computational solutions. We readily admit that the solution offered in this paper was improvised
empirically and uses Spearman correlation as duct tape. It works, but it has awkward limitations: for
instance, to put models on an equal footing, all categories have to be limited to an equal number of
examples. A more integrated and principled approach is imaginable, patterned perhaps on supervised
topic modeling (Lacoste-Julien et al., 2009; Zhu et al., 2009), but with the goal of inferring distances (of
a particular social character) rather than latent topics.

6 Open code and data

Code used in this paper is available both on GitHub https://github.com/tedunderwood/
genredistance, and more archivally at Zenodo (Underwood, 2018a). Data used in the paper has
also been archived (Underwood, 2018b).
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Abstract

We tackle four different tasks of non-literal language classification: token and construction level
metaphor detection, classification of idiomatic use of infinitive-verb compounds, and classifica-
tion of non-literal particle verbs. One of the tasks operates on the token level, while the three
other tasks classify constructions such as “hot topic” or “stehen lassen” (to allow sth. to stand vs.
to abandon so.). The two metaphor detection tasks are in English, while the two non-literal lan-
guage detection tasks are in German. We propose a simple context-encoding LSTM model and
show that it outperforms the state-of-the-art on two tasks. Additionally, we experiment with dif-
ferent embeddings for the token level metaphor detection task and find that 1) their performance
varies according to the genre, and 2) Mikolov et al. (2013) embeddings perform best on 3 out of
4 genres, despite being one of the simplest tested models. In summary, we present a large-scale
analysis of a neural model for non-literal language classification (i) at different granularities, (ii)
in different languages, (iii) over different non-literal language phenomena.

1 Introduction

Computational research of non-literal phenomena, e.g., metonymy, idiom, and prominently metaphor de-
tection (Veale et al., 2016), has been plentiful. For metaphor detection, most works name the Conceptual
Metaphor Theory (Lakoff and Johnson, 1980) as their underlying framework, in which metaphors are
modeled as cognitive mappings of concepts from a source to a target domain. However, the datasets cre-
ated and used in these works often follow no unified annotation guidelines (compare Steen et al. (2010)
and Tsvetkov et al. (2014)), or even no disclosed guidelines at all, e.g., Heintz et al. (2013), or anno-
tate metaphors at different levels of granularity (Steen et al., 2010; Gutierrez et al., 2016). This is also
true for many works in more general non-literal language detection. Consequently, methods are seldom
compared on related tasks.

Neural networks have been successfully applied to various natural language processing tasks, but few
have applied them to metaphor detection (Do Dinh and Gurevych, 2016; Rei et al., 2017) or detection
of non-literal and figurative language in general. In this paper, we test whether the same simple generic
neural network approach is effective for four different non-literal language detection tasks: token and
construction level metaphor detection, idiom classification and classification of literal and non-literal
German particle verbs. We train a neural model using LSTMs to encode the context of a metaphor
candidate or non-literal compound. We show that our approach outperforms existing state-of-the-art
models on two tasks, while producing competitive results on another task, independent of the mode of
classification (e.g., token vs. construction classification). In demonstrating the applicability of the same,
simple neural network architecture to different non-literal language tasks, we lay the foundation for a
more integrative approach. A joint modeling of these tasks, through data concatenation and multi-task
learning, is investigated in Do Dinh et al. (2018).

Given enough training data, our model renders many of the handcrafted features employed in previous
work unnecessary. This includes e.g., abstractness values to model source and target concepts (Tsvetkov

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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et al., 2014; Turney and Assaf, 2011), selectional preference violations (Wilks, 1978; Shutova, 2013) or
topic modeling (Heintz et al., 2013; Beigman Klebanov et al., 2014). In contrast, because they are the
only external resource we utilize, we investigate the influence of an important hyper-parameter of our
network—different pre-trained embeddings—on the token-level metaphor detection task and show the
genre-specific effects of these embedding models.

2 Related work

Classification and detection of non-literal language has largely focused on metaphor detection. Another
prominent task is the detection of idiomatic language. Similar features have been employed in those
tasks, even though the specific phenomena differ. However, since the datasets used for these tasks are
annotated differently, it is difficult to compare methods across the different tasks (or even subtasks of,
e.g., metaphor detection). For some tasks, feature-based approaches are still superior to neural models.
For many, more general, non-literal language tasks, neural models have not yet been applied. While
distributed word representations have been used even in feature-based methods, a comparison regarding
the influence of different pre-trained embeddings on these tasks has not been carried out so far.

Tsvetkov et al. (2014) classify adjective-noun pairs and subject-verb-object constructions. Their fea-
tures include imageability, abstractness ratings, supersenses and low-dimensional word representations
trained using an LSA variant. They train their system on English, and test it on four different languages—
English, Russian, Farsi and Spanish—with the help of bilingual dictionaries. Similar, Gutierrez et al.
(2016) examine adjective-noun compounds, specifically those for which the interaction between the com-
ponents is sufficient to determine metaphoricity. To this end, they adapt a compositional distributional
semantic model (CDSM) approach, representing adjectives as matrices and nouns as vectors. By com-
puting distinct representations for literal and metaphorical use of adjectives they introduce a separation
of literal and metaphorical meaning in the CDSM.

Do Dinh and Gurevych (2016) also investigate metaphor detection, however in contrast to the pre-
viously described works on a token level. Specifically, they use a multi-layer perceptron to clas-
sify metaphoric tokens using concatenated pre-trained word embeddings. Their approach is language-
agnostic as it does not use additional features. However, they only test it on English data, on which
it compares favorably to a simple SVM baseline and an existing feature-based method. A more com-
plex neural model is proposed by Rei et al. (2017). They implement a similarity network in which they
modulate the word representation of a token in a possibly metaphoric construction based on the remain-
ing construction tokens. Further, they introduce a mapping from the vector space of the pre-trained
embeddings to a metaphor-specific vector space. While their system performs well, it cannot beat the
feature-based system by Tsvetkov et al. (2014) on adjective-noun constructions.

Zhang and Gelernter (2015) investigate metonymy identification, i.e. identification of instances where
entities replace other associated entities. For example in the sentence “Washington and Beijing enter
new trade talks”, Washington and Beijing are used to refer to the US and Chinese governments. Zhang
and Gelernter (2015) reuse many features commonly used for the metaphor detection task, such as im-
ageability and abstractness ratings. They further test different word representations—word embeddings,
LSA, and one-hot-encoding—to detect metonymy using an SVM.

A different non-literal language task is investigated by Horbach et al. (2016), in which they classify
literal and idiomatic use of different German infinitive-verb compounds based on their context. They em-
ploy Naive Bayes and various features—including local skip-n-grams, POS tags, automatically obtained
subject and object information, selectional preferences, and manually annotated topic information.

Köper and Schulte im Walde (2016) classify literally and non-literally used German particle verbs
across 10 particles. Using a random forest classifier and various features (e.g., unigrams, affective ratings,
distributed word representations), they achieve an accuracy of 85% over all particle verbs, and find that
taking into account particle information additionally increases performance.
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Task dataset size M lang example

Token level
metaphor detection

VUAMC 103,865 15% en Along with Sir James he found the US
much more attractive, [...]

Construction level
metaphor detection

Tsvetkov et
al. (2014)

1,738 47% en Wind and wave power providing the
green energy of the future.

Classification of
idiomatically used
verb compounds

Horbach et
al. (2016)

5,249 64% de ,,Auch eine Uhr, die stehen geblieben
ist, geht zweimal am Tag richtig”, sagt er.
(“A clock that has stopped running is
correct two times a day, too,” he says.)

Classification of
non- literally used
particle verbs

Köper and
Schulte im
Walde (2016)

6,436 35% de Auf Decken sitzt man ums Feuer und
lässt den ereignisreichen Tag
nachklingen.
(One sits on blankets around the fire and
lets the day linger on [lit.: ring on].)

Table 1: Investigated tasks and datasets. Size describes labeled tokens in case of token level metaphor de-
tection (content tokens), and labeled constructions for the other tasks respectively, M denotes percentage
of non-literal labels. Non-literal use of tokens/constructions in the examples is marked bold.

3 Tasks

To investigate if our generic network can successfully tackle different non-literal language detection
tasks, we consider token level metaphor detection, construction level metaphor detection, classification
of idiomatically used infinitive-verb compounds, and classification of particle verbs into literal and non-
literal usage. Table 1 gives an overview along with examples. The corpora differ in size, percentage of
non-literal instances, and language.

For token-level metaphor detection we use the VU Amsterdam metaphor corpus (VUAMC) (Steen
et al., 2010), a subset of the BNC Baby covering four genres: academia, conversation, fiction, and news.
Metaphors are annotated on a token level using MIPVU (Steen et al., 2010), which in short specifies that
all tokens which are not used in their most basic (concrete, bodily-related, or historically older) sense are
to be labeled as metaphorical if the contextual meaning of the token can be understood in comparison
with its basic sense. Inter-annotator agreement of 0.84 Fleiss’ κ has been reported for this dataset.
Our network is trained on each genre of the VUAMC separately; for each subcorpus we use a random
subset of 76% of the data for training, 12% as a development set and 12% as a test set, reproducing the
experimental setup of Do Dinh and Gurevych (2016). We re-implement their state-of-the-art approach
on this dataset to compare both architectures.

We also examine metaphor detection on construction level utilizing the English data set created
by Tsvetkov et al. (2014), specifically the literal and metaphorical adjective-noun (AN) samples, which
were also used in the neural model by Rei et al. (2017). Originally these were explicitly selected for
their context-independence (i.e., they should be distinguishable as metaphorical or literal based on the
construction’s tokens, without help from their context). We augment the published training set (i.e.,
the constructions) by randomly selecting for each construction a sentence containing it from the British
National Corpus (BNC Consortium, 2007) and ukWac (Baroni et al., 2009). In this way, we attain 1538
sentences in total, on which we train using 10-fold cross validation. For testing, we use the 200 sentences
from the original test set, which was labeled by 5 annotators achieving a Fleiss’ κ of 0.74. The metaphor
definition is broader than for the VUAMC; the annotators where asked to mark all tokens which “in your
opinion, are used non-literally in the following sentences.”

Idiom classification is the task of deciding whether a given phrase is used idiomatically or literally.
As a figurative language classification problem, and because determining whether a given phrase is used
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xl1 ... xlw xc1 ... xcn xr1 ... xrw

LSTMl Dense LSTMr

Concatenation

Multiple dense layers

Softmax

Figure 1: The basic structure of our LSTM, starting with pre-trained word embeddings xi. Hyper-
parameters include number of dense layers before applying softmax, whether or not the same LSTM
layer is being used for encoding the context (i.e., LSTMl = LSTMr), and layer sizes. Center size n is
determined by the corpus (e.g., n = 1 for token classification or n = 2 for adjective-noun classification).

idiomatically is largely context-dependent, this task is closely related to metaphor detection. We use the
corpus introduced by Horbach et al. (2016), comprising 5,249 sentences containing literal and idiomatic
uses of 6 different German infinitive-verb compounds, stemming from the Wahrig corpus (Krome (2010),
covering newspaper and magazine articles). Cohen’s κ for two expert annotators is reported to range
between 0.63 and 0.87, with no explicit guidelines set other than to annotate the compounds as being
used literally or idiomatically in a given context sentence. We run experiments on the 6 compounds
separately and set up the data in a similar way as Horbach et al. (2016), i.e., we directly report accuracy
scores on 10-fold cross validation experiments (averaged over 50 randomly sampled hyper-parameter
configurations), without using a separate test set.

We also evaluate our approach on another task using German data: classification of German particle
verbs into literal and non-literal cases, proposed by Köper and Schulte im Walde (2016). They com-
piled a corpus using 159 German particle verbs across 10 particles, extracting up to 50 sentences for
each particle verb from DECOW14AX (Schäfer and Bildhauer, 2012; Schäfer, 2015). Annotators were
asked to label instances on a 6-point scale from “clearly literal” to “clearly non-literal”. Inter-annotator
agreement of the binarized labels is reported as 0.70 Fleiss’ κ for 3 annotators. We use the same setup as
in the original paper and perform cross validation on the complete dataset; again we report average accu-
racy and F1 over 50 randomly sampled hyper-parameter configurations. We compare our results to their
follow-up paper (Köper and Schulte im Walde, 2017), in which they investigate multi-sense embeddings
for this task.

4 Architecture

Our approach separately encodes the context of potential metaphorical tokens or constructions (Figure 1).
More specifically, our neural network is designed to encode the left and right context of tokens/construc-
tions using Long-Short Term Memory layers (LSTMs), to reduce the influence of the context tokens
compared to just concatenating their corresponding word embeddings. This design decision stems from
preliminary experiments in which we included the complete sentence context. However, this amount
of context was too large to obtain reasonable results. Still, we encode the context using LSTMs rather
than fully connected layers, since this provides a more concise model with fewer parameters. The center
consists of one or two embeddings (depending on the task), which are encoded using a fully connected
layer. The output of left context LSTM, center dense layer, and right context LSTM are then concate-
nated, before being fed to additional fully connected layers. We experiment with different network
variations: shared/separate embedding layers (with re-trainable embeddings), shared/separate weights
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Token level
metaphor detection

Construction level
metaphor detection

Classification of idio-
matically used infini-
tive-verb compounds

Classification of non-
literally used particle
verbs

D LSTM R LSTM H LSTM K LSTM

A 0.87 0.86 0.83 0.81 0.86 0.89 – 0.89
F1 0.56 0.59 0.81 0.79 – 0.90 0.88 0.85

Table 2: Accuracy (A) and F1-score of existing methods (D = Do Dinh and Gurevych (2016), R = Rei et
al. (2017), H = Horbach et al. (2016), K = Köper and Schulte im Walde (2017)) and LSTM on the four
investigated tasks. For both metaphor detection tasks, these are results on the test set of the best systems
as determined by dev set (token level) or cross validation (construction level); for the classification of
idiomatically used verb-compounds and the classification of non-literally used particle verbs these are
averages over 50 configurations, since the original papers only report performance on cross validation.
For subcorpus specific results see Table 3 (token level metaphor detection) and Table 4 (classification of
idiomatically used infinitive-verb compounds).

for the context-LSTMs, different context representation sizes, and differing number and size of the fully-
connected layers.

We adapt the input for our network to each corpus, since the context can differ depending on the task.
For example, for the infinitive-verb classification, the annotated instance can consist of two tokens, thus
we can have two center embeddings. To illustrate, consider the example:

“Kinder sollten nicht mehr sitzen bleiben müssen, sondern gefördert werden.”

In this sentence, we use (Kinder,sollten,nicht,mehr) as left context, (sitzen,bleiben) as center, and
(müssen,sondern,gefördert,werden) as right context (see Figure 1).

For the tasks with German data we use the word embeddings of Reimers et al. (2014). For construction
level metaphor detection we employ the embeddings of Komninos and Manandhar (2016) as preliminary
cross validation experiments on the training set show that they work well. On the other hand, preliminary
experiments on the development set for token level metaphor detection show an advantage of the Google
News word2vec embeddings (Mikolov et al., 2013) for this task, which is why we use them to work on
the VUAMC (a more in-depth analysis validates our decision, Section 6). We conduct our experiments
using Keras1 and Theano2. We make our code publicly available3.

5 Results

The main results are laid out in Table 2, results broken down into subcorpora are shown in Table 3
(token level metaphor detection) and Table 4 (classification of particle verbs). We see that our LSTM
model outperforms the existing approaches on both token-level metaphor detection and classification of
idiomatically used infinitive-verb compounds. The results on the remaining two tasks are slightly below
the state-of-the-art, but are comparable despite not using handcrafted features. The results for the two
German tasks are generally higher for all approaches, because multiple instances—both for non-literal
and literal use—of each construction are available in these datasets. Further, they only consider few given
terms/phrases. In contrast, the English datasets provide annotations for many more different tokens (or
constructions). For a closer analysis, we look into the best system for each task.

5.1 Token level metaphor detection
For the token level metaphor detection task, our LSTM yields better results on all subcorpora compared
to the re-implemented MLP approach (Table 3). This is not only a matter of choosing the right hyper-
parameter combination, as displayed in the much larger spread for the MLP (an example shown for the
news subcorpus in Figure 2), which is similarly large for both academia and fiction subcorpora.

1v2.0.0, github.com/fchollet/keras
2v0.9.0, deeplearning.net/software/theano
3https://github.com/UKPLab/latech-cflf-2018-nonliteral
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Figure 2: Token level metaphor detection.
Whisker plot comparing MLP and LSTM con-
figurations performance spread according to de-
velopment set F1-score on the news subcorpus of
the VUAMC. Whiskers extend to 1.5 interquartile
range below the first and above the third quartile.

Do Dinh and
Gurevych (2016)

LSTM

academia 0.5916 0.6341
conversation 0.5023 0.5410
fiction 0.5259 0.5555
news 0.6251 0.6448

mean 0.5612 0.5939

Table 3: Token level metaphor detection. F1-
score of the MLP and the LSTM on the genre-
specific VUAMC test sets.

In contrast, both networks show comparably high variance for the conversation subcorpus. We at-
tribute this to the often short sentence context in this subcorpus. For example, in 1/3 of the 159 instances
in which both MLP and LSTM wrongly classify a token, sentence length is shorter than 9 tokens. This is
only the case for roughly 1/9 of the correctly classified tokens. However, theoretically sufficient length
does not guarantee sufficient context. Consider, e.g., the sentence

“you see put John, one of us start trussing early [...]” (metaphor in bold),

where ungrammaticality, omissions, and missing wider context make classification difficult, even for
humans. This is true to a lesser extent also for the remaining corpus.

Investigating specific word forms indicates that in some cases the networks do not learn enough from
the context. For example, 64 (out of 209) instances of the verb form “see” are annotated as being
metaphorical in the training set, but the MLP seems unable to incorporate this information, labeling only
1 instance in the test set as metaphorical. In contrast, the LSTM labels only 1 instance of “take” as literal,
even though the training set contains 50 (out of 119) literal examples.

5.2 Construction level metaphor detection
In this task, our generic model is slightly outperformed by a more complex task-tailored network (Rei
et al., 2017). The original feature-based approach (Tsvetkov et al. (2014), F1-score of 0.85) is still not
in reach for both neural network approaches. However, since the original test set is quite small (200
instances), the results of all those approaches have to be interpreted carefully.

Our approach yields considerably lower recall (0.720) than precision (0.878) for this dataset. Ten
constructions are wrongly labeled as metaphorical. Of those, four contain adjectives that are also part
of wrongly literally labeled constructions: honest opinion, unruly behavior, cool [dry] air, Clear [blue]
skies are wrongly labeled metaphorical. In contrast, honest meal, unruly hair, cool feature, clear ex-
planations are misclassified as literal. Looking at nouns in the constructions, we observe that all pairs
containing “voice” (silky voice (M), shrill voices (L), quiet voice (L)) are labeled as metaphor, while all
the instances containing “brain” (foggy brain, rusty brain) are mislabeled as being literally used.

These examples illustrate that for construction level metaphor detection the interaction between the
construction components is more important than the remaining context. Also, misclassified constructions
appear at the beginning or end only in 24% of their containing sentences, compared to 28% of the
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correctly labeled ones. This further confirms that larger context is less important for this task than the
immediate interaction between adjective and noun. Since we do not model this interaction explicitly, our
network is outperformed by the approach of Tsvetkov et al. (2014) on the sparse amount of training data.
However, even without this explicit modeling, our simple neural approach performs nearly as well as the
much more specialized approach of Rei et al. (2017) which models this interaction specifically.

5.3 Classification of idiomatically used infinitive-verb compounds

For this task, we not only outperform the approach of Horbach et al. (2016) averaged over all infinitive-
verb compounds, but for each individual compound. This is most pronounced for “hängen bleiben” and
“liegen bleiben”.

We examine the compounds on which our network performs best (“sitzen lassen” – leave sitting)
and worst (“stehen bleiben” – stay standing) on average (Table 4). For “stehen bleiben” we see that
for 48% of the instances which the LSTM mislabels the compound appears at the end of the sentence,
meaning that basically no right context is available. This is only the case for 44% of the correctly labeled
instances, indicating that further hyper-parameter optimization without changing the architecture can
only increase performance to a degree. “sitzen lassen” has a highly skewed label distribution of only 44
of 881 instances being annotated as literal. The large number of false positive classifications in relation to
actual literal instances (18 of the 44 literal instances are classified as non-literal) thus has only negligible
impact on precision and F1-score. 2/3 of those false positives contain the construction directly or very
near the end of the sentence, highlighting again the problem with the windowed approach.

Horbach
et al. (2016)

LSTM

hängen+bleiben 0.836 0.875
liegen+bleiben 0.847 0.881
sitzen+bleiben 0.875 0.904
sitzen+lassen 0.946 0.970
stehen+bleiben 0.812 0.817
stehen+lassen 0.847 0.861

average 0.861 0.885

Table 4: Classification of idiomatically
used infinitive-verb compounds. Accuracy
values for Horbach et al. (2016) and LSTM
(averaged over 50 configurations).

Figure 3: Particle verb classification. Accuracy
across the ten different particles. Average macro-
accuracy is 90.4%.

5.4 Classification of non-literal particle verbs

Classification error rates for the non-literal particle verbs are similar across the particles. Figure 3 shows
that three particles stand out, namely: “durch” and “mit” exhibit a far lower error rate (6.8% and 6.3%
respectively) and the particle “vor” higher (16.7%) than average (9.6%).

The corpus contains instances for two verbs that start with the particle “vor”. While “vordrängen”
(to press forward) is represented by mainly literal instances (91%), the distribution for “vorschalten”
(to prepose) is rather balanced (literal: 46%). However, our model produces more classification errors
for the former. For the particle “zu”, “zustopfen” (to plug) is the only verb which also shows a fairly
balanced label distribution. However, it also is responsible for almost half of the misclassifications made
for verbs with “zu”. Other balanced verbs show again different behavior; e.g., “einbrechen” (to break
in) is misclassified only in 4 of 44 instances. We see that the amount of literal or non-literal training
instances for one particular verb is not the deciding factor for classification accuracy. Instead, the network
apparently manages to abstract over verbs, however, also introduces some errors in the process.
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Embeddings training data type / method coverage

word2vec (Mikolov et
al., 2013)

Google News texts skip-gram with negative sampling 87.6%

GloVe (Pennington et al.,
2014)

Wikipedia,
newswire

word-word co-occurrence statistics 92.0%

Conceptnet Numberbatch
(Speer et al., 2017)

word2vec, GloVe,
knowledge bases

combination of existing embeddings
and knowledgebases using retrofitting

84.8%

Levy and Goldberg (2014) Wikipedia dependency-based 87.8%

Komninos and Manandhar
(2016)

Wikipedia dependency-based and token windows 89.6%

Table 5: Embeddings tested with classification, and their coverage of the VUAMC.

6 Effects of different embeddings

Next, we analyze more closely the effects of a special hyper-parameter on the detection of non-literal
language: the pre-trained word embeddings used in our network. Our intuition is that embeddings trained
on a similar domain as the test data lead to better results. To test this, we replicate the token level
metaphor detection experiments using different word embedding models and sample ten hyper-parameter
configurations, from which we choose the best performing (development set) respectively. We use the
pre-trained embeddings detailed in Table 5 (all have 300 dimensions).

Coverage, i.e., how many of the tokens in the corpus have an embedding representation, only has
a minimal effect on performance. This is illustrated, e.g., by the Glove embeddings, which have the
highest coverage but by far the worst overall performance. Recall from Table 3 that metaphors from the
conversation and fiction genres seem to be harder to detect in general, owing to larger context depen-
dence, higher ambiguity, and in case of conversation to fragmented sentences and omission. Indeed, we
find that conversation and fiction texts exhibit the largest differences and the worst results regardless of
embeddings used. We note that arguably, those genres are the most different from the news texts and
Wikipedia articles that the embeddings are trained on. Independently of the concrete embeddings used,
the network performs consistently best on the news subcorpus, followed by the academic texts.

Looking more closely into the classifications on the fiction subcorpus, we observe a large performance
difference between Glove and the remaining embeddings. This is mainly due to low recall (0.356, see
also Table 6), especially compared to the word2vec embeddings (0.710). The results on the conversa-
tion subcorpus are similarly noteworthy, because here both embedding models that encode dependency
information, from Levy and Goldberg (2014) and Komninos and Manandhar (2016), perform worse
than the remaining models (also due to lower recall). This is in line with our findings from Section 5.1
where we note that our network struggles with omissions or ungrammatical sentences—as the structure
of the conversation sentences is more likely to be irregular, including “correct” syntactic information can
apparently be detrimental.

academic conversation fiction news avg
P R F1 P R F1 P R F1 P R F1 F1

word2vec .576 .706 .634 .567 .518 .541 .456 .710 .555 .640 .650 .645 .592
GloVe .544 .594 .568 .470 .584 .521 .553 .356 .433 .598 .580 .589 .504
ConceptNet .604 .654 .628 .595 .478 .530 .570 .486 .524 .621 .706 .661 .576
Levy .652 .535 .588 .629 .439 .517 .485 .545 .513 .636 .645 .640 .553
Komninos .634 .628 .631 .652 .396 .493 .511 .587 .547 .601 .712 .652 .569

Table 6: System precision (P), recall (R), and F1-score for the VUAMC using different embeddings.
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At the end, while e.g., the embeddings by Komninos and Manandhar (2016) perform close to the
word2vec embeddings in most genres, the fact that they perform relatively poorly on the conversation
transcripts make them a bad fit for general metaphor identification. The Conceptnet embeddings show
better performance on the news subcorpus, however this is no substantial improvement over the generally
better performing word2vec embeddings—which do not rely on further knowledgebases.

7 Conclusion

We conducted a large scale study on distinguishing literal from non-literal language on four different
tasks, using a generic neural network. These tasks were: token level metaphor detection, construction
level metaphor detection, classification of idiomatically used infinitive-verb compounds, and classifica-
tion of literally or non-literally used particle verbs. Our tasks comprised two languages: English and
German. We find that, while the tasks differ with regards to annotation scheme and supposed context
dependence, and their respective datasets differ with regards to size and label balance, our generic simple
neural model outperforms existing state-of-the-art models on two of four tasks using only pre-trained em-
beddings, and on the remaining tasks produces competitive results to more task-tailored or feature-based
approaches.

Further, we investigated the influence of different pre-trained word embeddings for one of the tasks,
token level metaphor classification. We find that performance depends less on the underlying genre than
on the architecture used.

In future work, we want to explore how commonalities between the investigated and similar tasks can
be exploited, e.g., using multi-task learning (Collobert and Weston, 2008), where we not only share the
architecture, but also the parameters of the network among the investigated tasks.
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Roland Schäfer. 2015. Processing and querying large web corpora with the COW14 architecture. In Proceedings
of Challenges in the Management of Large Corpora 3 (CMLC-3), pages 28–34, Lancaster, UK. Institut für
Deutsche Sprache.

Ekaterina Shutova. 2013. Metaphor Identification as Interpretation. In Proceedings of *SEM, pages 276–285,
Atlanta, GA, USA. Association for Computational Linguistics.

Robert Speer, Joshua Chin, and Catherine Havasi. 2017. ConceptNet 5.5: An Open Multilingual Graph of General
Knowledge. In Proceedings of AAAI 2017, pages 4444–4451, San Francisco, CA, USA. AAAI Press.

Gerard J. Steen, Aletta G. Dorst, J. Berenike Herrmann, Anna Kaal, Tina Krennmayr, and Trijntje Pasma. 2010.
A Method for Linguistic Metaphor Identification. From MIP to MIPVU. John Benjamins, Amsterdam, Nether-
lands.

Yulia Tsvetkov, Leonid Boytsov, Anatole Gershman, Eric Nyberg, and Chris Dyer. 2014. Metaphor Detection with
Cross-Lingual Model Transfer. In Proceedings of ACL 2014, pages 248–258, Baltimore, MD, USA. Association
for Computational Linguistics.

Peter D Turney and Dan Assaf. 2011. Literal and Metaphorical Sense Identification through Concrete and Ab-
stract Context. In Proceedings of EMNLP 2011, pages 680–690, Edinburgh, United Kingdom. Association for
Computational Linguistics.

79



Tony Veale, Ekaterina Shutova, and Beata Beigman Klebanov. 2016. Metaphor: A Computational Perspective.
Synthesis Lectures on Human Language Technologies. Morgan & Claypool, USA.

Yorick Wilks. 1978. Making Preferences More Active. Artificial Intelligence, 11(3):197–223.

Wei Zhang and Judith Gelernter. 2015. Exploring Metaphorical Senses and Word Representations for Identifying
Metonyms. arXiv preprint, arXiv:1508.04515.

80



Proceedings of Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature, pages 81–86
Santa Fe, New Mexico, USA, August 25, 2018.

Supervised Rhyme Detection with Siamese Recurrent Networks

Thomas Haider
MPI for Empirical Aesthetics, Frankfurt

IMS, University of Stuttgart
thomas.haider@ae.mpg.de

Jonas Kuhn
IMS

University of Stuttgart
jonas.kuhn@ims-stuttgart.de

Abstract

We present the first supervised approach to rhyme detection with Siamese Recurrent Networks
(SRN) that offer near perfect performance (97% accuracy) with a single model on rhyme pairs
for German, English and French, allowing future large scale analyses. SRNs learn a similarity
metric on variable length character sequences that can be used as judgement on the distance of
imperfect rhyme pairs and for binary classification. For training, we construct a diachronically
balanced rhyme goldstandard of New High German (NHG) poetry. For further testing, we sample
a second collection of NHG poetry and set of contemporary Hip-Hop lyrics, annotated for rhyme
and assonance. We train several high-performing SRN models and evaluate them qualitatively
on selected sonnetts.

1 Introduction

Rhyme is a pervasive style device in historical poetry and Hip-Hop, but previous research has relied on
small, handcrafted datasets. A reliable system for the detection of rhyme would allow large scale anal-
yses, opening several directions for research. Given word pronunciations and a definition of rhyme, the
problem is fairly easy. However, for domain specific or historical data, obtaining precise pronunciation
information is a challenge (Katz, 2015). Also, a narrow definition of perfect rhyme1 disregards fre-
quently used and accepted deviations, as in imperfect rhyme (Primus, 2002) (Berg, 1990) or the related
sonic devices assonance, consonance and alliteration. Information on the phonological similarity of two
rhyme words can be used e.g. for the reconstruction of historical pronunciation (List et al., 2017) or the
analysis of sonic pattern (McCurdy et al., 2015). A rhyme detection on grapheme strings is a step in this
direction.

Previous research on the detection of rhyme is scarce. Reddy and Knight (2011) employed Expectation
Maximization (EM) to predict (generate) the most probable scheme (e.g. ’abba’) of a stanza. We use a
supervised approach to rhyme detection to model the properties of rhyme itself. An accurate similarity
measure between words would benefit an EM. Siamese Recurrent Networks are adept for rhyme, as they
learn a (non-linear) similarity metric on variable length character sequences. This metric can be used to
gauge the degree of imperfection in a rhyme, and by threshold, for a binary classification. We describe
our architecture in section 3.2, followed by experiments and a qualitative error analysis to find the best
detection system across languages (German, English, French) and domains (poetry, Hip-Hop).

We compiled three corpora with (gold) rhyme annotation, including (i) 116 German Hip-Hop lyrics,
(ii) a diachronically balanced sample of 1.948 New High German poems, and (iii) 156 poems of school
canon, covering the same period. Their sampling and annotation process will be discussed in section 2.

