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Abstract

Automatic speech recognition and spoken dialogue systems have made great advances through
the use of deep machine learning methods. This is partly due to greater computing power but also
through the large amount of data available in common languages, such as English. Conversely,
research in minority languages, including sign languages, is hampered by the severe lack of data.
This has led to work on transfer learning methods, whereby a model developed for one language
is reused as the starting point for a model on a second language, which is less resourced. In
this paper, we examine two transfer learning techniques of fine-tuning and layer substitution for
language modelling of British Sign Language. Our results show improvement in perplexity when
using transfer learning with standard stacked LSTM models, trained initially using a large corpus
for standard English from the Penn Treebank corpus.

1 Introduction

Spoken dialogue systems and voice assistants have been developed to facilitate natural conversation
between machines and humans. They provide services through devices such as Amazon Echo Show
and smartphones to help the user do tasks (McTear, 2004) and, more recently, for open domain chitchat
(Serban et al., 2016), all through voice. Recent advances have been facilitated by the huge amounts of
data collected through such devices and have resulted in the recent success of deep machine methods,
providing significant improvements in performance. However, not all languages are able to benefit from
these advances, particularly those that are under-resourced. These include sign languages and it means
that those who sign are not able to leverage such interactive systems nor the benefits that automatic
transcription and translating of signing would afford.

Here, we advance the state of the art with respect to transcribing British Sign Language (BSL). Our aim
is for automated transcription of the BSL into English leveraging video recognition technologies. BSL
enables communication of meaning through parameters such as hand shape, position, hand orientation,
motion, and non-manual signals (Sutton-Spence and Woll, 1999). BSL has no standard notation for
writing the signs, as with letters and words in English. Analogous to the International Phonetic Alphabet
(IPA), highly detailed mapping of visual indicators to written form are available, such as HamNoSys
(Hanke, 2004). Despite the expressiveness of the HamNoSys writing system, its practical uses are limited
and only a handful of experts know how to use it. Recent methods for automatic speech recognition
(ASR) use deep neural models to bypass the need for phoneme dictionaries (Hannun et al., 2014), which
are then combined with language models. Previous work (Mocialov et al., 2016; Mocialov et al., 2017)
has shown that we can use visual features to automatically predict individual signs. This work follows
on in that these individual signs are to be used with a language model to take into account context and
therefore increase accuracy of the transcriber, which outputs a string of word-like tokens. These tokens
are called glosses (Sutton-Spence and Woll, 1999; Cormier et al., 2015). Although glosses are translated
BSL signs, they also convey some grammatical information about BSL. This makes glosses useful in
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their own right without the videos of the BSL signs and sheds some light into the syntax and semantics
of the BSL.

This paper focuses on language modelling, a common technique in the field of ASR and Natural
Language Processing to model the likelihood of certain words following each other in a sequence. We
improve modelling of the BSL glosses by proposing to use transfer learning approaches, such as fine-
tuning and layer substitution. The use of transfer learning technique can overcome the data sparsity issue
in statistical modelling for scarce resource languages by using similar resources that can be found in
large quantities and then further training the models on a specific low resource data.

We show that a model, pre-trained on the Penn Treebank (PTB) dataset1 and fine-tuned on the BSL
monolingual corpus2 can yield better results. This is in contrast to the same architecture that is trained
directly on the BSL dataset without pre-training. This is a somewhat surprising result as there are marked
differences between the two languages, particularly with the respect to the syntax (Sutton-Spence and
Woll, 1999).

The paper begins with presenting methods for modelling languages and how they can be utilised in the
BSL modelling. Section 2.2 gives an overview of how transfer learning can be achieved as well as the
use of transfer learning in sign languages. Section 3 gives an overview of the datasets that are used in this
paper, their statistics, and pre-processing steps to create two monolingual corpora for statistical model
training. Section 4 describes in detail the setup for the experiments in this paper. Section 5 presents the
results of the models employed for this research and discusses these results and the limitations of the
approach taken in terms of the data used in Section 5.3. The paper is then concluded and future work is
proposed.

2 Related Work

2.1 Sign Language Modelling
Despite the availability of many alternatives for language modelling, such as count-based n-grams and
their variations (Chen and Goodman, 1999; Rosenfeld, 2000; MacCartney, 2005; Bulyko et al., 2007;
Guthrie et al., 2006), hidden Markov models (Dreuw and Ney, 2008; Dreuw et al., 2008), decision trees
and decision forests (Filimonov, 2011), and neural networks (Deena et al., 2016; Mikolov et al., 2010),
research in sign language modelling predominantly employs simple n-gram models, such as in Cate and
Hussain (2017), Forster et al. (2012), and Massó and Badia (2010).

