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Abstract

Text normalization is the task of mapping non-canonical language, typical of speech transcrip-
tion and computer-mediated communication, to a standardized writing. It is an up-stream task
necessary to enable the subsequent direct employment of standard natural language processing
tools and indispensable for languages such as Swiss German, with strong regional variation and
no written standard. Text normalization has been addressed with a variety of methods, most suc-
cessfully with character-level statistical machine translation (CSMT). In the meantime, machine
translation has changed and the new methods, known as neural encoder-decoder (ED) models,
resulted in remarkable improvements. Text normalization, however, has not yet followed. A
number of neural methods have been tried, but CSMT remains the state-of-the-art. In this work,
we normalize Swiss German WhatsApp messages using the ED framework. We exploit the flex-
ibility of this framework, which allows us to learn from the same training data in different ways.
In particular, we modify the decoding stage of a plain ED model to include target-side language
models operating at different levels of granularity: characters and words. Our systematic com-
parison shows that our approach results in an improvement over the CSMT state-of-the-art.

1 Introduction

Largely influenced by the work on English and other languages with a strong orthographic tradition (e.g.
German, Spanish, French), the natural language processing (NLP) pipeline typically requires standard-
ized text as input. Recently, however, text processing has extended to non-standard varieties, including
historical texts, transcribed spoken language and user-generated content (blogs, comments, social media
posts, messaging). Modern NLP is also increasingly multilingual, starting to address languages that have
no writing standard at all.

What is characteristic of non-standard text is a non-uniform way of writing the same word types (e.g.
u instead of you in English). While this might appear as a marginal stylistic variation in English, it is a
substantial feature of less standardized varieties. This is the case, for instance, with Swiss German. The
German-speaking part of Switzerland is characterized by a phenomenon known as diglossia, i.e. two
different varieties of the same language are used within a community in different social situations. One
variety is known as standard Swiss German, that is the variety of standard German that is accepted as
the norm in Switzerland. It is used in most written contexts (literature, newspapers, private correspon-
dence, official documents), in formal and official spoken contexts (education, parliament speeches) and
in interactions with foreigners. The second variety, that is the dialect, is known as Swiss German and is
used in everyday life, within the family as well as in most radio and television programs.1 Since Swiss

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1See Rash (1998), among other sources, for a comprehensive survey of Swiss German.
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German does not have a standardized orthography, it is rarely used in written contexts. However, nowa-
days we observe an increasing use of the dialect in written computer-mediated communication (CMC).
This phenomenon has multiple and interesting repercussions, as it makes valuable material available for
NLP tasks, thus granting Swiss German a stronger position among the languages studied in the NLP
community. However, given the high degree of variation, the need for text normalization, i.e. mapping
different variants of the same word type to a single string, becomes immediately evident. The aim of
this work is to normalize WhatsApp messages written in Swiss German. Several factors contribute to the
high degree of variation of the source text. Firstly, the lack of a standardized spelling is further compli-
cated by the strong regional variation and the numerous local variants of the same word. As a result, the
word viel (‘much’) can appear as viel, viil, vill, viu, and many other potential variations. Secondly, CMC
is characterized by various peculiarities, such as vowel reduplication and unconventional abbreviations,
which increase variation.

A major breakthrough in performing text normalization was achieved when this task was approached
as a case of character-level statistical machine translation (CSMT) (Sánchez-Martı́nez et al., 2013; De
Clercq et al., 2013). With a small modification of the input, so that the models are estimated over
characters rather than over words, well-known off-the-shelf SMT tools like Moses (Koehn et al., 2007)
could be used to obtain significant improvements in comparison to previous solutions.

Currently widely used for text normalization, SMT is slowly abandoned in proper machine transla-
tion. New neural methods achieve much better performance, providing at the same time a more flexible
framework for designing and testing different models. They, however, require large training sets, which
makes them unsuitable for text normalization, where training sets, unlike in machine translation, are
small and created by experts specifically for the task. Several attempts have been made to train neural
normalization models, but the resulting systems could not reach the performance of CSMT.2

In this paper, we tackle the issue of introducing neural methods to text normalization. We work with
the neural framework that proved most successful in machine translation: a combination of two recurrent
neural networks known as the encoder-decoder (ED) architecture. Inspired by similar approaches to other
tasks (Gulcehre et al., 2016; Ruzsics and Samardžić, 2017), we enrich the basic ED architecture with a
mechanism that allows us to overcome the limitation of having a small training set. This modification
concerns including two kinds of language models at the decoding stage: word-level and character-level.
We compare our approach to a strong baseline and the current state-of-the-art CSMT methods.