2 Rhyming Corpora

We describe the creation and annotation efforts of three corpora of lyric text 1.) DTR, a diachronically
balanced sample of poems from the German text archive, containing 1,948 poems, 2.) ANTI-K, a very

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1i.e. identical pronunciation of word segments starting from the last accented vowel (Fabb, 1997)
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#Poems Stanzas Verses Words Rhyme Pairs Authors Poems/Author
Corpus avg. median
HIPHOP 116 789 6,390 52,759 2,489 41 2.8 3
ANTI-K 156 731 3,603 20,412 1,440 50 3.1 1
DTR 1,948 8,147 40,523 251,730 13,785 57 33.5 31
DTL 28,275 74,523 507,663 3,557,632 ? 75 377 139

Table 1: Size statistics of German poetry corpora

clean (and small) set of 156 poems of school canon, and 3.) HIPHOP, 116 Hip-Hop lyrics. All corpora
were annotated for rhyme schema on stanza level. We extract rhyme pairs and non-rhyme pairs based on
schema indices. Given a schema, matching indices (’aa’) yield a rhyme pair, while non-matching indices
(’ab’) yield a non-rhyming pair. For a schema ’abba’ we retrieve two rhymes and four non-rhymes. See
table 1 for size statistics of the corpora. We will publish our datsets on github.2

2.1 DTR: German Text Archive Rhyme Gold
The German text archive (Deutsches Textarchiv3, or DTA) is a corpus of New High German (NHG)
texts. It is appealing because the editions are well curated, it contains gold POS (STTS) annotation, or-
thographic corrections and faksimiles, and the selection of authors and editions represents a small Canon
for NHG poetry. DTA is balanced over four broad genres and includes 131 documents of lyric poetry
(DTL). These documents span over 75 authors, where each document has only one author, typically in
form of an anthology or collection. The DTL corpus contains in total 28,275 poems, stretching over
3,557,632 word token.

To create a rhyme schema goldstandard DTR we draw a diachronically balanced sample from DTL.
We divide our timeline by 20-year wide slots (1630 - 1650, ..., 1790 - 1810, ..., 1890 - 1913), aiming
at 500 stanzas per slot (allowing ± 10%). We left the original poems intact, sampling until the desired
number of stanzas was fulfilled with complete poems. Additionally, an author needs to contribute enough
poems within a std. deviation from the mean. No stanzas longer than one standard deviation over 12
lines (24) were allowed. DTR eventually contains 1,948 poems over 8,147 stanzas..

Students then annotated rhyme schema on stanza level (e.g. ’abba’). Annotators were instructed
on rhyme, enumerating the most frequent imperfections (e.g. vowel rounding). For training and to
inter-annotator agreement, each student annotated Georg Trakl’s 1913 ’Gedichte’, 51 poems over 251
stanzas. Schemas were annotated directly in inline XML TEI P5, with the Oxygen XML editor to
validate against RELAXng. Three annotators achieve .95–.97 Cohen κ among each other, measured on
stanza label overlap. Reading stanzas vertically and annotating (typing) stanzas horizontally is prone to
errors, generating false positives and negatives.

DTR yields 16,440 rhyme pairs. The list of these pairs was revisited. Out of 1.500 pairs, 244 did
not actually rhyme (16% noise) and 17 instances were assonances. The remaining 1,200 pairs were split
to a dev set and a untouched test set (both with neg. pairs from inverse schema indices). For further
experiments, we clean the entire set which reduces the total set to 13,785 positive pairs.

2.2 ANTI-K: Lyrik.Antikoerperchen
The website lyrik.antikoerperchen.de provides a platform for students to upload essays about
famous poems. These are neatly formatted in HTML, with clean line/stanza segmentation and reliable
metadata, i.a. author, year, number of sentences, literary period, genre. The 156 poems (731 stanzas)
are dispersed over 50 authors and over the NHG timeline. ANTI-K was was annotated by a competent
student and re-checked. ANTI-K yields 1,440 rhyme pairs.

2.3 HIPHOP-R: Hip-Hop Rhyme
We collected 116 German Hip-Hop song texts and annotated them on rhyme and assonance (repetition
of vowels). We retrieved the documents in plain text from hiphoplyrics.de, mainly covering the

2github.com/thomasnikolaushaider
3deutschestextarchiv.de
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90’s and 2000’s, with 1–4 texts per author. Hip-Hop differs from lyric poetry in the regard that it makes
heavy use of internal rhyme and assonance. As the annotation of internal rhyme is very time consuming,
we confine our analysis to end-rhyme. Yet, assonances and rhymes often form a complex schema, so
we decided to mark assonances with capital letters in the stanza level rhyme schema to extract them
separately. We retrieve 2,489 rhyme pairs and 1,032 assonance pairs.

2.4 English and French Rhyme Gold

In order to analyze the similarity of rhymes within a graph structure, Sonderegger (2011) compiled a
synchronous goldstandard of rhyme schema and their corresponding words. This dataset was modified
to include diachronous variation and was used by Reddy and Knight (2011). The dataset includes 12,000
stanzas, yielding 54,000 rhyme pair token. The French rhyme standard includes 2,814 stanzas that yield
18,834 rhyme pair token.

3 Experiments

We introduce Siamese Recurrent Networks for supervised rhyme detection and it test it for English,
French and for three German datasets. We ensure that no rhyme pair in the test sets occurs in the training
set. We test on held out data (dev and test) from DTR (dta), on ANTI-K (anti), on Hip-Hop rhymes
(only rhymes) (hip) plus assonances (hipa). We train several well performing models that then undergo a
qualitative error analysis. We also include results from an EM baseline, although stanza and pair accuracy
cannot be directly compared.

3.1 Schema inference with EM

We train Expectation maximization (EM) as described in Reddy and Knight (2011) on our two poetry
corpora with the code provided by Sravana Reddy.4 For certain experiments on English, they report ac-
curacy up to .88 F1. Table 2 lists the results for two German corpora. When initialized orthographically,
we achieve over .70 in accuracy. EM is initialized either uniformly (uni) or with orthographic overlap
(orth) of potential rhyme words.

train test uni orth
anti anti .63 .77
dta anti .37 .71

Table 2: Accuracy of EM on German stanzas

3.2 Siamese Networks

Siamese recurrent networks (SRN) have been successfully applied in NLP applications to measure the
distance of texts, both on the level of characters and words. Neculoiu et al. (2016) use it for job title
normalization, Mueller and Thyagarajan (2016) on sentence similarity and Das et al. (2016) for Quora
question pair retrieval.

A SRN consists of two identical recurrent sub-networks that learn a vector representation from input
pairs. The sub-networks each receive a rhyme word as character embedding vector and encode it through
several layers of bidirectional Long Short Term Memory (biLSTM) Networks. The activations at each
timestep of the final biLSTM layer are averaged to produce a fixed-dimensional output. This output is
projected through a single densely connected feedforward layer. The respective dense layers are then
connected at their outputs through an energy function. The energy of the model is then the similarity
between the embeddings of x1 and x2. Our architecture, as that of Neculoiu et al. (2016) uses a cosine
distance and a pair of three (later four) stacked biLSTM layers. The model learns through positive
and negative examples and optimizes against accuracy and contrastive loss. Binary classification is
carried out by setting a threshold of .5 for the cosine value (0-1). See figure (2) for an illustration of our
architecture, as proposed by Neculoiu et al. (2016).

4https://github.com/sravanareddy/rhymediscovery
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Our architecture is implemented in tensorflow. The initial codebase was provided by the github user
dhwajraj.5 Our parameter are as follows: character embedding is set to 100 dimensions. We experiment
with the number of hidden units between the LSTM layers (20 – 100), settling on 50. We train 100
epochs, use a batch size of 64, leave dropout at 1.0 and L2 reg. at 0.0. Lastly, the system uses a random
80/20 train/dev split. Maximum document length is set to 30.

3.2.1 Binary Classification
In our initial setup we created only positive rhyme pairs and shuffled the words to generate negative
examples at a ratio of 2:3 positive to negative examples.We train a model on the full DTR dataset of
rhyme pair token (token23), i.e. pairs occur multiple times, and then removed redundant pairs and
trained only on singular types (type23). We find that 5000 pairs already offer sufficient accuracy on
DTA and ANTI (.96 on dta, .94 on anti). Both models are trained on three LSTM layers with 50 hidden
units. We use this configuration to train models on 10,000 and 30,000 rhyme pairs from our English data
and achieve .96 and .97 points accuracy on 5000 held out pairs (plus 5000 negative). We also train a 1:1
model on 12,000 French rhymes and test 3000 held out pairs (plus 3000 negative). Here, we also achieve
.97 acc..

Subsequently, for German, we train on a 1:1 and a 1:4 ratio. (Neculoiu et al. (2016) report an ideal
ratio of 1:4 for job title normalization). At 1:4, despite the large amount of data, the model only achieves
.93 accuracy. For the 1:1 ratio, we first select 10.000 pairs (both positive and negative) to evaluate the
number of LSTM layers, where four layers performed better overall than three or five layers. We train
a model on four layers (type11) over the full dataset with 30 hidden units and achieve .98 acc. on the
dta dev set, followed by the slightly noisier anti set (.96). We then gradually increase the training set to
plot a learning curve against our four test sets. See figure (1) for the learning curve.

Figure 1: Learning rate of model type11 Figure 2: Siamese architecture, from (Neculoiu et al., 2016)

The reason why anti performs slightly worse is most likely owed to the noise introduced by wrong
schema annotation. Training on dta and testing on Hip-Hop (hip) only achieves .88 accuracy. Generally,
for a given test-set all three models exibit very similar performance. Hip-Hop rhyme is not detected
that well from a model trained on historical poetry, as the language variety (slang, code switching)
somewhat differs. Also, the bottom curve (hipa) indicates that assonances were not learned by this
model, noticeably lacking in recall. Since the pairs retrieved from DTR included 16% noise, we decided
to again manually correct the rhyme pair training set of DTR. We train another model (clean11) with
the same parameters (but 50 hidden units), getting .98 accuracy.

3.2.2 Language & Domain Independence
We train two models with three and four layers and 50 epochs on all three languages (German, English,
French). Each language contributes 20,000 pairs, evenly split for positive and negative examples. We
report the 4-layer model in table 3 (4indep). Both models are on par with all previous approaches,
in some cases even outperforming models trained on a single language. To further minimize the error

5github.com/dhwajraj/deep-siamese-text-similarity
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on Hip-Hop, we include 4,000 (pos.+neg. 1:1) pairs from Hip-Hop into the lang. independent dataset
and set aside the remaining 978 pairs for testing. We train on the same parameters (4indeph), and see
improvement for Hip-Hop (.92 F1, .96 prec, .89 recall) while all other testsets remain stable and even
slightly improve.

dta_DE anti_DE hip_DE ENG FR
dev test

Acc. .976 .960 .961 .892 .965 .963
F1 .976 .960 .960 .885 .965 .963
Prec .970 .954 .965 .948 .959 .960
Rec .981 .967 .956 .830 .972 .966

Table 3: Lang. Independent Model 4indep

Schlegel Gryphius Kappus

a wieder a verheret a Klage
b Reihen b Posaun b weh
b zweien b Carthaun b Blütenschnee
a nieder a gezehret a Tage
a glieder a vmgekehret a Frage
b dreien b zerhawn b geh
b gedeihen b schawn b see
a Lieder a durchfehret a wage
c kränzen c blutt c trübe
d dünket c flutt d Sommernächte
e Gesetze d fortgedrungen e wann
d winket e todt c Liebe
c Gränzen e noth d möchte
e Gegensätze d abgewzungen e kann

Table 4: Rhyme words and schema of three sonnetts

3.2.3 Qualitative Error Analysis
We conduct a small qualitative error analysis on three german sonnetts from different literary periods.
They include a variety of imperfect rhymes and orthographic deviations. The first poem is by Schlegel,
the second by Andreas Gryphius, and the third is by Franz Xaver Kappus. Table 4 lists the end words
of these poems and the associated rhyme scheme. We generate pairs on all permutations of end words
and evaluate our four models type23, token23 and token11, clean11 and the two independent
models indep with and without Hip-Hop. When not mentioned for a poem, a model delivers perfect
performance.

Schlegel clean11 and the indep models wrongly detect the mapping ’ei’→ ’ä’, therefore detecting
(reihen, [g|k]ränzen), (zweien, [g|k]ränzen), etc..

Kappus type23 wrongly identifies (weh, Frage), (blütenschnee, Frage/wage), so it is probably
matching on the final ’e’. type11massively overgenerates on this poem with a precision .34 and perfect
recall. This questions the overall sanity of this otherwise well performing model. The indephip model
wrongly assigns very low cosine distance (<.1) to pairs that end with ’e’, ’eh’ or ’ee’ such as (weh/geh,
trübe/liebe), (Blütenschnee/See, trübe/liebe), e.g. (weh, trübe).

Gryphius The model type23 does not detect the historical spelling variation of the diphtong [aw]
instead of [au] and consequently does not detect the following pair combinations: (posaun/carthaun,
zerhawn/schawn). After manually correcting the words, the system does detect them. token23 ad-
ditionally does not detect (schawn, zerhawn). Both indep models wrongly identify the combinations
(blutt/flutt, todt/noth), probably matching on the ’t’.

4 Conclusion

We have introduced three new poetry corpora for German and discussed their annotation with rhyme
schema. Furthermore, we introduced a Siamese Recurrent Networks architecture to the detection of
rhyme pairs and find that it learns this task with near perfect accuracy across languages. When switching
domains from poetry to Hip-Hop we lose 10 points, and assonances are not that well detected. It is
notable that SRNs can apparently compensate a noise level of 16% in the training set. Future research
should determine the acceptable noise level. Finally, we have shown that a SRN can be trained on a
dataset containing rhyme pairs of three languages and also a different domain without losing perfor-
mance. But even though we achieve over 96% accuracy on pairs, each model exhibits individual errors
in a qualitative error analysis, making it hard to determine an ideal model. While the independent models
work well, they show some problems on particular character mappings.

85



References
Thomas Berg. 1990. Unreine reime als evidenz für die organisation phonologischer merkmale. Zeitschrift für

Sprachwissenschaft, 9(1-2):3–27.

Arpita Das, Harish Yenala, Manoj Chinnakotla, and Manish Shrivastava. 2016. Together we stand: Siamese
networks for similar question retrieval. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), volume 1, pages 378–387.

Nigel Fabb. 1997. Linguistics and literature: Language in the verbal arts of the world. Blackwell.

Jonah Katz. 2015. Hip-hop rhymes reiterate phonological typology. Lingua, 160:54–73.

Johann-Mattis List, Jananan Sylvestre Pathmanathan, Nathan W Hill, Eric Bapteste, and Philippe Lopez. 2017.
Vowel purity and rhyme evidence in old chinese reconstruction. Lingua Sinica, 3(1):5.

Nina McCurdy, Vivek Srikumar, and Miriah Meyer. 2015. Rhymedesign: A tool for analyzing sonic devices in
poetry. In Proceedings of the Fourth Workshop on Computational Linguistics for Literature, pages 12–22.

Jonas Mueller and Aditya Thyagarajan. 2016. Siamese recurrent architectures for learning sentence similarity. In
AAAI, pages 2786–2792.

Paul Neculoiu, Maarten Versteegh, and Mihai Rotaru. 2016. Learning text similarity with siamese recurrent
networks. In Proceedings of the 1st Workshop on Representation Learning for NLP, pages 148–157.

Beatrice Primus. 2002. Unreine reime und phonologische theorie. Sounds and Systems. Studies in Structure and
Change. A Festschrift for Theo Vennemann. Berlin/New York, pages 269–298.

Sravana Reddy and Kevin Knight. 2011. Unsupervised discovery of rhyme schemes. In Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: short
papers-Volume 2, pages 77–82. Association for Computational Linguistics.

Morgan Sonderegger. 2011. Applications of graph theory to an english rhyming corpus. Computer Speech &
Language, 25(3):655–678.

86



Proceedings of Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature, pages 87–96
Santa Fe, New Mexico, USA, August 25, 2018.

Normalizing Early English Letters to Present-day English Spelling
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Abstract

This paper presents multiple methods for normalizing the most deviant and infrequent historical
spellings in a corpus consisting of personal correspondence from the 15th to the 19th century.
The methods include machine translation (neural and statistical), edit distance and rule-based
FST. Different normalization methods are compared and evaluated. All of the methods have
their own strengths in word normalization. This calls for finding ways of combining the results
from these methods to leverage their individual strengths.

1 Introduction

Working with historical texts is a challenging task for NLP. Whereas many off-the-shelf tools and li-
braries are available for the modern written standard of a majority language, these are not directly appli-
cable to historical data. This is due to a wide variety in how words are spelled.

The problem of non-standard spelling is not an easy one to tackle because there is a multitude of
reasons affecting orthography. Not only is there variation in spelling norms in different centuries but
also individual variation affected by the dialect background of the writers, their command of the written
norm, and the level of formality of the text among other factors. Orthography has also been influenced
by editorial conventions at different stages of bringing the historical texts into a digital format.

The goal of this paper is to propose and compare methods of normalizing historical English automat-
ically in the context of our CEEC corpus (Corpora of Early English Correspondence) (Nevalainen et
al., 1998 2006), which consists of letters ranging from the 15th to the 19th century. The corpus consists
of personal correspondence, which exhibits a great variety of non-standard spellings. The word about
alone, for example, has over ten different spelling variants in our corpus such as aboutt, aboute, abowt,
abovt and so on.

We will first normalize as much as possible of the CEEC with existing tools and methods. This
will leave us with the most difficult cases of variant spelling to be dealt with using the methods we
are presenting and evaluating in this paper. In other words, it is not in our interest to try to normalize
something we can get the normalizations for already, but rather focus our efforts on the most deviant
spelling forms.

Normalizing the CEEC will allow us to conduct more NLP research on the data in the future by using
tools and libraries available for Present-day English. The primary motivation for our normalization
efforts is studying neologisms and sociolinguistic variation in the letters. This means that we need to be
able to normalize even the most difficult and infrequent spellings in our corpus.

2 Related Work

In the past, normalization of old texts has received some attention as an NLP task. There are ready-made
tools available for normalization such as VARD2 (Baron and Rayson, 2008) and MorphAdorner (Burns,
2013). These tools, however, are not sufficient to solve the problem automatically for our corpus. Using
VARD2 requires manual work and MorphAdorner does not provide enough coverage for our data.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.
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Using a string similarity metric such as edit distance has been used in the past for normalization. An
example of such is the automatically produced diachronic dictionary of spelling variants for German
(Amoia and Martinez, 2013). In building the dictionary, the authors used Levenshtein edit distance to
cluster similar words together with their modern counterparts. This was facilitated by the fact that they
were dealing with recipes, which thanks to their limited vocabulary, are easy to cluster. In addition,
words can be clustered based on their semantics by looking at the shared contexts of the words.

Statistical machine translation models have also been used in solving the task by training a character
based translation model using known historical spellings and their modern variants as training data. In
(Samardzic et al., 2015) such a model was trained for normalizing Swiss German dialects to a standard
variant. A similar SMT based approach has also been used in the context of historical text in (Pettersson
et al., 2013).

Normalization has also been done by using deep learning. In (Bollmann and Søgaard, 2016), nor-
malization is presented as a character-based sequence labeling task for bi-directional LSTMs. In their
method a historical character does not need to be aligned with a single modern spelling character but can
be aligned with a compound of characters in the training data.

3 The Corpus and Data Sources

The primary corpus we use is the CEEC (Nevalainen et al., 1998 2006). Compiled for the purposes
of historical sociolinguistics, it is a corpus of personal correspondence in English representing a time
span from the 15th to the 19th century. The letters have been selected from published original-spelling
editions and digitized by the compilers, who have hand-corrected the OCR. The corpus comprises c. 5
million running words in 12000 letters written by more than 1000 individuals. The authors of the letters
come from varied social backgrounds as reflected by the metadata in the CEEC, which contains, e.g., the
socioeconomic status, gender, age, domicile and the relationship between the writer and recipient.

3.1 Preparing the Corpus

As a first step, we convert the CEEC into Unicode, remove punctuation, excluding apostrophes and
hyphens, and tokenize the letters. After this step, we attempt to lemmatize each token with NLTK (Bird
et al., 2009) by using the lemmatizer based on the Princeton WordNet. After this, we try to map each
lemmatized token into the Oxford English Dictionary (OED). By doing so, we can filter out all the words
that have a modern spelling in our corpus leaving out the ones with a non-standard spelling.

Our endeavor is to map as many words with non-standard spelling to the OED as possible. The
most modern parts of the CEEC, namely those from the 16th to the 18th century, have been partially
normalized with VARD2 in the past. These normalizations have been tagged in the CEEC in such a way
that the original non-standard form has also been retained. We use this parallel list of non-standard and
standard forms to map even more words to the OED by extending these normalizations to the whole
corpus.

We run a tool called MorphAdorner on our corpus to produce more normalizations automatically. This
allows us to map even more words to the OED. At this point, we have normalized all of the ”easy” cases
leaving out the words that have not been mapped into the OED utilizing these approaches. The number
of unique unmapped word forms is 85298. The rest of the paper focuses on the normalization of these
difficult word forms.

The fact that we were able to map some of the word forms to the OED has provided us with some
parallel data specific to our corpus. We use the VARD2 normalizations and the MorphAdorner produced
ones as a starting point for compiling a parallel corpus of non-normalized and normalized word forms.
This corpus is extended with more parallel data in the next step, described in the following subsection of
this paper.

3.2 Extracting Data from Other Sources

In order to normalize the old spellings in the CEEC, we use two lexicographical sources that link old
spelling variants to their modern counterparts, namely the Oxford English Dictionary (OED, nd) and the
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Middle English Dictionary (MED, nd), both of which we have in XML format. These two resources
provide us with indispensable parallel data of non-standard and standard word forms.

We also use the British National Corpus (The BNC Consortium, 2007) as a language model for sta-
tistical machine translation. The BNC does not provide us with any parallel data since it does not have
historical texts. We can, however, take the individual words out of the corpus to build a language model
for the SMT system.

The OED stores alternative spellings in multiple parts of the hierarchical XML structure. To extract the
non-standard and standard pairs from the OED, we use the information stored in the derivative lemmas
of the lemma section as well as the forms and variant forms subsection of the inflection section, which
stores only historical variants of the lemma. The latter section also contains valuable information about
the centuries the word form was used in; we also store this information when we extend our initial
parallel corpus with this new data. All of these sections contain variant forms that are relevant for our
normalization efforts, because ultimately our goal is to map all the words in the CEEC to the OED
entries.

We can get a similar historical–modern spelling parallel collection of words from the MED, the entries
of which are Middle English word forms. The MED entries themselves do not contain a modern nor-
malized version of the Middle English form, but the MED comes with a continuously developed XML1

which contains links between some of the entries in the MED and in the OED. From this XML we can
extend our parallel corpus with the historical MED headwords and their normalizations. The MED also
provides us with the time period a given word form was in use, which we store as well. At this point, our
parallel data consists of 183505 pairs of historical and modern spellings.

4 Methods for Normalization

In this part we present different methods for normalizing historical English words. The idea is to leverage
each of their strengths by having all of them provide their own suggested normalizations. It is from this
list of possibilities that the most likely normalization is picked.

4.1 VARD2 Rules

As previously mentioned, the most modern parts of the CEEC have been normalized to some extent
with VARD2. As one possible normalization method, we apply these VARD2 rules to the list of non-
normalized words in the CEEC. The VARD2 rules are simple replacement rules of character sequences
given their position in the word. The position of a sequence can be anywhere, even at the beginning or
the end of a word. All in all, we have a list of 58 unique replacement rules, such as “u → v anywhere”.

We build a Finite-State Transducer (FST), using HFST (Lindén et al., 2013), based on the VARD2
rules. This allows multiple combinations of the VARD2 normalization rules to be applied for producing
normalized forms. We define the LEXC file so that it consists of the lemmas from the OED. The nor-
malization rules are defined with weighting to a spellrelax.regex file following a description in spelling
(Beesley and Karttunen, 2003). The FST then applies the rules in all possible combinations to match
the non-normalized forms to forms in the LEXC file. The weighting shows how many modifications
were needed to reach normalization. We consider the candidate with least modifications required as the
normalization candidate produced by this method.

4.2 Contextual Edit Distance

This method compares the non-normalized words to our extracted list of unique words from the BNC.
First we list the possible normalization candidates by comparing the non-normalized words to the words
in the BNC applying Levenshtein edit distance. The Levenshtein distance gives a score on the string
similarity of two words, where each difference, such as addition or deletion of a character, increases
the distance. In this way, we collect sets of normalization candidates for each non-normalized word
consisting of candidate words with an edit distance score of 3 or lower.

1The version we use in this paper is dated 3/2018.
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The list of normalization candidates is still too extensive and needs to be filtered down to fewer pos-
sibilities. This is done by looking at the shared context of the non-normalized words in the CEEC and
the candidates in the BNC. In practice, for each non-normalized word and normalization candidate, we
get the two words that precede and the two words that follow said word in each and every occurrence.
Thus, we have built a list of contextual words together with information about their position in relation to
each word, non-normalized and candidate alike. We then use these lists to further filter the normalization
candidates, inspecting the intersection length of the lists for contextual words given their position. We
only retain the normalization candidates exhibiting the highest number of contextually shared words with
the non-normalized word.

Although the previous step narrows down the normalization candidates, we still need to filter them
further. As a last step, we look at the pronunciation of the candidates and compare this with the pro-
nunciation of the non-normalized words. Since we cannot produce an accurate pronunciation for the
non-normalized words due to the fact that English orthography and pronunciation are not always clearly
connected, we use Soundex2 with the size of 6 to produce an estimated pronunciation.

4.3 Statistical Machine Translation (SMT)

Previous research has shown that SMT is a viable form of solving the problem of normalization. This
is why we have decided to include an SMT based approach as a module in our system. We train a
character based SMT model using the parallel data extracted earlier from the OED, MED and known
normalizations in the CEEC. All the words are split into letters separated by a whitespace in order
to make the SMT tool, Moses (Koehn et al., 2007), treat individual characters of a word as though
they were words of a sentence. The parallel non-normalized to normalized word lists are aligned with
GIZA++ (Och and Ney, 2003) as part of the machine translation process.

An SMT based system also requires a language model. Without it, the system would be more likely
to produce non-words as output. As a language model, we use the list of words extracted from the BNC.
Again, these words are split into characters by whitespaces. We build a 10-gram language model based
on the BNC data with KenLM (Heafield et al., 2013) and use this model with Moses3.

For tuning the model, we take a random sample of 2000 non-normalized and normalized word pairs
from our parallel data set and run the tuning on that. We also tune century specific models with 2000
words from the era for the 15th and the 18th century to compare whether tuning for a given century yields
better results for that century than a more generally tuned model.

4.4 Neural Machine Translation (NMT)

Neural machine translation can be used for normalization in a similar fashion to the SMT approach. We
use OpenNMT (Klein et al., 2017) to train against a character based machine translation model by using
the parallel data extracted earlier. For validation of the model, we use the same 2000 word parallel list as
we did for the general SMT model.

For NMT, we train two different models for 13 epochs. The first model gets the same input as SMT,
i.e. a parallel list of word forms. The second model has a specific input for the centuries in which certain
non-normalized forms were used together with the actual word forms. This is done simply by appending
the year of the century before each historical form in the data set. For some of the word forms, we do
not have the information of the time period in which they were used. In such cases, we include the word
forms without a year label.

For the model trained with year labels, we also add the year labels to the list of non-normalized word
forms we input to the system for it to translate them. These years can be recovered from the letter
metadata in the CEEC.

Additionally, we take the trained year aware model and continue training it separately for the 15th and
the 18th century by feeding in the parallel data of only those centuries for an additional 10 epochs. For
validation, we use a random sample of 2000 word pairs for the time periods. We do this to see whether by

2We use the implementation of the Fuzzy Python package (https://pypi.org/project/Fuzzy/).
3Note: Moses has to be built with a separate flag to allow language models that are the size of a 10-gram model.
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continuing the training, the model can learn a more accurate normalization model specific to one century
while still taking advantage of the normalizations for all the centuries.

4.5 Combining the Approaches

All the previously described approaches result in their own normalization candidates. In order to take
advantage of them all, we need to pick out a normalization from all of the possibilities. Since we have
an SMT and an NMT approach in use, some of the normalization candidates might be non-words as the
machine translations can output words that are not part of the English language. First, we look up the
normalization candidates in the OED. If they are not English words according to the OED, we ignore
them and do not consider them to be selected.

For the remaining normalization candidates, we try two different approaches to picking out the correct
one. The first one is a simple voting mechanism: the more approaches result in the same normalization,
the more likely it is that correct normalization has been found. In the case of a tie in the voting, we pick
a candidate at random out of the top ones.

The other approach is finding the normalization best fitting the context. We do this by training a first
order Markov chain on the BNC. The chain learns the probability at which a given word follows another
in a sentence. We can use this probability to pick the normalization that is the most likely to fit a given
context.

When using the chain to pick out the best normalization, we look at a context window of 4 tokens
on each side of the word to be normalized. Then we check whether all the words in the context are
normalized, and replace them with their normalizations, if they are known. If, however, there are words
that cannot be normalized in the context window, we will also look at the normalization candidates
produced by our methods for those words. Then we count the probabilities for the chain by all the
possible different combinations of normalizations and pick the likeliest one. For transitions of words that
are not in the model, we add a probability of 1 over the number of possible transitions from that state.

5 Results and Evaluation

To evaluate the results produced by each individual method and the overall performance of combining
them, we prepare three gold standards (Säily, 2018) by normalizing a random sample of 100 words by
hand out of the non-normalized words in the CEEC for each of them. The first set has words randomly
picked from all centuries and the other two consist of randomly picked 15th and 18th century words
respectively. These normalizations are made by a linguist who is familiar with historical English texts.

5.1 Individual Methods

We compare the outputs of each of the methods to the gold standards presented earlier both directly and
using NLTK WordNet Lemmatizer on the forms to see if the lemmas are the same. Since our ultimate
goal is to map the words to the OED, we are more interested in matching to the right lemma rather than
the exact inflectional form of the word. The results are shown in Table 1, where the columns represent the
three different gold standards and the rows accuracies of each method. The last row shows the percentage
of words that were correctly normalized by at least one method. This represents the upper boundary of
accuracy that our system can achieve when selecting the best suitable normalization.

The first three NMT models are the ones with the century information fed into them during the training
and the “NMT no years” is the one that received only words without their centuries as input. It is clear
that the NMT model without the information about the century outperforms the three century specific
ones.

Figure 1 shows the overlap of the correct normalizations produced by each method in a Venn diagram
in the case of the general test set. The leftmost diagram shows a combination of the different SMT
and century aware NMT models, while the differences in between the SMT and century aware NMT
models are shown in the other two diagrams. The number in the bottom right corner shows the number
of normalizations that were not produced correctly by any of the methods in the diagram.
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Model Generic 15th century 18th century
NMT 28% 43% 14%

NMT 18th 28% 43% 15%
NMT 15th 28% 43% 15%

NMT no years 46% 55% 25%
SMT 32% 31% 28%

SMT 18th 16% 14% 19%
SMT 15th 32% 28% 31%

Edit distance 31% 31% 31%
VARD2 rules 15% 10% 8%

At least one correct 67% 71% 52%

Table 1: Accuracy of each method

Figure 1: Overlap of correct normalizations in the general test set

We can see from Figure 1 that all of the methods have been able to correctly normalize words the other
methods have not. There is also a reasonable overlap in the correct normalizations of multiple methods.
This means that while a voting approach in picking the correct normalization out can work with a high
precision, its recall will be lower due to the high amount of correct normalizations produced by only one
method.

Figure 2: Overlap of correct normalizations in the 15th century test set
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As for the century specific machine translation models, in the general dataset, all of the century aware
NMT models produce the very same normalizations. In the case of the SMT models, both the generic
one and the 15th century one find correct normalizations of their own, while the 18th century model fails
to produce additional correct normalizations not produced by the other two.

Figure 2 depicts the overlap of correct normalizations in the 15th century test set. Again, all of the
methods have managed to produce correct normalizations not captured by the other methods. The best
one at producing correct normalizations not produced by the others is the NMT model that has not been
trained with the century information, with its 8 unique correct normalizations.

