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Abstract

This paper presents the approach of the team “groutar” to the shared task on Aggression Identifi-

cation, considering the test sets in English, both from Facebook and general Social Media. This

experiment aims to test the effect of merging new datasets in the performance of classification

models. We followed a standard machine learning approach with training, validation, and test-

ing phases, and considered features such as part-of-speech, frequencies of insults, punctuation,

sentiment, and capitalization. In terms of algorithms, we experimented with Boosted Logistic

Regression, Multi-Layer Perceptron, Parallel Random Forest and eXtreme Gradient Boosting.

One question appearing was how to merge datasets using different classification systems (e.g.

aggression vs. toxicity). Other issue concerns the possibility to generalize models and apply

them to data from different social networks. Regarding these, we merged two datasets, and the

results showed that training with similar data is an advantage in the classification of social net-

works data. However, adding data from different platforms, allowed slightly better results in both

Facebook and Social Media, indicating that more generalized models can be an advantage.

1 Introduction

In the last few years, we have witnessed a growing number of online platforms where users can post

content. As the number of platforms has increased, so has the number of aggressive interactions, such

as cyberbullying or hate speech. The goal of our work is to contribute to the automatic identification of

this type of communication through the participation in the Shared Task on Aggression Identification in

text (Kumar et al., 2018a).

The task consisted in developing a classifier that could make a 3-way classification between Overtly

Aggressive (OAG), Covertly Aggressive (CAG) and Non-aggressive (NAG) text data. The organizers

provided a dataset of 15,000 aggression-annotated Facebook posts for training and validating the clas-

sification systems. Each team was allowed to test up to three systems and to use additional data for

training, as long as the data would be publicly available before submission of the system paper. Different

competitions were available with variations in language and data sources. It was possible to classify

aggression in English and Hindi and also using data from Facebook or other Social Media platform

unknown at submission time.

In our approach, we focused on understanding the effects of merging new datasets for training models.

We used the Toxicity dataset, from the Toxic comment classification challenge in Kaggle, as an additional

source of data, and we proceeded with the conversion from toxicity to aggression. We built and compared

two systems, one using only the original data for training, and the second using also toxic data. We

extracted some classic features and studied different machine learning classification algorithms using a

methodology of training, validation, and testing. Our approach focused on English and in both test sets

provided, Facebook and Social Media.

In the next sections, we present the related work (Section 2), our method (Section 3), the results

(Section 4), and finally our conclusions (Section 5).
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2 Related Work

Aggression by text is a complex phenomenon, and different knowledge fields try to study and tackle

this problem. In this analysis of related work, we focus mainly on a computer science perspective on

aggression identification, a recent emerging area. In the last years, the scientific study of automatic iden-

tification of aggressive text, from a Computer Science and Engineering point of view, is increasing. One

important aspect to consider is that in this scientific community, several related terms are used to express

different types of aggression. Some of those are hate (Tarasova, 2016), cyberbullying (Chen, 2011), abu-

sive language (Nobata et al., 2016), profanity (Dictionary, 2017), toxicity (Jigsaw, 2017), flaming (Guer-

mazi et al., 2007), extremism (Prentice et al., 2011; McNamee et al., 2010), radicalization (Agarwal and

Sureka, 2015), and hate speech (Schmidt and Wiegand, 2017).

Despite the differences between those concepts, previous research can give us insight into how to

approach the problem of identifying aggressive interactions. For instance, particular attention has been

given to the automatic detection of hate speech. In one survey paper (Schmidt and Wiegand, 2017), the

authors provide a short, comprehensive, structured and critical overview of the field of automatic hate

speech detection in natural language processing. In other, the main focus is on definitions and rules for

classification (Fortuna and Nunes, forthcoming), which is important for solving this complex task. One

of the main conclusions of these works is that the automatic classification of hate speech and other related

concepts rely frequently upon Machine Learning and classification approaches.

Regarding the automatic classification of messages, one first step is the gathering of training data.

