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Abstract

Journalists usually organize and present the contents of a news article following a well-defined
structure. In this work, we propose a new task to categorize news articles based on their con-
tent presentation structures, which is beneficial for various NLP applications. We first define a
small set of news elements considering their functions (e.g., introducing the main story or event,
catching the reader’s attention and providing details) in a news story and their writing style
(narrative or expository), and then formally define four commonly used news article structures
based on their selections and organizations of news elements. We create an annotated dataset for
structure-based news genre identification, and finally, we build a predictive model to assess the
feasibility of this classification task using structure indicative features.

1 Introduction

There exist many guidelines for journalists in organizing and presenting contents in a news story. For
example, when writing news briefs or breaking news, it is recommended to present the most newsworthy
and key events first and then provide any additional details (e.g., sub-events of key events) (Po¨ ttker,
2003). While in other types of news, it is common to use a narrative hook (Myers and Wukasch, 2003) in
the opening of a story that “hooks” the reader’s attention so that the reader is willing to keep on reading
the main story. Recognizing the overall structure of a news article can benefit many NLP tasks and
applications, such as discourse parsing (Dijk, 1983), text segmentation, news summarization, information
extraction and question answering system. Understanding the overall structure can also help reveal the
events structure in the news. For example, the sequences of events in the news with Narrative structure
usually follow the chronological order.

To categorize news articles based on their content organization and presentation differences, we first
define a small set of news elements (section 3.1), and then formally define four commonly used news
structures based on their different ways to select and organize news elements (section 3.2).

A news element is defined based on functions it plays in a news story as well as its writing style, and
each news element is realized as a set of one or more consecutive paragraphs in a news article. The
functions of a news element can be introducing the main story and key events, catching the reader’s
attention or providing further details etc.. We consider writing style in news stories as either narrative
or expository. A narration section in a story usually describes surroundings, characters, and a sequence
of events in a chronological order (Bal, 2009; Pentland, 1999; Smith, 2005), so that the reader can easily
visualize the story with great details. An expository section is meant to provide information in a concise
manner and usually answers the socalled “5W1H” questions: what are the events, who are involved,
where / when / why / how did the events happen. Please see Table 1 for specific examples.

We then formally define four commonly used news structures (Wri, 2011; Jou, 2014; Po¨ ttker, 2003),
Inverted Pyramid, Kabob, Martini Glass and Narrative, based on their selections and organizations of
news elements. We then prepare annotation guidelines and create a dataset1 containing around 900 news
articles, where each article is annotated with its news structure and news elements. The annotated news

1The dataset will be made publicly available.
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Functions: Introducing the Main Story and Key Event
(1) Title: Harsh Storm Batters Island off the Coast of Russia

Five days of blizzards and avalanches have paralyzed the Russian island of Sakhalin, cutting off air and sea links to the mainland, stranding dozens of
motorists on highways, and burying a train, along with three railway workers, under snow drifts 10 feet deep.
Functions: Catching the Reader’s Attention
(2) Title: Twitter becomes a player in customer service world

Have a problem with a business? Don’t pick up the phone, or even log on to the company’s Web site. Instead, Tweet it.
Twitter, the 3-year-old social networking site, allows users to send 140-character text updates called “tweets” to groups of followers.
“The modern-day consumer has gained considerable power and clout because of social media, and especially Twitter.” says Larry Weintraub, CEO of

Fanscape, a digital marketing agency. ”Companies are on high alert, monitoring what people are saying about them in everyday conversations, or tweets.”
Narrative writing style:
(3) The accident occurred March 28 as workers digging tunnels broke through a wall into an old shaft filled with water, flooding their V-shaped shaft.
Five of the workers’ nine platforms were submerged. The exit out of the pit was blocked. Of the 261 miners underground that day, 108 made it to safety.
The rest were trapped and feared dead.
Expository writing style:
(4) Some 150 politicians, civil servants, tribal chiefs, police officers, Sunni clerics and members of Awakening Councils have been assassinated throughout Iraq
since the election – bloodshed apparently aimed at heightening turmoil in the power vacuum created by more than three months without a national government.

