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Abstract

Aggression and related activities like trolling, hate speech etc. involve toxic comments in various
forms. These are common scenarios in today’s time and websites react by shutting down their
comment sections. To tackle this, an algorithmic solution is preferred to human moderation
which is slow and expensive. In this paper, we propose a single model capsule network with
focal loss to achieve this task which is suitable for production environment. Our model achieves
competitive results over other strong baseline methods, which show its effectiveness and that
focal loss exhibits significant improvement in such cases where class imbalance is a regular issue.
Additionally, we show that the problem of extensive data preprocessing, data augmentation can
be tackled by capsule networks implicitly. We achieve an overall ROC AUC of 98.46 on Kaggle-
toxic comment dataset and show that it beats other architectures by a good margin. As comments
tend to be written in more than one language, and transliteration is a common problem, we further
show that our model handles this effectively by applying our model on TRAC shared task dataset
which contains comments in code-mixed Hindi-English.

1 Introduction

In today’s time, with an ever increasing penetration of social media, news portals, blogs, QnA forums,
and other websites that allow user interaction, users often end up inviting comments that are nasty, har-
rasing, insulting, toxic etc. This can have adverse effects on users, who then become victims of cyber-
bullying or online harrasment. An online survey carried out by the Pew Research Centre in 2017 states
that 4 in 10 Americans have personally experienced online harrasment. Strikingly, 1 in 5 Americans
have witnessed severe form of online harrasment like physical threats, stalking, sexual harrasment etc.
There are several challenges associated with solving this kind of problem. First being the problem of
class imbalance found in the dataset. Since such type of comments are sparse in nature, they introduce
skewness in the dataset. There are several ways to handle this problem, however, we choose a more
recent technique which modifies the standard cross entropy loss function known as Focal Loss (Lin et
al., 2017). We will briefly describe how it helps in improving classifier performance. The next problem
we want to address is that of data preprocessing. This is the most time consuming task and requires a
good understanding of the data. However, we wish to minimise this process so as to have a good model
with minimal preprocessing of the data.
Another frequently observed challenge is transliteration, which is often observed, especially, when we
are working with text data from social networking websites. Users tend to speak in more than one lan-
guage in the same statement. This leads to several out of vocabulary or OOV words for which the model
would not have any word embedding. We use randomly initialised word embeddings in such a case and
show how they can be trained during model training procedure such that it results in clusters of OOV
words which have similar meaning in Hindi. We propose to tackle all the above described challenges us-
ing a single model as opposed to ensemble of several other models, which is a common practice in such
competitive challenges. We also show that our proposed model can converge really quickly, hence the
model can be trained in lesser time. This is essential when the model has to be deployed in a production
environment where it requires retraining periodically.
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2 Related Work

Early works in automated detection of abusive language made use of basic machine learning like Tf-Idf
(Yin et al., 2009), SVM (Warner and Hirschberg, 2012), Naive Bayes, random forests, or logistic regres-
sion over a bag-of-ngrams and achieved limited success. Newer approaches include solving problems
using deep learning architectures like CNNs (Kim, 2014; Zhang et al., 2015; Conneau et al., 2017b; Park
and Fung, 2017) which just focus on spatial patterns or LSTMs which treat text as sequences (Tai et
al., 2015; Mousa and Schuller, 2017). Another popular approach completely ignores the order of words
but focuses on their compositions as a collection, like probabilistic topic modeling (Blei et al., 2003;
Mcauliffe and Blei, 2008) and Earth Movers Distance based modeling (Kusner et al., 2015; Ye et al.,
2017).
Recently Capsule Network (Sabour et al., 2017) has been used in text classification (Zhao et al., 2018).It
makes use of the dynamic routing process to alleviate the disturbance of some noise capsules which may
contain background information such as stop words and words that are unrelated to specific categories
and show that capsule networks achieves significant improvement over strong baseline methods. As we
focus to solve the problem of toxic comments and cyberbullying, we are confronted with the issue of
large class imbalance. We use focal loss (Lin et al., 2017) to tackle it as it prevents the vast number of
easy negatives from overwhelming the detector during training. Also, in the online space people tend
to talk using different languages in the same comment and often use transliteration. We show that our
model is suitable for such data as well.