Several studies published datasets for aggression identification with different classification systems. For

example, in one dataset the classes “Racism”, “Sexism” and “Neither” were used to annotate tweets for

English (Waseem and Hovy, 2016). In another dataset collected for the specific topic of hate speech

against refugees, tweets in German were annotated using only the class “Hate Speech” (Ross et al.,

2017). Another study presents a hate speech detection dataset in Twitter for English, using the classes

“Hate”, “Offensive” or “Neither” (Davidson et al., 2017). A third dataset not publicly available contains

comments from Yahoo! Finance and News in English and uses the classes “Hate Speech”, “Derogatory”,

“Profanity” and “Neither” (Nobata et al., 2016). Finally, one last dataset from a classification challenge in

Kaggle identifies Toxicity (Jigsaw, 2018). The dataset contains Wikipedia comments marked as “toxic”,

“severe toxic”, “obscene”, “threat” and “identity hate”, in a multi-class and multi-label approach. Based

on the information from these datasets, we conclude that none considers the class “aggression”, which

would be useful for this work. Another difficulty is the multiplicity of different concepts and definitions.

A recent work identifies this problem and proposes a typology that captures the similarities between con-

cepts (Waseem et al., 2017). According to this typology, abuse follows into directed vs. generalized and

explicit vs. implicit categories. This topology has implications on the following parts of a classification

procedure.

After the data collection, one of the most important steps when using classification is the process of

feature extraction (Schmidt and Wiegand, 2017). Different approaches are being used, ranging from Dic-

tionaries (Liu and Forss, 2015; Dadvar et al., 2012; Dinakar et al., 2011), to Bag-of-words (Burnap and

Williams, 2016; Kwok and Wang, 2013; Greevy and Smeaton, 2004), N-grams (Burnap and Williams,

2016; Nobata et al., 2016; Waseem and Hovy, 2016; Liu and Forss, 2014; Greevy and Smeaton, 2004;

Badjatiya et al., 2017; Davidson et al., 2017), Part-of-speech (Greevy and Smeaton, 2004; Dinakar et al.,

2011; Burnap and Williams, 2014), Lexical Syntactic Feature-based (LSF) (Chen, 2011), Rule based ap-

proaches (Haralambous and Lenca, 2014), Participant-vocabulary consistency (PVC) (Raisi and Huang,

2016), Template-based Strategies (Powers, 2011), Word Sense Disambiguation Techniques (Yarowsky,

1994), Sentiment analysis (Liu and Forss, 2014; Liu and Forss, 2015; Gitari et al., 2015; Agarwal and

Sureka, 2017; Del Vigna et al., 2017; Schmidt and Wiegand, 2017; Davidson et al., 2017), perpetrator

characteristics (Waseem and Hovy, 2016), Paragraph2vec (Djuric et al., 2015) and Deep learning (Yuan

et al., 2016). There are also features and approaches more specific to the problem of hate speech de-

tection, namely: othering language (Burnap and Williams, 2016; Dashti et al., 2015), declarations of

superiority of the ingroup (Warner and Hirschberg, 2012), objectivity (Gitari et al., 2015) and subjec-

tivity (Warner and Hirschberg, 2012) of hate speech language. Additionally, in the typology of hate,
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some considerations are made regarding the features to use (Waseem et al., 2017). In the case of direct

abuse, mentions, proper nouns, named entities, and co-reference resolution can be helpful. In general-

ized abuse, researchers should consider identifying vocabulary specificities regarding the groups targeted.

On the other hand, explicit abuse is often indicated by specific keywords. Hence, dictionary-based ap-

proaches may work well. Finally, implicit abuse identification works with character N-grams (Mehdad

and Tetreault, 2016), word embeddings (Djuric et al., 2015) and perpetrator characteristics (Waseem and

Hovy, 2016).

Regarding the classification algorithms, the more common are SVM (Del Vigna et al., 2017), Random

forests (Burnap and Williams, 2014), Decision trees (Dinakar et al., 2011), Logistic regression (Davidson

et al., 2017), Naive bayes (Liu and Forss, 2015) and Deep learning (Yuan et al., 2016).