Table 1: News Examples.

articles were sampled from four news domains, including politics, crime, business and disaster reports,
for studying distributional differences of news structures across domains.

Finally, we design news structure indicative features and train a Support Vector Machine
(SVM) (Cortes and Vapnik, 1995) classifier to label each news article with one of the proposed news
structures. Experimental results show that reasonable performance can be achieved for automatic
structure-based news genre classification by using our structure indicative features, even though results
on minority classes remain low.

2 Related Work

The previous works on automated text categorization have considered various dimensions for categoriza-
tion, such as topic (Kazawa et al., 2005; Zhou et al., 2009), style (Argamon-Engelson et al., 1998) and
author (Stamatatos et al., 2000). Although news structures have been extensively studied in linguistics
and journalism (Schokkenbroek, 1999; Van Dijk, 1985; Ytreberg, 2001), there are few studies trying to
categorize a news article based on its content organization structure and there is no published dataset for
developing such data-driven methods. To the best of our knowledge, we are the first to consider catego-
rizing news articles according to news structures. Our main contributions include defining news elements
and news structures, creating the first dataset for news structure identification as well as identifying news
structure indicative features and conducting the first computational study for structure-based news genre
categorization.

The well-studied text segmentation task (Ponte and Croft, 1997; Mulbregt et al., 1998; Dharanipragada
et al., 1999) has focused on segmenting a document based on topics and identifying topic transition
boundaries. Labov and Waletzky (2003) conducted an in-depth analysis of 14 narrative news stories
and decomposed each story into six elements2. In contrast, we define a small set of news elements and
determine the overall structure of each news based on the selection and organization of these elements.

3 Defining and Annotating News Structures

3.1 Five News Elements

We define each news element based on its functions in a news story and its writing style3. Based on their
characteristics, we define five types of elements below:

Standard Lede: Located at the beginning of a news article; used to introduce the main story and key
events to the reader in a very concise manner; written in the expository style; e.g., the first paragraph of
example (1) in Table 1.

Image Lede: Located at the beginning of a news article; unlike Standard Lede, it does not directly
discuss key events of the news, instead it catches the reader’s attention by providing an anecdote related

2The six elements are abstract, orientation, complicating action, evaluation, resolution and coda.
3The two characteristics are often correlated.
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to key events, quoting a catchy phrase or comment, or reporting an impressive fact or statistics (Jou,
2014); written in either narrative or expository style; e.g., the first paragraph of example (2) in Table 1.

Synopsis: Preceded by an Image Lede, the main purpose of Synopsis is to summarize the main story,
inform the reader about key events and acts as a bridge between the Image Lede and the rest of the story;
written in expository style; e.g., the second and third paragraphs of example (2) in Table 1.

Narration: Provides great details and often indicates the presence of a set of chronologically ordered
events (Bal, 2009; Mani, 2012); written in narrative style; e.g., the example (3) in Table 1.

Body Section: Provides additional details and supplementary information about key events; written in
expository style. Essentially, an element that does not belong to any of the above categories is annotated
as a Body Section.

3.2 Four News Structures

News Structure Inverted Pyramid Martini Glass Kabob Narrative
First Element Standard Lede Standard Lede Image Lede Image Lede*

Second Element Body Section Body Section* Synopsis Narration
Third Element Narration Body Section

Table 2: Element arrangement of each news article structure. * means this element is optional.

We distinguish four news structures based on their selections and organizations of news elements.
Table 2 summarizes organization patterns of news elements for each news structure.

Inverted Pyramid (IP): Inverted Pyramid (Po¨ ttker, 2003) as a news article structure has been widely
used by newspapers since the beginning of the 20th century. In this news structure, contents are presented
in the descending order of importance and relevance (Scanlan, 2003). It means that key events will be
placed first, and additional details related to key events will be discussed later. Naturally, this structure
can be represented as a Standard Lede followed by a Body Section as shown in Table 2.