Despite the high accuracy of the century aware NMT models, we can see in Figure 2 that no special-
ization has occurred in the 15th century NMT model to improve work for this century. In fact, all of the
century-aware NMT models still produce the exact same normalizations.

As for the SMT models, we can see that the 15th century model is able to correctly normalize 3
words the other SMT models have not. What is more interesting is that despite the specialization for this
century, the 15th century model has failed to correctly normalize 6 words the generic model was able to
normalize.

Figure 3: Overlap of correct normalizations in the 18th century test set

Finally, Figure 3 represents the overlapping correct normalizations for the 18th century. This time
around, all methods except for the VARD2 rules have been able to produce correct normalizations of
their own. The century aware NMTs are the weakest ones in this respect.

Interestingly, both of the century specific NMT models have been able to find the same additional
correct normalization where the generic century-aware model has failed. Otherwise the normalizations
produced by the models are the same.

Curiously, in the case of the SMT models, the one tuned for the 18th century seems to perform the
worst, while the generic one and the 15th one are both able to produce unique normalizations of their
own. In addition these two models both find the same 6 correct normalizations that the model tuned for
the 18th century does not.

All in all, looking at the evaluations, it is contextual edit distance that seems to be the most consistent
at finding the same amount of correct normalizations in each test set and always finding some unique
ones. The same applies to the generic SMT model, which is slightly less consistent than the contextual
edit distance. The VARD2 rewrite rules, unsurprisingly, perform the worst. And all the NMT models
preform very differently in different test sets.

5.2 Picking the Best Normalization

In this part we present the results of the two ways for picking out the likeliest normalization from the
normalization candidates produced using the different methods. These are voting and using the Markov
chain trained earlier to pick out the likeliest normalization. We run the voting weighted with the accu-
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racies of the individual methods so that the methods that have a higher accuracy have a higher vote. In
addition, we run the voting unweighted so that every method has an equal vote.

Generic 15th century 18th century
Voting no weights 41% 49% 23%
Voting weighted 45% 56% 22%
Markov chain 36% 40% 24%

Table 2: Accuracy of different ways to pick out the correct normalization

Table 2 shows that the weighted voting gives the highest results in picking the correct normalization
candidate out of the possible ones in almost all the test sets. The Markov chain only outperforms it in the
18th century.

The reason for the poor performance of the Markov chain model is probably that we have narrowed
this task down to the historical forms that are not trivially normalizable. This means that we are dealing
with non-standard forms that occur in the CEEC only a handful of times in a context where other non-
normalized word forms co-occur. This makes it difficult for a statistical model to pick out the most
suitable normalization with only limited information available on the surrounding context.

6 Discussion and Future Work

The machine translation models were trained with the idea that the spelling variation follows similar
tendencies within a century. Looking at the results, especially the ones obtained with SMT, it seems
that the century is not necessarily a good enough variable to look at. While variation might not always
be similar within a century, in the future we should look at the other variables recorded in the CEEC,
such as the social class of the writer and the collection in which the letter has been published. Since this
information is CEEC specific, however, having enough training data to train normalization for example
for a certain social class becomes an issue.

In addition, we need to find a better way of making the NMT models specialize in a given category of
variance, let it be the century as in the trials presented in this paper, or the social class of the author of
the letter. Our results show that continuing the training with only the data for a particular century with
a validation dataset of that century is not enough for the model to perform any better in its supposed
century of specialization.

For NMT, feeding in century labels along with the historical word forms seems to even be harmful to
the accuracy of the system. Finding better alternative ways to include additional information in the NMT
model that will not make the accuracy decline is also a task for future research.

As for combining the results of the approaches, there is definitely room for improvement. Currently,
the best performing method is weighted voting, but based on the Venn diagrams for the overlap of the
correct normalizations by different methods, we can conclude that the voting approach will never reach
the upper boundary of possible accuracy for the entire system: the number of correct normalizations that
are unique to only one of the methods is too high, in which case voting will not suffice for selecting them.
This is especially the situation if a method with a lower weight in its vote is the only one with the correct
normalization.

In this paper, we have taken a naive approach thinking that two identical historical forms always
normalize to the same standard form. This is true to a great extent in our case where we are dealing with
the least frequent deviant forms, but there are still cases even in our set of non-normalized words where
two identical historical spellings normalize into different modern English words. An example of such is
querry, which is either equerry or query depending on the letter of appearance.

The ultimate goal of our normalization efforts is to facilitate the next step in our research, which is
finding neologisms automatically in the CEEC. This is done by comparing the year of the letter where a
neologism candidate is used with the earliest attestation recorded in the OED. This, of course, requires
that we are able to map every single word in the CEEC to the OED. Due to the nature of neologisms, we
are interested even in the least frequent words in the corpus.
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7 Conclusions

In this paper, we have presented different approaches to normalized deviant infrequent historical spellings
in the CEEC corpus. While all of the individual approaches have strengths of their own in terms of their
facilitating the normalization of spelling variants other methods cannot, the single best individual method
seems to be the NMT method without additional century labels.

Century has proven to be a poor variable to base tuning of the models on in the case of our corpus.
This must be due to the fact that most of the spelling variation is due to other factors than the century of
writing such as dialect background, social class and individual spelling mistakes.

Based on the findings presented in this paper, we have multiple different directions to continue our
normalization efforts, all of which require further research and thus fall outside the scope of this paper.
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Abstract

Can language analysis reveal the underlying social power relations that exist between participants
of an interaction? Prior work within NLP has shown promise in this area, but the performance
of automatically predicting power relations using NLP analysis of social interactions remains
wanting. In this paper, we present a novel neural architecture that captures manifestations of
power within individual emails which are then aggregated in an order-preserving way in order
to infer the direction of power between pairs of participants in an email thread. We obtain an
accuracy of 80.4%, a 10.1% improvement over state-of-the-art methods, in this task. We further
apply our model to the task of predicting power relations between individuals based on the entire
set of messages exchanged between them; here also, our model significantly outperforms the
70.0% accuracy using prior state-of-the-art techniques, obtaining an accuracy of 83.0%.

1 Introduction

With the availability and abundance of linguistic data that captures different avenues of human social
interactions, there is an unprecedented opportunity to expand NLP to not only understand language, but
also to understand the people who speak it and the social relations between them. Social power structures
are ubiquitous in human interactions, and since power is often reflected through language, computational
research at the intersection of language and power has gained interest recently. This research has been
applied to a wide array of domains such as Wikipedia talk pages (Strzalkowski et al., 2010; Taylor et al.,
2012; Danescu-Niculescu-Mizil et al., 2012; Swayamdipta and Rambow, 2012), blogs (Rosenthal, 2014)
as well as workplace interactions (Bramsen et al., 2011; Gilbert, 2012; Prabhakaran, 2015).

The corporate environment is one social context in which power dynamics have a clearly defined
structure and shape the interactions between individuals, making it an interesting case study on how
language and power interact. Organizations stand to benefit greatly from being able to detect power
dynamics within their internal interactions, in order to address disparities and ensure inclusive and pro-
ductive workplaces. For instance, (Cortina et al., 2001) reports that women are more likely to experience
incivility, often from superiors. It has also been shown that incivility may breed more incivility (Harold
and Holtz, 2015), and that it can lead to increased stress and lack of commitment (Miner et al., 2012).

Prior work has investigated the use of NLP techniques to study manifestations of different types of
power using the Enron email corpus (Diesner et al., 2005; Prabhakaran et al., 2012; Prabhakaran and
Rambow, 2013; Prabhakaran and Rambow, 2014). While early work (Bramsen et al., 2011; Gilbert,
2012) focused on surface level lexical features aggregated at corpus level, more recent work has looked
into the thread structure of emails as well (Prabhakaran and Rambow, 2014). However, both (Bramsen et
al., 2011; Gilbert, 2012) and (Prabhakaran and Rambow, 2014) group all messages sent by an individual
to another individual (at the corpus-level and at the thread-level, respectively) and rely on word-ngram

* Authors (listed in alphabetical order) contributed equally.
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based features extracted from this concatenated text to infer power relations. They ignore the fact that
the text comes from separate emails, and that there is a sequential order to them.

In this paper, we propose a hierarchical deep learning architecture for power prediction, using a combi-
nation of Convolutional Neural Networks (CNN) to capture linguistic manifestations of power in individ-
ual emails, and a Long Short-Term Memory (LSTM) that aggregates their outputs in an order-preserving
fashion. We obtain significant improvements in accuracy on the corpus-level task (82.4% over 70.0%)
and on the thread-level task (80.4% over 73.0%) over prior state-of-the-art techniques.

2 Data and Problem Formulation

We use the version of the Enron Email corpus released by Agarwal et al. (2012) that captures the organi-
zational power relation between 13,724 pairs of Enron employees, in addition to the reconstructed thread
structure of email messages added by Yeh and Harnly (2006). We mask greetings and signature lines in
the email content to prevent our model from being biased by the roles held by specific employees.

Entity type # of Pairs Train Dev Test

Per-Thread 15,048 7,510 3,578 3,960
Grouped 3,755 2,253 751 751

Table 1: Data instance statistics by problem formulation.

Prior work on NLP approaches to predict power in organizational email has used two different problem
formulations — Per-Thread and Grouped. We investigate both formulations in this paper. Table 1 shows
the number of data instances in each problem formulation.

Per-Thread: This formulation was introduced by Prabhakaran and Rambow (2014) in which, for a
given thread t and a pair of related interacting participant pairs (A, B), the direction of power between A
and B is predicted (where the assignment of labels A and B is arbitrary). The participants in these pairs
are 1) interacting: at least one message exists in the thread such that either A is the sender and B is a
recipient or vice versa, and 2) related: A and B are related by a dominance relation (either superior or
subordinate) based on the organizational hierarchy. As in (Prabhakaran and Rambow, 2014), we exclude
pairs of employees who are peers, and we use the same train-dev-test splits so our results are comparable.

Grouped: Here, we group all emails A sent to B across all threads in the corpus, and vice versa, and
use these sets of emails to predict the power relation between A and B. This formulation is similar those
in (Bramsen et al., 2011; Gilbert, 2012), but our results are not directly comparable since, unlike them,
we rely on the ground truth of power relations from (Agarwal et al., 2012); however, we created an SVM
model that uses word-ngram features similar to theirs as a baseline to our proposed neural architectures.

3 Methods

The inputs to our models take on two forms: Lexical features: We represent each email as a series
of tokenized words, each of which is represented by a 100-dimensional GloVe vector pre-trained on
Wikipedia and Gigaword (Pennington et al., 2014). We cap the email length at a maximum of 200 words.
Non-lexical features: We incorporate the structural non-lexical features identified as significant by Prab-
hakaran and Rambow (2014) for the Grouped problem formulation. We used (1) the average number of
recipients and (2) the average number of words in each email for each individual; these features were
concatenated into a single input vector. We investigate the following three network architectures, in
increasing order of complexity, to train our model:

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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Figure 1: Batched emails (Batched-CNN)

Approach 1: Batched emails (Batched-CNN). In this model (see Figure 1), all of A’s emails to B are
batched and fed into a Convolutional Neural Network (CNN), and the same operation is performed for
B’s emails to A. The format of this input is described earlier in this section. This representation can be
thought of as a neural equivalent of the SVM-based approaches in prior work, since they merge together
all emails in either direction as a single unit. Then, the output of these two CNNs is merged with the
non-lexical features from A’s emails and B’s emails, passed through a dense layer with rectified linear
unit (ReLU) activation, and fed to a sigmoid classifier that predicts the power relation between A and B.

Figure 2: Separated emails (Separated-CNN)

Approach 2: Separated emails (Separated-CNN). In this model (see Figure 2), we capture the essence
of individual emails by separating them in the model input. As in Batched-CNN, we separate A’s and
B’s emails, but here we feed each email as input to a CNN. The motivation here is to first capture local
patterns from individual emails. We then merge the output of these CNNs with the non-lexical features
from A’s and B’s emails, pass this to a dense layer with ReLU activation, and pass the result to a sigmoid
classifier that predicts the power relation.

Approach 3: Sequential emails (Sequential-CNN-LSTM). Finally, we use a third model where we
account for the temporal order of emails, which may be important in the case of the Per-Thread formu-
lation. In this model (see Figure 3), we separate each individual’s emails, feed each email to a CNN,
and pass the sequence of CNN outputs for each email to a Long Short-Term Memory network (LSTM)
for that individual. We then merge the resulting output of the two LSTMs with the non-lexical features
from each individual’s emails, pass it on to a dense layer with ReLU activation, and then to a sigmoid
classifier for the final prediction.
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Figure 3: Sequential emails (Sequential-CNN-LSTM)

4 Experiments and Results

We use support vector machine (SVM) based approaches as our baseline, since they are the state-of-the
art in this problem (Prabhakaran and Rambow, 2014; Bramsen et al., 2011; Gilbert, 2012). We use the
performance reported by (Prabhakaran and Rambow, 2014) using SVM as baseline for the Per-Thread
formulation (using the same train-dev-test splits) and implemented an SVM baseline for the Grouped
formulation (not directly comparable to performance reported by (Bramsen et al., 2011; Gilbert, 2012)).

For each of our neural net models, we trained for 30-70 epochs until the performance on the develop-
ment set stopped improving, in order to avoid overfitting. We used Hyperas to tune hyperparameters on
our development dataset for the same set of parameter options for each task formulation, varying activa-
tion functions, hidden layer size, batch size, dropout, number of filters, and number of words to include
per email.1

Model Per-Thread Grouped

SVM Baseline 73.0 70.0

Batched-CNN 78.7 82.0
Separated-CNN 79.8 83.0
Sequential-CNN-LSTM 80.4 82.4

Table 2: Accuracy obtained using different models
SVM Baseline: (Prabhakaran and Rambow, 2014)

Table 2 presents the accuracy obtained us-
ing different models. All of our models sig-
nificantly outperformed the SVM baseline in
both task formulations. In the Per-Thread
formulation, we obtained the best accuracy
of 80.4% using the Sequential-CNN-LSTM
approach, compared to the 73.0% reported
by (Prabhakaran and Rambow, 2014). This
is also a marked improvement over the sim-
pler Batched-CNN and Separated-CNN mod-
els. This suggests that both temporal and local
email features aid in the power prediction task within the Per-Thread formulation. In the Grouped for-
mulation, the Separated-CNN model obtained the best accuracy of 83.0%, outperforming the Sequential-
CNN-LSTM accuracy of 82.4%. We hypothesize that this is because the grouped formulation does not
inherently have a temporal structure between emails, unlike the thread formulation where Sequential-
CNN-LSTM is able to tap into the temporal structure.

Table 3 presents a few emails from our corpus, along with the true and predicted labels for the power
relation between their sender and recipient(s). Our model seems to pick up on linguistic signals of lack
of power such as relinquishing agency (let me know who you’d like us to work with), and status reports
(model is nearly completed), as well as overt displays of power such as I personally would like to see the

1https://github.com/maxpumperla/hyperas
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results and we need to end all payments. On the other hand, the model picks up on the phrasing in don’t
use the ftp site as displaying superiority while the superiority displayed here may have been derived from
the expertise the subordinate has in file-transfer protocols. Similarly, the model may have misunderstood
the overtly polite phrasings in the last email sent by a superior to be subordinate-like behavior. This
sheds light on an important challenge in this task: superiors don’t express their superiority in all emails,
and subordinates may sometimes display power derived from other sources such as expertise. In such
cases where text features alone are not informative enough, signals from additional non-lexical features
may be key to accurate classification.

Text extracted from email Actual Predicted

Let me know who you’d like us to work with in your group. The Adaytum planning
model is nearly completed. Subordinate Subordinate

Vince is hosting on Wharton and a project they are doing for us, I personally would like
to see the results of that before doing more with Wharton. Superior Superior

We need to end all payments as of December 31, 2001.
Superior Superior

Don’t use the ftp site while I am away [...] I will check my messages when I return.
Subordinate Superior

Here is the draft letter for your consideration. Please distribute this to the members of the
legal team at Enron. Thank you for your assistance, and have a happy holiday season. Superior Subordinate

Table 3: Example power labels from Separated-CNN on the Grouped formulation. For correct labels,
text segments that may signal the power relation are underlined in green; for incorrect labels, potentially
confusing power signals are underlined in red. (text segments chosen based on our qualitative judgment).

5 Concluding Discussions

In this paper, we investigated the intersection between language and power in the corporate domain
via neural architectures grounded in an understanding of how expressions of power unfold in email. Our
Sequential-CNN-LSTM model, which utilizes an LSTM to capture the temporal relations underlying per-
email features, achieved 80.4% accuracy in predicting the direction of power between participant pairs
in individual email threads, which is a 10.1% accuracy improvement over the state-of-the-art approach
(Prabhakaran and Rambow, 2014). Our Separated-CNN model also obtains an accuracy of 83.0% in
predicting power relations between individuals based on the entire set of messages exchanged between
them, a significant boost over 70.0% accuracy obtained using traditional methods. We also present a
qualitative error analysis that sheds light on the patterns that confuse the model.

To further our work, we plan to granularize the level at which features are learned. We hypothesize that
by training a CNN on each sentence rather than email, the model will better capture mid-level indicators
of power that occur between the word level and email level. We will also investigate ways to better incor-
porate structural features by accounting for their relevance to a holistic judgment of power; for example,
features like gender and temporal position in a thread are more suited to merge with a higher level of the
architecture like the per-individual LSTMs while features like number of email tokens are more suited to
merge at the low level of the per-email CNNs. Lastly, we plan to incorporate additional datasets such as
the Avocado Research Email Collection (Oard et al., 2015) to study cross-corpora performance.
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Abstract

We present a simple approach to the generation and labeling of extraction patterns for coding po-
litical event data, an important task in computational social science. We use weak supervision to
identify pattern candidates and learn distributed representations for them. Given seed extraction
patterns from existing pattern dictionaries, we use label propagation to label pattern candidates.
We present two case studies. i) We derive patterns of acceptable quality for a number of in-
ternational relations & conflicts categories using pattern candidates of O’Connor et al. (2013).
ii) We derive patterns for coding protest events that outperform an established set of TABARI /
PETRARCH hand-crafted patterns.

1 Introduction

Social scientists work with datasets of interactions between political actors (political events), which
they extract manually or automatically (code) from large quantities of news text (Figure 1). The auto-
mated coding of political events, which dates back to the early 1990s (Gerner et al., 1994), is commonly
performed using pattern matching with large manually compiled dictionaries of actor names and event
patterns. Syntactic parsing is widely used to guide the application of patterns.

Example U.S. military chief General Colin Powell said on Wednesday NATO would need to remain strong.
Event type MAKE STATEMENT, GENERIC (010)
Example Kenyan President Daniel Arap Moi on Monday urged Uganda to repatriate “all Kenyan criminals hiding

there” to face trial, accusing them of killing Kenyan policemen in cross-border raids recently.
Event type APPEAL FOR MATERIAL COOPERATION (021)

Example Austrian unions blocked three motorways into the capital Vienna on Monday to protest government plans
to reform the country’s pension system.

Event type OBSTRUCT PASSAGE, BLOCK (144)
Example A small eastern German company on Wednesday became the first to announce a boycott by an American

company over Berlin’s refusal to back the U.S. administration’s moves to disarm Iraq militarily.
Event type CONDUCT STRIKE OR BOYCOTT (143)

Figure 1: Examples of political events and their CAMEO event categories (§ 2): IR events above and
protest events below. The IR examples are from the CAMEO codebook (Schrodt, 2012). In the examples,
the source actor is in red, the event in green, and the target actor in blue.

Despite their simplicity, pattern-based coding systems are as good as trained human coders at predict-
ing event types (King and Lowe, 2003) and have been found sufficiently accurate for near real-time event
monitoring (O’Brien, 2010). Compared to statistical systems for event extraction common in NLP (Ahn,
2006), one advantage of pattern-based event coding is that coding decisions are transparent and readily
examinable, being triggered by the matching of specific patterns. Yet, manual pattern construction is

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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Figure 2: Overview of proposed pipeline: auto-
mated pattern acquisition and subsequent filtering
of pattern candidates by a human expert.

Figure 3: Examples of pattern candidates: IR do-
main above (O’Connor et al., 2013), protest below.

prohibitively costly (Schrodt, 2006). Patterns are not easily portable across domains, and any adaptation
to a new domain requires extensive human effort.

In this paper, we show how the automated acquisition, that is generation and labeling, of extraction
patterns can be applied to the problem of the machine coding of political events. The goal is, on the
one hand, to reduce human effort associated with pattern construction and, on the other, to show how to
increase recall, which is often low in rule-based systems. By automatically generating pattern candidates
and labeling them in a semi-supervised way, we produce many noisy patterns. Before any of them gets
added to a pattern-based coder, they should be inspected by a human expert.

Our contribution is as follows: We combine ideas from traditional pattern acquisition by bootstrapping
(Huang and Riloff, 2013), the more recent approaches to the grouping of semantically related patterns
based on distributed representations (Krause et al., 2015; Batista et al., 2015), and semi-supervised
labeling for lexicon induction (Hamilton et al., 2016; Rao and Ravichandran, 2009; Takamura et al.,
2007) into a simple recipe for pattern construction, of practical interest to social scientists (Figure 2). We
demonstrate the effectiveness of the approach by applying it to the important domains of international
relations and conflicts (IR) and of protest events.

2 Related Work

There exists a whole family of political event coding systems that rely on dictionaries of patterns:
TABARI, PETRARCH, PETRARCH21 (Norris et al., 2017), and VRA-Reader2 (King and Lowe, 2003).
One popular ontology of political events, primarily in the IR domain, is CAMEO (Gerner et al., 2002). It
defines twenty broad categories, e.g. Reduce Diplomatic Relations or Investigate. Each topmost category
is further divided into more specific subtypes, e.g. Investigate War Crimes. TABARI, PETRARCH, and
PETRARCH2 come with extensive dictionaries of patterns that map verb phrases to CAMEO categories.
Recently, there has been lot of interest in applying statistical learning to the coding of political events
(Beieler, 2016; Hanna, 2017; Nardulli et al., 2015). O’Connor et al. (2013) present an unsupervised
Bayesian coder, which models the gradual change in the types of events between actors over time.

Automated pattern acquisition has been a central topic in information extraction by pattern matching
(Yangarber et al., 2000; Riloff and Jones, 1999) and is primarily associated with bootstrapping, a set of
heuristic methods that establish similarity between patterns based on their occurrence in a small number
of contexts. Huang and Riloff (2013) bootstrap verb-phrase patterns for protest event extraction by
exploiting their co-occurrence with collective terms like “workers”, “activists”. Krause et al. (2015)
explore the occurrence of event patterns in all contexts and train a feedforward neural network to produce
event pattern embeddings.

The semi-supervised method of label propagation in a lexical similarity graph whose edge weights are
computed from rich distributed representations has been used extensively for the derivation of large-scale
polarity lexica (Hamilton et al., 2016; Velikovich et al., 2010). Various efficient techniques have become

1https://github.com/openeventdata/petrarch2
2http://vranet.com
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available for obtaining powerful distributed representations of linguistic entities (Mikolov et al., 2013;
Pennington et al., 2014; Cotterell et al., 2017). Levy et al. (2015) repopularize truncated singular value
decomposition (SVD) in the context of word embeddings.

3 Method

This and the next section present the method. First, we generate pattern candidates from dependency
parses (§ 3.1), then compute their distributed representations and label using label propagation (§ 3.2).

3.1 Generation of pattern candidates
A pattern is a most simple classifier (r, t) that consists of a regular expression r and a type t. If r
matches some substring v of input text x, then x gets classified with t and v is the textual evidence of
t in x. A pattern candidate is a regular expression. Given a set of types {t1, . . . , tm}, an automated
pattern acquisition method identifies sets of pattern candidates {P1, . . . , Pm} such that Pi are likely
correct classifiers for type ti. To apply Pi to coding, one can either simply use all Pi as patterns for ti
(i.e. {(p, ti) : p ∈ Pi}) or have a human expert examine Pi and build patterns from reliable pattern
candidates only.

We follow the standard practice of using dependency paths as pattern candidates (Stevenson and
Greenwood, 2006). A dependency path is a path through a syntactic dependency structure, i.e. an
alternating sequence of labeled edges and nodes (n0, e0, n1, e1, . . . ) such that each ei connects ni−1 and
ni and ei can be either left-to-right or right-to-left. A path can end with either a node or an edge. For

example, protester
subj←−− pelt dobj−−→ stone is a dependency path. We shall assume that dependency paths

use lemmas instead of tokens. Whenever this is not the case we shall explicitly state it.
Being in a specific dependency relation with likely actor expressions is what makes an arbitrary de-

pendency path a pattern candidate for some type. The exact nature of pattern candidates is dictated by
weak supervision, which is specific to a domain.

We shall now detail the generation of pattern candidates for the protest and IR domains. IR pattern
candidates are due to O’Connor et al. (2013) and are generated from paths connecting source and target
actor expressions. Protest pattern candidates are predicates of collective actor expressions, an idea for
pattern bootstrapping due to Huang and Riloff (2013).

Protest events. We work with 1.8M newswire documents3 downloaded from the LexisNexis data ser-
vice4 using a search query with common protest-related keywords.5 We process the documents with the
Stanford CoreNLP toolkit (Manning et al., 2014). We build pattern candidate generation on the follow-
ing observation (Huang and Riloff, 2013): Protest events are typically collective actions, and therefore,
when they are expressed as verbs, their semantic agent will likely be a plural noun, e.g. “Workers took
to the streets”, “A group of students clashed with the police”. This suggests a simple procedure: We
find all plural nouns and traverse dependency trees collecting all predicates of which the plural nouns are
agents.6

We identify all plural common nouns (i.e. NNS-tagged tokens)7 and then traverse collapsed and
3Agence France Press, Deutsche Presse-Agentur (German Press Agency), BBC World from 2000-2014.
4https://www.lexisnexis.com
5initiative OR referendum OR petition! OR signature! OR campaign! OR protest! OR demonstrat! OR manifest! OR

marche! OR marchi! OR parade OR rall! OR picket! OR (human chain) OR riot! OR affray OR festival OR ceremony OR
(street theatre) OR (road show) OR vigil OR strike! OR boycott! OR block! OR sit-in OR squat! OR mutin! OR bomb! OR
firebomb! OR molotov OR graffiti OR assault OR attack OR arson OR incendiar! OR (fire I/1 raising) OR (set AND ablaze)
OR landmine OR sabot! OR hostage! OR assassinat! OR shot OR murdered OR killed (Kriesi et al., 2012)

6Our procedure is different in many important ways from that of Huang and Riloff (2013). We identify a larger set of
syntactic constructions that contribute pattern candidates, including passives, relative clauses, and more types of verbal adjuncts.
Unlike Huang and Riloff (2013), we do not distinguish between event phrases and purpose phrases (e.g. in the sentence
“Workers took to the streets to demand better working conditions.”, “took to the streets” would be an event phrase and “to
demand better working conditions” a purpose phrase). We consider purpose phrases a subset of event phrases, partly because
often the same predicate occurs as both. Further, the original proposal tries to identify purpose phrases, like in the example
sentence above, with the help of the xcomp relation, which is in fact a parser error: Purpose phrases are not arguments but advcl
dependents.

7In fact, we could have also included plural proper nouns (NNPS-tagged tokens).
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CCprocessed dependencies (De Marneffe and Manning, 2008). A pattern candidate is a path from a verb
to its (direct or prepositional) object or prepositional adjunct (i.e. a dependent in any relation matching
dobj|prep .∗). However, if the object or adjunct is an named entity (NE), we store the NE tag and discard
the lemma. If a sentence matches one or more of the following cases, we extract pattern candidates and
update the statistics of co-occurrence of plural common nouns and pattern candidates:

1. A plural common noun is a nsubj dependent (i.e. a subject of an active verb). E.g. in the sentence

Protesters pelted stones at the police.
nsubj dobj

prep at

we identify candidates pelt
dobj−−→ stone and pelt

prep at−−−−→ police.

2. The main verb has a plural common noun subject and a xcomp or vmod dependent (i.e. a non-
finite verbal complement or adjunct).8 The non-finite dependent produces pattern candidates, e.g.

chant
dobj−−→ slogan from

Protesters gathered on the street chanting slogans.
nsubj vmod dobj

3. A plural common noun is an agent dependent. The verb that governs it produces a pattern candidate
together with its nsubjpass dependent, or rcmod or vmod head. The former accounts for passives,
the latter for finite and non-finite relative clauses, e.g.

The office was attacked by angry protesters.
nsubjpass agent

After excluding infrequent pattern candidates (count < 15) and nouns (count < 5), we obtain 72K

unique pattern candidates and 11K plural common nouns. Together, they produce 3.6M pattern-noun
samples (Figure 3).

International relations. Here, we re-use pattern candidates derived by O’Connor et al. (2013) from
the English Gigaword corpus of newswire documents (Parker et al., 2009). A pattern candidate is a
dependency path connecting source and target actor expressions. Actor expressions are identified with
the help of the TABARI actor dictionaries. An actor expression is the minimal noun phrase containing a
TABARI actor expression: a proper noun or adjective. Pattern candidates contain at most four notional
words. The source actor must be a nsubj or agent dependent. Some dependency relations are not allowed
in the patterns, e.g. det or conj. For further details, we refer the reader to the paper. Each pattern
candidate is associated with a source-target actor pair (dyad) and the publication date of the news report.
After filtering low-frequency pattern candidates and dyads, O’Connor et al. obtain 366K data samples
featuring 421 dyads and 10K unique pattern candidates.

3.2 Labeling of pattern candidates

The semi-supervised labeling of pattern candidates requires a semantic similarity metric on the set of
pattern candidates. Cosine similarity between vectors in some vector space, which somehow capture the
semantics of the corresponding linguistic entities (e.g. words or patterns), is one very common similarity
metric. The derivation of vector representations leverages the counts of how many times the linguistic
entities occur in some specific contexts in the data. For example, in the derivation of word vectors, the
contexts are simply neighboring words.

8We do not include advcl for simplicity: advcl dependents can have their own subjects different from the subject of the main
verb.
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Step 1: PPMI matrix Define matrix M ∈ Rm×k of PPMI scores, where m is the number of pattern candidates and k is the
number of contexts, as

mqc = max
(
log

p̂(q, c)

p̂(q) p̂α(c)
, 0
)
,

for pattern candidate q and context c. p̂(q, c) and p̂(q) are empirical distributions, p̂α(c) is a smoothed context distribution
defined as p̂α(c) = #(c)α∑

c#(c)α
, where α ∈ R and #(c) is the count of c in the data.

Step 2: Dimensionality reduction Perform singular value decomposition

M = U ·Σ ·V>

Rows vectors of matrix Utr truncated at the first l columns are distributed representations of pattern candidates.

Procedure 1: Derivation of distributed representations for pattern candidates.

Contexts. For event patterns, contexts can be actor expressions or other patterns that occur with the
same actor expressions. For protest patterns, we use plural common nouns as contexts.

For IR patterns, similar to O’Connor et al. (2013) and Krause et al. (2015), we assume that a dyad and
a time span induce a context: Patterns that occur with the same dyad in the texts from the same time
span become contexts for one another. In our experiments, we take the time span to be a single day—the
publication date. Thus, given a (dyad, publication date) tuple t, pattern candidates p and q that occur
with t, p 6= q, are counted once as p being a pattern and q its context and once as q being a pattern and p
its context. This is identical to Krause et al. (2015).

Distributed representations. We choose to derive distributed representations for pattern candidates
by first constructing a pattern-context matrix M of positive pointwise mutual information (PPMI) scores
(Step 1 of Procedure 1) and then performing SVD on M (Step 2 of Procedure 1). To this end, we use the
Hyperwords9 package. We apply context distribution smoothing with α = 0.75 and retain only the
pattern-to-latent-factors matrix Utr (Levy et al., 2015) truncated at 500 columns.