In this challenge, we are not only interested in distinguishing between aggressive and non-aggressive

text, but different degrees of aggression are also considered. A recent discussion on the challenges of

identifying profanity vs. hate speech highlighted some issues in this topic (Malmasi and Zampieri, 2018).

The results revealed that discriminating hate speech from profanity is not a simple task, and it may require

features more complex than N-grams. From this conclusion, we can extrapolate that distinguishing overt

and covert aggression will be difficult as well. Overcoming this difficulty is a motivating factor for

conducting this shared task.

Regarding the specificities of our approach, the main research question of our work concerns the

effects of merging new datasets on the performance of models for aggression classification. Additionally,

there are some open issues that motivate our work. One question is if it is possible the combination of

datasets annotated with different classification systems (e.g. toxicity and aggression). This combination

would allow the use of multiple datasets simultaneously. Another question is if it is possible to generalize

models and apply them to data from different Internet sources. Finally, other question concerns the

duration in time of the models, even when the same platform is used, due to the fast evolution of online

language.

In the next sections, we aim to answer to some of these questions with our approach.

3 Methodology and Data

3.1 The datasets

The provided training datasets (Kumar et al., 2018b) contained Facebook text messages for English and

Hindi. From those messages, 12,000 were for training and 3,000 for development (dev). This last was

a dataset for testing before submitting final results. Regarding the test set, was the data available for

final classification and final submission for ranking of solutions in the contest. Several scenarios were

available for testing the final models. Besides different languages (English and Hindi), the teams could

classify diverse message sources (Facebook and general Social Media). For the annotation of the datasets,

there were three classes described solely as Overtly Aggressive (OAG), Covertly Aggressive (CAG) and

Non-aggressive (NAG) and no additional information provided. This lack of deeper definitions opposes

to previous recommendations (Ross et al., 2017), which pointed out the importance to clearly define

concepts before addressing problems like hate speech identification.

Aiming to improve the available definitions, we tried to manually inspect some data, so that we could

better understand the differences among the three types of messages. We concluded that it is not easy to

distinguish the classes and that they overlap (Table ??). For example, a text like “Nonsense” is marked

as overtly aggressive (OAG), while “No respect for him now” is marked as non-aggressive (NAG).

Outside of the challenge, the definitions of the classes became available in the article presenting the

dataset (Kumar et al., 2018b). According to these authors, overt aggression is any speech or text in which

aggression is overtly expressed, either through the use of specific kind of lexical items, lexical features

or certain syntactic structures, considered aggressive. On the other hand, covert aggression is any text in

which aggression is not overtly expressed. It is an indirect attack against the victim and is often packaged

as insincere polite expressions, through the use of conventionalised polite structures. For instance, cases

of satire or rhetorical questions may be classified as covert aggression.

Considering the opportunities this task enabled, we decided to conduct our experiment only for English
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Id Text Class

facebook corpus msr 326287
This is a false news Indian media is simply misguiding there nation and
creating hatred.. Media should be v careful while spreading the news..
SHAME.:(

NAG

facebook corpus msr 1805657 No respect for him now NAG

facebook corpus msr 401603
Now time has come to take firm action against pakistan, pl do not seat
idle.....public anger....

NAG

facebook corpus msr 382223
Unfortunately this is wat indian govt is capable of doing!!!!...i dint vote
for modiji to see such crap..

CAG

facebook corpus msr 470981 I visited 5 atm but I cont able to withdraw from money..not working.. CAG
facebook corpus msr 492174 I wanna meet the girl who said the iPhone is user friendly!!! CAG
facebook corpus msr 1853672 What the hell is happening OAG
facebook corpus msr 2032108 #salute you my friend OAG
facebook corpus msr 2241597 Nonsense OAG

Table 1: Examples of messages extracted from the provided dataset.

and to test the effect of adding a new dataset in our classification both in messages from Facebook and

general Social Media. Despite our intention, we did not find an alternative dataset that would have

classified text for aggression. We decided then to use a Toxicity dataset, already mentioned in Section 3.1.