The reason for the wide-spread use of n-grams in sign language modelling is the simplicity of the
method. However, there is a disconnect between n-grams and sign language in that signing is embodied
and perceived visually, while the n-grams are commonly applied to text sequence modelling. For this
reason, the authors in Stein et al. (2007), Zhao et al. (2000), Dreuw et al. (2008), Massó and Badia
(2010), and Forster et al. (2013) model glosses, such as the ones shown on Figure 2, which are obtained
from the transcribed sign languages, in a similar way to how language modelling is applied to automatic
transcribed words from speech.

Glosses model the meaning of a sign in a written language, but not the execution (i.e. facial expres-
sions, hand movement). Therefore, the more detailed meaning of what was signed may get lost when
working with the higher-level glosses. To overcome this issue and to incorporate valuable information
into sign language modelling, additional features are added in similar research, such as non-manual fea-
tures (e.g facial expressions) (San-Segundo et al., 2009; Massó and Badia, 2010; Zhao et al., 2000; Stein
et al., 2007).

In this work we use glosses because we want to model BSL purely at the gloss level without any
additional information (e.g. facial expressions).

2.2 Transfer Learning
While transfer learning is a more general machine learning term, cross-domain adaptation of language
models is used in the language modelling literature (Deena et al., 2016; Ma et al., 2017). Models are

1https://catalog.ldc.upenn.edu/ldc99t42
2http://www.bslcorpusproject.org/
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usually trained on some specific domain that consists of a specific topic, genre, and similar features that
can be identified by an expert. For example, a restaurant domain when a new type of a restaurant is
created then the system needs to be able to adapt and be able to understand and discuss this new type
of the restaurant. Unfortunately, it is nearly impossible to train a model for all possible configuration of
current or future features. Commonly, a set of features are extracted from the raw data. When features
change, re-training is required. Useful features can also be extracted without expert knowledge with
such techniques as Latent Dirichlet Allocation (LDA). These features usually take the form of words that
represent topics in the data (Deena et al., 2016). Best practice tries to avoid re-training the models every
time one of the features changes as the domain changes due to the overhead involved.

Model-based adaptation to the new domains, on the other hand, is achieved by either fine-tuning or
the introduction of adaptation layer(s) (Yosinski et al., 2014). Fine-tuning involves further training the
already pre-trained model using the data from the new domain. The intuition behind the fine-tuning is
that it is much quicker to learn new information with related knowledge. The adaptation layer approach
incorporates new knowledge by re-training only the adaptation layer, whereas the rest of the model
remains exactly the same as if it was used in the original domain and acts as a feature extractor for the
new domain (Deena et al., 2016).

Transfer learning has been applied to sign languages in computing for various purposes to demonstrate
that the method is suitable for the task due to the lack of substantial domain-specific sign language data.
Transfer learning has been successfully applied to static pose estimation, transferring the knowledge
from pose estimation to the sign language pose estimation (Gattupalli et al., 2016) and classification
of fingerspelled letters in American Sign Language (Garcia and Viesca, 2016; Karthick Arya, 2017;
Chaudhary, 2017; Muskan Dhiman, 2017). In particular, most of the transfer learning in sign language
has been applied to static image recognition to recognise the hand shape in an image using convolutional
neural networks.

We apply transfer learning to the language modelling task as this is a key challenge in successfully
transcribing BSL.

3 Corpora

The BSL corpus and the preprocessed Penn Treebank (PTB) corpus were chosen for this research. The
monolingual PTB dataset consists of telephone speech, newswire, microphone speech, and transcribed
speech. The dataset is preprocessed to eliminate letters, numbers, or punctuation and was used by
Mikolov (2010). The BSL corpus contains video conversations among deaf native, near-native and fluent
signers across the United Kingdom. Almost all of the approximately one hundred recorded conversations
are annotated for thirty seconds each at the gloss level using ELAN3 annotation tool (Schembri et al.,
2013).

Figure 1: The BSL Corpus Project Sample Video Snippets4

3https://tla.mpi.nl/tools/tla-tools/elan/
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All recordings of the signers were made using up to four standard video cameras with a plain backdrop
to provide full body view of the individuals, as well as, views from above of their use of signing space.
The conversations between the signers included signing personal experience anecdotes, spontaneous
conversations (Schembri et al., 2013).

The BSL data that we focused on was narratives between two participants, where one person had to
think of a topic to sign about to another participant during the elicitation.