3 Capsule Net for Classification

Proposed Model: The model proposed in (Zhao et al., 2018) has been used for the experimentation with
an inclusion of Focal Loss (Lin et al., 2017) as a loss function to address the class imbalance problem. In
our experiments we have compared performances of CNNs and RNNs as feature extractors and found that
sentence representation obtained from RNNs performs better than representations obtained after applying
convolution operation, although CNNs tends to perform better on short texts. The model consists of four
layers:

(i) Word Embedding Layer: We represent every comment xi, as a sequence of one-hot encoding of
its words, xi = (w1, w2, ...wn) of length nmax, which is the maximum length of the comment,
with zero padding. Such a sequence becomes the input to the embedding layer. To represent word
tokens several ideas like sparse representation or dense representation (Collobert and Weston, 2008;
Bengio et al., 2003) have been proposed.

(ii) Feature Extraction Layer: This layer has been used to extract either n-grams feature at different
position of a sentence through different filters (CNNs) or long term temporal dependencies within
the sentence (RNNs). We use RNNs as feature extractors in our final model.

(iii) Capsule Layer: The Capsule layer is primarily composed of two sub-layers Primary Capsule Layer
and Convolutional Capsule Layer. The primary capsule layer is supposed to capture the instanti-
ated parameters of the inputs, for example, in case of texts local order of words and their semantic
representation. Suppose we have ê number of feature extractors, then the input to the Primary cap-
sule layer will be Z ∈ Rn×ê (where n is the number of timesteps in RNNs). The primary capsules
transform a scalar-output feature detector to vector-valued capsules to capture the instantiated fea-
tures. Let d be the dimension of each capsule, then for each capsule pi ∈ Rd, where p denotes
instantiated parameters set of a capsule (Sabour et al., 2017), we have pi = g (WZi + b), where Zi
is captured by RNNs in the feature extractor layer. Here, g is the nonlinear squash function which
shrinks the small vectors to around 0 and large vectors around 1.

(iv) The Convolutional Capsule: The Conv layers capsules output a local grid of vectors to capsules
in earlier layers using different transformation matrices for each capsule and grids member (Sabour
et al., 2017).Capsule networks are trained using a dynamic routing algorithm that overlooks words
that are not important or unrelated in the text, like stopwords and name mentions.
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Model Name Kaggle-toxic comment classification
(ROC-AUC)

TRAC - 1 (English-FB)
(Weighted F1)

TRAC - 1 (English-TW)
(Weighted F1)

CNN-multifilter 95.16 55.43 53.41
CNN-LSTM 96.85 62.20 47.68

Bi-directional LSTM with maxpool 97.35 59.79 51.146
FeedForward Attention Networks 97.42 57.43 55.49

Hierarchical ConvNets 97.95 51.38 50.43
Bi-LSTM, Logistic Regression 98.17 57.17 52.1

Bi-LSTM, xgboosted 98.19 57.33 52.31
Bi-LSTM with skip connections 98.20 61.78 51.98

Pre-trained LSTMs 98.25 60.18 58.7
CapsuleNet without Focal Loss 98.21 62.032 58.600

CapsuleNet with Focal Loss 98.46 63.43 59.41

Table 1: Comparison of several deep learning approaches with Capsule Net on the three datasets

Focal Loss: To handle the class imbalance problem, we have used Focal Loss which is given by the
following formula :

FL(pt) = −αt(1− pt)γ log(pt), where pt = {
p if y = 1

1− p else
γ is the focusing parameter which smoothens the rate at which easy examples are down weighted and,

α is the weight assigned to the rare class.

Figure 1: CapsNet with LSTMs as feature extractor

4 Experiments

In this section we attempt to describe different models that we have used for the classification process.
We seek to answer the following questions: (1) Is combination of Capsules and focal loss the new
apotheosis for toxic comment classification problems? (2) Can capsules solve the problem of OOV and
transliteration implicitly ?