At this point, we can already cluster pattern candidates by e.g. exploring pattern frequencies (Krause
et al., 2015). Fortunately, we have at our disposal the TABARI dictionary of labeled event patterns, which
we can use in a semi-supervised learning procedure to label new patterns. This follows closely the
approach of Hamilton et al. (2016), and we re-use much of their code.10

Similarity graph. First, we construct a weighted undirected graph of pattern similarity. Pattern can-
didates are nodes, and the weights of the edges W are computed using angular similarity, which turns
cosine similarity into a distance metric. Self-loops are disallowed (Step 1 of Procedure 2). For efficiency,
for each pattern candidate, we keep connections to only twenty five most similar nodes; all other edge
weights are set to zero.

Label propagation. We apply the semi-supervised label propagation algorithm of Zhou et al. (2004)
(Step 2 of Procedure 2) and use the TABARI verb pattern dictionary to identify seed patterns. For experi-
ments with IR patterns, we find seeds for all but one of the topmost CAMEO categories (Mass Violence),
with the number of seeds per category ranging from one to seventy-four. We identify thirty four seeds
among protest event pattern candidates.

4 Experiments

We next evaluate the quality of the labeled pattern candidates. Event patterns are intended as high-
precision classifiers: The words making a pattern are chosen carefully to generate as few false positives
as possible. Pattern-based classifiers are typically weak in recall as it may be difficult to construct suffi-
ciently many unambiguous patterns. Thus, any good new pattern potentially contributes to higher recall.
Does our automated approach produce good new patterns? An evaluation that we conduct for IR patterns

9https://bitbucket.org/omerlevy/hyperwords
10https://github.com/williamleif/socialsent
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Step 1: Edge weight matrix Define edge weight matrix W ∈ Rm×m as

wpq =

{
arccos

(
− cos θ

)
if p 6= q,

0 otherwise

where cos θ is the cosine similarity between row vectors utr
p,∗ and utr

q,∗ of Utr, the distributed representations of patterns p and
q.

Step 2: Label propagation (After Zhou et al. (2004)) Given some seed patterns, define matrix F(0) ∈ Rm×c, where m is the
number of patterns and c is the number of categories, as

f
(0)
pk =

{
1 if p is a seed pattern for category k,
0 otherwise

(1)

Define transition matrix T ∈ Rm×m as
tpq =

wpq∑m
r=0 wrq

(2)

Set β ∈ [0, 1]. Until convergence, iterate
F(t+1) = βT F(t) + (1− β)F(0) (3)

Let F(∞) be the label matrix after convergence is reached. Label unlabeled patterns q with k̂ = argmaxk f
(∞)
qk .

Procedure 2: Labeling of pattern candidates by label propagation through pattern similarity graph.

aims at estimating the proportion of correct new patterns at various ranks, when ordered by label score
f
(∞)
qk . For protest events, we measure precision and recall on an annotated corpus.

International relations. We use IR patterns to code newswire documents from the LexisNexis data
service. Out of twenty CAMEO categories, we randomly sample eight:

(A) four categories with the number of seed patterns greater than thirty: Engage in Diplomatic Cooper-
ation, Fight/Assault,11 Consult, Disapprove,

(B) two categories with ten to thirty seed patterns: Coerce, Reduce Relations, and

(C) two categories with fewer than ten seeds: Investigate, Exhibit Military Posture.

For each category k, we order the pattern candidates for k by label score f (∞)
qk in descending order

and randomly sample fifteen pattern candidates from among the first 50, 50-100, and 100-150 pattern
candidates. We pair the sampled candidates with category labels and turn the resulting patterns to the
TABARI / PETRARCH dictionary format.12 We use PETRARCH to code actors and events with the help of
these patterns. We also check that each event match respects the dependency path of the pattern. For each
pattern, we randomly sample up to two sentences that it matches. This gives us a total of 551 sentences.
To this, we add 130 sentences matched by thirteen patterns randomly sampled from the seeds of each
category, with up to two sentences per pattern.

To estimate the proportion of correct new patterns, the author and one political science doctoral student
check the predicted categories of all the sentences. The human coders try to indicate, whenever possible,
whether the predicted category is incorrect for a reason other than the pattern assigning a wrong code.
We exclude such cases from calculations. With this strategy, we aim to evaluate the (average stratified)
precision of the patterns (i.e. their intended property as high-precision classifiers) irrespective of their
frequency.13 This is in contrast with estimating the precision of the entire pattern-based classifier, which
would inevitably be dominated by high-frequency patterns.

11Here, we follow Boschee et al. (2013) and Boschee et al. (2015) in considering Fight and Assult a single topmost category.
12Somewhat surprisingly, above five percent of the patterns cannot be faithfully converted to PETRARCH format as they are

headed by a noun and not a verb.
13An alternative strategy would be to manually inspect a list of patterns, which has a downside that we may overlook

ambiguities that become apparent when we see a pattern in a sentence that it matches.
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Figure 4: Stratified average pattern precision
across CAMEO categories. Scores for patterns
sampled from among the first 50 patterns, 50-100
patterns, 100-150 patterns. Dashed lines of same
color mark average precision of seed patterns.

Figure 5: Precision and recall of seeds + m
new patterns per protest subcategory and PE-
TRARCH with default verb patterns and without
actor coding. PETRARCH: 014∗ counting only
protest events, 014∗/051 counting protest events
and events of subcategory (051) Rally Support
For.

Figure 4 shows the results. The patterns for the categories with many seeds (groups A and B) per-
form well and compare favorably to seed patterns. Group C produce very few coded sentences, and
no sentence is correctly coded. About eleven percent of all the sentences have been excluded. The
most common causes for that are sentences from sports news (34%), hypothetical constructions (23%),
negation (22%), and wrongly coded actors (12%). These sources of error are clearly failures not of the
automatically generated patterns but the automated coder, e.g. its inability to take into account negation
or check whether a pattern match is embedded under a modal verb. The inter-coder agreement for this
evaluation is modest, with a Cohen’s kappa of 0.64.

Protest events. We use the corpus of Makarov et al. (2016) of English Gigaword documents annotated
with protest events and resembling standard benchmark datasets for event extraction, e.g. the ACE 2005
corpus (ACE, 2005). Unlike the IR patterns for which we resort to a complex evaluation strategy, with
this corpus, we can directly and fully automatically estimate both precision and recall. We select sen-
tences for which at least two of the coders code the same event. We only use sentences which feature
event types that correspond to the five CAMEO protest codes.14 We obtain a total of 572 labeled sen-
tences. We randomly sample another 600 sentences of newswire text not from the corpus and use them
to approximate the negative class, i.e. sentences without protest events.

Collective actions often do not mention a target actor directly (as in e.g. “protest against the anti-
gay law”). Since an automated coder codes an event only if both source and target actors are matched,
we choose to evaluate protest patterns without actor coding (otherwise, only very few events would be
coded).

We note that some positive-class sentences cannot be coded without the knowledge of the context of
the document. Another complication is that protest events are often referred to with standalone nouns
like “demonstration” or “rally” and not verb phrases denoting protest actions, e.g. “the Florence demon-
stration was expected to be the biggest in the country” or “a group of rowdy youths broke away from the
peaceful demonstration”. Such cases, therefore, cannot be coded by a pattern-based coder that associates
events with verb phrases. This suggests that the upper bound on recall in this evaluation is much below
100%.

14Subcategories of Protest (14∗): Uncategorized Protest (140), Demonstration (141), Hunger Strike (142), Strike/Boycott
(143), Obstruction of Passage (144), and Riots (145)
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We compare the following conditions:

i) We code with seed patterns plus, for each of the five protest subcategories, the first m new patterns,
when ranked by label score in descending order. We let m range from 0 to 400. We apply patterns
by matching their dependency paths.

ii) As our baseline, we run PETRARCH with its default pattern dictionary (of a few hundreds of protest
event patterns) and the actor coding function switched off. Additionally, we test a condition in
which we consider category (051) Rally Support For as another protest category: Many protest
events with a positive stance on an issue (as in “rallied for immigrant rights”) end up being coded
this code.

We manually check the events that either system finds in the negative-class sentences. We find eight
sentences with protest events, which we then count as instances of the positive class.

The results indicate (Figure 5) that new patterns dramatically increase recall and precision remains
high. Most matches by PETRARCH come from matching single verbs: “demonstrate”, “protest”, “rally”.
The new patterns, on the other hand, are more lexically diverse: Patterns that fire feature forty seven (at
m = 50) to fifty five (at m = 400) different verbs.

5 Discussion

How do we justify the choices of the techniques in the pipeline? One finds various strategies in the
literature for the generation of event and relation extraction patterns that typically employ as contexts
nouns, especially proper nouns (Riloff and Jones, 1999; Carlson et al., 2010), although other kind of
expressions also appear, e.g. verb phrases (Huang and Riloff, 2013). Although one can build patterns
over words (Du and Yangarber, 2015), patterns over parse trees have been found useful abstractions
(Sudo et al., 2003; Bunescu and Mooney, 2005; Stevenson and Greenwood, 2005). Likewise, other
strategies for factorizing a pattern-context co-occurrence matrix can be employed. However, truncated
SVD of a PPMI matrix provides competitive representations (Levy et al., 2015; Hamilton et al., 2016) and
does not build in any assumptions about the nature of entities and contexts.

Pattern-based coding suffers from the simple logic of pattern application and errors in linguistic anal-
yses. A more flexible and better performing approach is based on statistical learning (Boschee et al.,
2013; Boschee et al., 2015). Syntactic patterns can be used as features in such a statistical event coding
system. Syntactic information is important to systems solving a related task of semantic role labeling
(Marcheggiani and Titov, 2017; Roth and Lapata, 2016; FitzGerald et al., 2015).

6 Conclusion

We present an approach for learning dictionaries of verb patterns for the coding of political events. The
method uses pattern matching over dependency parse trees to identify pattern candidates, then computes
distributed representations for them that define weights in a similarity graph. The labels of unlabeled pat-
tern candidates are learned with a semi-supervised algorithm of label propagation through the resulting
graph. New patterns evaluate favorably on two important domains of political interactions.
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Abstract

The detection of reused text is important in a wide range of disciplines. However, even as research
in the field of plagiarism detection is constantly improving, heavily modified or paraphrased
text is still challenging for current methodologies. For historical texts, these problems are even
more severe, since text sources were often subject to stronger and more frequent modifications.
Despite the need for tools to automate text criticism, e.g., tracing modifications in historical text,
algorithmic support is still limited. While current techniques can tell if and how frequently a
text has been modified, very little work has been done on determining the degree and kind of
paraphrastic modification—despite such information being of substantial interest to scholars.
We present a human-interpretable, feature-based method to measure paraphrastic modification.
Evaluating our technique on three data sets, we find that our approach performs competitive to text
similarity scores borrowed from machine translation evaluation, being much harder to interpret.

1 Introduction

Why is Text Reuse important? The term text reuse refers to the repetition of a text within a new context.
Examples are citations, paraphrases of a text, allusions, or even cases of cross-linguistic reuse in the
form of translations. In the humanities context, the detection of text reuse helps tracing down lines of
transmission, which is essential to the field of textual criticism (Büchler et al., 2012). Text reuse detection
can also help consolidating today’s digital libraries by assuring the consistency of content by inter-linking
related documents (Schilling, 2012).
Background: To this date, a lot of effort has been put into the investigation of detecting plagiarism, a
special kind of text reuse. However, while constantly improving (see Ferrero et al. (2017)), contemporary
detection techniques are still quite unreliable when text is heavily modified. Historical text is even more
challenging through incompleteness, copying errors, and evolution of language. Thus, only limited
algorithmic support exists for the identification and analysis of (especially paraphrastic) repetition in such
documents.

While existing reuse detection techniques are able to tell if and how frequently a text has been modified,
it is important to also determine the degree and characteristics of paraphrastic modification, i.e., the
“features” that constitute a given modification. As such, understanding type and degree of reuse is an
important prerequisite for enhancing reuse detection techniques for historical texts as well as giving
scholars hints for deeper investigation. In this work, we present a technique to measure paraphrastic
modification which is both human-interpretable and semantically informed. This interpretability sets
our method apart from recent approaches based on distributional semantics which do not allow for easy
manual inspection of individual model decisions (Wieting et al., 2015).

We already investigated descriptive characteristics of paraphrasing in a specific humanities use case
(Moritz et al., 2018). We found changes in inflection, synonym replacement and co-hyponym replacement
to be the most frequent paraphrastic modifications, thus supporting the feasibility of feature-based
approaches to this problem.
Method and Questions: We measure the degree of modification based on a list of modification operations
that we count in a prioritized order based on relations between aligned, parallel sentences. These
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relationships between two words can range from exact copy (no operation necessary) to co-hyponymy,
see Table 1. Compared to scores such as Meteor that make use of synonymy, but do not model other
relationships, our score also includes information on hypernymy, hyponymy, and co-hyponymy. This is
especially useful in historical text, since meaning and, therefore, relationships change over time. The
order in which these operations are counted is intuitive and follows the usual prepossessing steps that one
would perform to reduce variance in a text corpus. Table 2 shows an example of the alignment output,
thus illustrating our method. The relative frequencies of the operations then serve as input features for a
binary classifier.

Operation Example Pair
no operation necessary above, above
lower-casing match LORD, Lord
normalizing match desireth, desires
lemmatizing match mine, my
derivation match help, helper
short edit distance match Phinehas, Phinees
words are synonyms went, departed
word1 is hypernym of word2 coat, doublet
word1 is hyponym of word2 spears, arms
words are co-hyponyms steps, feet
other —

Table 1: Overview of transformation operations.2

In this contribution we investigate, how our
human-interpretable method compares against text
similarity metrics borrowed from machine transla-
tion evaluation (also serving as input for a classifier).
In particular, we examine the performance of those
approaches for semantic equivalency in: (RQ1) a
modern English paraphrase corpus; (RQ2) a parallel
Bible corpus; and (RQ3) a medieval Latin text reuse
dataset.

2 Related Work

Surface Feature Approaches: Levenshtein’s
(1966) edit distance, which is based on character-
level removal, insertion, and replacement operations,
can be considered as one of the earliest works to measure text similarity. Büchler et al. (2012) use
overlapping bi-grams to maximize recall in a reuse detection task of Homeric quotations, showing a
good precision of more than 70% at the same time. Those techniques rely on surface features (token
and character-level) only. Thus, our proposed method differs by also incorporating semantic information
(lexico-semantic relationships between aligned word pairs).
Semantic Approaches: Computing the semantic similarity between two sentences is a popular task in
NLP (Xu et al., 2015). Osman et al. (2012) present a plagiarism detection technique based on semantic
role labeling. They analyze text by identifying the semantic space of each term in a sentence and find
semantic arguments for each sentence. They also assign weights to the arguments and find that not all of
them affect plagiarism detection. Techniques from the field of paraphrase detection can be used for e.g.,
sentence similarity, entailment, and sentiment classification. Wieting et al. (2015) use embedding models
to identify paraphrastic sentences in such a mixed NLP task employing a large corpus of short phrases
associated with paraphrastic relatives. Their simplest model represents a sentence embedding by the
averaged vectors of its tokens, the most complex model is a long short-term memory (LSTM) recurrent
neural network. They find that the word averaging model performs best on sentence similarity and
entailment, and the LSTM performs best on sentiment classification. Although these methods generally
show good results, they typically allow no manual inspection of why a specific judgment is made and are
thus ill-suited for applications in the humanities.
Approaches Based on Machine Translation (MT) Evaluation Metrics: Madnani et al. (2012) conduct
a study on the usefulness of automated MT evaluation metrics (e.g., BLEU, NIST and Meteor) for the task
of paraphrase identification. They train an ensemble of different classifiers using scores of MT metrics as
features. They evaluate their model on two corpora for paraphrase and plagiarism detection, respectively,
finding that it performs very satisfyingly. This approach to paraphrase and plagiarism detection based on
MT metrics combines surface and semantic features since Meteor incorporates synonymy information
(see below). Yet, the number of semantic features used is limited and so is also the interpretability of this
approach.

2Note that we distinguish operations with and without changes in part-of-speech, hence in total we work with twenty one
different operations.
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OP NOP NOP cohypo NOP syn NOP fallback NOP NOP NOP NOP NOP syn fallback
token s1 It is unlawful he contends to co-operate with any one who is doing wrong
token s2 It is law he argues to - with any one who is performing -

Table 2: Example of operation (feature) based alignment. Features here are no operation =9/14 (NOP),
cohyponym =1/14 (cohypo), synonym=1/14 (syn), and fallback =2/14.

3 External Resources

Tools: We use BabelNet (Navigli and Ponzetto, 2012) as a resource for retrieving relationships between
English words, namely synonym, hypernym, hyponym and co-hyponyms. For the Latin evaluation dataset
we use the Latin WordNet by Minozzi (2009).3 To normalize, lemmatize, and part-of-speech (POS)
tag the text data, we use MorphAdorner,4 a tool for lemmatizing Early Modern English text which is
also applicable to contemporary English. For the Latin dataset, we use the respective TreeTagger model
(Schmid, 1994). To align sentences from a given parallel corpus on the token level we use the Berkeley
Word Aligner (DeNero and Klein, 2007), a statistical, unsupervised word aligner originally designed for
machine translation.
Contemporary Paraphrase Detection: As a gold dataset for paraphrase prediction, we use an English
corpus of semantically equivalent sentences that originates from the PAN 2010 plagiarism detection
challenge. Starting from text that was aligned on the paragraph level, Madnani et al. (2012) generated
a set of aligned sentences using heuristics. Negative pairings were created by sampling non-aligned
sentences with an overlap of four words. The training and test set comprise 10,000 and 3,000 sentence
pairs, respectively. Both sets are balanced regarding positive and negative labels.

Bible Published Class
Douay-Rheims Challoner Rev. (DRC) 1749-1752 standard
King James Version (KJV) 1769 standard
The Webster Bible (WBT) 1833 standard
Darby Bible (DBY) 1867-1890 standard
English Revised Version (ERV) 1881-1894 standard
English Septuagint (LXXE) 1851 literal
Young’s Literal Translation (YLT) 1862 literal
Smith’s Literal Translation (SLT) 1876 literal

Table 3: Overview of English Bible translations used.

Bible Translation Class Prediction: We use
a parallel corpus of eight English Bible transla-
tions that we gathered from three sources.5 We
split them in two classes: literal translations—
those being directly translated from the pri-
mary languages Hebrew and Ancient Greek
coming with rich linguistic diversity—and
translations that mainly follow the translation
tradition of the Anglican Church (standard).
Table 3 lists the detailed edition names accom-
panied by its publishing date and its class. For the experiments we extract parallel verses from two
different editions and try to predict if they come from the same or different translation classes (literal vs.
standard).
Latin Reuse Detection: Excerpts from a total of twelve works and two work collections from the 12th
century Latin writer Bernard of Clairvaux constitute our third dataset. The team behind the Biblindex
project (Mellerin, 2014)6 manually identified 1,100 instances of text reuse in these writings and bundled
them into a corpus. Every instance of reuse relates to a Bible verse from the Biblia Sacra Juxta Vulgatam
Versionem and is typically half as long as the original verse. Negative training data of equal size were
obtained by randomly shuffling the initial dataset.

3http://multiwordnet.fbk.eu/english/home.php
4http://morphadorner.northwestern.edu/
5http://www.biblestudytools.com/, www.mysword.info/, Parallel Text Project (Mayer and Cysouw, 2014).
6http://www.biblindex.mom.fr/
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4 Methods

Our method relies on the relative frequencies of modification operations (see Table 1) in an aligned
sentence pair which later serve as features for a classifier:

xi =
#oi∑m
j=0 #oj

(1)

where xi is the relative frequency of a modification operation i in an aligned sentence pair, m is the
number of features, and oi is the absolute frequency of operation i.7 Our method, hence, can be understood
as a collection of features that are represented as relative frequencies of edits obtained from empirical
values. These features are used as input to a maximum entropy classifier to predict if two sentences are
paraphrases of each other. MaxEnt was chosen due to its simplicity, relying on a linear combination of
features. Thus feature weights can be roughly interpreted as importance of the respective modification
operation after fitting the model. Recall the example alignment presented in Table 2 illustrating the
high interpretability of our approach. Our method will be denoted “multi f” (multiple features) for the
remainder of this paper.

We evaluate our method by comparing it to several reference methods based on machine-translation
evaluation metrics.8 To adapt these to our different paraphrase detection tasks, the source Bible provides
the reference sentence (ref ) and the target Bible (and Bernard’s reuse respectively) provides the system
output (sys). From the Gold corpus, also the source text (numbered in the repository with 1, see Madnani
et al. (2012)) serves as reference, and the paraphrastic reuse of it (numbered with 2), provides the system
output.
Reference Methods: Often, machine translation metrics are based on simple edit distance measures.
Unlike simple word error rate (WER; Su et al. (1992)), which depends on a strict word order, the position-
independent error rate (PER; Tillmann et al. (1997)) uses a bag-of-words approach. Popović and Ney
(2007) define PER based on counts of independent words that system output and reference sentence have
in common. We adapt their document-wide score to the sentence level:

PER =
1

2 ·Nref
(|Nref −Nsys|+

∑

e

|n(e, ref)− n(e, sys)|), (2)

where Nsys is the length (in words) of the target reuse text—in MT a.k.a. the system output version of a
text—and Nref is the length of the source text—in MT a.k.a. the reference sentence for a system output—,
and n(e, ref ) is the frequency of a given word e in the reference sentence.
The translation edit rate (TER; Snover et al. (2006)) is the number of edits that a system output should
undergo so that it matches a reference sentence. TER9 is normalized by the length of the reference input.
Following Papineni et al. (2002), we define a sentence-based BLEU score:

BLEU = BP × exp(
N∑

n=1

1

N
log pn) (3)

where N is the maximum n-gram size, which we set to 2. pn is a precision score that is calculated based
on n-grams in both, source and target texts (see Papineni et al. (2002)). We omit BLEU’s brevity penalty
which would otherwise dominate our sentence level analysis.
The last measure we consider is Meteor 1.5 (Denkowski and Lavie, 2014). Meteor especially differs from
other scores by considering not only precision, but also recall. It further takes synonymy and paraphrases
into account. Meteor introduces so called matchers that are represented by exact match, stem match,
synonym match or paraphrase match. The hypothesis (system) and reference texts h and r are split into
content words hc and rc, and function words hf and rf . Precision and recall measures are then used to

7m = 18 because we dropped three features after development experiments, i.e., no operation necessary, lemmatization
match and hypernym match.

8We had to change some of the metrics to capture distance (instead of a similarity) by using their complement.
9We use the implementation from: www.cs.umd.edu/\%7Esnover/tercom/, acc. May ’18

116



determine the harmonic mean Fmean. Together with a fragmentation penalty that measures the degree of
chunks, the Meteor score is calculated by Meteor = (1− penalty)× Fmean.
Similar to Madnani et al. (2012) we use these MT scores separately in a classification task to predict
paraphrasticality where the respective MT score is fed into a MaxEnt classifier as only feature.

5 Results

name RQ1 RQ2 RQ3
multi f only WN 87.6 67.2 -
multi f synonyms only 87.7 67.1 88.9
multi f w/o cohyponyms 87.9 67.3 89.8
multi f (all features) 87.6 67.3 90.7
TER 85.8 67.0 61.9
PER 85.4 67.4 87.6
BLEU 83.9 68.1 83.6
Meteor 89.5 67.8 88.9

Table 4: Accuracy in solving our three tasks.

Detecting Paraphrases (RQ1): Using the relative op-
eration count from the alignment as features in a classi-
fication task, we determine the classification accuracy
of our approach on the gold corpus. We run a maxi-
mum entropy classifier on our operation features. The
results in Table 4 show that Meteor performs best on
that task, followed by our approach.
Predicting Translation Classes (RQ2): Here we
want to determine if two aligned Bible editions are
of the same translation class (labeled with 0), or of different classes (labeled with 1); we distinguish
between standard vs. literal translations. We use the operation counts based on two aligned verses as
features in this binary classification task. Our operations equip us with a fine-grained description of the
degree of modification of two text excerpts. The Bible corpus is a suitable source for measuring the degree
of modification, since it holds a broad variety of paraphrastic reuses. To estimate a human judgment
of deviation, we assume that standard translations are more homogeneous to each other (based on their
evolution history) than literal translations that demand for more creative language use (Moritz et al., 2018).
We use 10-fold-cross validation on the shuffled dataset. The results in Table 4 show that all methods under
consideration perform comparably well. We also find that our proposed method suffers from a drop of
accuracy when semantic features are ablated. When only WordNet, not BabelNet, is used for identifying
lexico-semantic relations, performance increases slightly, which we attribute to noise that comes with
using BabelNet.
Detecting Latin Reuse (RQ3): Finally, we predict reuse in the medieval Latin dataset. Moritz et al.
(2016) found out that co-hyponymy (besides synonymy) can be a common means of substitution in reuse,
especially in medieval texts. Consequently, our method is well suited for this task, because it considers
semantic relations beyond synonymy.10 Again, we use 10-fold cross-validation on the shuffled dataset.
Table 4 shows that dropping features such as co-hyponyms indeed worsens the accuracy. The low score
of TER may be explained by the fact that this metric’s normalization term is based on the length of the
reference version of a sentence. In our setup the Bible verse is the reference and the system output is the
reuse. The reuse however, is often shorter than the Bible verse (see above).

6 Discussion and Conclusion

We presented a method for paraphrase detection that describes reuse based on the frequency of specific
modification operations and is thus easily interpretable for humans. We showed that modeling reuse in
historical text using semantic relations beyond synonyms achieves results comparable to using features
derived from machine translation metrics. Moreover, our method is especially useful for applications in the
humanities as operation frequencies, their respective feature weights, and, by extensions, individual model
decisions are open to manual inspection. In future work, we plan to tune parameters and to qualitatively
analyze weaknesses of our method (e.g., due to the tools used for pre-processing and alignment).
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Abstract

The presence of misspellings and other errors or non-standard word forms poses a consider-
able challenge for NLP systems. Although several supervised approaches have been proposed
previously to normalize these, annotated training data is scarce for many languages. We in-
vestigate, therefore, an unsupervised method where correction candidates for Swedish language
learners’ errors are retrieved from word embeddings. Furthermore, we compare the usefulness
of combining cosine similarity with orthographic and phonological similarity based on a neural
grapheme-to-phoneme conversion system we train for this purpose. Although combinations of
similarity measures have been explored for finding correction candidates, it remains unclear how
these measures relate to each other and how much they contribute individually to identifying the
correct alternative. We experiment with different combinations of these and find that integrating
phonological information is especially useful when the majority of learner errors are related to
misspellings, but less so when errors are of a variety of types including, e.g. grammatical errors.

1 Introduction

During the language acquisition process, learners often use word forms which deviate, in one way or
another, from a standard that native (L1) speakers usually adhere to. These deviations, also referred to as
errors or non-normative forms, result often in differences in spelling which can lead to forms that might
not exist in a language (non-word errors). Inferring the intended meaning and the correct word form for
such errors can be challenging both for humans and for machines.

In previous work, a number of approaches have been tested for the automatic correction of language
learner errors, which rely often on annotated data (Ng et al., 2014; Mishra and Kaur, 2013). For nor-
malizing native speakers’ non-standard use of spelling, however, a recent direction being explored is the
use of word embeddings as an unsupervised solution (Bertaglia and Nunes, 2016; Fivez et al., 2017).
A major advantage of this approach is that it does not require annotated training data. Such methods
rely on the intuition that semantically similar words are grouped close to each other in the vector space.
Incorporating character n-grams when building word representations completes this type of similarity
with orthographic and morphological relatedness (Bojanowski et al., 2016). This can be useful for de-
tecting correction candidates for those types of errors that involve only a slight variation of word forms,
such as spelling and inflectional errors. Cosine similarity is often combined with other lexical similarity
measures (Bertaglia and Nunes, 2016), their individual contribution and interaction, however, remains
less explored. The research questions that we address in this article are:

• RQ1: How useful are word embeddings based on character n-grams for retrieving correction candi-
dates for language learners’ errors?

• RQ2: Does capturing phonological similarities between sounds provide helpful additional informa-
tion for identifying corrections?

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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• RQ3: What combination of different similarity measures is most efficient in this context?

The usefulness of word embeddings with character n-grams has not been previously explored specif-
ically for correcting errors made by second or foreign language (L2) learners. While there might be
similarities between the type of spelling errors that L1 and L2 speakers make (e.g. based on the position
of keys while typing), in the case of the latter category grammatical errors may also occur. Moreover,
L2 spelling errors may be often induced also by sound similarity or orthographic differences between L1
and L2.

Since data annotated with information about L2 errors and their correction is scarce for most lan-
guages, exploring unsupervised methods in this context is particularly valuable. This is the case also for
Swedish, the target language of our experiments. As an unsupervised solution, we evaluate embeddings
where words are represented as the sum of their character n-grams for L2 error correction by inspecting
how often correction candidates occur among the most similar words based on cosine similarity. We
compare embeddings created using a large collection of Wikipedia articles with embeddings trained on
a smaller amount of specialized corpora related to L2 learning combined with blog texts. We find that
the latter alternative provides twice more often the correction among the set of most similar words than
the former.

One of the obstacles of spelling words correctly is that different graphemes can be used to encode
the same sound in a certain language. This similarly in pronunciation, however goes beyond the type
of information that a similarity measure based on character n-grams and orthography could provide.
Therefore, we propose a phonological similarity measure for capturing this aspect. To address RQ2, we
train a grapheme-to-phoneme conversion system based on neural networks to be able to map even out-of-
vocabulary (OOV) words, such as non-word errors, to a phonological representation. We show that this
system improves on the results of a previous rule-based attempt at solving this task for Swedish. We then
compute the similarity based on a Levenshtein distance discounted for phonological relatedness between
the phonological representation of each non-word error and that of the intended word. Furthermore, we
investigate the correlation between different similarity measures and find that phonological similarity
correlates less with cosine and orthographic similarity than these two with each other.

In relation to RQ3, we compare cosine, orthographic and phonological similarity and investigate their
interaction for finding the intended word for an L2 error. We aggregate cosine similarity and the other
two similarity measures individually and in combination and observe how the ranking of the correct word
changes compared to other most similar words retrieved from word embeddings. Our results indicate
that combining cosine and orthographic similarity worked best for the variety of errors found in learner
essays, whist for errors collected from spelling exercises summing all three measures, or combining
cosine and phonological similarity was more efficient.

This work has also a number of engineering contributions, which are being made freely available.1

This includes (i) a word embedding incorporating character n-grams, trained on a combination of L2
relevant corpora and blog texts; (ii) a grapheme-to-phoneme conversion system for Swedish based on a
large lexical database and deep learning methods; (iii) the implementation of a phonological similarity
measure based on binary phonological features rooted in linguistic theory.

This article is structured as follows. In section 2, we present previous work related to error correc-
tion, which is followed by the description of a small evaluation dataset (Section 3) used to measure
the usefulness of the proposed techniques. We then describe the word embeddings (Section 4) and the
grapheme-to-phoneme conversion system (Section 5) created, which are at the basis of the similarity
measures used for finding optimal correction candidates. Section 6 details the results of our experiments
on the usefulness of the similarity measures. Finally, we conclude our paper in Section 7.

2 Related work

In this section, we first summarize previous literature on error correction with the use of NLP in the edu-
cational domain. Then, we focus specifically on the use of word embeddings for spelling normalization
and previous attempts at solving this task with different methods for Swedish.

1The resources are available at https://github.com/IldikoPilan/swell-norm
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2.1 Error correction in educational NLP applications

Throughout the language learning process, learners produce a range of written responses which vary
in size and quality depending on the specific task and learners’ proficiency level. A common scale of
proficiency levels is the CEFR, the Common European Framework of Reference for Languages (Council
of Europe, 2001). The CEFR proposes a six-point scale of proficiency levels which ranges from A1
(beginner) to C2 (advanced) level.