RH-IDgloss PT:PRO1SG EXPLAIN ABOUT PT:POSS1SG FS:PUPPY DSEW(FLAT)-BE:ANIMAL PT:POSS1SG WANT FAMILY AT-LAST HAVE DSEW(FLAT)-BE:ANIMAL ?LAST-WEEK GOOD
LH-IDgloss EXPLAIN ABOUT FS:PUPPY DSEW(FLAT)-BE:ANIMAL AT-LAST HAVE DSEW(FLAT)-BE:ANIMAL GOOD
Free Translation I want to tell you about my puppy My family got a puppy last year

Model Input Gloss EXPLAIN ABOUT PUPPY ANIMAL WANT FAMILY AT-LAST HAVE ANIMAL LAST-WEEK GOOD

Figure 2: a) The BSL Corpus Annotation in ELAN; b) Table shows full text of the annotated glosses for
the two first sentences from the ELAN annotation; c) Glosses that are used for the BSL modelling

The corpus is annotated with glosses, taken from the BSL SignBank in ELAN as shown in Figure 2a.
Figure 2b shows all the glosses of the first sentence. As mentioned above, gloss is an identifier of
a unique sign, written in English and should represent its phonological and morphological meaning
(Schembri et al., 2013). In the corpus, the glosses are identified throughout the videos for both left and
right hands as sometimes different signs can be signed at the same time. Apart from the glossing, the
annotations include the corresponding free English written translation of the meaning of the signing split
into sentences (see the Free Translation in the Figure 2). Figure 2c shows which glosses are considered
for the BSL modelling and which are ignored. This is done to match the vocabulary of the PTB corpus
for the transfer learning purposes.

3.1 Data Pre-processing
For the BSL corpus, we ignore the free translation and extract English text from the glosses, preserving
the order of the signs executed. For example, in Figure 2, right-hand glosses identify the following
order of the signs: good, explain, about, puppy, etc. excluding glosses, such as PT:PRO for pointing
signs or PT:POSS for possessives and others (Figure 2c), which are explained in more detail in Fenlon et
al. (2014). Since the gloss annotation does not include explicit punctuation, it is impossible to tell where
a signed sentence begins and where it stops. To overcome this limitation of the gloss annotation, we use
the Free Translation annotation, which gives the boundaries of sentences in videos. Later, we split the
extracted glosses into sentences using these sentence boundaries. By the end of the pre-processing stage,
we have glosses (excluding special glosses for pointing signs, posessives or other non-lexical glosses) in
the order that the corresponding signs were executed in the video, split into sentences. As a result, we
extracted 810 nominal sentences from the BSL corpus with an average length of the sentence being 4.31
glossed signs, minimum and maximum lengths of 1 and 13 glossed signs respectively. A monolingual
dataset has been created with the extracted sentences. As obtained from the PTB dataset (Merity et al.,
2017), the English language corpus has 23.09 words on average per sentence with minimum being 3 and
maximum 84 words per sentence. The pre-processed BSL corpus has a vocabulary of 666 words, while
the PTB dataset has a vocabulary of 10,002 words. From this point on in this paper, we will use the
term ‘words’ to refer to both glosses in the BSL and words in the PTB datasets because we aim to use a
common vocabulary for training our models.

4http://www.bslcorpusproject.org/cava/

a)

b)

c)
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Both monolingual datasets were split into training, validation, and testing sets as required for training
and evaluation of the statistical models. Both datasets were split using ratio 85:15. The smaller subset,
in turn, was split 50:50 for validation and testing for the two datasets.

4 Language Modelling Methodology

4.1 Statistical Language Models

Perplexity measure has been used for evaluation and comparison purposes of different models. We used
the following formula to calculate the perplexity values: eCross−Entropy as used in Bengio et al. (2003),
which approximates geometric average of the predicted words probabilities on the test set. We have
explicitly modelled out-of-vocabulary (OOV), such as < unk > placeholder in all the experiments.

4.1.1 Neural Models
For comparison, we use two methods: 1) stacked LSTM and 2) Feed-Forward (FFNN) architectures to
create the BSL language models. All models are implemented in PyTorch5 with weight-drop recurrent
regularisation scheme for the LSTMs, which is important for overcoming commonly known LSTM
model generalisation issues (Merity et al., 2017; Merity et al., 2018). The feed-forward model, on the
other hand, had no regularisations as it is less susceptible to overfitting due to the much smaller number
of parameters.