Martini Glass (MG): Relied on a specific narrative chronology, Martini Glass (Wri, 2011; Jou, 2014)
begins by presenting a summary of a story following the Inverted Pyramid structure, and then transitions
into a detailed chronological elaboration of the story. This structure is better suited for stories that rely
on a specific narrative chronology. Therefore, different from the Inverted Pyramid structure, a Narration
element is included in the Martini Glass structure as well.

Kabob (Kab): In the Kabob (Wri, 2011; Jou, 2014) structure, a news story usually begins with
an anecdote to catch the reader’s attention, then introduces the main story and key events, and finally
broadens into a general discussion with more details. Therefore, the Kabob structure starts with an
Image Lede, and then uses a Synopsis as a transition followed by a Body Section.

Narrative (Nar): A narrative news story captivates the reader by presenting a chronologically ordered
sequence of events with a greater amount of details than usual news. We label an article as Narrative if
the majority paragraphs form a single Narration element with an optional preceding Image Lede.

Based on above definition, we can see that only the Inverted Pyramid and Martini Glass structures
place key events of a news story at the beginning paragraphs; and only the Martini Glass and Narrative
structures contain an Narration element written in narrative style. These commonalities and differences
provide insights when designing features for categorizing news based on their structures.

3.3 Dataset Creation
To understand distributional differences of news structures across domains, we randomly sampled 250
documents for each of the four news domains, including politics, crimes, business and disasters, from the
New York Times section of the Gigaword corpus (Robert Parker and Maeda, 2011) by matching news
documents with pre-defined domain keywords4. Due to ambiguities of domain keywords, not every
document is relevant to its deemed domain. Therefore, we manually checked the title of each document
and cleaned the dataset by removing unrelated documents from each domain, in total, 147 documents

4We will list keywords in appendix.
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were removed. In addition, we shifted 96 of the remaining news articles across domains. After cleaning,
the dataset contains 853 news articles in total that span over four news domains.

We trained two annotators to annotate the dataset. For each document, annotators were asked to read
the whole document and determine if it has one of the four news structures we defined, and then divide the
document into segments corresponding to news elements. First, the two annotators annotated the same
170 documents for measuring annotation inter-agreements. Then, each annotator was asked to annotate
half of the remaining documents. The two annotators achieved a Cohen’s κ inter-agreement score of 67%
in identifying the news structure type of each document and agreed on news element segmentations5 for
61% of times.

3.4 Dataset Statistics

News Domains Inverted Pyramid Martini Glass Kabob Narrative Other
Politics 154 17 53 10 6
Crime 113 12 61 32 8

Business 121 3 81 16 7
Disaster 94 5 42 18 0

Total 482 37 237 76 21

Table 3: News article structures distribution.

Table 3 shows the distribution of news structures in each domains and the overall distribution of news
structures in our dataset. We can see that most of the annotated articles manifest one of the four news
article structures we defined and the distribution of news structures is heavily imbalanced. As expected,
the Inverted Pyramid is the dominant news article structure across the four domains, while there are the
least number of news articles in the Martini Glass structure, mostly in the domains of politics and crime.
Furthermore, depending on news domains, certain types of news article structures are more common.
For example, there are more crime reports written in the Narrative structure compared with other news
domains, while there are more business news articles in the structure of Kabob.

4 Automatic Structure-based News Genre Classification

We randomly selected 53 documents as the development set and trained a multi-class classifier using the
remaining 800 documents with 10-fold cross-validation for predicting the news structure type of each
news article. We use the implementation of the SVM model in LIBSVM (Chang and Lin, 2011) library
with default settings and tuned hyper-parameters using the development set.

4.1 The Feature Set

N-gram Features: As basic features, we consider both unigrams and bigrams (Brown et al., 1992).
Both were widely used in text classification tasks.