Learner-written texts are challenging to process automatically since, unlike the standard language
texts used for training most NLP tools, they often contain errors. This is especially problematic for texts
written by lower proficiency learners where the amount of such errors can have a substantial impact
on the accuracy of automatic analyses. Both rule-based and statistical methods have been explored for
the automatic detection and correction of errors, including finite state transducers (Antonsen, 2012) and
different hybrid systems proposed in connection with the CoNLL Shared Task on grammatical error
correction for L2 English (Ng et al., 2014). Most of the competing systems of this Shared Task re-used
existing spell checking systems in their L2 error correction pipeline. Solutions for dealing specifically
with L2 misspelling remained, however, less explored.

Language learning errors provide useful insights into L2 learners’ development and have therefore
been used for assessing writing quality. Yannakoudakis et al. (2011) present experiments for automat-
ically predicting overall, human-assigned scores for texts written by L2 English test takers at upper-
intermediate level. Error-rate features showed a high correlation with these scores. E-rater (Burstein,
2003) is a commercial essay scoring system that measures writing quality based on a variety of linguis-
tic features. Also in this system, grammatical accuracy is used as an indicator of quality alongside the
topical relevance of the vocabulary used and features based on discourse analysis.

2.2 Spelling error correction with word embeddings

Word embeddings represent words in a vector space by grouping semantically similar words near each
other based on the idea that words that share similar contexts are semantically related (Baroni et al.,
2014). We can measure how closely related two or more words are based on cosine similarity from these
representations. Word embeddings are useful for a number of lexical semantic tasks such as detecting
synonyms and disambiguating word senses, see e.g. in Iacobacci et al. (2016). Recently, the usefulness
of these models has been also explored for spelling error correction. Bertaglia and Nunes (2016) explore
word embeddings for normalizing noisy user-generated content for Brazilian Portuguese. The authors
collect correction candidates from the embeddings based on cosine similarity and rank them by comput-
ing a combined similarity score. This includes, besides cosine similarity, a lexical similarity measure
consisting of edit distance, longest common sub-sequence and diacritical similarity. Fivez et al. (2017)
present a similar method for spelling error correction in English clinical text based on character n-gram
embeddings. Correction candidates are collected from a lexicon based on both graphical and phonolog-
ical distance and the candidate maximizing cosine similarity with the context words appearing around
the error is chosen as correction. The authors find that this approach outperformed existing off-the-shelf
systems.

2.3 Spelling error correction for Swedish

Grigonyte and Hammarberg (2014) present a method for automatically identifying those misspellings
made by L2 Swedish learners which are induced by a similarity in pronunciation. In the data2 analyzed
by the authors, 21% of L2 misspellings were related to pronunciation similarities. They propose a model
based on a small dataset of errors and their corrections as well as a language model for distinguish-
ing pronunciation-related misspellings and find that incorporating additional information in their model
would be required for an improved performance.

Stymne et al. (2017) propose an annotation layer incorporating error correction for a corpus of L1 and
L2 Swedish student writings. In their pilot experiment, correction candidates are collected from a smaller
amount of annotated data and a lexical resource using a Levenshtein distance with discounted weights

2We investigated the availability of this data, but did not receive access to it up to the time of writing.
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for frequently occurring errors. When several candidates are available, the most frequent correction
candidate is chosen as correction. The authors report an accuracy of 71% without the use of annotated
training data for the whole corpus and 73% for texts written by L2 learners with a model using training
data.

3 Evaluation data for L2 Swedish error correction

To evaluate the usefulness of word embeddings and similarity measures, we combined L2 Swedish
learner error data from two different sources: a corpus of learner essays and logged spelling exercises.
From the SweLL learner corpus (Volodina et al., 2016), we collected errors from 24 randomly sampled
essays between CEFR levels A1 – B1 from the SpIn sub-corpus. Learners’ native languages included
Romanian, Vietnamese, Somali, Tigrinya, Dari, Latvian, Thai, Mandarin Chinese, Kurdish, Swahili, Al-
banian and Arabic. During the manual error correction, each non-lemmatized token was analyzed and,
if they were errors, they were manually corrected. Only errors for which the intended token could be
unambiguously determined were included. Errors with capitalization, foreign words and containing @,
signaling unintelligible handwritten characters, were excluded.

Besides essays, we collected errors also from spelling exercise logs (SpellEx) from a Swedish language
learning platform, Lärka3. We collected non-word errors from the responses of the 10 language learners
(ranging from beginner to advanced level) who participated in a previous evaluation of the platform
(Pijetlovic, 2013; Volodina and Pijetlovic, 2015). Word segmentation errors and other errors consisting
of valid inflectional forms were not considered. The size of the dataset in terms of number of L2 errors
and their distribution across data sources and CEFR levels is presented in Table 1. Digits in parenthesis
for SpIn indicate the number of individual essays.

A1 A2 B1 Sub-total Total

SpIn 82 (8) 62 (9) 58 (7) 202 455SpellEx NA NA NA 253

Table 1: The number of corrected non-word L2 errors in the dataset.

It is worth noting that, while the spelling exercise log part of the data consisted mainly of L2 spelling
errors, the errors collected from the essays displayed a wider variety of error types including grammatical
and vocabulary errors. Duplicate pairs of error and intended word have been removed from the dataset,
thus the numbers in Table 1 refer to unique error types.

4 Word embeddings enhanced with character n-grams for learner error correction

In this work, we use FastText (Bojanowski et al., 2016) for training embeddings. FastText is a recently
proposed approach that enhances traditional word-based vectors by representing each word as a bag of
character n-grams. Incorporating this type of subword information, besides semantic relatedness, allows
for capturing also orthographic and morphological similarity.

We compare pre-trained word vectors4 using a large amount of Swedish Wikipedia articles with word
vectors we trained specifically for the purpose of finding L2 error correction candidates, which can be an
alternative (or a complement) to lexicon-based lookups. We base our embeddings on corpora which are
more similar to what L2 learners produce in terms of topic or complexity. These include a small set of
specialized corpora (SpecC) combining easy-to-read texts (Heimann Mühlenbock, 2013), L2 coursebook
texts (Volodina et al., 2014) and L2 learner essays (Volodina et al., 2016) We combine these with a large
amount of blog texts to ensure a sufficiently large lexical basis for our representations. The blog texts
were collected via the corpus query system, Korp5 (Borin et al., 2012). Compared to Wikipedia, the topic
of these blog texts is more similar to that of learner texts dealing often with everyday topics, which is part

3https://spraakbanken.gu.se/larka/
4https://fasttext.cc/docs/en/pretrained-vectors.html
5https://spraakbanken.gu.se/korp/
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of language learning curricula according to CEFR, especially between beginner (A1) and intermediate
levels (B1) (Council of Europe, 2001). Moreover, blog texts might contain misspellings, which, although
not necessarily produced by L2 speakers, can potentially increase the usefulness of this type of data for
detecting correction candidates for L2 errors.

The total number of tokens in the combination of corpora used for our embeddings was 25 million
tokens (8% being from SpecC), which resulted in a vocabulary size of 307,349 word forms. This is
a considerably smaller vocabulary size than that of the pre-trained Wikipedia embeddings consisting
of 1,143,273 word forms. The pre-trained embeddings were based on the skip-gram model and they
used the default parameters and 300 dimensions. We train embeddings using Continuous Bag-of-Words
model (CBOW) which can be used also to predict target words from the context (Mikolov et al., 2013).
We preserve most parameters with their default values, except for four exceptions. We set the number
of dimensions to 300 and we considered n-grams between 2 and 5 (instead of the default 3 and 6), in
attempt to better handle short words, which are common at lower proficiency levels. We also reduce the
minimum number of occurrences for a word to be included to 2 and add a duplicate copy of the small
amount of learner-written texts in the training data.

5 Phonological similarity based on Levenshtein distance

Levenshtein (edit) distance is a common measure of the difference between strings in terms of the mini-
mum number of single character edits required to map one string into another (Levenshtein, 1966). These
edits can consist of deletions, additions and substitutions. The traditional version of this measure makes
a binary decision about whether a pair of characters match. Some characters, however, are more likely to
be misspelled as certain characters than others. This can be either due to the frequent omission of highly
language-dependent diacritics or due to a similarity in the sound encoded by different graphemes. An
example for the former case is: traffas instead of träffas ‘meet’. To account for phonological differences,
we first train a grapheme-to-phoneme conversion system that can map a string (even if it contains errors)
to its phonological representation, which we describe in the next sub-section.

5.1 A neural grapheme-to-phone conversion for Swedish
Grapheme-to-phoneme (g2p) conversion is a task consisting of transforming the orthographical represen-
tation of words into their phonological equivalent. This is an important building block of, among others,
text-to-speech (TTS) applications. A number of approaches have been explored in the past to tackle this
conversion, which include both rule-based and data-driven methods. Torstensson (2002) presents a rule-
based approach to g2p conversion for a Swedish TTS system and reports a rate of correctly transcribed
words of 78% when testing on about 3700 unique words.

In this work, we train a g2p conversion system for Swedish based on a g2p toolkit6 available within
CMUSphinx (Yao and Zweig, 2015), an open source software mainly aiming at speech recognition.
This g2p toolkit uses TensorFlow (Abadi et al., 2016) and a transformer model7 relying on an attention
mechanism. The toolkit has been successfully applied by a number of large companies (Yao and Zweig,
2015). The advantage of this g2p system is that, as opposed to other approaches, it does not require
phoneme to grapheme alignments. Instead, mappings are learned directly from a list of words consisting
of pairs of orthographic and phonemic representations for each word.

We use the Swedish lexical database of the Nordisk språkteknologi holding AS (NST)8 to collect or-
thographic forms and their transcriptions encoded in Speech Assessment Methods Phonetic Alphabet
(SAMPA). Before feeding the transcriptions to the g2p system, we automatically segment them as the
example CMU dictionary for English. Length information is retained in the transcriptions, but we re-
move other non-phone related information (e.g. syllable and compound constituent boundaries). When
collecting information from the dictionary, we select only base forms that were assigned a Swedish lan-
guage code9 and that were not tagged as garbage entries or as acronyms. All orthographic forms are

6https://github.com/cmusphinx/g2p-seq2seq
7https://ai.googleblog.com/2017/06/accelerating-deep-learning-research.html
8https://www.nb.no/sprakbanken/show?serial=sbr-22
9The NST dictionary contains some non-Swedish entries from other languages.
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normalized to lower case and duplicates are removed, which results in a dataset consisting of 103,026
pairs of orthographic forms and their transcriptions.

We train a model with the default parameters using 90% of the extracted NST data and comparing two
different sizes for the hidden units (64 and 512). We then measure the performance of the system on
the held-out 10% (10,302) of the data in terms of accuracy and word error rate (WER). In Table 2, we
compare our results with those presented for English using the same implementation. As a baseline (BL)
for Swedish, we use the results reported in Torstensson (2002).

Swedish-BL Swedish English

# units NA 64 512 64 512

Accuracy (%) 78.3 82.6 86.6 68.7 76.7
WER (%) 21.7 17.4 13.4 31.3 23.3

Table 2: The performance of the Swedish g2p conversion system.

Our system outperforms considerably the previously reported results for Swedish for this task. More-
over, our neural models for Swedish achieve a higher accuracy than those for English with both 64 and
512 units. Besides some differences in the underlying data, this may be due to the fact that Swedish
orthography is closer to the pronounced forms of words.

5.2 Measuring distance between sounds based on binary phonological features
To be able to measure distance between sounds, we adopt the binary feature representation described in
Hayes (2009), where each phoneme is characterized across 26 dimensions divided into three categories:
manner, place and laryngeal features. For a detailed description of each feature and their value per
phoneme, see Hayes (2009).

Some peculiar sounds in Swedish that occur less commonly in other languages include retroflex sounds
(e.g. ú, ã) and the doubly articulated postalveolar-velar fricative (/Ê/). Since the latter was missing from
the phonemes listed in the feature charts from Hayes (2009), we deduced its values by combining the
features of the two sounds it is composed of according to IPA,10 namely /S/ and /x/.

5.3 From Levenshtein distance to a phonological similarity measure
We employ a memory efficient version of the Levenshtein distance (LD) using two row matrices.11 We
replace the original cost of 1 for non-matching characters with a value that expresses a phonological
similarity between two phonemes. The similarity is computed based on the phonological features of
these sounds. The cost for this phonological distance (PH-LD) is computed as the ratio of features
with matching values divided by the total number of features relevant for at least of the two sounds
being compared. In section 6, we report results for both the traditional version of LD and the proposed
phonological LD.

We transform both types of LD distances into a normalized similarity measure to make it more com-
parable with cosine similarity values. We compute orthographic similarity as 1− LD

Nchar
and phonological

similarity as 1 − PH−LD
Nphon

, where Nchar and Nphon stand for the number of characters and phonemes in
the word respectively.

6 Investigating the usefulness of similarity measures for L2 error correction

6.1 The efficiency of retrieving L2 error corrections based on cosine similarity
To start with, we evaluate the usefulness of word embeddings for retrieving the intended word for learner
errors. Table 3 shows the percentage of errors for which the correction appeared among a varying number

10https://www.internationalphoneticassociation.org/content/full-ipa-chart
11We used Christopher P. Matthews’ Python implementation available at https://en.wikibooks.org/wiki/

Algorithm_Implementation/Strings/Levenshtein_distance#Python
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of k most similar words.

SpecC+Blogs Wikipedia

Top k SpIn SpellEx Avg SpIn SpellEx Avg

10 40.6 50.2 45.4 18.8 24.5 21.65
25 49.0 57.3 53.15 24.8 28.1 26.45
50 59.4 63.2 61.3 28.7 31.6 30.15
100 64.4 66.4 65.4 31.2 34.4 32.8

Table 3: Percentage of corrections occurring among the k most similar words.

The word embeddings created specifically for L2 error correction purposes (SpecC+Blogs) based on
data relevant for the task proved to be considerably more useful for retrieving the intended word for
learner errors than the pre-trained Wikipedia embeddings. This task-specific embedding contained ap-
proximately twice more often (or more) the intended word than its counterpart at all levels of k. Fur-
thermore, word embeddings were more suitable for finding the correct alternative for the errors collected
from the spelling exercises even though words from the essay corpus were used as part of the training
data for the embeddings. This may be due to the fact that the errors in the essays include a higher per-
centage of grammatical errors besides spelling errors and embeddings enhanced with character n-grams
may be more useful for the latter type.

6.2 Relationship between similarity measures

In the next step, we compare the average value of each similarity measure in the two different sources of
L2 error data to investigate whether there is a difference in their usefulness.

CosSim OrthSim PhonSim

SpIn 0.683 (0.181) 0.773 (0.115) 0.904 (0.100)
SpellEx 0.747 (0.184) 0.773 (0.142) 0.918 (0.107)

Table 4: Mean and standard deviation values (in parenthesis) for different similarity measures.

As Table 4 shows, the mean values of all three similarity measures are higher for the SpellEx data,
containing mostly spelling errors. The similarity measures we investigate here seem therefore more
efficient for capturing the similarity with an intended word for spelling errors rather than for a variety of
different error types. Normalized phonological similarity values are, on average, higher than the values
of the other two similarity measures, but it is hard to draw conclusions from comparing directly the
average values per measure since they are computed differently.

To understand how much additional information the different similarity measures carry compared to
each other, we measure also the Spearman’s correlation (ρ) between them pairwise. We find that all three
similarity measures positively correlate12 with each other, but to a varying degree. Cosine similarity
correlates more with orthographic (ρ = 0.693) than with phonological similarity (ρ = 0.449). Word em-
beddings do indeed incorporate character n-grams which rely on the same type of information as the one
at the basis of orthographic similarity. Phonological similarity correlates less both with cosine and with
orthographic similarity (ρ = 0.449 and ρ = 0.472 respectively). Some types of errors produce, in fact,
an orthographic dissimilarity, but not a phonological one. These include errors with double consonants
and different graphemes mapping to the same phoneme. In Table 5, we provide some examples for pairs
of words with orthographic and phonological forms to illustrate these cases. (Phonological LD values,
omitted from the table are 0 in all cases.)

12For all correlations ρ =< 0.001 holds.
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Error Correction Translation LD Type of error

Orth Phon Orth Phon

bettre b E t r e bättre b E t r e ‘better’ 1 wrong grapheme
tjeck s’ E k check s’ E k ‘check’ 2 wrong grapheme

fortsäta f U t‘ s‘ E: t a fortsätta f U t‘ s‘ E: t a ‘continue’ 1 consonant doubling

Table 5: Examples of errors producing orthographic, but not phonological distance.

As we showed in this section, phonological similarity has the potential to provide useful additional
information when compared to the other two similarity measures. In the next sub-section, we investigate
whether combining orthographic and phonological similarity improves the cosine similarity-based rank
of an intended word for L2 errors.

6.3 The efficiency of the combination of different similarity measures

When using similarity measures for error correction purposes, a commonly adopted option is to choose
the correction candidate that maximizes the different types of similarities, see e.g. Bertaglia and Nunes
(2016). In this section, we investigate whether adding orthographic and phonological similarity can
improve the initial, cosine similarity-based rank of an L2 error correction. We consider only those errors
here for which the correction appeared among the 50 most similar words in the word embeddings trained
on the combination of specialized corpora and blog texts. These errors were 280 in total from the two
data sources. Table 6 presents the average ranks of the corrections and their standard deviation based on
cosine similarity and their combination with the other measures. (A lower rank indicates a higher degree
of similarity.)

CosSim CosSim+OrthSim CosSim+PhonSim CosSim+OrthSim+PhonSim

SpIn 6.91 (10.1) 1.95 (1.71) 2.32 (3.23) 2.61 (3.83)
SpellEx 10.83 (12.99) 2.82 (3.40) 3.54 (5.15) 1.62 (1.54)

Table 6: Average ranks per similarity measures.

On average, the best ranking was obtained by the combination of cosine and orthographic similarity for
the essay errors from SpIn. For the spelling errors, however, incorporating also phonological information
achieved the best results in terms of average ranks.

In the last set of experiments, we explore how often combining cosine similarity with orthographic
and phonological similarity improved, worsened or had no impact on the cosine similarity-based ranking
of the corrections. Table 7 presents the percentage of errors for each of these three types of effects per
similarity measure combination. We find that combining cosine similarity with orthographic or phono-
logical similarity boosts the ranking of the corrections in more that half of the cases. The results from
Table 7 confirm the ones from Table 6: adding phonological similarity information boosts the ranks of
corrections only for the spelling error data, but not for the mixed type of L2 errors from SpIn. Moreover,
relying on more than one similarity measure seems to be more beneficial for the wider spectrum of errors
occurring in learner essays (SpIn) where measure combinations yielded an improvement in ranking on
average for ca. 10% more of the errors than for SpellEx.

7 Conclusion

In this paper, we explored different similarity measures and their interaction for the purposes of cor-
recting errors made by language learners. We presented word vectors created for this purpose using
task-relevant corpora which proved to be more efficient for retrieving corrections than pre-trained em-
beddings based on Wikipedia. Since almost 4 out of 10 times the correction did not appear among
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Improvement No change Drop

CosSim+OrthSim
SpIn 64.86 27.02 8.10

SpellEx 48.99 44.96 6.04

CosSim+PhonSim
SpIn 61.26 22.52 16.21

SpellEx 52.34 34.89 12.75

CosSim+OrthSim+PhonSim
SpIn 63.06 27.02 9.90

SpellEx 53.02 39.59 7.38

Table 7: Effect of combining similarity measures.

the most similar words in the word embeddings, dictionary lookups for candidates within a certain edit
distance would be a useful complement.

Furthermore, we trained a neural g2p system for computing phonological similarity between tran-
scribed errors and their corrections which outperformed previously reported results targeting this task
for Swedish. Although based on a similar type of information, complementing cosine similarity with or-
thographic similarity yielded considerable improvements for the ranking of corrections for a varied type
of L2 errors found in essays. Adding phonological similarity information to cosine similarity, on the
other hand, proved more useful for data containing spelling errors. The similarity measures described
can be easily re-used for other languages with the availability of a lexicon with pairs of orthographic
forms and their phonological transcription and by complementing the list of sounds and their phonolog-
ical features with any potentially missing language-specific sound. The trained word embeddings, the
Swedish g2p system and the implementation of the phonological similarity measure have been made
publicly available to foster code reuse and replicability.

Future work could explore additional methods for both the retrieval of correction candidates for L2
errors and for ranking them. These could include, among others, language models, diacritical symmetry
and a longest common subsequence measure. Moreover, the usefulness of the measures described could
be investigated further with additional evaluation data both for Swedish and for other languages.

Acknowledgements

This work has been carried out within the “SweLL - research infrastructure for Swedish as a second
language” project funded by the Swedish Foundation for Humanities and Social Sciences. We would
also like to thank the Royal Swedish Academy of Letters, History and Antiquities for providing a travel
grant to the first author via the Wallenberg Foundation.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado, Andy

Davis, Jeffrey Dean, Matthieu Devin, et al. 2016. TensorFlow: Large-scale machine learning on heterogeneous
distributed systems. arXiv preprint arXiv:1603.04467.

Lene Antonsen. 2012. Improving feedback on L2 misspellings – an FST approach. In Proceedings of the work-
shop on NLP for Computer-Assisted Language Learning, pages 1–10. Linköping University Electronic Press.
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Abstract

Coreference resolution is the task of grouping together references to the same discourse entity.
Resolving coreference in literary texts could benefit a number of Digital Humanities (DH) tasks,
such as analyzing the depiction of characters and/or their relations. Domain-dependent training
data has shown to improve coreference resolution for many domains, e.g. the biomedical domain,
as its properties differ significantly from news text or dialogue, on which automatic systems are
typically trained. This also holds for literary texts. We therefore analyze the specific properties
of coreference-related phenomena on a number of texts and give directions for the adaptation
of annotation guidelines. As some of the adaptations have profound impact, we also present a
new annotation tool for coreference, with a focus on enabling annotation of long texts with many
discourse entities.

1 Introduction

Noun phrase (NP) coreference resolution is the task of determining which noun phrases in a text or di-
alogue refer to the same discourse entities (Ng, 2010). Resolving noun phrases can benefit downstream
applications revolving around automatic text understanding, such as summarization and textual entail-
ment. Furthermore, coreference resolution is an important stepping stone for analyzing narrative texts, as
many such texts are built around characters – a frequently mentioned discourse entity. Coreference res-
olution therefore has applications within computational literary studies, which applies approaches such
as network analysis, plot sentiment analysis, or distinguishing character types.

Corpora annotated with coreference information often consist of news texts or dialogues, with a few
exceptions mostly in the biomedical and scientific domain. Literary texts differ from news texts and
dialogues to a great extent, as their purpose is not to transfer information as it is the principle task of
a newspaper, but rather to provide poetic descriptions and good storytelling. Literary texts have been
shown to comprise sophisticated language, with a rich vocabulary, direct and indirect speech and a large
set of syntactic constructions (van Cranenburgh and Bod, 2017). For this domain, annotated data are
scarce: To the best of our knowledge, there are only a few corpora containing coreference annotations in
literary texts (cf. Section 2), for which no domain-specific considerations have been described.

This paper aims at providing a theoretical yet empirically-tested basis for the annotation of coreference
information in literary texts. We achieve this by a) analyzing the way coreference-related phenomena
behave differently in literary texts and by b) uncovering new coreference-related phenomena that are
specific to literary texts. To this end, we conduct an annotation study that uses existing annotation guide-
lines as a starting point, and refines them in an iterative process. Our focus here is to provide an analysis
of the properties of literary texts that need to be considered when creating annotation guidelines and
subsequently corpora. On a meta level, this study also gives insights into the dependency of annotation
guidelines on the domain and/or text type.

The paper is structured as follows. Section 2 reviews existing corpora annotated with coreference.
Section 3 presents the literary-specific considerations which are relevant for coreference annotations

This work is licensed under a Creative Commons Attribution 4.0 International Licence.
Licence details: http://creativecommons.org/licenses/by/4.0/.

129



and Section 4 overviews how we propose to update existing annotation guidelines. Section 4 moreover
describes a new annotation tool, which was designed to handle the properties we considered crucial for
coreference annotation in our domain. Finally, we conclude in Section 5.

2 Existing Corpora

Coreference resolution is a highly active NLP area, with many previous annotation efforts, which en-
abled the creation of well-performing automatic resolvers, such as the state-of-the-art neural coreference
resolver by Clark and Manning (2016). Automatic tools are typically trained on the benchmark dataset
OntoNotes, which spans multiple genres (mostly newswire, broadcast news, broadcast conversation, web
text, among others) across three languages – English, Chinese and Arabic (Weischedel et al., 2011). The
English portion contains 1.6M words. Before OntoNotes, the (much smaller) benchmark datasets used
were the MUC (Hirschman and Chinchor, 1998) and ACE (Doddington et al., 2004) corpora. OntoNotes
differs from these two corpora with respect to corpus size and the inclusion of a few more genres. Bench-
mark datasets have of course also been created for other languages, e.g. the Prague Dependency Treebank
(Hajič et al., 2018) for Czech, the ANCORA newspaper corpora of Spanish and Catalan (Martı́ et al.,
2007) or TübA-D/Z (Naumann and Möller, 2006) as a newspaper corpus for German.

Despite the fact that OntoNotes contains multiple genres, it is unsuited as a data basis for other domains
with very different properties. One example for such a domain is the biomedical domain, for which
Gasperin and Briscoe (2008) have shown that the text differs considerably from other text genres such
as news or dialogue, and that the complex nature of the texts is for example reflected in the heavy use of
abstract entities, such as results or variables. As a result, a lot of corpora have been annotated (Castaño
et al. (2002), Cohen et al. (2010), Gasperin et al. (2007), Batista-Navarro and Ananiadou (2011), a.o.)
for this domain. It has been shown that coreference resolution for the biomedical domain benefits a lot
from in-domain training data (Rösiger and Teufel, 2014).

Literary texts also differ a lot from news texts or dialogue. It has been shown to comprise rather
sophisticated language, with a rich vocabulary, direct and indirect speech and a larger set of syntactic
constructions (van Cranenburgh and Bod, 2017). Krug et al. (2015) found that the average sentence
length is larger in novels and the number of pronouns, as well as the percentage of direct speech is
higher. They have also presented a German corpus in which they annotated the syntactic heads of all
coreferent expressions referring to a character, and built a rule-based system to detect them automati-
cally. In contrast to this, we decided to annotate general coreference as not to limit the use cases to DH
tasks revolving around characters, but to also allow experimentation with other research questions. The
German NoSta-D corpus (Dipper et al., 2013) contains a small fraction of Kafka’s Der Prozess (about
7000 tokens). The ARRAU corpus (Poesio and Artstein, 2008; Uryupina et al., to appear) contains a
number of spoken narratives as part of their PEAR domain. However, these texts consist of spontaneous
speech and therefore have very different properties than the rather sophisticated literary texts that we aim
to annotate in our project. The Phrase Detectives project (Poesio et al., 2013), a linguistic annotation
game designed to collect an ever-growing amount of annotated data, also contains English narrative texts
from Gutenberg, including a number of tales and more advanced narratives such as Sherlock Holmes and
Alice in Wonderland. To the best of our knowledge, standard guidelines were applied to all the genres
in this corpus, and no domain-specific considerations were taken into account for the annotation of the
literary texts. We believe that the typically long and often non-standard texts pose a challenge for the
annotation, which should be reflected in the annotation guidelines.

3 Literary-specific phenomena/considerations

This section gives an overview of the characteristics of literary texts which have to be taken into con-
sideration for the annotation of coreference. We discuss phenomena that we encountered during the
on-going annotation of a corpus of literary texts. It comprises thirteen literary texts which stem from
different centuries and cover different literary forms. Johann Wolfgang von Goethe’s The Sorrows of
Young Werther (German title: Die Leiden des jungen Werther) is an epistolary novel from 1774. Our
annotations are based on a revised version of 1787 and include the introductory words of the fictional
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editor as well as the first letters of Werther to his friend Wilhelm. Leo Perutz’ novel From nine to nine
(German title: Zwischen neun und neun, original title: Freiheit) was first published in 1918, the novels
Der Mond lacht1 and Nur ein Druck auf den Knopf 1 followed in 1930.

Moreover, we include the plays Miss Sara Sampson by Gotthold Ephraim Lessing and The Robbers
(German title: Die Räuber) by Friedrich Schiller. As an example of shorter literary texts, we include six
German fairytales by the Brothers Grimm: Frog Prince (German title: Der Frosckönig), Hansel and Gre-
tel (German title: Hänsel und Grethel), Cinderella (German title: Aschenputtel), The Town Musicians of
Bremen (German title: Die Bremer Stadtmusikanten), Rumpelstiltskin (German title: Rumpelstilzchen)
and Rapunzel.

In addition to these German texts, our corpus contains one English text, A Narrative of the Captivity
and Restoration of Mrs. Mary Rowlandson, from the 17th century which describes encounters between
European explorers and settlers and the native peoples (US captivity narratives)2.

Two narrative spheres. Literary narrative texts differ from other text types in the fact that they exist in
“two basic spheres: that of the narrator (and optionally, his narratee) and that of the narrated (individual
narrative agents, events, and states of affairs)” (Margolin, 1991, p. 518). This division leads to two levels
of texts: the textual actual world which is the intersubjective reality of the text and the subjective subdo-
main of the narrator and the narrative agents which include subjective views, beliefs and which leads to
layers of alternative narrated worlds (Margolin, 1991). As a result, narrative texts pose a complex web
of different levels of knowledge of the reader, the narrator and the characters of the fictional world. This
difference in knowledge can give ground to a purposefully deployed play with given and new information
which influences the information structure and thus the operating principle of coreference in a text.

Genericity. While genericity is not specific to literary texts, the rate of switching between the generic
and non-generic use of noun phrases is. The fact that readers readily and often unconsciously connect
instances and classes makes the annotation rather challenging.

(1) DER WIRT. [. . . ] Was liegt mir daran, ob ich es weiß, oder nicht, was Sie für eine Ursache hierher
führt, und warum Sie bei mir im Verborgnen sein wollen? Ein Wirt nimmt sein Geld, und läßt seine
Gäste machen, was ihnen gut dünkt. Waitwell hat mir zwar gesagt, [. . . ]

EN translation: LANDLORD. [. . . ] What is it to me, whether I know or not, what cause has brought
you hither, and why you wish to live in seclusion in my house? A landlord takes his money and lets
his guests do as they think best. Waitwell, it is true, has told me that [. . . ].

In 1, “A landlord” is a generic expression that refers to the class of landlords. Given the context it is
clear, however, that the landlord (who is uttering this sentence), also talks about himself.

(2) [Sie]1 ließ [[ihren]2 Regenschirm]3 fallen. [Jeder junge Mann]4 wird in einem solchen Fall
blitzschnell nach [dem Schirm]5 greifen und [ihn]6 [der Dame]7 überreichen. Und [die Dame]8
bedankt sich vielmals. Aber diesmal geschah etwas Unerhörtes. [Stanislaus Demba]9 ließ [den
Schirm]10 liegen.

[She dropped [[her]2 umbrella]3. [Every young man in such a situation]4 would catch [the
umbrella]5 blazingly fast and hand [it]6 on to [the lady]7. And [the lady]8 would thank [him]8
a great many times. But this time, something outrageous happened. [Stanislaus Demba]9 left [the
umbrella]10 on the ground.

A similar case is shown in 2, yet a bit more complex. Mentions 1 and 2 refer to a concrete individual,
whose umbrella (mention 3) falls down. The following sentence switches to a generic reading (signified
by mention 4). The definite noun phrase 5 also needs to be understood as generic, and thus starts a new
coreference chain, similarly to the entity lady (7 and 8). The last sentence again switches to the individual
level, and describes that a concrete individual (9) does not pick up the umbrella introduced in 3.