The parameters that were modified to achieve the lowest perplexity were input size of the overall input
sequence for the recurrent neural network (back-propagation through time, BPTT), batch size, learning
rate, and the optimizer. The parameters were selected using the grid search approach using perplexity
metric. As a result, for the stacked LSTMs, bptt was set to 5, batch size was set to 16, discounted learning
rate was set to 30, and the optimizer was set to stochastic gradient descent. In case of the feed-forward
network, input was set to 5 words, batch size was set to 16, discounted learning rate was set to 30, and
the optimizer was set to stochastic gradient descent. All the neural models were trained for 100 epochs.

In the case of the neural networks, the sequences of words were tokenised (i.e. turned into integers)
and the tokenisation was stored to ensure the same tokenisation during the transfer learning phase. The
input, therefore, consisted of a set of tokens, while the outputs (i.e. predicted words) were turned into a
one-hot vectors.

(a)
Stacked LSTMs model

(b)
Feed-Forward model

Figure 3: The two types of neural models used to test transfer methods for sign language modelling

5http://pytorch.org/
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4.1.1.1 Stacked LSTMs

Figure 3a shows the architecture of the stacked LSTM model. The model consists of an embedding layer
of 400 nodes, which, together with the tokenisation, turns string of words into a vector of real numbers.
Secondly, three LSTM layers with 1150 nodes each are stacked vertically for deeper feature extraction.
Thirdly, the linear layer downsizes the stacked LSTMs output to the vocabulary size and applies linear
transformation with softmax normalisation. The weights of the embedding and the linear layers are tied.
This means that the two layers share the same weights, which reduces the number of parameters of the
network and makes the convergence during training faster. The same architecture was used in Merity
et al. (2017) to model PTB dataset, reporting 57.3 perplexity, utilising cache in the model from recent
predictions.

4.1.1.2 FFNN

Figure 3b shows the Feed-forward model architecture. The model does not have the stacked LSTMs lay-
ers. Instead, the stacked LSTMs are substituted with one hidden fully-connected rectifier layer, which is
known to overcome the vanishing gradient problem. The weights of the embedding and the outputs lay-
ers are not tied together. Similar architectures have been used for language modelling in Le et al. (2013),
Mikolov et al. (2009), and de Brébisson et al. (2015) with the hidden layer having different activation
functions with the PTB dataset being used in Audhkhasi et al. (2014), reporting 137.32 perplexity.

4.1.2 Training the Models
Transfer learning was achieved with both fine-tuning and substitution. Both FFNN and LSTM were
trained on the PTB dataset and then either fine-tuned or the last layer was substituted with the new
adaptation layer, freezing the rest of the weights, and further training on the BSL dataset.

To achieve fine-tuning, first the best model is saved after the training of both the FFNN and the stacked
LSTMs on the PTB dataset. Then the training is restarted on the BSL corpus, having initialised the model
with the weights, trained on the PTB dataset.

To perform layer substitution as a transfer learning approach, the same first step as with the fine-tuning
is repeated and the model, trained on the PTB, is saved. When the training is restarted on the BSL dataset,
the saved model is loaded and the last linear layer is substituted with a layer that has as many nodes as
the BSL vocabulary. Later, all the weights of the network are locked and will not be modified during
the optimisation. Only the weights of the last substituted layer will be modified. This method uses the
pretrained network as a feature extractor and only modifies the last layer weights to train the model for
the BSL dataset.

5 Results

This section is split into two subsections. We firstly present results without transfer learning, namely
both the FFNN and the stacked LSTMs models trained and tested on the PTB dataset or trained and
tested on the BSL. Later we present results with the transfer learning, with both FFNN and the stacked
LSTMs models trained on the PTB dataset and then fine-tuned and tested on the BSL.

To show that the two languages are different, as discussed in Section 3.1, we applied the model trained
on one language to the other language and vice versa. As a result, the model trained on English language
and applied to the BSL scored 1051.91 in perplexity using SRILM toolkit (Stolcke, 2002). Conversely,
a model trained on the BSL has been applied to the English language and scored 1447.23 in perplexity.
As expected, the perplexity is high in both cases, which means that the probability distribution over the
next word in one language is far from the true distribution of words in the other language.

5.1 Without Transfer Learning

Table 1 shows perplexities on the two datasets with two statistical models. From the table, we can infer
that the trained models on the PTB dataset have lower perplexity than the same architectures trained on
the BSL dataset. This can be explained by the fact that the PTB dataset has more data than the BSL
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Method
Penn Treebank

(PTB)

The BSL

Corpus Project

FFNN 190.46 258.1

Stacked LSTMs 65.91 274.03

OOV 6.09% 25.18%

Table 1: Perplexities on either the PTB or the BSL test sets using models trained and tested on the same
corpus (i.e. PTB and BSL)

dataset and, therefore, statistical models can generalise better. Furthermore, the amount of data is further
reduced in the BSL case as the OOV covers a quarter of the overall dataset.