Writing Style Features: As we discussed in section 3.2, only the Martini Glass and Narrative struc-
tures include an Narration element, we therefore create two sets of features for recognizing narrative
writing style. First, we create features for grammar production rules and we use the frequency of each
syntactic production rule6 (e.g., S → NP VP) extracted from constituency-based parse trees7 as a fea-
ture. Second, we create a feature for each semantic category in LIWC (Linguistic Inquiry and Word
Count) (Pennebaker et al., 2015) dictionary and the feature value is the occurrences of all words in that
category. These LIWC features capture presences of certain types of words, such as words denoting

5We only count news elements that were annotated with exactly the same paragraph boundaries and the same news element
type.

6Note that the bottom level syntactic production rules have the form of POS tag → WORD and contain a lexical word,
which made these rules dependent on specific contexts. Therefore, we exclude these bottom level production rules to obtain
more general features.

7We used Stanford CoreNLP (Manning et al., 2014) to generate constituency-based parse trees for each sentence.
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relativity (e.g., motion, time, space), which were reported effective for detecting narrative stories (Yao
and Huang, 2018).

Key Event Placement (KEP) Features: Note that only the Inverted Pyramid and Martini Glass
structures start with a Standard Lede, which introduces key events directly and may repeat key events
and associated event attributes (e.g., character, time and location) that were mentioned in the title as
well. Therefore, we design a simple feature representing the number of words in overlap8 between the
first paragraph and news title.

4.2 Experimental Results

Feature Sets IP MG Kab Nar Macro Micro
Unigrams 71.6/85.1/77.8 0/0/0 51.3/43.4/47.1 53.2/35.2/42.4 44.0/40.9/41.8 65/65/65
Bigrams 71.6/87.1/78.6 0/0/0 53.6/44.3/48.5 52.5/29.6/37.8 44.4/40.3/41.2 66/66/66
Unigrams + Bigrams 72.5/87.5/79.3 0/0/0 56.5/45.2/50.3 58.0/40.8/47.9 46.7/43.4/44.4 67/67/67
+ Writing Style 73.4/85.8/79.1 37.5/9.1/14.6 56.3/48.4/52.1 62.0/43.7/51.2 57.3/46.7/49.3 68/68/68
+ KEP Features 74.7/88.4/81.0 0/0/0 56.4/48.0/51.8 55.8/40.8/47.2 46.7/44.3/45.0 69/69/69
+ Both 76.0/88.2/81.7 44.4/12.2/19.1 60.1/52.5/56.0 60.0/42.3/49.6 60.2/48.8/51.6 71/71/71

Table 4: 10-fold cross-validation classification results. Each cell shows Precision/Recall/F1 score.

Table 4 shows the experimental results using different groups of features. Using N-gram features
only achieves good performance for recognizing the Inverted Pyramid structure. Added the writing style
features on top of N-gram features significantly improves the classification performance on the Martini
Glass and Narrative structures which contain a Narration element. Adding the KEP features further
helps to identify three news article structures except the Narrative category. Note that the classification
performance on the Martini Glass structure is poor, mainly because it is a minority class and not suf-
ficiently represented in our dataset. We conclude that SVM model using both lexical features and our
designed structure indicative features can achieve reasonable performance for predicting news article
structure type.

5 Conclusion

We conducted the first study on fine-grained structure-based news genre categorization by defining a
small set of general news elements and formally defining four commonly used news article structures. We
created the first dataset of news articles annotated with both news structures and news elements. Finally,
we conducted the initial experiments and showed the feasibility of automatic news genre categorization.
Future work may include investigating the structure of event story within different news structure type.

Appendix

Here is the full list of domain keywords we used to sample news documents in Section 3.3:
Politics: [government, president, congress, white house, senate, Republican, GOP, Democratic, Tea

Party, foreign minister, cabinet ministers];
Crime: [assasinate, arrest, bomb, murder, kidnap, robbery, manhunt, al qaeda, charged with assault,

charged with battery];
Business: [merger, investor, stock, market, shareholders, hedge fund, banker, bankruptcy];
Disaster: [disaster management, weather warn, severe weather, x.x magnitude, wind speed, rescue

team, volcano erupt, earthquake, oil spill].
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