1Published in: Herr, erbarme dich meiner. Not translated into English.
2Made available under Creative Common licence by EEBO-TCP which is a partnership between the Universities of Michi-

gan and Oxford and the publisher ProQuest to create accurately transcribed and encoded texts based on the image sets published
by ProQuest via their Early English Books Online (EEBO) database (http://eebo.chadwyck.com).
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Entity development. One of the key characteristics of narratives is that change takes place: The (fic-
tional) world changes, and so do the characters that reside in it. This does not only include the name of
marrying (mostly female) characters, but also promotions (e.g., in Goethe’s Elective Affinities, Captain
Otto is promoted to major after half the book, and henceforth only referred to as ‘Major’). In such cases
where the name of a character or his profession changes, one can argue that the referent probably stays
the same. However, characters can also change more drastically, e.g. turning evil or good, where it is
then questionable whether the referent remains the same. Another interesting issue is the appearance of
dead or unreal characters: Are dreamed and fictional but real characters the same entity? Is the ghost of
Hamlet’s father the same entity as Hamlet’s father?

A more frequent issue is the creation of groups, and plural references to such groups. In Act II, Scene
2 of Schiller’s The Robbers, a group of six different characters argue. They decide on whether to become
robbers but are divided. Various coalitions are formed, and their exact composition is unclear in many
cases.

Text knowledge. Characters in narratives simulate individual entities and thus have varying states of
knowledge. For plays, mix-ups are an important plot element for an entire genre with a tradition of over
2000 years (e.g., Electra unknowingly meets her brother in Sophocles’ play, written about 400 BCE).
A lot of the tension in these cases comes from the fact that the reader or audience indeed realizes the
truth. Some crime novels also reveal the identity of the perpetrator early on. It is an important question
whether the annotations reflect characters’ or readers’ knowledge, and how much text knowledge one
can assume in readers. In our guidelines, we have decided to annotate from the reader’s point of view. To
deal with the fact that some of the novels have been read by the annotators, the text knowledge is fixed
to the knowledge of the annotator after one read-through. Another stylistic device which is sometimes
used in literary text is gender confusion. Gender is typically an important marker in pronouns which aids
the resolution to the correct noun phrase. Hirst (1981, p. 10) cites an example from Even Cowgirls get
the blues (Robbins, 1976), where a character called The Countess turns out to be male after a couple of
pages by implicitly using the pronoun he for referencing him.

World knowledge. In historic literary texts, we have the problem that contemporary annotators do
not have the same knowledge as the author or typical reader at the time of the works’ publication. To
overcome this, we try to approximate the world knowledge of a typical reader: wherever the annotator
gets the feeling that something is assumed to be common knowledge, he/she is allowed to look up the
missing facts to derive the right references.

(3) HERMANN. [. . . ]Da [Karl] auf der Welt nichts mehr zu hoffen hatte, zog ihn der Hall von
[Friederichs]1 siegreicher Trommel nach Böhmen. Erlaubt mir, sagte er [zum großen Schwerin]2,
da ich den Tod sterbe auf dem Bette der Helden [. . . ].

EN translation: For Karl had nothing to hope for in the world, he was drawn to Bohemia to the
sound of [Friederich’s]1 triumphant drums. Allow me, he said to [the Great Schwerin]2 that I might
die on the beds of heroes ...

For example in 3, “zum großen Schwerin” refers to ‘Kurt Christoph Graf von Schwerin’, an important
and popular general under Friedrich II. This is obvious for contemporaries, but not for today’s readers.
From discourse context alone, an annotator might annotate 1 and 2 as co-referent, which is not in line
with the author’s (presumed) intentions.

Lexical variation. One of the main properties of literary texts is the high amount of lexical variation
and paraphrasing as a stylistic means. As a result, it is sometimes difficult to decide where coreference
ends and bridging begins, such as in 4, where Verbindung refers to both the wedding (event) and marriage
(state):

(4) MELLEFONT. Mit Unrecht tadelt sie die Verzgerung [einer Zeremonie] [. . . ].
SARA. Neue Freunde sollen die Zeugen [unserer Verbindung] sein? Grausamer [. . . ]
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MELLEFONT. Aber überlegen Sie denn nicht, Miss, dass [unserer Verbindung] hier diejenige Feier
fehlen würde, die wir ihr zu geben schuldig sind?

EN translation: MELLEFONT. Unjustly, she condemns the delay of [a ceremony].
SARA. New friends shall be the witnesses of [our union]?
MELLEFONT. But bear in mind, Miss, that [our bond] would be lacking the festivity, which we are
responsible to give.

Text length. Whereas a discourse in a newspaper is typically rather short, a discourse in literary texts
can span hundreds of pages, which poses a challenge for the annotators. For pronominal reference this
is not problematic, as pronominal coreference is limited with respect to the attention span of the reader
in every text, i.e. the author chooses a pronoun when he/she can be sure that the reader remembers
the referent/antecedent. Cases of nominal coreference, however, might now span hundreds of pages.
One example for a text which is broken up into different planes and surrounded by a frame story is the
appearance of Scheherazade in One Thousand and One Nights, where we observe co-references across
very long distances.

Obviously, annotators cannot remember every discourse entity that appeared in the first chapter while
reading the last chapter. Depending on the importance of the entity for the narrative, co-reference might
still be established with additional means by the authors (e.g., the gun that Werther uses for shooting
himself is introduced early on). To allow annotation of long coreference chains, the annotators have
access to all previously annotated entities and can for example additionally search the text for a certain
headword (c.f. Section 4.2 for the annotation tool we developed).

Idiomatic expressions. Idiomatic expressions are arguably more frequent in literary texts than in news-
paper text. While they are generally considered non-referring expressions, it is sometimes difficult to
decide which of the expressions are idiomatic expressions and which are referring:

(5) ‘mit verzerrtem Gesicht’ (with a twisted face)

(6) ‘Gott sei dank’ (thank God)

In the context of (5), the face is mentioned regularly and an established discourse referent. The ‘twisted
face’ is used an idiomatic expression, but can also be understood literally in this context. In (6) this
distinction probably depends on the religious beliefs of the person.

Sub-token annotation. While it is typically assumed that pre-modifiers in compounds can only be
picked up again in case they are proper nouns (cf. for example in the OntoNotes guidelines), this is
not always true in literary texts, as in 7. Additionally, for German, we are faced with the problem that
compounds are not multi-words, i.e. they are not separated by blanks. As a result, the word level is
sometimes unsuited as an annotation level. Our new tool thus also allows the annotation of mentions
within tokens.

(7) Eine schlechte Vorbereitung, eine [trost]suchende Betrübte zu empfangen. Warum sucht sie [ihn]
auch bei mir?
A bad preparation for receiving one who seeks [comfort]. But why does she seek [it] from me?

True ambiguity A basic assumption made in many NLP tasks is that there is a ground truth, thus one
label that is the correct label when annotating certain phenomena in data. In our corpus, however, we
encounter a kind of disagreement between annotators that is not a mistake resulting from the incorrect
application of the annotation guidelines but from diverging interpretations of the text. These ambiguities
can be used intentionally as a stylistic device in literary texts. Such ambiguities should be preserved in
the annotation since they are interesting for literature analysis. An example for how different readings
can lead to such a disagreement in the annotation of coreference comes from The Sorrows of Young
Werther. In (8), the chosen antecedent of the abstract anaphor Das (mention 3) was different in the
two annotations: one annotator chose a non-nominal-antecedent (mention 1), whereas the other chose
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a shorter, nominal antecedent (mention 2). Another disagreement occurred in the resolution of seiner
selbst (mention 6). One annotator assigned it to the chain with mention 5 (the feeling heart). This
reflects a rather poetic interpretation where the feeling heart enjoys the beauty of the garden. Annotator
2 chose the Count of M. (mention 4) as the antecedent which enjoys the beauty of the garden. Note that
in the English translation this ambiguity is not preserved.

(8) [[Die Stadt selbst ist unangenehm, dagegen rings umher [eine unaussprechliche Schönheit der
Natur]1]2. [Das]3 bewog [den verstorbenen Grafen von M.]4 seinen Garten auf einem der Hügel
anzulegen, die mit der schönsten Mannichfaltigkeit sich kreuzen, und die lieblichsten Thäler bilden.
Der Garten ist einfach, und man fühlt gleich bei dem Eintritte, daß nicht ein wissenschaftlicher
Gärtner, sondern [ein fühlendes Herz]5 den Plan gezeichnet, das [seiner selbst]6 hier genießen
wollte.

[[The city itself is unpleasant, whereas round and round there is [an inexpressible beauty of
nature]1]2. [This]3 made [the late Count of M.]4 to build his garden on one of the hills, which
have cross-bred with the most beautiful diversity, and which make up lovely valleys. The garden
is simple, and one can feel it instantly that the plans were not made by a scientific gardener, but [a
feeling heart]5, which wanted to enjoy [itself]6.

4 Annotation

4.1 Guidelines

Our annotation guidelines are based on the NoSta-D guidelines.3 In the following, we outline the differ-
ences and extensions between this template and our annotation guidelines. These differences are mainly
motivated by factors explained in Section 3. The guidelines have been tested and clarified in an iterative
process through parallel annotations. Cases in which differences in the double annotations appeared were
discussed. When necessary, the guidelines were modified. In the following, we describe in which points
we deviate from the NoSta-D guidelines.

Annotation of entity clusters instead of binary links. We do not annotate links between mentions,
but rather assign mentions to entities. This entity-centric view will be explained in more detail in Section
4.2.

World and text knowledge. As explained above, the world and text knowledge poses a challenge
for the annotation. To standardize the annotations, we set the text knowledge to the knowledge of the
annotators after one thorough read-through. Temporally developing changes throughout the text are
fixed to the knowledge at the end of a text. As for world knowledge, we allow annotators to look up
relevant knowledge, which is presented in a way that we can assume that the expression refers to given
information (see the example about zum großen Schwerin, above).

Genericity. In contrast to the NoSta-D guidelines, we do not annotate “bound” relations but introduce
generic entity types instead. Generic chains can only contain generic entities and should not be mixed
with non-generic entities.

No annotation of link type. As we assign mentions to entity clusters, we do not annotate the link type
(e.g. anaphoric, coreferent, cataphoric).

No singletons. In NoSta-D, all mentions are marked, and at the end of the annotation process, single-
tons are filtered out. We do not initially mark all NPs as potential chain members but manually determine
the candidates during the annotation process (and after the text has been read in its full length before the
annotation).

3https://www.linguistik.hu-berlin.de/de/institut/professuren/korpuslinguistik/
forschung/nosta-d/nosta-d-cor-1.1.
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Figure 1: Screenshot of the annotation tool, showing the text left and the annotated entities on the right

Non-nominal antecedents. We allow non-nominal antecedents in the case of event references. This
means that in addition to NPs, VPs, clauses as well as several sentences can be members of a chain in
some cases.

(9) I love [baking cakes]. [It] is an activity I used to do with my mom.

Text/document length. We annotate chains that span the entirety of a book, instead of considering
chapters or other sub-divisions as documents. This way, we can cover long dependencies that are e.g.
spanning frame stories.

Groups/aggregated coreference. We annotate group relations if two members of a group appear apart
from each other in a text and if they are subsequently referred to by a mass pronoun subsuming them as
in the example below, where mention 3 refers to mention 1 and mention 2 (John and Paul).

(10) [John]1 cut the tomatoes and [Paul]2 the carrots. [They]3 liked cooking together.

Idiomatic expressions. We do not annotate NPs in an idiomatic expression:

(11) [the ball] is in your court (not-annotated) vs. [the ball] bounced off the ground (annotated if coref-
erent with another mention)

Lexical variation. We distinguish cases of bridging from coreferent anaphora. Cases of bridging are
not annotated. As mentioned above, the distinction can be tricky in literary texts, and the resolution of
individual cases is left to the annotators.

4.2 Annotation tool
The annotations have been produced with a new annotation tool that we make available with an open
source license (Apache 2.0).4 The tool is optimized for fast annotations with a keyboard and departs
from existing coreference annotation tools in a number of ways:

Coreference annotations are conceptualized as equivalence sets. All mentions that belong to one
coreference chain form a set, and are treated equally. The tool does not support the annotation of relations
between mentions (i.e., we cannot annotate a binary relation as cataphoric, for instance). Annotating a

4https://github.com/nilsreiter/CorefAnnotator.
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mention into a chain adds it directly to the set. Each entity is represented by a color, and can optionally
be named. All mentions that belong to the same entity are underlined with the same color in the text
view, multiple annotations on the same span result in multiple underlines on different levels.

We also make no assumptions on related tasks. Arbitrary text spans can be annotated as mentions,
including sub-token annotations (by default, however, partial token annotations are expanded to the full
token). Internally, all annotations are represented as stand-off annotation, using the UIMA framework5

for text and annotation representation. This allows flexible import and export in a variety of formats (e.g.,
CoNLL 2012 [given token and sentence boundaries], TEI/XML [as long as the result is valid XML]).

The general usage philosophy is to support keyboard based annotation. Text spans can be selected
with the keyboard, and the appropriate entity can be searched for. In addition, selected text spans can be
dragged onto the entity. Fast, large scale annotation can be performed via the search function. It supports
regular expressions, and all or some found spans can be annotated as a new or existing entity with a
single click or press. We are currently exploring ways to represent conflicting/diverging annotations.

If the texts contain appropriate annotation (e.g., stage directions or headings), they can be used to
control the formatting (bigger headings and italic stage directions, for instance). This makes reading and
annotating more accessible, in particular for long texts. The annotation tool is fully localized in English
and German, and can be localized to more languages.

5 Conclusion and Future Work

We have presented an analysis of coreference-related phenomena that we encountered during an annota-
tion study conducted on literary texts. Based on these observations, we propose a number of adaptations
to the annotation guidelines. We show that a domain can have a considerable influence on linguistic phe-
nomena and that this has to be reflected in the guidelines to adequately capture them in the annotation.
To fully incorporate the peculiarities of this domain and the potential needs of scholars using coreference
as an analysis step, deeper changes to the annotation workflow are required: Literary texts may contain
references to discourse entities that are intentionally ambiguous. Making a majority-based decision is
certainly possible, but does not do justice to the complexities of language use. This has already been
observed for annotation in the area of narratology (Gius and Jacke, 2017), but we can showcase it also
for ‘classic’ NLP annotation layers.

Therefore, it will be required to cope with annotated corpora that contain multiple, conflicting an-
notations, which has severe implications in several areas: a) A number of conceptual questions arise
regarding representation in file formats. E.g., do we take annotators’ decisions as a whole or do we break
them apart into smaller units? b) How do we evaluate annotations properly? Measuring inter-annotator
agreement quantitatively assumes that a single ground truth is achievable, which just might not be the
case here. c) What does this entail for the way method development works in computational linguistics?
How can we use such data sets for training/testing purposes?

As a next step, we will employ the annotation guidelines sketched above to create a corpus of a
selection of German literary texts. This corpus can be made openly available and will contain texts
written by Goethe, Perutz, as well as several folktales.
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Abstract 

We present results from a project on sentiment analysis of drama texts, more concretely the 
plays of Gotthold Ephraim Lessing. We conducted an annotation study to create a gold standard 
for a systematic evaluation. The gold standard consists of 200 speeches of Lessing’s plays and 
was manually annotated with sentiment information by five annotators. We use the gold stand-
ard data to evaluate the performance of different German sentiment lexicons and processing 
configurations like lemmatization, the extension of lexicons with historical linguistic variants, 
and stop words elimination, to explore the influence of these parameters and to find best prac-
tices for our domain of application. The best performing configuration accomplishes an accu-
racy of 70%. We discuss the problems and challenges for sentiment analysis in this area and 
describe our next steps toward further research.    

1 Introduction 

As drama provides a number of structural features, such as speakers, acts or stage directions, it can be 
considered a literary genre that is particularly convenient and accessible for computational approaches. 
Accordingly, we find a number of quantitative approaches for the analysis of drama in general (cf. Fucks 
and Lauter, 1965; Solomon, 1971; Ilsemann; 2008), but also with a focus on the analysis of emotion 
(Mohammad, 2011) and sentiment (Nalisnick and Baird, 2013). More concretely, Mohammad (2011) 
uses the NRC Emotion Lexicon (Mohammad and Turney, 2010) to analyze the distribution and the pro-
gression of eight basic emotions in a selection of Shakespeare’s plays. Nalisnick and Baird (2013) focus 
on speaker relations to analyze sentiment in Shakespeare’s plays.  

The goal of our study is to extend these existing approaches to computational sentiment analysis by 
taking into account historic, German plays. Further, we address some of the limitations of the current 
research on sentiment analysis in drama (Mohammad, 2011; Nalisnick and Baird, 2013), e.g. the ad hoc 
usage of sentiment lexicons without any pre-processing steps or other adjustments (Mohammad, 2011; 
Nalisnick and Baird, 2013). Our main contribution to the field of sentiment analysis for drama is the 
systematic evaluation of lexicon-based sentiment analysis techniques for the works of the German play-
wright Gotthold Ephraim Lessing. The evaluation takes into account a number of existing sentiment 
lexicons for contemporary German language (Võ et al., 2009; Clematide and Klenner, 2010; Mohammad 
and Turney, 2010; Remus et al., 2010; Waltinger, 2010) and various related NLP techniques, such as 
German lemmatizers, stop words lists and spelling variant dictionaries. The various combinations of 
existing lexicons and NLP tools are evaluated against a human annotated subsample, which serves as a 
gold standard. 

2 Related Work: Sentiment Analysis in Literary Studies 

As literary scholars have been interested in the emotions and feelings expressed in narrative texts for 
quite some time (cf. Winko, 2003; Mellmann, 2015), it is not surprising that computational sentiment 
analysis techniques have found their way into the realm of literary studies, for instance with Alm and 
Sproat (2005) and Alm et al. (2005), who examined the sentiment annotation of sentences in fairy tales. 
Other examples include Kakkonen and Kakkonen (2011), who used lexicon-based sentiment analysis to 
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visualize and compare the emotions of gothic novels in a graph-based structure. Ashok et al. (2013) 
found a connection between the distribution of sentiment bearing words and the success of novels. Els-
ner (2012) included sentiment analysis to examine the plot structure in novels. In the same area, Jockers 
(2015) authored several blog posts about the use of sentiment analysis for the interpretation and visual-
ization of plot arcs in novels. Reagan et al. (2016) extended Jockers work and use supervised as well as 
unsupervised learning to identify six core emotional arcs in fiction stories. Jannidis et al. (2016) used 
the results of lexicon-based sentiment analysis as features to detect “happy endings” in German novels 
of the 19th century. Heuser et al. (2016) used crowdsourcing, close reading and lexicon-based sentiment 
analysis to connect sentiments with locations of London in 19th century novels and visualize the infor-
mation on maps of historic London. Kim et al. (2017) used lexical emotion features as part of a bigger 
feature set to successfully predict the genre of fiction books via machine learning. Buechel et al. (2016) 
identified the historical language of past centuries as a major challenge for sentiment analysis and there-
fore constructed a sentiment lexicon for the use case of 18th and 19th century German to analyze emo-
tional trends and distributions in different genres. 

3 Evaluation Design 

3.1 Corpus 

In order to investigate the practicability of lexicon-based sentiment analysis techniques for historical 
German drama, we gathered an experimental corpus of twelve plays by Gotthold Ephraim Lessing, 
which comprises overall 8,224 speeches. The plays were written between 1747 and 1779. Eight of the 
dramas are attributed to the genre of comedy while three are tragedies and one is referred to as dramatic 
poem. The most famous plays of the corpus are “Nathan der Weise” and “Emilia Galotti”. The average 
length of the speeches of the entire corpus is 24.15 words; the median is 13 words, which shows that the 
corpus consists of many rather short speeches. The longest speech consists of 775 words. Also note that 
the plays have very different lengths, with the shortest consisting of 183 and the longest of 1,331 
speeches. All texts in our corpus are available in XML format and come with structural and speaker-
related information for the drama text1. 

3.2 Gold Standard Creation 

To be able to assess the quality of results from our evaluation study of lexicon-based approaches to 
sentiment analysis in Lessing’s plays, we created a human annotated gold standard for 200 speeches. It 
is important to note that we were primarily interested in the overall sentiment of a self-contained char-
acter speech, as speeches are typically the smallest meaningful unit of analysis in quantitative ap-
proaches to the study of drama (cf. Ilsemann, 2008; Wilhelm, Burghardt and Wolff, 2013; Nalisnick and 
Baird, 2013). To create a representative sample of the 200 speeches, several characteristics of the corpus 
were taken into consideration: First, we only selected speeches longer than 18 words, which represents 
-25% of the average word length of speeches of the corpus, as we wanted to eliminate very short 
speeches that may contain no information at all. In related work, very short text snippets have been 
reported to be problematic for sentiment annotation, due to the lack of context and content (Alm and 
Sproat, 2005; Liu, 2016, p. 10). From the remaining speeches, we randomly selected speeches so that 
the proportion of speeches per drama in our gold standard represents the proportion per drama of the 
entire corpus, i.e. there are proportionally more speeches for longer dramas. We reviewed all speeches 
manually and replaced some speeches that consisted of French and Latin words, since those speeches 
might be problematic for our German speaking annotators. The final gold standard corpus had an aver-
age length of 50.68 words per speech and a median of 38 with the longest speech being 306 words long. 

Five annotators, all native speakers in German, annotated the 200 speeches. During the annotation 
process, every speech was presented to the annotators with the preceding and the subsequent speech as 
contextual information. For the annotation scheme, we used two different approaches, which are ori-
ented toward similar annotation studies (Bosco et al., 2014; Saif et al., 2014; Momtazi, 2012, Takala et 
al., 2014). First, annotators had to assign each speech to one of six categories: very negative, negative, 
neutral, mixed, positive, very positive. We refer to this annotation as differentiated polarity. In a second 
step, participants had to choose a binary polarity: negative or positive. This means, if annotators chose 
                                                        
1 All electronic texts were gathered from the TextGrid Repository (https://textgridrep.org/repository.html). 
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neutral or mixed in the first step, they had to choose a binary polarity based on the overall tendency. 
With the first annotation, we wanted to gather some basic insights into sentiment distributions. However, 
several studies have shown that the agreement is very low for differentiated schemes like this (Momtazi, 
2012; Takala et al., 2014); therefore, we also presented the binary annotation. Figure 1 illustrates the 
annotation scheme. 

Figure 1. Example annotation 
 

All five annotators had two weeks of time to conduct the entire annotation of 200 speeches, inde-
pendently from each other. According to the annotators, the task took around five hours. An analysis of 
the differentiated annotations shows that the majority of annotations are negative or very negative (47%), 
while positive or very positive annotations are rather rare (16%). The results of the annotation also show 
that mixed (23%) and neutral (14%) annotations are a relevant annotation category as well. For the 
binary annotation, 67% of the annotations are negative and 33% are positive. 

We analyzed the agreement of the annotations with Krippendorff’s α (Krippendorff, 2011) and the 
average percentage of agreement of all annotator pairs (APA). Table 1 summarizes the results for the 
agreement of both annotation types. 

 
 Krippendorff’s α APA 

Differentiated polarity 0.22 40% 

Binary polarity 0.47 77% 

 
Table 1. Measures of agreement 

 
Krippendorff’s α and the average percentage of agreement of all annotator pairs point to a low agreement 
for the differentiated polarity. The degree of agreement is moderate for the binary polarity according to 
the interpretation of Landis and Koch (1971). 

Since the degree of agreement is considerably higher for the binary polarity, we only regarded the 
binary polarity for the construction of our gold standard corpus. We selected the polarity chosen by the 
majority (>=3) of the annotators as the final value in our gold standard. This approach leads to 61 
speeches being annotated as positive and 139 as negative. The entire gold standard corpus with all 
speeches, the final annotations and all other annotation data are publicly available2.  

3.3 Parameters of Evaluation 

The results of automatic sentiment analysis approaches are influenced by a number of parameters. To 
find out which configuration of parameters yields the best results for historic plays in German language, 
we evaluated the following five variables: 
 

                                                        
2 https://docs.google.com/spreadsheets/d/1f72hS2WDRBOrxzSY_tsM_igChG2bvxYTyMVZP6kOnuk/edit#gid=0 
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i) Sentiment lexicon 
A sentiment lexicon is a list of words annotated with sentiment information. These words are also re-
ferred to as sentiment bearing words (SBWs). We identified five general purpose sentiment lexicons for 
German and evaluated their performance: SentiWortschatz (SentiWS, Remus et al., 2010), the Berlin 
Affective Word List (BAWL, Võ et al., 2009), German Polarity Clues (GPC; Waltinger, 2010), the Ger-
man translation of the NRC Emotion Lexicon (NRC, Mohammad and Turney, 2010) and a sentiment 
lexicon by Clematide and Klenner (2010), further referred to as CK. Note, that all of the sentiment 
lexicons have different sizes and were created in different ways. They also differ in their overall com-
position: Some have simple binary polarity annotations, i.e. a word is either positive or negative. We 
refer to this kind of annotation as dichotomous polarity. Others have additional polarity strengths, which 
are values on a continuous scale e.g. ranging from -1 (very negative) to +1 (very positive) (SentiWS, 
CK, BAWL). Most of the lexicons consist of the base forms of words (lemmas), but some are manually 
appended with inflections of the words (SentiWS, GPC). Besides the lexicons, we also created and 
evaluated a combination of all five lexicons. To do this, we simplified the basic idea of sentiment lexicon 
combination by Emerson and Declerk (2014), i.e. we merged all words of all lexicons. If words were 
annotated ambiguously, we selected the polarity annotation that occurred in the majority of lexicons. 
For this process, we only regarded the dichotomous polarity of the lexicons. 
 
ii) Extension with linguistic variants 
The development of the aforementioned lexicons is based on modern online lexicons (Võ et al., 2009), 
corpora of product reviews (Remus et al., 2010), news articles (Clematide and Klenner, 2010) and the 
usage of crowdsourcing (Mohammad and Turney, 2010). Therefore, the lexicons were rather created to 
be used for contemporary language than for poetic German language of the 18th century. Some early 
studies in this area already identified the problem of historical language for contemporary sentiment 
lexicons (Alm and Sproat, 2005; Sprugnoli et al., 2016; Buechel et al., 2016). To examine this problem, 
we used a tool of the Deutsches Textarchiv (DTA) that produces historical linguistic variants of German 
words, e.g. different orthographical variants a word had throughout history (Jurish, 2012). The tool also 
provides historical inflected forms of the words. We used this tool to extend the sentiment lexicons as 
we gathered all historical linguistic variants for each word of every lexicon and added those words to 
the lexicon with the same polarity annotation of the base. This procedure increased the size of the lexi-
cons to a large degree, since for every orthographic variant all inflections were added (example: size of 
BAWL before extension: 2,842; after extension: 75,436). However, one of the dangers of this approach 
is the possible addition of words that are not really sentiment bearing words, which may skew the po-
larity calculation. Further, the DTA tool has not yet been evaluated for this specific use case, so the 
quality of the produced variants is unclear. Hence, we evaluate the performance of the lexicons in their 
basic form (noExtension) as well as with the extension (dtaExtended). 
 
iii) Stop words lists 
We also analyzed the influence of stop words and frequently occurring words of the corpus on the sen-
timent calculation. Saif et al. (2014) showed that the elimination of these words can have a positive 
influence on performance of sentiment analysis in the machine learning context. Stop words and fre-
quent words might skew sentiment calculation of lexicon-based methods as well, since some of the 
lexicons actually contain stop words. There are also some highly frequent words in our corpus that are 
listed in many of the lexicons as sentiment bearing words, but are actually overused because of the 
particular language style of the 18th century. We use different types of stop words lists to explore the 
influence of those types of words:  

• a basic German stop word list of 462 words (upper and lower case; standardList),  
• the same list extended by the remaining 100 most frequent words of the entire Lessing corpus 

(extendedList), 
• and the same list manually filtered by words that are indeed very frequent, but are still sentiment 

bearing (e.g. Liebe/love; filteredExtendedList).  
 
Besides, we also evaluate the condition to use no stop words list at all (noStopWords). 
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iv) Lemmatizers 
We evaluate lemmatization by using and comparing two lemmatizers for German: the treetagger by 
Schmidt (1995) and the pattern lemmatizer by De Smedt and Daelemans (2012). Many of the lexicons 
only include base forms of SBWs, so lemmatization is a necessary step for those lexicons to identify 
inflections. However, due to the general problems of automatic lemmatization in German (Eger et al., 
2016) and the special challenges historical and poetic language pose to automatic lemmatizers, mistakes 
and problems might occur that distort the detection of SBWs. Besides the general comparison between 
the two lemmatizers and no lemmatization at all, we also compared the automatic lemmatization with 
the manually added inflections some lexicons contain and the extension with inflections by the tool of 
the DTA. 
 
v) Case-sensitivity 
Related studies with lexicon-based methods typically lowercase all words for reasons of processing and 
normalization (Klinger et al., 2016). We wanted to explore if case affects the evaluation results (caseSen-
sitive vs. caseInSensitive), as several words in German have a change in meaning depending on case, 
especially with regard to their sentiment. 

3.4 Sentiment Calculation 

To calculate the sentiment of a speech we employed a simple term counting method, often used with 
lexicon-based methods (Kennedy and Inkpen, 2006). The number of positive words according to the 
used configuration of parameters is subtracted by the number of negative words to get a general polarity 
score. If this score is negative, the speech is regarded as negative, otherwise as positive. If a sentiment 
lexicon contains polarity strengths for the SBWs, we additionally used these values in a similar way to 
calculate a sentiment score. Therefore, for these lexicons we calculated and compared two scores: one 
for dichotomous polarity and one for polarity strengths. 

4 Results 

In this chapter we present results from our evaluation of all possible combinations of the previously 
described parameters in comparison to the human annotated gold standard data. We used well-estab-
lished metrics for sentiment analysis evaluation (Gonçalves et al., 2013). Our main metric is accuracy, 
which is the proportion of the correctly predicted speeches of all speeches. To get a more holistic view 
of the results, we also looked at recall, precision and F-measures. We furthermore analyzed the metrics 
for positive and negative speeches separately. Since our gold standard has an overrepresentation of neg-
ative speeches, misbehaviors of configurations like a general prediction of negative speeches would 
otherwise go undetected. We use the random baseline, the majority baseline and agreement measures as 
benchmarks. Because of the unequal distribution, the random baseline is set to 0.525 and the majority 
baseline is set to 0.695 for the accuracy. Mozetic et al. (2016) propose the average percentage of agree-
ment of all annotator pairs (APA, 77%) as baseline for sentiment analysis evaluations. We also take this 
baseline into account when assessing the performance. 

As we analyzed more than 400 different configurations, we are not able present all evaluation results 
in detail in this paper. However, an evaluation table of the best configurations ordered by accuracy is 
available online3. Note that we removed configurations from the table that tend to predict almost all 
speeches as negative and therefore accomplish accuracies close to the majority baseline, but are actually 
flawed. Figure 2 shows a snippet of the top part of the table. 

 

                                                        
3 https://docs.google.com/spreadsheets/d/1yOv0U99SDI0dFUkctJcGmTXHSxcRByRJihnqRhEIkNY/edit#gid=0 
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Figure 2. Table snippet of the results of the evaluation of all configurations 
 

Table 2 reduces the results to the best configurations of every single sentiment lexicon and shows the 
corresponding accuracies as well as F-measures for both polarity classes (positive/negative). 