5.2 With Transfer Learning

Table 2 shows perplexities on the two datasets with two statistical models, applying transfer learning.
From this table, it can be seen that the substitution approach gives very similar results independent of the
whether FFNN or stacked LSTMs model is used (123.92 versus 125.32). The best result is achieved with
the fine-tuning approach on the stacked LSTMs model, while the higher perplexity result is on the FFNN
model with the fine-tuning approach. Similar results have been reported in Irie et al. (2016), where fine-
tuned GRU performed worse than fine-tuned LSTM model. In addition, the OOV count differs from that
of the Table 1 due to the fact that a subset of the vocabulary, observed in the PTB dataset during training
is then identified in the BSL dataset during testing.

Method Fine-tuning Substitution

FFNN 179.3 123.92

Stacked LSTMs 121.46 125.32

OOV 12.71%

Table 2: Perplexities on the BSL test set after applying the transfer learning on FFNN and LSTMs

5.3 Discussion

The salient idea of this paper is whether transfer learning is a legitimate method for modelling one
language with the knowledge of another, assuming the languages are different, but share some common
properties, such as vocabulary. This theory is intuitive and has been discussed in linguistics for spoken
languages (Kaivapalu and Martin, 2007). In our case, PTB corpus covers most of the vocabulary found
in the BSL corpus (12.71% OOV) by the virtue of the gloss annotation of the BSL corpus (Schembri
et al., 2013). However, the languages are assumed to be different as they evolved independently of one
another (Brennan, 1992).

The results obtained are different from reported in similar research. For example, for the FFNN model,
Audhkhasi et al. (2014) report 137.32 versus our achieved 190.46 perplexity and for the stacked LSTMs
model, Merity et al. (2017) report 57.3 versus our achieved 65.91 perplexity. This can be explained by
the fact that not all the regularisation techniques had been used in this research as in the past research and
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the model training had been restricted to 100 epochs. Further training may further reduce the perplexity
to that reported in Merity et al. (2017).

From the results, we can see that the transfer learning leads to superior models than the models trained
on the BSL directly (258.1 and 274.03 against 123.92 and 125.32). Since the quality of the trained models
using either of the approaches is similar in case of the stacked LSTMs model (121.46 and 125.32), the
choice between the fine-tuning and substitution can be guided based on the convergence speed. During
the substitution, only one layer of the network is replaced with a new one and the rest of the weights
in the network are locked, therefore, one set of weights will be optimized. This is in contrast to the
fine-tuning method, which optimizes all of the weights, which may, in turn, require more interactions,
depending on how different the new data is.

6 Conclusion

This paper shows how transfer learning techniques can be used to improve language modelling for the
BSL language at the gloss level. Statistical modelling techniques are used to generate language models
and to evaluate them using a perplexity measure.

The choice of the transfer learning technique is guided by the scarcity of available resources of the
BSL language and the availability of the English language dataset that shares similar language modelling
vocabulary with the annotated BSL. Feed-forward and recurrent neural models have been used to evaluate
and compare generated language models. The results show that transfer learning can achieve superior
quality of the generated language models. However, our pre-processed BSL corpus lacks constructs that
are essential for a sign language, such as classifier signs and others. Nevertheless, transfer learning for
modelling the BSL shows promising results and should be investigated further.

6.1 Future Work

Although this paper discusses the use of a model initially trained on English and presents promising
preliminary results, the annotation of the BSL, used in this paper, is limited as this paper serves as a
proof of concept. In particular, the annotation used is missing some of the grammatical aspects of the
BSL, such as classifier signs and others. Inclusion of these into the BSL language modelling would
increase the OOV count as the English language does not have equivalent language constructs. This
raises a question whether a sign language can be modelled using other languages that may have these
constructs. More generally, is it possible to model a language with transfer learning using other less-
related languages? Similar questions have been partly answered for the written languages in the field of
machine translation (Gu et al., 2018) by bringing words of different languages close to each other in the
latent space. However, nothing similar has been done for the sign languages.

From the methodological side of the modelling, additional advanced state of the art techniques should
be experimented with to achieve greater quality of the generated models, such as attention mechanism
for the recurrent neural networks. Finally, this paper focuses on key techniques for sign processing,
which could be part of a larger conversational system whereby signers could interact with computers
and home devices through their natural communication medium of sign. Research in such end-to-end
systems would include vision processing, segmentation, classification, and language modelling as well
as language understanding and dialogue modelling, all tuned to sign language.
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