4.1 Datasets

4.1.1 Kaggle Toxic Comment Classification:
Recently, Kaggle hosted a competition named Toxic Comment Classification. This dataset has been
contributed by Conversation AI, which is a research initiative founded by Jigsaw and Google. The task
was comprised of calculating the log-likelihood of a sentence for the six classes, i.e., given a sentence
calculate the probability of it belonging to six classes. The six different classes were toxic, severe toxic,
obscene, threat, insult and identity hate.
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4.1.2 TRAC dataset:
“First Shared Task on Aggression Identification” released a dataset for Aggression Identification. The
task was to classify the comments into one of the three different classes Overtly Aggressive, Covertly
Aggressive, and Non-aggressive. The train data was given in English and Hindi, where some of the
comments in Hindi dataset were transliterated to English.

4.2 Data Preprocessing

For all our experiments, to show efficacy of our approach we kept the preprocessing as minimal as
possible. Apart from word lowerization, tokenization, and punctuation removal we didn’t perform any
other activity.

4.3 Baseline Algorithms

We evaluate and compare our model with several strong baseline methods including: LSTM with Max-
pool (Lai et al., 2015), Attention networks (Raffel and Ellis, 2015), Pre-trained LSTMs (Dai and Le,
2015), Hierarchical ConvNet (Conneau et al., 2017a), Bi-LSTM with Skip-connections, variation of
CNN-LSTM (Wang et al., 2016), CNN-multifilter (Kim, 2014), Bi-LSTM with xgboost and logistic re-
gression. We experiment with these models on three datasets. The models were first evaluated on Kaggle
competition for Toxic Comment Classification. All the model parameters and attributes were decided on
the basis of our best performing model, and were kept same for the rest of experimentations and datasets.

4.4 Model Training

For all our experiments we have used pre-trained embeddings for each word token obtained from (Joulin
et al., 2016). We have also exploited (Pennington et al., 2014), (Mikolov et al., 2013), random and manu-
ally trained embeddings for initialization. After experimentation, fasttext embeddings with dimension of
300 were found to perform better than rest of the initialization process. In our experiments we observed
that RMSProp (Tieleman and Hinton, 2012) and Adam (Kingma and Ba, 2014) as an optimizer works
well for training RNNs and CNNs respectively and used this throughout. The learning rate was kept
between [.1 and .001]. For CNNs, number of Kernels was chosen from the range [128, 256, 512] and the
LSTM units were selected from the range [128, 256]. In all of our experiments with the proposed model
only a single layer for feature extraction was used. Number of capsules was varied from [8, 10, 16], the
vector length of 8 for each capsule was found to be the best, and the dropout values for RNNs were taken
as per suggestions from (Zaremba et al., 2014). The α and γ values in focal loss were experimented for
[1.5, 2, 2.5, 3, 3.5] and [.2, .25, .3] and finally α = 2 and γ=0.25 were taken.

5 Results and Discussions

The proposed CapsNet architecture was able to beat other strong baseline algorithms with reasonable
difference in accuracies with minimal preprocessing. We demonstrated that using focal loss along with
CapsNet gave us .25 raise in the ROC-AUC for Kaggle’s toxic comment classification and 1.39 and
.80 gain in F1 scores on TRAC shared task dataset in English, from Facebook and Twitter comments
respectively. All of our experiments were performed on NVIDIA Quadro M1200 4096 MB GPU system
with 32 GB RAM and Intel i7 processor. The model took almost 33 minutes for an epoch to train
which was faster in comparison with other models, with exception to the models using CNNs as feature
extractors. For example, the second best performing model, which uses Pre-trained LSTM embeddings
takes more than a day for the autoencoder to train and further 39+ minutes for each epoch. Hence, we
can say that our model is viable for production environment.
We have tested the capability of the architecture to handle the OOV words or misspelled words. For
this we used TRAC shared dataset, initialised the word embeddings randomly and trained the model for
classification process. Next, we enabled the embeddings to be changed during training process which is
mentioned as dynamic channel in (Kim, 2014) to let the model learn new embeddings. After training, we
took the weights of embedding layer and plotted these embedings using Tensorboard (Abadi et al., 2015).
From figure 2 we can see that the model is able to minimise the distance between the misspelled word
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(a) Training and Validation Loss for Kaggle Toxic Comment
Classification Dataset (b) Clusters for word obtained after training

Figure 2

and is able to capture the relationship between transliterated words as in Table:2. We found that total
of 3 clusters were formed after the experiment as shown in Fig:2b. We investigated these clusters and
found that some of the highly used words in the comments belonged to certain classes. For example, one
of the cluster contained more of neutral words, another cluster contained highly aggressive and abusive
words, and the third cluster contained some toxic words along with place and country names related to
one’s origin which were used in some foul comments.
We show the capability of our model to tackle the problem of overfitting, as observed during training we
see the model to have comparatively lower difference in training and validation loss than other models.
Same can be seen from Fig:2a the loss margin difference doesn’t change . We have shown that, not only
our model has performed well on the classification task, it also has ability to generalise well and can
learn good representation for word tokens.