 

lexicon exten-
sion 

lemmati-
zation stop words case accu-

racy 
F-Posi-

tive 
F-Nega-

tive 
SentiWS 
(Polarity 

Strengths) 

dtaEx-
tended treetagger noStopWords caseInSensitive 0.7 0.46 0.79 

Combined 
Lexicon 

dtaEx-
tended treetagger noStopWords caseInSensitive 0.68 0.44 0.77 

CK 
(Polarity 

Strengths) 

dtaEx-
tended treetagger enhancedFil-

teredList caseSensitive 0.6 0.55 0.65 

GPC dtaEx-
tended pattern enhancedFil-

teredList caseSensitive 0.6 0.72 0.42 

NRC dtaEx-
tended treetagger noStopWords caseInSensitive 0.53 0.44 0.59 

BAWL dtaEx-
tended treetagger noStopWords caseInSensitive 0.49 0.50 0.46 

 
Table 2. Best configurations per sentiment lexicon 

 
In the following we summarize the main findings of our evaluation study: 
• The overall best performance is delivered by the SentiWS lexicon and the combined lexicon if 

the remaining parameters are the same 

• When a lexicon has polarity strengths, calculation with those always outperform calculations with 
the dichotomous polarity of the lexicon. Apart from BAWL, the general rule is that lexicons with 
polarity strengths (SentiWS, CK) in general outperform all other lexicons with only dichotomous 
polarities (GPC, NRC) 

• The extension with historical linguistic variants consistently yields the strongest performance 
boost for all lexicons. The extension with historical inflections is better than just automatic lem-
matization. 
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• Stop words lists have differentiated influences. Some lexicons (e.g. GPC) tend to excessive pre-
diction of one polarity class, because of stop words and frequent words. However, this does not 
always lead to worse accuracies but in-depth word analysis shows incorrect sentiment assign-
ments to words. We therefore recommend the usage of stop word lists when lexicons contain stop 
words or when stop words are generated by means of additional NLP processes. The best rated 
lexicons (e.g. SentiWS) are not influenced by stop words at all. 

• Both lemmatizers perform almost equally good. A detailed analysis of the results shows that both 
lemmatizers have problems with the historical language of the speeches. However, for lexicons 
that consist only of base forms, lemmatization leads to a better overall performance. The results 
for lexicons with manually added inflections show that those inflections work better than the 
automatic lemmatization. For many lexicons, a combination of both yields better results. 

• Case-sensitivity does not have an effect on the overall quality of sentiment evaluations in our test 
corpus. 

The best overall performance is accomplished with the polarity strengths of the SentiWS lexicon ex-
tended with historical linguistic variants, lemmatization via treetagger, no stop words lists and ignoring 
case-sensitivity. The accuracy for this performance is 0.705 with 141 speeches correctly predicted. This 
result is over the benchmark of the random and majority baseline but below the average percentage of 
agreement of the annotator pairs (77%). 

5 Discussion and Outlook 

We made several contributions to the research area of sentiment analysis in historical drama texts, one 
being the creation of an annotated corpus of drama speeches. However, there are some limitations con-
cerning the annotation study: We identified low to mediocre levels of agreement among the annotators 
for the polarity annotation. The low level of agreement for annotation schemes with multiple categories 
is also found in several other research areas (Momtazi, 2012; Takala et al., 2014). The mediocre levels 
of agreement for the binary annotation are in line with similar research in the field of literary texts (Alm 
and Sproat, 2005; Alm et al., 2005) and texts with historical language (Sprugnoli et al., 2016). However, 
compared to other types of text, the agreement for the binary polarity is rather low (e.g. Thet et al., 2010; 
Prabowo and Thelwall, 2009). Sentiment annotation of literary texts seems to be a rather subjective and 
challenging task. Our annotators also reported difficulties due to the lack of context and general prob-
lems in understanding the poetic and historical language of Lessing. Note that many of the challenges 
very likely occurred because the annotators were non-experts concerning the drama texts. Some feed-
back of the annotators also points to the possibility that the used annotation schemes were not sufficient 
or representative for the application area of sentiment in historical plays. Another limitation is the small 
size of the corpus: 200 speeches amount to 2% of the speeches of our original Lessing corpus. While 
such small sample sizes are not uncommon for sentiment annotation of literary texts (Alm and Sproat, 
2005), they certainly lessen the significance of the results. To address some of the mentioned limitations, 
we are planning to conduct larger annotation studies with trained experts in the field of Lessing, more 
speeches and a more sophisticated annotation scheme. 

Our major contribution is the systematic evaluation of different configurations of lexicon-based sen-
timent analysis techniques. Many of our findings are important not only for sentiment analysis of Ger-
man drama texts, but for sentiment analysis of corpora with historical and poetic language in general. 
We identified SentiWS (Remus et al., 2010) as the best performing lexicon for our corpus. The accuracy 
of the combined lexicon is overall slightly lower than the top rated SentiWS-configuration. The reason 
for this might be the extension of SentiWS by many problematic and distorting sentiment bearing words 
that can be regarded as noise. Furthermore, the transfer of some problems of other lexicons, like the 
missing of manually added inflections, may be responsible for the decreased performance of the com-
bined lexicon as compared to SentiWS alone.   

We highly recommend the usage of sentiment lexicons with polarity strengths, since they consistently 
outperform dichotomous polarity calculations. This proves that for calculation purposes, sentiment bear-
ing words are better represented on a continuous scale. The calculation with polarity strengths seems to 
better represent human sentiment annotation than the usage of dichotomous values (+1 / -1), as many 
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sentiment bearing words indeed have different intensities that are perceived differently by human anno-
tators and therefore should also be weighted differently for the automatic sentiment calculation. 

The noticeable and consistent performance boost from the extension of lexicons by historical linguis-
tic variants highlights the linguistic differences between the contemporary language of the lexicons and 
the historical language of the 18th century. The creation of sentiment lexicons, especially for the histor-
ical language of past centuries, is a beneficial next step and possibilities for historical German are al-
ready examined (Buechel et al., 2016). Considering stop words, we highly recommend checking senti-
ment lexicons for highly frequent words of the corpus, especially for historical and poetic language. The 
meaning concerning the sentiment of words can differ throughout history (Hamilton et al., 2016) and is 
also dependent on the linguistic style of a specific author. Therefore, stop words and other highly fre-
quent words might have different sentiment connotations in contemporary and historic German lan-
guage. It also shows that historic language poses challenges for automatic lemmatization, as it is not as 
effective as the extension by historical inflections. 

Overall, we were able to achieve acceptable levels of accuracy with our best performing configuration 
(70%), considering the basic methods used, the linguistic challenges the corpus poses and the mediocre 
levels of agreement of the annotators. Furthermore, we did not consider sentiment classes like neutral 
or mixed, although the annotation study showed that many speeches of the corpus are actually not strictly 
positive or negative. However, accuracy results in other application areas of sentiment analysis like 
product reviews or social media are generally higher, e.g. around 90% (Vinodhini and Chandrasekaran, 
2012). Besides the historical and poetic language difficulties, common problems of lexicon-based meth-
ods like the handling of irony and negations are certainly additional reasons for the mediocre accuracies. 
Based on our results, we consider the usage of general purpose lexicons alone as not sufficient to achieve 
acceptable accuracy scores. Using the results of the planned large-scale annotation studies, we will try 
to create corpora for evaluation and the development of more sophisticated methods of sentiment anal-
ysis, such as machine learning and hybrid techniques in order to improve accuracy and integrate other 
polarity classes as well. 

We are also aware that more complex emotional categories like anger, trust or surprise are also of 
interest for sentiment analysis in literary texts (Alm and Sproat, 2005; Mohammad, 2011). While at the 
moment resources and best practices to include emotional categories in sentiment analysis are rare (Mo-
hammad and Turney, 2010), we are expecting substantial progress from an ongoing shared task on im-
plicit emotion recognition to gather more insights into this area4. 

Another limitation of the presented results is that we only regarded speeches for sentiment analysis. 
However to further explore the possibilities and use cases for sentiment analysis on drama texts, we 
developed a web tool5 for the exploration of sentiment in Lessing’s plays. The tool visualizes the results 
of the best performing configuration of our evaluation study. Literary scholars can explore sentiment 
polarity distributions and progressions on several levels, i.e. for the whole play, for single acts, scenes 
and speeches, but also for individual speakers or for the relationship between two speakers. Further, we 
also integrated the results of sentiment calculation with the NRC Emotion Lexicon (Mohammad and 
Turney, 2010), so besides polarity, more complex emotion categories like anger and surprise can be 
explored as well.  

As an example, Figure 3 illustrates the polarity progression for Lessing’s “Emilia Galotti” throughout 
the five acts of the play. On the x-axis, every act is represented by a bar. On the y-axis the polarity of 
the entire act is represented as an absolute value. The tool also enables the analysis of normalized values, 
e.g. by the length of the text unit. The tool shows that based on our polarity calculation the play starts 
with a rather positive polarity in the first act, but becomes more and more negative as the play progresses. 

                                                        
4 More information about this shared task: http://implicitemotions.wassa2018.com/ 
5 http://lauchblatt.github.io/QuantitativeDramenanalyseDH2015/FrontEnd/sa_selection.html 
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Figure 3. Polarity progression for Emilia Galotti per Act 
 

This tool only represents a first prototype. Meanwhile, we are working close with literary scholars to 
gather more insights into needs and requirements for the literary analysis of emotion and sentiment in 
drama texts. By extending our corpus to other authors and eras, we also plan to explore sentiment anal-
ysis on drama texts beyond Lessing’s plays.  
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Abstract

Automatically identifying persons in a particular role within a large corpus can be a difficult
task, especially if you don’t know who you are actually looking for. Resources compiling names
of persons can be available, but no exhaustive lists exist. However, such lists usually contain
known names that are “visible” in the national public sphere, and tend to ignore the marginal
and international ones. In this article we propose a method for automatically generating sugges-
tions of names found in a corpus of Norwegian news articles, and which “naturally” belong to
a given initial list of members, and that were not known (compiled in a list) beforehand. The
approach is based, in part, on the assumption that surface level syntactic features reveal parts of
the underlying semantic content and can help uncover the structure of the language.

1 Introduction

One important factor in media coverage of news is the use of diverse sources. Both prominent and
marginal voices should be able to express their opinions and views, and be taken into consideration by
media outlets. While prominent voices are easily identified and might already be compiled in existing
lists (e.g. top level politicians or judges), the marginal ones remain unknown for most readers, and are
often not included in precompiled lists. Marginal voices are not necessarily unknown by the public, but
they are voices that are not that prominent in a given media coverage. In order to be able to actually
quantify to what extent marginal voices are reflected in the media, it is important to be able to identify
them.

Automated approaches can be used to identify the voices present in a large corpus of texts. Advances in
Natural Language Processing (NLP) approaches allow the automatic identification of the named entities
present in a corpus. While these advances have yielded good results for English, they are still at a
basic stage for Norwegian. To the best of our knowledge, no approaches can identify the type of an
entity (if it is a person name, an organization, ...) for Norwegian texts. However, there are some efforts
made towards it, and we are able to identify entities from texts without being able to identify their types
(Johansen, 2015). For Norwegian, it is still necessary to add a second step of analysis, usually a manual
one, to be able to identify the type of each entity. Even when or if this approach succeeds, there is still a
need for additional tools that classify a particular individual within a class of entities.

Linguistic theories show that words having the same context tend to share the same meaning (Harris,
1954), where context here is identified as the words appearing before and after a given word. We believe
that this applies to named entities as well. We therefore argue that given a list of known person names, we
can identify new unknown persons having similar roles, by analyzing the context in which their names
co-occur.

In this work we focus on prominent Norwegian politicians that are mentioned in news, predefined in
existing lists, and try to identify the marginal ones, which are not in these lists. The marginal politicians
do not need to be unknown, they just have to not be part of a predefined list of politicians. The marginal
politicians can be mayors, political representatives, or foreign politicians. Since very few or no resources

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
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exist for Norwegian, we rely on an unsupervised approach to automatically identify these unknown
politicians.

In what follows, we start in Section 2 by giving an overview of the literature on which we build our
work. Then, in Section 3 we give an overview of the corpus used during this investigation, along with
the seed list of politicians. In Section 4 we define the methodological steps we followed, and present in
Section 5 the results of this study. A discussion of our main contributions, findings, and future avenues
are summarized in Section 6.

2 Literature review

Named entity recognition (NER) approaches allow us to automatically identify entities in a text, as well
as which type of entities these are, ranging from person names, to organizations and places. NER systems
automatically identify entities and their types in texts. These methods have been extensively developed
for English, but no off-the shelf approaches currently exist for Norwegian. Some work has been made
in this direction, so called Named Entity Chunking (NEC) (Johansen, 2015), that only focuses on the
identification of the entities, without specifying their types. It is therefore still necessary, for Norwegian
texts, to use pre-compiled lists of entities to be able to identify which types a NEC has located in a text.
Challenges emerge, however, if we want to identify specific types of persons in texts, without actually
knowing these persons’ names.

Our motivations are based on the identification of marginal voices present in news articles. The
marginal voices are those who are not precompiled in known lists, but who still express opinions in
the news. When looking for indicators of source diversity in the news, the aim is to ascertain the extent
to which a range of voices gain access to the sphere of public debate. Based on principles of repre-
sentation in democratic deliberation procedures (Bennett, 1990; Brown et al., 1987; McQuail, 1992), a
pluralistic media landscape reflects the ability of media systems to curtail imbalances in the distribution
of social, political and economic power in society (Jeffres et al., 2000). As the news media is the pri-
mary arena where actors can exchange ideas and opinions (Skogerbø and Krumsvik, 2015), access to
this space should ideally be equal for all (Baker, 2006).

Research shows, however, that marginal voices are often excluded from this arena (e.g. (Kleemans
et al., 2017; Ross et al., 2013)). This is partly because the agenda setting function of the media (Mc-
Combs, 2005), and the critical and competitive nature of journalistic professionalism (Cook, 1998; Spar-
row, 1999), tend to exclude marginal voices - especially voices that do not easily fall within the estab-
lished narrative frames of political journalism (Wolfsfeld and Sheafer, 2006). The exclusion of marginal
voices is especially prevalent in political journalism (Alexseev and Bennett, 1995; Baumgartner and
Chaqués Bonafont, 2015; Figenschou and Beyer, 2014; Shehata, 2010). By and large, these findings
reflect the fact that most of this research is conducted on elite media, while in fact, local media tend
to include a broader range of voices (Berkowitz and Beach, 1993; Allern, 1996; Ross, 2007). In cases
where media regulation aims to preserve the type of media outlets that do, in fact, contribute to increase
the diversity of voices in the news (cf., (Kulturdepartementet, 2017)), we therefore need measures to
empirically establish what those outlets are. Because automatic classifiers, topic modelling and conven-
tional content analysis methods tend to negate marginal classification, improvements to these methods
are sorely needed.

Research in linguistics has shown that it is possible, by only analyzing the surface form of the
language, to identify structures yielding important information (Harris, 1954). Especially in the sub-
languages of specialized domain languages (Harris, 1988). Information structures are linguistic struc-
tures representing the distributional structure of the language. Aligning sentences can uncover which
words are typically used with selected words in specialized languages, and words that share the same
context tend to have the same meaning. We believe that the journalistic language used to discuss politi-
cians is specialized and stylized, which makes it subject to the repeated use of some linguistic patterns.

One of the first attempts to automate the identification of information structures is the work of Lamb
(1961). He developed an approach to identify in a corpus of texts the different grouping of words into
fixed parts of sentences, and interchangeable parts. His method would for example identify from these
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sentences “John bought a car”, “John bought a bike”, “John bought a house”, “Norah bought a car”,
“Norah bought a bike” and “Norah bought a house”, the following fixed part “bought a”, and the inter-
changeable parts (John, Norah) and (car, bike, house). The fixed parts represent a grouping of sequences
of horizontal elements/words (H-groups), and the interchangeable parts represent a set of vertical ele-
ments/words (V-groups). These information structures shed light on how words are being used similarly
or differently in the same context next to given words.

Some of the work in the field of grammar inference are built on the insights of Harris (1954) and the
work of Lamb (1961). Grammar induction approaches rely on the structural aspect of the language to
extract information from textual data. These methods are usually used to induce complete grammars for
a given language or text. However, some work has shown that methods developed in grammar induction
can be used to automatically induce information structures that can identify what is being said about
given issues, how it is being said, and can reflect some of the most important and distinctive content of a
corpus (Salway et al., 2014; Touileb and Salway, 2014; Salway and Touileb, 2014).

An unsupervised grammar induction algorithm (first presented in (Solan et al., 2005)), that discov-
ers hierarchical structures in sequential data, has been modified by Salway and Touileb (2014) into a
text mining approach – henceforth referred to as SIMMS (Structure Induction for Mining Meaningful
Snippets). The latter automatically, and in an unsupervised way, induces information structures from
unannotated corpora. This algorithm is able to identify some of the most significant patterns (hori-
zontal sequences of words) and equivalence classes (vertical groups of words) within the context of
patterns, using statistical information, and running over a predetermined set of iterations. The patterns
and equivalence classes respectively resemble the H-groups and V-groups presented by Lamb (1961).
The method focuses on text snippets around key terms of interest rather than processing entire sentences.
Instances of the most frequent induced patterns, representing information structures, are then replaced
with unique identifiers in the input to make patterning around them more explicit in subsequent iter-
ations. The induced structures are in the form of regular expressions, where elements of patterns are
separated by whitespace, and the elements of the equivalence classes are separated by “|” representing
“or”. Considering the previous example of John and Norah, this approach will induce structures of the
form “(John|Norah) bought a (car|bike|house)” which can be read as John or Norah
bought a car or bike or house. We will in what follows refer to information structures and patterns
interchangeably.

Based on this method and the linguistic theories on which it is built, we believe that given a sufficiently
large corpus and a seed list containing a set of voices (both often described in specialized language and
sufficiently homogeneous), we may isolate a set of new names (not contained in the seed list) which
naturally extend the seed list. In our case, given a set of politicians’ names, we may automatically find
a disjoint set of names which will contain a relatively high portion of politicians. We therefore propose
a method for expanding a list of known names to include previously undiscovered names occurring in
similar contexts. In the following, we outline the steps in the implementation of an approach to enlarge
a list of Norwegian politicians’ names to include politicians which do not appear in the preexisting list
(which we refer to as the seed list), from a corpus of news texts.

3 Data

We use two data sets: a large corpus of newspaper articles and a list of Norwegian politicians. The
corpus of Norwegian news articles was scraped hourly from 125 online newspapers, between October
and December 2015 and 2016. These newspapers reflect diversity in ownership (state (one outlet, the
Norwegian Broadcasting Corporation), corporate, foundation, or independent), and distribution (local
(92 outlets), metropolitan (25 outlets) or national (8 outlets)). This resulted in more than 600,000 articles.
We show in Table 1 the newspapers, and their distribution category.

The list of politicians contained 368 Norwegian politicians in parliament and government, as well as
mayors and their deputies. The names of politicians from the parliament and government were collected
from the open data of the Norwegian Parliament1. The names of mayors and their deputies were manually

1https://data.stortinget.no/no/dokumentasjon-og-hjelp/dagens-representanter/
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National: Aftenposten, Dag og Tid, Dagbladet, Dagen, Dagens Næringsliv, Dagsavisen, Dinside.no, Fiskeribladet
Fiskaren, Klassekampen, Morgenbladet, Nationen, NRK, TV2, Vårt Land
Metropolitan: Adresseavisa, Agderposten, Avisa Nordland, Bergensavisen, Bergens Tidende, Budstikka, Drammens
Tidende, Fædrelandsvennen, Glåmdalen, Gudbrandsdølen Dagn, Haugesuns Avisa, Harstad Tidende, iTromsø, Moss Avis,
Nordlys, Oppland Arbeiderblad, Rogalands Avis, Romerikes Blad, Romsdals Budstikke, Sandefjords Blad, Sarpsborg Ar-
beiderblad, Stavanger Aftenblad, Sunnmørsposten, Telemarkavisa, Tønsbergs Blad, Varden, Østlands-Posten
Local: Altaposten, Akershus Amststidende, Arbeidets rett, Arendals Tidende, Askøyværingen, Aura Avis, Aust-
Agder Blad, Avisa Nordhordland, Bladet Vesterålen, Brønnøysunds Avis, Bygdanytt, Bygdebladet Randaberg, Bømlonytt,
Demokraten, Driva, Eidsvol Ullensaker Blad, Dølen, Eikerbladet, Enebakk Avis, Fanaposten, Firda, Firdaposten, Fjordenes
Tidende, Fjordingen, Framtid i Nord, Fremover, Gjesdalbuen, Gjengangeren, Groruddalen, Halder Arbeiderblad, Hade-
land, Helgelendingen, Hallingdølen, Hardanger Folkeblad, Helgelands Blad, Hitra-Frøya, Hålogalands Avis, iFinnmark,
Indre Akershus Blad, Innherred Folkeblad, Jarlsberg Avis, Jærbladet, Kanalen, Kragerø Blad, Kvinneheringen, Kyst og
Fjord, Laagendaksposten, Lierposten, Lillesandsposten, Lindesnes Avis, Lofotposten, Lygdals Avis, Lokalavisa Nordsalten,
Møre-Nytt, Namdalsaisa, Norddalen, Nordre, Nye Troms, Porsgrunns Dagblad, Rakkestad Avis, Rana Blad, Ringerikes
Blad, Ringesaker Blad, Røyken og Hurun Avis, Saltenposten, Sande Avis, Sandnesposten, Smaalenes Avis, Sogn Avis,
Solabladet, Stjørdalens Blad, Sunnhordland, Sunnmøringen, Svalbardposten, Svelvikposten, Telen, Tidens Krav, Troms
Folkeblad, Trønderbladet, Tvedestransposten, Tysnes, Tysvær Bygdeblad, Valdres, Vennesla Tidende, Vestby Avis, Vestne-
savisa, Vestnytt, Vikebladet Vestposten, Østlandets Blad, Øyene, Åndalsnes Avis, Ås Avis, Asane Tidende

Table 1: Overview of the newspapers in the corpus.

gathered from various online sources. The list comprises 298 names representing county mayors, county
deputy mayors, sate secretaries, municipal councils, city councils, local chairmans, county councils, city
council representatives, and local councils.

4 Approach

We start with the assumption that texts featuring politicians have certain common context-dependent
characteristics across the corpus. This should therefore allow for the identification of language use
patterns around the politicians’ names and allow us to identify politicians that were not included in the
seed list.

Given a corpus (C), we produce a list of all names occurring in it and isolate those that appear on
the seed list of politicians. We select all sentences from C in which some politician is mentioned and
apply SIMMS to these sentences. This yields a set of patterns, from which we may isolate a sub-corpus
(D) of sentences (not full texts) which match these patterns. Names will occur in a number of sentences
matching a number of patterns. We take the sum of these frequencies to denote the names’ score. Names
which score well, are presented to a human expert for validation.

In more details, the process starts by running a Norwegian NEC analysis (Johansen, 2015) on the news
corpus. The list of identified entities was manually analyzed, with some algorithmic assistance (looking
up names), to only select entities referring to persons. Then, using the list of Norwegian politicians,
all sentences from all news articles containing the politicians’ names from the seed list were identified
and extracted. These names were then substituted with the placeholder-string “POL” in the sentences.
This was done to create an abstract concept of politician and create more patterning in the input texts. It
yields a set of sentences where known names have been removed, but permits our approach to distinguish
between entities occurring in our target list (i.e. having roles similar to politicians) from other names. In
the same sentences, we substituted each appearance of a person name (non-politician) entity, as identified
by NEC and not present in the politician seed list, with the placeholder-codes “PER” for persons, and
“ENT” for the remaining entities. The placeholders “POL”, “PER”, and “ENT” do not otherwise occur
in the text.

Once the sentences containing known politician names are extracted, SIMMS (Salway et al., 2014) is
applied in order to automatically induce salient patterns of language use around the coded politicians’
names (i.e. the string “POL”). We start by creating snippets around POL as explained in (Salway et
al., 2014). These snippets are of various sizes and contain between 0-12 words on either side of the
string. These are used in the various iteration phases of the algorithm. The snippets are of increasingly
large sizes which allows the algorithm, in each of its running iterations, to build more patterning around
the already identified patterns. These patterns are information structures of word sequences, resembling
information extraction templates (Salway et al., 2014).
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ID.Pattern Freq
P 0.((justisminister|arbeidsminister|kommunalminister|helseminister|
utenriksminister|finansminister|stortingsrepresentant|ENT|næringsminister
|partikollega|fiskeriminister|styreleder|ENT-ordfører|ordfører
|ordførerkandidat|statsminister|statsråd|samferdselsminister|
statssekretær) POL)
((justice minister|labor minister|minister of local government|health minister|minister of foreign
affairs|finance minister|member of parliament|ENT|industry minister|party colleague|minister of
fisheries|Chairman|ENT-mayor|mayor|mayor candidate|prime minister|council of state|minister of
transport|state secretary) POL)

13912

P 14.(klima- og (miljødepartementet|miljøminister|miljøministeren|
miljøvernminister|miljøvernministeren))
(climate and (environment ministry|environment minister|the environment minister|minister of the
environment|the minister of the environment))

440

P 44.(ENT (kommunalpolitiske|justispolitiske|likestillingspolitiske|
helsepolitiske|innvandringspolitiske|mediepolitisk|mediepolitiske|
finanspolitiske|landbrukspolitiske|fiskeripolitiske) talsperson)
((municipality’s political|justice’s political|equality’s political|health’s political|immigration’s political|media
political|media’s political|finance’s political|agriculture’s political|fisheries’ political) spokesperson)

151

P 61.((påtroppende|kommende) byrådsleder)
((incoming|forthcoming) governing mayor)

99

P 102.(ENT (utdanningspolitiske|helsepolitiske|finanspolitiske|
fiskeripolitiske) talskvinne)
(ENT (education’s political|health’s political|fiscals’ political|fisheries’ political) spokeswoman)

41

P 192.(sier helsepolitisk (talskvinne|talsmann))
(says health’s political (spokeswoman|spokesman))

17

Table 2: A selection of induced structures.

A small sample of induced structures is shown in Table 2. The structures are shown in Norwegian,
with English translations in italics. Structure P 0 is the most frequent of all induced structures, and
seems to discuss politicians in different positions. Structure P 14 focuses on politicians related to climate
and environment. Structures P 44, P 102, and P 192 discuss spokeswoman and spokesman in various
political roles, while structure P 61 seem to discuss local politicians.

We automatically filtered the induced structures to keep only those that included the string “POL”, or
had the string in the exterior of the patterns within the matched sentences. We disregarded all structures
that only included the strings “PER” or “ENT” without “POL” in their surroundings within their matched
sentences. However, structures including “PER” or “ENT” and not including “POL” but having the string
in the matched sentences were kept. This was done to focus our analysis on structures and sentences
containing names of politicians indicated by the presence of the string “POL”, and in order to identify
which of the strings within “PER” are actually politicians. This process resulted in 108 patterns.

After we had discovered the patterns which seemed to identify politicians, we subsequently isolated the
sentences which manifested these patterns into a sentence sub-corpus, D. We re-ran the NEC (Johansen,
2015) on this corpus to identify candidate names, which were thereafter compared to the seed list of
politicians. The politicians that were present in the seed list were removed keeping only the list of new
names that we believed were likely to be unknown politicians (i.e. not in the seed list). This list of
unknown names was afterwards presented to human judges for manual analysis. The results of this were
rather promising, as we show in the next section.

5 Results

We compute for each of the newly identified names a score representing its frequencies in the induced
structures. The score is computed as the sum of all frequencies of the name in the various structures in
which it appears. In Figure 1 we show the distribution of names and their frequencies. The figure on the
right shows an excerpt of the most interesting range of the full range shown in the figure on the left. Most
of the newly identified names have frequencies between 2 and 51, with some recurring spikes between
frequency 51 and frequency 150. The frequency distribution flattens out after frequency 150 and there is
only one name per frequency between frequency values 150 and 521.

Top 20 of the most frequent names and their frequencies, excluding the ones present in the seed list,
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Figure 1: Number of names per frequency.

Name Freq. Cat. Name Freq. Cat.
1. David Cameron 521 1 11. Ketil Solvik-olsen 280 1
2. Hege Storhaug 468 0 12. Monica Mæland 239 1
3. Henrik Kristoffersen 423 0 13. Kristoffer Ajer 227 0
4. Svein Aaser 410 0 14. Thorhild Widvey 218 1
5. Mads Stokkelien 375 0 15. Charles Michel 217 1
6. Benjamin Netanyahu 331 1 16. Manuel Valls 192 1
7. Ahmet Davutoglu 327 1 17. Knut Storberget 191 1
8. Angela Merkel 324 1 18. Bent Høie 180 1
9. Stefan Löfven 306 1 19. Alexander Kristoff 177 0
10. John Kerry 283 1 20. Kristoffer Barmen 172 0

Table 3: Top 20 of the most frequent names as identified by our approach, and their manually assigned
categories (1: politician, 0: not politician).

are presented in Table 3. We also show which names are politicians using boolean values: 1 for politician
and 0 for not politician. This decision was based on the manual analysis of the human judges.

We investigated two top-scoring intervals: a set of the best scoring names, and a subsequent set of best
scoring names. The set of the best scoring names are all names that have a frequency equal or greater than
90% of the frequency of the most frequent name. The second top-scoring interval represents names with
frequencies between 50 and 32. They yielded respectively 156/264 (60%) and 97/231 (42%) politicians
including known politicians from the seed list. We argue that this already corroborates our assumptions
about specialized language, that persons sharing the same role are discussed and talked about similarly.

Disregarding known politicians, the first set of best scoring names resulted in a sample of 167 unknown
names, with frequencies spanning from 521 at maximum to minimum 51. We manually analyzed this
sample of names and identified which ones were actually politicians. From these 167 names, we were
not able to classify 6 names either because they were incomplete, or ambiguous. From the 161 names
remaining, 33% were manually classified as politicians (53 names out of 161). The remaining 67%
mostly represented athletes. The second best scoring interval of names resulted in a set of 170 unknown
names, from which 8 were unclassified. From the remaining 162 we were able to classify 28 names as
politicians, representing 17.28%. As in the previous interval, most of the remaining names referred to
athletes. That is, had we presented the unrecognized top-scoring names, a human expert would verify
every third name as a politician which we could correctly add to our seed list of politicians. Table 4
summarizes our findings on unknown politician names.

A total of 67% of the newly identified politicians, in the first set of best scoring names, represented
Norwegian politician names (local and national), and 33% were international politicians (Canada, UK,
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Results Set of best scoring names Subsequent set of best scoring names
#unknown names 167 170
#incomplete/ambiguous names 6 8
#politicians 53 (33%) 28 (17.28%)
#Norwegian politicians 36 (67%) 23 (82.15%)
#international politicians 17 (33%) 5 (17.85%)

Table 4: Number of politicians (Norwegian and international) identified by our method, in both investi-
gated top-scoring intervals.

Germany, USA, Sweden, France, Spain, Russia, Palestine, Poland, Croatia, Italy, Israel, Turkey, Den-
mark, Belgium). In the remaining names of the first set of best scoring names, 59% referred to football
players, football coaches, general managers of football clubs, or football commentators. About 9% re-
ferred to athletes in other sports like cycling, and handball. A total of 12% were person names known in
winter sports like skiing, ice hockey players, and alpinists. The remaining 20% were political activists,
journalists, police, jurists, lawyers, celebrities, union leaders, musicians, and company leaders.

In the second set of best scoring names, a total of 82.15% of the newly identified politician names were
Norwegian politicians, and 17.85% were international ones (from Canada, Germany, and UK). The per-
son names that were not politicians were mostly related to sports. These were football players/coaches,
other sports like handball, ski or ice hockey athletes and represent 50.31% of the 161 identified names.
The remaining 16.69% were political activists, journalists, celebrities, union leaders, musicians, and
company leaders.

6 Conclusion and future work

In this paper, we have addressed the problem of automatically identifying person names sharing similar
political roles from a corpus of news articles. We have used a text mining approach able to automati-
cally induce patterns of language use around known politician names from a predefined seed list. This
approach is able to group together words appearing in similar contexts, and hence person names sharing
similar roles.