The Toxicity dataset consists of 170,355 messages marked as toxic, severe toxic, obscene, threat and

identity hate, in a multi-class and multi-label approach (Jigsaw, 2018).

When we try to match the Aggression dataset with the Toxicity dataset, we are in the presence of two

unequal classification systems. Therefore, we conducted a procedure for converting the classes of the

Toxicity dataset into aggression (Figure 1).

Text Toxic Severe 

Toxic
Insult Threat Obscene Identity 

Hate

text1 1 0 0 0 0 1

text2 1 1 0 0 0 0

text3 1 1 1 0 0 1

text4 0 0 0 0 0 0

… … … … … … …

Text Class

text1 CAG

text2 OAG

text4 NAG

… …

Figure 1: Procedure conducted for transforming the Toxicity dataset into Aggressive communication

dataset.

The steps followed are:

• Regarding the toxic column, we decided to ignore it because it correlates strongly with the others.

• The columns “severe toxic”, ‘insult” ,“obscene” and “threat” would correspond to “overtly aggres-

sive” (OAG).

• The column “identity hate” would correspond to “covertly aggressive” (CAG).

• We excluded the instances that would score in both OAG and CAG dimensions because that is not

possible in our original dataset.

In this procedure, we decided to only keep “identity hate” in the covertly aggressive (CAG) class.

Following previous studies (Malmasi and Zampieri, 2018), “profanity vs. hate speech” are considered

and both identified and handled as different classes. In the case of the Toxicity dataset, we think that
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and
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tuning
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Figure 2: Conducted method for comparison of Systems 1 and 2 using training, validation, and test.

“severe toxic”, “insult” ,“obscene” and “threat” are more similar to “profanity” than to “hate speech”,

and the four should be grouped together as overtly aggressive (OAG).

3.2 Method

In order to test the effect of adding a new dataset to our classification procedure, we compared two

different systems (Figure 2). In the first, we build a model using only the training set provided in the

contest. For that, we extracted some classic features and studied different machine learning classification

methods. In the second, we applied the same procedure, but we fed the model not only with the provided

data but also with the Toxicity dataset.

3.2.1 Dataset Preparation and Feature Extraction

Regarding the features, we used the NLTK 3.3 library (Bird et al., 2009) for extracting:

• Parts of speech (POS).

• Sentiment analysis.

• Combination of POS and sentiment analysis.

• Capitalized words.

• Punctuation patterns.

• Frequencies of insults.

The procedure consisted in tokenization and extraction of parts of speech (POS) with Penn Treebank

style. Regarding sentiment, we considered Vader (Valence aware Dictionary and sentiment reasoner),

a lexicon and rule-based sentiment analysis tool specialized in social media (Hutto and Gilbert, 2014).

It produces four sentiment metrics, namely: positive, negative, neutral and compound. Additionally, to

these metrics, we extracted the counts of negative words, and the counts of negative adjectives, combining

both POS and sentiment analysis. We also measured the frequencies of capitalized words in a message

and marked with a boolean full capitalized messages. Punctuation patterns were obtained as explained

in Table ??. Finally, we mapped the frequencies of insults, using a dictionary1 with 350 words. The total

number of features in each group is presented in Table ??.

1http://www.insult.wiki/wiki/Insult_List

http://www.insult.wiki/wiki/Insult_List
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Individual features Expression Description

ellipsis \.{2,} ellipsis occurrence counts

ellipsis reps — sum of the summed length of all ellipsis patterns

simple qm ˆ?$ counts of single question mark

simple exc ˆ!$ counts of single exclamation mark

reps qm ˆ(\?+)$ counts of question marks with repetition

reps exc ˆ(!+)$ counts of exclamation marks with repetition

mixed (\?—\!){1,} counts of patterns with both question and exclamation marks

num punct — counts of punctuation patterns

max punct — size of largest punctuation pattern

Table 2: Extracted features based on punctuation and regular expression used.