2 Related Work

Text normalization is primarily performed in processing historical texts, where several automatic ap-
proaches have been developed, including a rule-based method that learns rules from training data (Boll-
mann, 2012), edit distance methods (Baron and Rayson, 2008; Pettersson et al., 2013) and CSMT.
Sánchez-Martı́nez et al. (2013) use CSMT to normalize old Spanish; Pettersson et al. (2014) apply it
to old English, German, Hungarian, Icelandic, Swedish; and Scherrer and Erjavec (2016) to historical
Slovene.

Outside of historical texts, normalization is mostly performed with CSMT, which has been applied to
Dutch user-generated content (De Clercq et al., 2013), Slovene tweets (Ljubešić et al., 2014) and Swiss
German dialects (Samardžić et al., 2015; Scherrer and Ljubešić, 2016). CSMT proves particularly suit-
able for text normalization because it captures well intra-word transformations. One further advantage of
CSMT is that it can be highly effective when little training data is available, thanks to a small vocabulary
(the set of characters). Once a transformation pattern has been learned for a string of characters, it can
be applied to translate unknown words that would be considered out of vocabulary (OOV) in the usual
word-level formulation of the task.

CSMT was initially applied to translating between closely related languages, such as Spanish and
Catalan (Vilar et al., 2007). Although it did not produce better results compared to word-level SMT,
it did help improve overall translation quality when the two levels were combined, taking the output of

2See Koehn and Knowles (2017), among other sources, for an analysis of the poor performance of neural systems when
training data is limited.
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CSMT only for unknown words. Tiedemann (2009) used CSMT for Norwegian and Swedish, concluding
that, although it makes more errors than word-level SMT, many errors are of small entity in that the
translated word is very similar to the reference. Moreover, he found that CSMT can also learn mappings
between words that are not formally similar. Applied to the task of normalization, however, CSMT
barely outperforms a simple baseline that consists in selecting, for each source word in the test set,
its most common normalization in the training set and copying the source word if it is not found in
the training set (Samardžić et al., 2015). The improvement, here too, comes from the relatively good
performance on unknown words.

Since the introduction of neural methods to machine translation (Kalchbrenner and Blunsom, 2013;
Cho et al., 2014; Sutskever et al., 2014), some attempts have been made to apply the new framework to
the task of normalization. A recent shared task (Tjong Kim Sang et al., 2017) allowed a direct comparison
of CSMT with some neural methods, with CSMT still outperforming neural systems. Honnet et al. (2017)
apply a neural method embedded in other techniques, but without direct comparison to CSMT. Bollmann
and Søgaard (2016) report experiments with deep, long short-term memory (LSTM) networks, but again
without a direct comparison to CSMT.

The neural methods applied to text normalization so far employ mostly convolutional neural net-
works (with the exception of Bollmann and Søgaard (2016)), whereas our approach draws on the line
of work known as the encoder-decoder framework. In this framework, one recurrent neural network
(RNN) encodes a sequence of symbols into a fixed-length vector representation, and the other decodes
the representation into an output sequence of symbols. We extend this with the soft attention mechanism
introduced by Bahdanau et al. (2014), that allows a model to search for parts of a source sequence that
are relevant to predicting a target symbol.

Our work is closely related to those which implement a modification of the ED framework that allows
to incorporate additional language model scores at the decoding stage. Gulcehre et al. (2016) integrated
a language model into an ED framework to augment the parallel training data with additional monolin-
gual corpora on the target side. Adapting this framework to the task of morphological segmentation,
Ruzsics and Samardžić (2017) introduced a “synchronization mechanism” that allows to integrate lan-
guage model scores at different levels: the basic ED component is trained on character sequences and
the target-side language model component is trained on the sequences of morphemes. We adapt this
approach by integrating word-level scores of a language model on top of the character-level neural nor-
malization framework. We compare our method to both the simple memory baseline of Samardžić et al.
(2015) and to the standard CSMT, which still represents the state-of-the-art on this task.

3 Data

The data for our experiments comes from manually normalized Swiss German corpora:3

• WUS set is a corpus of WhatsApp messages (Stark et al., 2014; Ueberwasser and Stark, 2017). The
entire collection contains 763,650 messages in different languages spoken in Switzerland. A portion
of the data, 5,345 messages in Swiss German, was selected for manual normalization in order to
provide a gold standard for automatic normalization. We use this manually annotated portion (a
total of 54,229 alignment units) as our main dataset. Table 1 shows examples of alignment units in
the corpus.