Automatically identifying and extracting names is a difficult task, especially in Norwegian, as no off-
the shelf named entity recognition (NER) approaches exists. In this work, we have used a named entity
chunker (NEC) (Johansen, 2015) that is able to identify entities, but not their types. In order to be able
to differentiate person names from other types of entities, we in part relied on computer assisted manual
analysis. We have shown that our approach is able to identify new names that naturally extend the seed
list, as these new names have similar roles.

There are many parameters that may influence this approach. If our seed list is actually complete,
there would be no names to add and our approach would only present names not belonging to it. If our
seed list is heterogeneous, or contains names belonging to a group which is generally not discussed by a
specialized language, we may expect the human expert to be presented with many names which do not
naturally extend our list.

Although we have only tested our approach on a list of politicians’ names, we feel there is good reason
to believe that many other natural sets of names satisfy the conditions our approach relies on. It suffices
that the entities named in the seed list share some attributes or characteristics which makes it likely that
they will be discussed in similar ways in some specialized language.

Most of the names identified were not politicians, but a relatively high proportion were. We removed
all known politicians before compiling the results presented in this article. This justifies the fact that 33%
is regarded as good results for a first step. We believe that this might be due to the nature of the corpus.
The corpus was a collection of news articles covering all newsworthy issues from sport to politics. Based
on the induced structures, it seems that the way politicians are talked about, the words used to describe
them or discuss issues around them, resembles the way athletes and sports related events are talked about.

We plan to improve our approach by first running a topic modeling approach on the corpus, to filter out
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the news articles not covering political issues, and then re-run the presented approach. This will give, we
believe, a more focused corpus as input, and we might be able to solely identify new names of politicians.
We also think that it would be interesting to use word embeddings, and investigate if politicians’ names
are nearer in the vector space model as opposed to non-politicians.
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Abstract

We induce and visualize a Knowledge Graph over the Regesta Imperii (RI), an important large-
scale resource for medieval history research. The RI comprise more than 150,000 digitized ab-
stracts of medieval charters issued by the Roman-German kings and popes distributed over many
European locations and a time span of more than 700 years. Our goal is to provide a resource for
historians to visualize and query the RI, possibly aiding medieval history research. The resulting
medieval graph and visualization tools are shared publicly.

1 Introduction

We describe here the process of inducing and visualizing a Knowledge Graph (KG) that structures infor-
mation from the Regesta Imperii (RI), an important large-scale resource for medieval history research.
Having important information from the RI in a structured format makes it easier to visualize, and possibly
aid medieval history research.

The Regesta Imperii (RI) comprises documents, regests, that can be seen as abstracts of charters issued
by Roman-German emperors and popes, starting from the Carolingian dynasty to Maximilan I. The
project was initiated in 1829 by a German librarian, Johann Friedrich Böhmer, who started to collect
and summarize the charters. Today, more than 175,000 regests have been converted to Unicode and are
stored in a publicly available and continuously increasing online database1 due to the efforts of various
research projects.2

We extract relations and entities from the regest texts and meta information, and build a large-scale
knowledge graph that covers approximately 83% of the documents (Sections 2-3). Information about
the entity types and about the events themselves reveal interesting observations about the behaviour of
emperors and popes with respect to their subjects. The graph can be explored through a web-based
visualization tool (Section 4).

2 Constructing the RI Knowledge Graph

Figure 1: Distribution of regests over time
with respect to year of charter creation.

The RI corpus. With regard to the referenced charters,
the RI are unevenly distributed over a large time span (Fig-
ure 1). Many regests reference charters from the later me-
dieval times issued by the emperors Karl IV (1316-1378,
15,595 regests), Friedrich III (1415-1493, 21,477 regests)
and Maximilian I (1459-1519, 22,153 regests) and very of-
ten consist of one, often complicated sentence, describing
an action performed by the issuer (usually an emperor or
pope) towards one or several of his subjects, as can be seen

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1http://www.regesta-imperii.de/en/home.html.
2Under the umbrella of the German commission for the handling of the Regesta Imperii e. V. (Deutsche Kommission für die

Bearbeitung der Regesta Imperii e. V.).
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[relverspricht] dem Kurfürsten [oarelLudwig von der Pfalz] für dessen allenfallsige Wahlstimme
ihm alle seine [oaocPrivilegien Reichspfandschaften] (Oppenheim, Gauodernheim, Ober- u. Nieder-
Ingelheim, Winterheim, Dexheim, Nierstein, Schwabsburg, Kaiserslautern, Barr, Ortenberg, Offenburg,
Gengenbach, Zell, Sels) u. s. w. zu [ocbestätigen]. Mitsiegler Burggraf Friedrich VI v. Nürnberg.

[relpromises] the Elector Palatine [oarelLudwig of the Palatinate] that if he gets his vote, that he
[occonfirms] all the Palatine Elector’s [oaocprivileges earnests] (Oppenheim, Gauodernheim, Ober- u.
Nieder-Ingelheim, Winterheim, Dexheim, Nierstein, Schwabsburg, Kaiserslautern, Barr, Ortenberg, Of-
fenburg, Gengenbach, Zell, Sels) etc. Also sealed by castle-count Friedrich VI of Nuremberg.

Figure 2: Regest summarizing a charter issued by emperor Sigmund in 1410 and (our) translation. rel is
the main relation, oa (accusative object) indicates whom the emperor is promising something, oc (object
clause) indicates what the emperor is promising. Green/orange indicate named entity persons/locations
found by the automatic tool, which are all accurate in the example.

Kg. Ruprecht gibt seinem kuchenschriber Hermann von Mülin und dessen erben für seine treuen
dienste sein haus und den stall daran zu eigen, “daz gelegen ist in unßer Stad Heidelberg by unsem
marstalle off ein syte an der apoteken und off die andern syten an Zengels des smyts (...)”

King Ruprecht gives to his kitchen-bills-accountant Hermann von Mülin and his heirs for his faithful
services his house and barn into his possession “which lies in our city of Heidelberg at the Marstall on
one side the pharmacy and at the other side the blacksmith (...)”

Figure 3: German text and (our) English translation of a regest summarizing a charter issued by king
Ruprecht in 1404. Code is switched to an older German variant in the middle of the text.

in the regest3 in Figure 2. While this regest is syntactically quite complex, it contains only conven-
tional German, where conventional means that syntax and spelling conform with contemporary German.
Other regests, having been created earlier or by different authors, contain words with non-conventional
spelling or nouns in lowercase, which is highly unconventional in contemporary German. An example is
displayed in Figure 3.4 erben (heirs) and dienste (services) are nouns currently written with an uppercase
starting letter; kuchenschriber (kitchen bills accountant) is a (very rare) noun, spelled Küchenschreiber
in contemporary German. In the middle of the text the code switches and we find a much older variant of
German, a quotation from the original charter of 1404, where spelling and syntactic constructions differ
significantly, e.g. Stadt (city) is written Stad and Seite (side) is spelled syte.

element sum types µ µ̃ σ

regests 179,320 - - - -
issuers 179,320 419 - - -
locations 179,320 13,656 - - -
tokens 16,525,042 488,619 92.2 56 150.7
NPs 4,097,632 903,383 22.9 14 34.7
NEs 1,977,866 363,162 11.0 7 15.7

Table 1: Corpus statistics.

Corpus statistics are summarized in Table 1.5

We find more than 16 million tokens and al-
most 2 million named entity mentions in the RI.
Because the RI stem from different authors and
times, the spelling of words can be very variable.
For example, there are many spelling variants of
the Austrian city Innsbruck (Ynnsbrug, Ynsbrug,
Innsbruck, Insprugk, etc.). Code-switching is
ubiquitous not only from author to author but
also inside a regest, where the text often contains quotes in Latin and medieval German, taken from
the original charter. Named entities in the RI can be rather complex, for example Adelheid, tochter wei-
land Ulrichs von Minzenberg (English: “Adelheid, daughter of former Ulrich of Minzenberg”) includes
a sub-named entity (Ulrich von Minzenberg). tochter, as a noun, should start with an uppercase letter
and weiland is an outdated and uncommon German adverb, used in the sense of “formerly”.

3URI: http://www.regesta-imperii.de/id/1410-08-05_4_0_11_1_0_4_4.
4URI: http://www.regesta-imperii.de/id/1404-06-26_1_0_10_0_0_3588_3584.
5Linguistic annotation was performed with spacy’s German model v2.0.0: https://spacy.io/models/de.
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Preprocessing. We use a state-of-the-art German preprocessing pipeline. The preprocessing model
was trained on contemporary German texts, so it naturally makes more errors on the RI. We manually
examine the outputs for 100 randomly chosen regests, and find that, particularly on the first sentence, all
steps yield reasonably good results on named entity recognition, and the syntactic dependency parse is
often correct in detecting the finite main verb and its object, or parts of it.6

Some errors are caused by non-conventional spelling (e.g. lowercased nouns tagged as verbs). We
will address this type of errors in future work, mainly because countless rare nouns and a high rate of
spelling variations make classical normalization techniques very challenging. Applying such techniques,
e.g. techniques based on lexical lookups and minimum edit distance computations (Ristad and Yianilos,
1998; Yujian and Bo, 2007), may even introduce many new errors and manipulate the historic data in
unwanted and difficult-to-detect ways.

We find, however, a specific type of error which is due to an eager sentence splitting model: e.g. a
sentence split often is performed on title prefixes. In the RI a title – abbreviated with a period – often
prefixes a named entity: e.g. Gf. – Graf (count), Bf. – Bischof (bishop), Eb. – Erzbischof (archbishop).

abbreviation title/function freq.

Kgin. queen 7
Kg., Ks. king, emperor 1,125
Hz., Hrz., Hzg. duke 369
Hzn., Hzin. duchess 8
Mgf., Pfgf., Ldgf.,
Pfgr., Mgff., Bggf.

various counts 252

Eb., EB., Bf., BF.,
Erzb.

(arch-)bishop 121

Table 2: Some of the automatically collected me-
dieval title abbreviations and their frequency in a
random sample of 15,000 regests.

We introduce three processing steps to minimize
this type of error: (1) iterate through 15,000 ran-
domly sampled regests and aggregate the tokens
occurring directly in front of named entities; (2)
compute their frequencies; (3) filter instances start-
ing with an uppercase letter, ending with a period,
having a minimum frequency of 5 and a maximum
length of 5 characters. Taking into account only
the prefixes starting with an uppercase letter has
the advantage of increased precision (verbs are not
counted). Recall can be increased afterwards by
taking into account the prefixes’ lowercase variants
as well (sometimes bishop was abbreviated bf. and
at other times Bf.). After obtaining the possible ab-
breviations a historian helped us in manually filter-
ing out 250 common abbreviations in the RI (false
positives such as Roman numerals – e.g. XI. – were
discarded in this step). After applying these steps, we obtain an interesting vocabulary of historic German
abbreviations (Table 2). The amount of erroneous sentence splits was reduced by 10%.

Edges and vertices. Based on the assumption that the first (and often only) sentence contains the
relevant relation information, we process only this sentence. We rely on the fact that the main relation
(edge) between a ruler and its subject entities (the vertices) very frequently occur in a subject-verb-
object format with respect to the first finite verb. As arguments of the relation we consider the first
occurring named entity and the named entity which acts as the accusative or dative object of the first
finite verb. Named entities in a comma-separated list or appearing in and-conjunctions of which at
least one has an object dependency relation to the main verb, are all added to the graph separately.

root: verspricht

oa: Pfalzgrafen Ludwig oc: bestätigen

oa: Reichspfandschaften

Figure 4: Dependency parse for Figure 2.

The source is the issuer or emperor, which we assume
to be the subject of the first finite verb and which we
extract from the metadata as it is often omitted in the
regest text (cf. Figure 2). The KG will thus contain two
types of vertices: (i) the issuers (emperor or pope) and
(ii) named entities found by the NLP tool.

Edges are weighted: if a named entity is mentioned
first after the finite verb or has an object dependency to
it, the weight of the edge is increased by 0.5; if a named
entity is mentioned first after the main verb and lies in

6The first two authors are German native speakers.
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Figure 5: 400 out of 4,948 relations cover over 90%
of the relations induced into our KG.

relation translation count coverage

bestätigt confirms 15,811 0.11
befiehlt commands 8,408 0.06
verleiht bestows 5,796 0.04
schreibt writes 5,427 0.04
schenkt donates 2,652 0.02
fordert demands 1,619 0.01
gewährt permits 1,425 0.01
bittet asks 1,004 0.01

Table 3: The most frequent relations in our
KG, with (our) English translations.

the object dependency of it, the weight is incremented by 1.0. For example, from Figure 2 (dependency
tree: Figure 4) we retrieve the tuple (Sigmund, promises, Ludwig of the Palatinate), and insert the subject
and object into the graph (if not already contained). If the relation promises already exists between these
entities in the KG, we increment the edge weight by 1.0, since, as can be seen in the example, Ludwig of
the Palatinate was detected both as object of promises (+0.5) and as the first named entity (+0.5).

The more promise-events are instantiated between these two entities, the higher the weight of the edge.
This implies that an edge or relation r with weight w between an emperor and one of its subjects means
that in the data there were 1 ≤ n ≤ w instantiations of r detected between these entities and thus the
edge weight can be interpreted both as a reliability measure of the relation and an indicator for how many
times the relation was instantiated.

While we induced 4,948 distinct relations in the KG, the 400 most common relations cover 90%
of the relations induced in the KG (Table 3 and Figure 5). Edge quality will be analyzed in the next
section. Regests that do not contain verbs in the first sentence are discarded, e.g. Geburt Karls, des
jüngsten Sohnes Kaiser Ludwigs (d. Fr.) und seiner zweiten Gemahlin Judith (English: “Birth of Karl,
the youngest son of emperor Ludwig (the Pious) and his second wife Judith”).7 Applying these steps,
more than 149,203 regests yield a relation, thus 83% of the RI have found their way into our KG.

Edge attributes. Each edge (relation) in the KG can be seen as representing one or more event(s)
between an emperor and one of his subjects. We can associate an attribute list to each edge: date, time and
location of creation of the event are taken from respective fields in the XML of the regests. We are also
interested in key phrases associated with each event. For example, at one time king Sigmund may have
promised bestowal of land to duke Ludwig and at another time he might have promised him privileges or
financial help. To find associated key phrases, we formulate a text classification task, where we predict
the main relation of a regest (i.e. the finite verb of the first sentence) using a bag of all contained phrases
represented as a binary vector. We consider all phrases tagged as noun chunks or verbs (except the finite
verb) as features. We only consider relations that occur more than 25 times, leaving us with 397 classes
plus one catch-all class for the less frequent relations. Having fitted a logistic regression model to the task
in a one-vs.-rest setting, we can rank the phrases describing an instantiation of a relation according to the
learned weights for this relation. For example, given that the relation extracted from the example regest
Sigmund→promises→Ludwig of the Palatinate was instantiated only one time, a list associated with this
edge contains the description of one specific event. The event took place in 1410 at the location Ofen
and, after having queried the model’s coefficients for the relation promise, we see that highly associated
key phrases of the event are the noun chunks Privilegien (priviliges) and Reichspfandschaften (earnests).
If there was another regest with a promise-relation between those same entities, we add another event
description to the edge attribute list and increment the weight of the edge accordingly. The key phrase
ranking relation-prediction approach is evaluated and examined more closely in the next section.

7URI: http://www.regesta-imperii.de/id/0823-06-13_1_0_1_2_1_1_1.
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Kg. RuprechtNOUN→PROPN gibt seinem kuchenschriberADJ→NOUN HermannNOUN→PROPN

von Mülin und dessen erbenV ERB→NOUN für seine treuen diensteADJ→NOUN sein haus und den
stallX→NOUN daran zu eigen.

[Kg.]PERSON [Ruprecht]ORG gibt seinem kuchenschriber [Hermann von Mülin]PERSON und dessen
erben für seine treuen dienste sein haus und den stall daran zu eigen.

Figure 6: Part-of-speech (top) and NER annotations (bottom). Severe errors are marked in red. An arrow
indicates the correct tag.

root: gibt

sb: Ruprecht da: seinem mo: kuchenschriber oa: erben mo: sein haus

Figure 7: The erroneous dependency parse for Figure 3. kuchenschriber (kitchen bills accountant) is
mislabeled as the relation modifier (mo) and erben (heirs) is mislabeled as accusative object (oa) – sein
haus (his house) would have been the correct accusative object.

3 Problem Analysis

Despite syntactic parse errors due to the text complexity, we find that many named entities are being
captured and the syntactic parse is often partially correct with respect to detecting the direct object of the
finite verb, as can be seen in Figure 4. In some cases, however, we obtain very erroneous parse trees.

The regest in Figure 3 gets an erroneous dependency tree (Figure 7). The main reasons for this seem to
be errors from preceding pipeline steps (Figure 6): even when disregarding the quote in the older variant
of German, the text is annotated with false part-of-speech tags, propagating errors through the rest of
the pipeline and into the dependency parse. Nevertheless, the relation is correctly induced with a weight
of 0.5 because Hermann von Mülin is correctly detected as the first named entity after the verb. On the
other hand, the regest in Figure 2, mostly written in today’s conventional German, is correctly parsed
with respect to the main relation, its accusative object and even the distant object clause.

For future work we want to experiment with fine-tuning the preprocessing models for the RI data.
This is a non-trivial task because manual annotation would require domain experts. Other means such
as bootstrapping the NER-pipeline by filtering and crawling part-of-speech patterns may introduce new
errors, possibly even worsening the overall performance of the system, which is difficult to assess with-
out manually labeled data. For further graph refinement one could consider disambiguating the named
entities and merging their nodes. The KG could also be improved by identifying the (minority of) cases
where the regest is not an event description of the emperor unidirectionally interacting with other entities
but vice-versa (e.g. an entity gives a present to the emperor).

Inspection and Evaluation of the Relation Prediction Model. To investigate the performance of the
model on unseen data, we divide the RI into a training set of 100,000 instances and 79,320 test instances,
and use key phrases, issuers, locations and dates as binary features to predict one of the 398 relations
(397 most common with KG-induction frequency of > 25 and one rest-class). This classification task
is difficult because the many classes are also unevenly distributed, varying in frequency from 44,303 to
26, with an average of 450.5 and a median of 76 instances per class. The results are shown in Table
4. The relation classifier achieves an accuracy of 0.487 and macro f1 of 0.141, significantly higher than
the baselines (majority baseline: 0.003 f1). Both baselines, majority voter and random baseline (drawing
classes according to estimated class probabilities in the training data), lag behind not only the full-feature
model but also a logistic regression model which uses only location or issuer features. We conclude that
certain issuers and locations are more associated with specific relations than others. Our model’s learnt
coefficients can also be used to investigate these associations. For example, we find that the coefficients
for emperor Friedrich III. have the highest value for the relations quittirt (signs), legitimirt (legitimates),
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feature type #features acc. macro f1

all 447,028 0.487 0.141

key phrase 436,508 0.461 0.113
issuer 401 0.267 0.007
year 821 0.258 0.005
location 9,298 0.267 0.007

maj. baseline - 0.247 0.001
ran. baseline - 0.008 0.003

Table 4: Evaluation of the 398-class relation pre-
diction task.

scenario micro error macro error

all 0.083 0.934
confident (@397) 0.052 0.174

@1 0.0 0.0
@5 0.0 0.0
@25 0.0 0.0
@125 0.03 0.104

Table 5: (Pessimistic) estimates of weighted (mi-
cro) and unweighted error (macro) of induced re-
lations due to false part-of-speech tags.@n: con-
sidering the n relations in the KG which were in-
duced most often.

gibt (gives), gebietet (dictates), befiehlt (commands), erlaubt (permits), while for emperor Maximilian I.,
there is a different picture and we find many financial relations such as schuldet (owes), verbucht (books)
and bezahlt (pays). Maximilian I. was well known for his debts he accumulated due to many wars and a
rather extravagant lifestyle and we can see that this is also statistically reflected in the RI.

Inspecting the fitted model’s coefficients for the relation verhängt (imposes), we see that among highly
associated phrases are die Reichsacht, die Acht, die Aberacht, Klage, den Bann, die Reichsaberacht, das
Anathem, which are mostly outdated German words for banning (excommunicating) somebody (Acht,
Aberacht, Bann) and also anathema (Anathem). Highly weighted terms for the relation describing ver-
leiht (bestow) are das Pallium (a religous clothing), Regalien (regalian rights), ein Wapen8 (a crest),
Lehens- und Landesrecht (land rights), Gerichtsstandsprivileg (court-right), Doktorwürde (doctorate)
and Halsgericht or Blutbann, both old German terms in the context of the relation bestows referring to
the right to speak the death sentence (a right which was granted only to selected cities). We conclude
that our binary, bag-of-phrases representation for relation classification is a robust and straightforward
way not only to rank key phrases describing medieval events but also to gain deeper insights into the RI.

Quality of Graph Edges We evaluate the quality of graph edges (first detected finite verb in a regest):
(i) to assess the overall quality of edges and (ii) from the point of view of a user or historian, who
might be interested in the quality of high-confidence edges, e.g. he choses to consider only relations
with weight > w. The relation extraction experiments indicate that a falsely induced relation is due to
false positive verb errors from POS tagging. We manually checked the 397 most commonly induced
relations and found 69 to be incorrectly POS tagged. Examples of errors include wittwe (widow) and
archidiacon (archdeacon). Everything that was erroneously tagged as a verb was labeled an error – an
exception were deverbal nouns.9 We assume a pessimistic scenario of all relations with count equal to or
less than 25 having been misclassified with false POS tags. This scenario is very pessimistic because we
not only find many rare and generally uncommon German verbs with varied spellings in this subset (e.g.
vidimiert, vidimirt – a very rare word meaning “he witnesses”) but also deverbal nouns which can be
useful. Thus, given n distinct relations i = 1, ..., n and fi returns the total number of times this relation
was induced in the KG, and gi returns 1 if the relation was likely falsely inserted and 0 if it likely was
correctly inserted (regarding POS annotation), we estimate the weighted micro error:

∑n
i=1 fi · gi∑n

i=1 fi
. (1)

For the unweighted macro error, fi = 1∀i. The results are shown in Table 5. The macro error, i.e.
when all relations have the same significance, is estimated at 0.17 for scenario (ii), when the manually
annotated relation subset of the most frequent 397 relations was used. When taking into account as errors

8Wapen is not a mistake – the word is spelled Wappen in contemporary German but we find both forms in the RI.
9Specifically, those nouns were belagerung (siege), Eintreffen (arrival) and belehnung (mortgage).
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Figure 8: Example graph of the two issuers king Pippin (selected) and Karl Martell (father of Pippin)
between 4/13/707 and 3/31/757 (96/148 nodes, 121/196 edges). Highlighted is an edge for the relation
schenkt (endow). Edge thickness indicates edge weight and nodes are scaled by degree centrality. The
figure is best seen in color.

all the other, less frequent relations, the macro error is < 0.93, which of course is a very pessimistic
estimate. However, in most cases, assessing the weighted micro-error would be of much more interest
– some relations cover a much larger proportion of induced relations. For example, a historian who is
interested in the most frequent 125 relations (@125 in Table 5) would expect a weighted error of 0.03
and pessimistically an unweighted error of at most 0.104. When choosing the most common 25 relations
(e.g. @25 in Table 5), the error is zero for both micro and macro calculations with regard to falsely
induced relations due to POS tag errors.

4 Visualization: Diving into European Medieval Times

Figure 9: RI-graph with colored modularity
clusters (Brandes et al., 2008) after applica-
tion of ForceAtlas2 (Jacomy et al., 2014) in
Gephi (Bastian et al., 2009).

Visualization of textual (meta)-data is crucial both to
make sense of the data itself and also to distribute the
information in a more accessible way. Figure 9 dis-
plays our induced graph, where modularity clusters
are colored differently. Inspecting the main clusters
shows that some clusters roughly represent the uni-
verses of single emperors (violet: Friedrich III. (14.3%
of all nodes), blue: Sigmund (9.54%), black: Karl
IV. (6.14%)), while other clusters encapsulate multi-
ple emperors (pink: the Palatine emperors Ruprecht I.,
Ruprecht II., and Ruprecht III. (7.45%)) and addition-
ally there appear to be clusters which subsume the uni-
verses of less prevalent and especially earlier emperors
(orange: Otto III., Otto I., Karl the Great, etc. (7.14%)).
Interactive visualization is a methodological tool to assist researchers in exploring the data, allowing for
non-destructive data manipulation and filtering. For the Regesta Imperii we aim to provide an easy-
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to-use exploration tool of the extracted knowledge graph for historians. We built a web application to
visualize the data. The application is JavaScript-based and uses AngularJS 1 as the frontend framework.
Visualization is done using vis.js,10 an open-source tool aimed at network and timeline visualizations.

Our KG contains 68,726 nodes and 154,797 edges. The average outdegree of nodes is 380 and average
indegree is 2.65, showing that the KG is highly uni-directional with few central nodes (i.e. issuers) and
most peripheral nodes having few incoming and almost no outgoing edges. Structurally speaking, the
knowledge graph is weakly connected, consisting of 14 components with one large component containing
68,692 and the remaining ones containing < 5 nodes. In the largest component, of the 25 nodes with
highest betweenness centrality, 7 are issuers and 18 are persons. This indicates that in terms of shortest
paths between all node pairs, persons are especially important in establishing the connectivity of the
graph. However, when looking at the 70 cut vertices of the component that are named entities,11 we see
that 55 are persons, but 11 denote place or region names (e.g. Frankreich or Reutlingen), indicating that
certain regions also play a critical role in connecting multiple sub-networks.12

An example network is shown in Figure 8. Although the sheer size of the KG prohibits it from being
visualized in its entirety, we use optimizations and ad-hoc querying to visualize sub-networks of the
KG. With these, we were able to create interactive visualizations for networks of up to 12,000 nodes in
practice. On the settings page, a user can choose one or more issuers. Based on the selected issuers, a
network with all other nodes with which they interacted gets created. Furthermore, there are a number
of additional settings, which can be divided into limiting constraints and network enhancements.

Limiting constraints. These limit the resulting network on an ad-hoc basis. Specifically, we allow to
set a threshold X (≤ X; = X; ≥ X) for the number of connections to display for a named entity and
the number of relation instances. With these settings, specific requirements can be made, e.g. “show the
network of Friedrich III. with relations that appear at least 40 times”. A combination of constraints is
also possible but per default, we set all constraints ≥ 1 so that the full graph will be rendered.

Network enhancements. These apply to the way the network gets rendered and can be interacted
with. The first option visualizes the intensity of edges by their associated edge weights. The second
option visualizes the importance of persons by means of a selected node centrality measure. Currently,
we support degree, eigenvector, and betweenness centrality. The last option enables the time slider that
allows for filtering the network by event dates. Per default, all three options are disabled.

To further reduce rendering speed, we implemented a decay factor to the number of iterations of the
underlying physics solver used to calculate the graph layout. Starting with a network containing more
than 150 nodes or 250 edges, the default number of iterations (1,000) is reduced by a factor of 0.1 for
every additional 150 nodes or 250 edges.13 We set the lower-bound to 100 iterations to give the solver
some time to calculate the layout. Using this decay factor and the above-mentioned constraints drastically
reduces the load times for very large networks. For example, the network of Karl IV. containing 7,359
nodes and 13,760 edges takes a couple of minutes to render. With the decay factor and the constraint that
named entities have exactly 2 edges, the graph is reduced to 785 nodes and 1,568 edges, and is rendered
in 80 seconds with 576 iterations.14 Furthermore, we allow to save graphs as JSON files that can later be
re-uploaded, further reducing load times. These are promising results as in a later production stage, the
application can be supplemented by a database containing pre-calculated network layouts.

5 Related Work

Historical Text Processing. Piotrowski (2012) gives an overview of the many challenges arising when
applying NLP to historical documents. The idea of normalization is often explored, yet we encountered
the same problem as the author who reports that the effectiveness of normalization to a large degree
depends on text type and language – most satisfying results are achieved only on more recent texts. For

10visjs.org.
11We exclude issuers from this analysis as cutting them almost always increases the number of components because of their

central role.
12The remaining four are generic entities such as Roman numerals.
13Furthermore, if the node-edge difference is > 900, we consider the edge number to be determining the decay factor.
1440 seconds of that are needed to process the data from our KG file, the remaining time is the rendering time.
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this reason, we applied little and careful normalization to the regests. We concur that “the highly variable
spelling found in many historical texts has remained one of the most troublesome issues for NLP” (p.
83), a fact that may be especially true with regard to the RI. Due to these issues, the research conducted
in processing of (German) historical texts has been diverse and very task-specific, see i.a. (Massad et al.,
2013; Meroño-Peñuela et al., 2015; Seemann et al., 2017; Hench, 2017; Schulz and Keller, 2016).

Regesta Imperii. Not much NLP research has been conducted on the RI. Kuczera (2015), in an
example experiment, projects attributes and relations between entities from the times of Friedrich III.
(i.e. a subset of the RI) into a graph database. He applies no NLP in these steps, but relies on the
manually created person registers for the universe of Friedrich III. While currently only the registers for
Friedrich III. are available, we think that they may be used in future work to fine tune the NER system
to achieve better performance not only on the sub-corpus of Friedrich III. but also on the whole RI. A
caveat is that the regests of the other emperors differ significantly not only in named entities but also in
linguistic variety and thus such a system may fail to generalize. Opitz and Frank (2016) manually labeled
500 randomly sampled regests with 12 medieval themes and players of interest (e.g. nobles, spiritual
institutions, war and peace or justice) and trained binary classifiers to in the end label all regests and
compute statistics about the importance of the medieval themes and players with regard to time.

Relation Extraction For relation extraction from the Regesta Imperii we work in an ”extreme” en-
vironment – no annotated data; few language resources (particularly because of the German language
variations used in the corpus); no tools like named entity taggers or chunkers that would help in iden-
tifying relations and relation arguments; and low or no redundancy in relation instances (for comput-
ing extraction reliability scores). Because of this, the inspiration for the applied methods comes from
open information extraction (Open IE), particularly work where relations are described through POS and
grammatical patterns (Banko et al., 2007), and using the assumption that binary relations often appear
in a subject-verb-object format. Wu and Weld (2010) extend a previous distantly supervised system that
learns using Wikipedia infobox relations, and describe relations (through POS and dependency patterns)
as phrases consisting of at least one verb and/or a preposition. To counter noisy extractions (often phrases
that are too long and too specific to constitute a relation), Fader et al. (2011) introduce ReVerb, where
lexical and syntactic constraints on relation expressions serve to produce cleaner extractions, with less
uninformative or incoherent expressions. To increase recall, Mausam et al. (2012) expand the patterns
by allowing relational nouns (e.g. Bill Gates, co-founder of Microsoft ...). Patterns are gathered and gen-
eralized (e.g., from words to parts-of-speech), which boosts recall. All these relation extraction methods
rely on redundancy in the data to verify the relation patterns and the extracted candidates through vari-
ous reliability scores. This cannot be applied to the RI corpus. We rely instead on the relatively simple
structure of the regest texts and the grammatical information obtained from a parser.

6 Conclusions

We induced a Knowledge Graph from the medieval Regesta Imperii corpus. Nodes represent medieval
named entities, the (weighted) edges indicate relations between those entities, which may have occurred
at multiple times in history. High linguistic variation and code switching within single regests pose chal-
lenges for modern-day NLP systems, despite their seemingly simple structure. We added preprocessing
heuristics to prevent erroneous sentence splitting, and in the process acquired a list of nobility titles. We
explored relation classification as multi-class classification based on a binary bag-of-phrases represen-
tation of the regests. This not only gives us an option to inject further useful information into the KG
describing the encapsulated events more closely, but also allows us to explore phrases highly associated
with specific relations. The resulting Knowledge Graph was embedded in an isolated web application,
enabling the visualization and querying of the data. The data and application are shared publicly.15

For future work we are planning to further refine the Knowledge Graph, introduce more structure using
nobility titles and entity types and develop and evaluate it together with historians to adjust visualization
and querying methods to their needs.

15https://gitlab.cl.uni-heidelberg.de/born/ri-visualization.
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