Feature group Total features

Insult words 350

POS 36

Punctuation 9

Sentiment 5

Capitalization 2

POS + sentiment 2

Table 3: The total number of features by group.

3.2.2 Train and validation

In this phase, we used the R caret package (Kuhn, 2008) and the functions train, trainControl, predict

and confusionMatrix. We opted by three-fold cross-validation with parameter tuning of length three.

Regarding the classification algorithms, we used Boosted Logistic Regression (LogitBoost), Multi-Layer

Perceptron (mlp), Parallel Random Forest (parRF) and eXtreme Gradient Boosting (xgbTree).

3.2.3 Test

For testing our model we conducted four different runs. We developed two systems (aggression data vs.

aggression + toxicity data) that were tested in two different scenarios (Facebook data vs. Social Media).

Based on the results of the train and validation phases, we submitted the following systems (Table ??),

for English data: training with the provided dataset, classification algorithm with parallel random forests

and testing in Facebook data (Fb ag rf); training with the provided dataset plus the dataset classified on

toxicity, classification algorithm with parallel random forests and testing in Facebook data (Fb ag tox rf);

training with the provided dataset, classification algorithm with parallel random forests and testing in

Social Media data (Sm ag rf); training with the provided dataset plus the dataset classified on toxicity,

classification algorithm with parallel random forests and testing in Social Media data (Sm ag tox rf).

System id Data for testing Data for training Classification Algorithm

Fb ag rf Facebook Aggression Random forests

Fb ag tox rf Facebook Aggression + Toxicity Random forests

Sm ag rf Social Media Aggression Random forests

Sm ag tox rf Social Media Aggression + Toxicity Random forests

Table 4: Systems considered in the submission, each corresponding to one run.
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4 Results

4.1 Train and validation results

After training our models using cross-validation, and tuning them in the default parameters, we tested

them in the development dataset. This section provides the results in this phase, which were used to

decide on which classification algorithm to keep for the final submission. We concluded (Figure 3) that

the models built using only the default dataset (marked as “without toxic dataset” in the figure) perform

better than the ones using also the Toxicity dataset (marked as “with toxic dataset”).

LogitBoost mlp parRF xgbTree

CAG NAG OAG CAG NAG OAG CAG NAG OAG CAG NAG OAG

0.0

0.2

0.4

0.6

Class

F
1

toxic

With toxic dataset

Without toxic dataset

Figure 3: Results of different algorithms on the dev test set.

This is an expected result when using the development data for testing due to the source of its mes-

sages. In this case, the origin is Facebook, which is the same as in the training set. On the other side, the

Toxicity dataset comes from a different platform (Wikipedia) and these extra messages can cause noise.

Despite this result, we think that it worths to test the system built with the Toxicity dataset because on the

final submission some test sets include unknown data. Regarding the classification algorithms, we de-

cided to keep the parRF because it was the best performing algorithm if we take into account the results

of the three classes.

4.2 Final test results

In this section, we present the results after submitting our classifications in the shared task platform. In

Table 5, we can observe the results with the Facebook test set. With a mixed training dataset (Fb ag tox rf

system), we have a model with a slightly better performance than when using only the provided dataset

for training (Fb ag rf system). In this case, we would expect the same results as in the development

dataset because in both cases data originates in Facebook. Hence the model trained without Toxicity

should have performed better. Regarding this unexpected result, one possible explanation would be if

the moments for the collection of both dev and test set would not match, and therefore some differences

existing due to that.

CAG NAG OAG avg

random baseline - - - 0.3535

Fb ag rf 0.2135 0.6379 0.3439 0.5259

Fb ag tox rf 0.2217 0.6403 0.3439 0.5288

Table 5: Results for the English (Facebook) task, comparing the use of aggressive data (FB ag rf) with

the use of aggressive data plus Toxicity dataset (FB ag tox rf) for training using Random Forests for

classification.

We verified the same pattern described from the Facebook test set on the Social Media data (Table 6).