NN to “politics” NN to “bharat”
politic bharatiya

politican bhar
politico mahabharata

politicize bharti
politician bhaskar

NN to “kut*e”(Hindi)
chu**ya

sa*le
tere

g**d
ma***rc**d

Table 2: Example of handling misspelt words and transliteration. NN : Nearest Neighbour

6 Conclusion and Future Work

In this work, we have proposed to automatically detect toxicity and aggression in comments, we show
that with minimal preprocessing techniques we are able to achieve a good model performance and
demonstrated how OOV words and semantic sense are learnt implicitly with random initialisation. We
show the effectiveness of our proposed model against strong benchmark algorithms and that it outper-
forms others.
In this work, we did basic preprocessing of the data, however in future we intend to explore more pre-
processing techniques for the dataset, like data augmentation using translation approaches and methods
to deal with mispelled words. We further would examine the results of capsule net by visualising which
words or phrases does the model correctly recognises for classification as opposed to benchmark algo-
rithms. Also, we would like to examine the usage of focal loss with the rest of the baseline models.
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A Baseline Algorithm Descriptions

A.1 CNN Multifiter

The idea of applying CNNs for text classification was proposed in (Kim, 2014), where authors applied
filters of different length to extract N-gram features from text. The authors tried static and dynamic em-
bedding channels and concluded that the model with combination of both outperformed others. For our
setting we found that filters of length [2, 3, 4] have outperformed other filter sizes, we tried various com-
binations from range [2, 5]. For activations we used Leaky ReLU, and performed Batch Normalization
to stablize the data.

A.2 CNN LSTM

A joint architecture of CNNs and RNNs were proposed in (Wang et al., 2016), where the authors tried
combination of CNNs with different RNNs like GRUs and LSTMs. In our experiment, we again used
Leaky ReLU for CNNs activations, filter size of 3 was fixed for the experiments to decide the dropout
values and other hyperparameters tuning.

A.3 Bi-directional LSTM with maxpool

In (Lai et al., 2015), authors took Max Over Time on the RNN representation of the input. Their model
RNN outperformed other models in 3 out of 4 datasets. In our experiments, we fixed LSTM units to be
51, and rest of the parameters were decided on the basis of validation-data experiments.
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A.4 Hierarchical ConvNets
Convolutional Neural Networks are known to perform well on short texts (Yin et al., 2017), in (Conneau
et al., 2017a) authors proposed to concatenate representation at different levels of input sentence. The
model was claimed to capture hierarchical abstractions of the input sentence. For our experiments, we
fixed 128 kernels of size 2, 3, 4, 4 at 4 different levels. These values were decided after the experiments
with different number of kernels and their sizes.

A.5 Bi-LSTMS with skip connections
In one of our experiments, the summary vector obtained from LSTMs was concatenated with the vector
obtained after appying Max Over Time on the hidden state representation of the input. The intuition
behind this was that, by passing most relevant features along with summary of the input to the softmax
layer may enhance the clasification process. From the experiments we obtained competetive results using
this model.

A.6 Pre-trained LSTMs
In (Dai and Le, 2015), authors claimed that by pretraining LSTMs on some related task as Auto-Encoder
or as a Language Model, could optimize the stability of the LSTMs training process. The authors re-
ported improvenemt in error rates by good margin in many tasks like, text classification on 20 News-
group, IMDB etc. For our experiments we gathered many related datasets like all of Wikimedia datasets
(Wulczyn et al., 2017), TRAC shared dataset, IMDB movie reviews dataset. An autoencoder was trained
on these datasets and the LSTMs from the encoder part were extracted and used in the classifcation task.