Using a mixed dataset for training lead to models with a better performance. In this case, this is an

expected result because the Social Media messages are from another source than Facebook and therefore

a more generic model is likely to perform better.
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CAG NAG OAG avg

random baseline - - - 0.3477

EN-TW task, groutar 00 0.314 0.4863 0.2469 0.3609

EN-TW task, groutar 01 0.3151 0.4889 0.2505 0.3633

Table 6: Results for the English (Social Media) task, comparing the use of aggressive data (Sm ag rf)

with the use of aggressive data plus Toxicity dataset (Sm ag tox rf) for training using Random Forests

for classification.

If we compare both (Table 5 and Table 6), we achieved an overall better performance when classifying

Facebook than Social Media messages. This is also an expected result because we trained with messages

from this social network and the added Toxicity dataset originates in Wikipedia. On the other hand, this

pattern does not apply if we consider only the covertly aggressive messages (CAG). In this case, the

classification worked better in the Social Media messages. This supports the idea that different social

media platforms have different expressions of behavior and the covertly aggressive messages were easier

to target on Twitter.

We also present here the confusion matrix for the Facebook test set and the Social Media (Figures 4

and 5). We concluded that, when adding the Toxicity dataset, the results are slightly better in identifying

covertly aggressive messages (CAG) on Facebook, overtly aggressive messages (OAG) on Social Media

and non-aggressive messages (NAG) in both.
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(b) Provided + Toxicity datasets

Figure 4: Confusion matrix for the two developed systems, using the Facebook test set and Random

Forest classification algorithm.

5 Conclusion

Throughout our approach to this shared task, our goal was to discuss some open issues in aggressive

text identification. Namely, the main motivation of our work was measuring the effects of merging new

datasets on the performance of models for aggression classification. It can be difficult to combine distinct

datasets due to the differences in the classification systems used. We conducted an experiment where we

combined a toxicity dataset with the original aggression dataset used in this shared task. Our expectation

was that, by adding external data from a different context, we could improve the performance of the

system.

In the procedure of adding different datasets to the data from the shared task, we faced one problem.
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Figure 5: Confusion matrix for the two developed systems, using the Social media test set and Random

Forest classification algorithm.

We found no alternative dataset with text classified for aggression and therefore we had to merge datasets

using different classes (aggression vs. toxicity). This required a conversion procedure where we corre-

sponded identity hate with covertly aggressive discourse, and severe toxic, insult, obscene and threat,

were mapped to overtly aggressive discourse.

Another goal of our work was focused on evaluating if we can build models that are general enough

to be useful across different social networks. From our experiments, on average we achieved a better

performance in classifying messages from the same social network that we used for training (Facebook)

when comparing to other social media. This confirms that training with similar data is an advantage in

the classification of social networks data. However, on the other hand, adding data for training from a

different platform, allowed us to slightly increase performance, indicating that more generalized models

can be an advantage.

Regarding the features, we used POS tags, sentiment analysis, insult frequencies, capitalization, and

punctuation counts. According to the literature, this kind of features are more related with explicit abuse

detection (Waseem et al., 2017). However, we did not find any evident advantage in using them for

detecting overtly aggressive discourse (OAG) in comparison with covertly aggressive (CAG). In our

experiment, the results of classifying OAG and CAG were equivalent. This can be due to the simplicity

of the extracted features, or possibly to some weaknesses in the data, as we explain in the next paragraph.

In the exploration of the dataset, we faced unclear definitions of the classification system used in the

annotation. Also, the definitions provided a posteriori seemed to be superficial. We manually inspected

some messages and concluded that it was difficult to identify the differences between the classes because

messages with similar degrees of aggression were found in the three classes. Additionally, we also found

lack of clear definitions in the toxicity dataset. This problem should be tackled in future research because

the identification of aggression is complex and ambiguous even for humans and requires clear guidelines.

Finally, we also noticed a higher percentage of aggressive messages in this dataset in comparison to

previous studies in other related phenomenon (Davidson et al., 2017), which questions the quality of the

annotation.
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