• SMS set is a corpus of SMS messages, again in different languages spoken in Switzerland (Stark et
al., 2009 2015). This is a smaller corpus entirely manually normalized. The Swiss German portion
contains 10,674 messages. We use this set (a total of 262,494 alignment units) as additional training
data, as described in more detail below.

All the messages in our dataset are manually normalized using the same web annotation tool and
following the same guidelines (Ruef and Ueberwasser, 2013). This normalization process implies a
monotonic alignment between the source tokens and the normalized ones. Table 1 shows the different

3The data set used in our experiments can be provided on request. Please contact the authors.
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alignment type source form normalized form English gloss
one-to-one viu viel much
one-to-many hämmers haben wir es have we it

many-to-one
ü ber über on; above
aweg riise wegreissen tear away; rip off
morge sport Morgensport morning gym

many-to-many über chunts überkommt es receives it

Table 1: Examples of aligned token sequences.

types of aligned token sequences. Most of the alignments are pairs of single tokens (one-to-one align-
ments). There are also many contracted forms corresponding to multiple normalized words (one-to-many
alignments). These are typically verb forms merged with subject and object clitics, as shown in the sec-
ond example in Table 1. The few cases of many-to-one alignments are due to typos (a space instead of
a character) and the lack of spelling conventions for Swiss German, most noticeable in arbitrarily split
compounds and separable verb particles. Finally, different combinations of the factors listed above can
result in many-to-many mappings.

One peculiarity of the WUS corpus is, unsurprisingly given the source of the texts, the frequent use
of emojis, which, if untreated, increase significantly the size of the vocabulary. We address this issue by
processing two versions of the corpus.

• Original is the version of the corpus as provided by its authors, where emojis are replaced
with a sequence of characters describing the symbol. For example, the emoji is rendered as
emojiQsmilingFaceWithOpenMouth. While they rely on the same vocabulary as the text (i.e. the
alphabet), such long sequences may pose a problem to a character-level normalization system and
have a negative impact on training time. Moreover, they might produce normalization errors which
could be avoided if the sequence were simply copied from source to target.

• Modified is the version of the corpus that we created by representing emojis with their Unicode
hexadecimal character codes (U+1F603 for the example above). Also, we have removed hyperlinks
found in the original corpus, which are often represented by long character strings and might create
confusion for the models we use.

In order to assess the impact of the manipulation of the input data, we perform our experiments on
both versions of the corpus.

4 Methods

In the following sections, we describe the details of our adaptation of the ED framework to the task of
normalizing Swiss German WhatsApp messages. We also give a short description of the standard CSMT
framework implemented in the off-the-shelf software Moses, that we use for the purpose of comparison
with the current state-of-the-art. Each source sequence is automatically normalized in isolation and com-
pared with the manually normalized form (reference) for evaluation. Most source and target sequences
consist of one-to-one word alignments (see Table 1).4

4.1 Encoder-Decoder Model (ED)

We define two discrete alphabets, Σ consisting of the character symbols that form the source sequences
(second column in Table 1) and Σn of the character symbols that form the normalized sequences (third
column in Table 1). Our task is to learn a mapping from an original character sequence x ∈ Σ∗ to its
normalized form y ∈ Σ∗n. To learn this transformation we apply an encoder-decoder model with soft

4Scherrer and Ljubešić (2016) showed that using longer segments can improve performance by capturing a larger context,
which can help resolve ambiguity. We decided to focus on the sequences as shown in Table 1 and to leave the use of longer
segments for future work.
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attention (Bahdanau et al., 2014). Next, we review the architecture of this model presented by Luong
et al. (2015). The model transforms the input sequence into a sequence of hidden states, i.e. a fixed-
dimensional vector representation, with a bidirectional encoder which consists of forward and backward
RNN. The forward RNN reads the input sequence of embedding vectors x1, . . . ,xnx , in forward direc-
tion and encodes them into a sequence of vectors representing forward hidden states:

−→
h t = f(

−→
h t−1,xt), t = 1, . . . , nx (1)

while the backward RNN reads the sequence in the opposite direction and produces backward hidden
states: ←−

h t = f(
←−
h t−1,xt), t = nx, . . . , 1 (2)

where f stands for LSTM (Hochreiter and Schmidhuber, 1997). The hidden state ht for each time step
is obtained by concatenating a forward and backward state, so that ht = [

−→
h t;
←−
h t].

The decoder RNN transforms the internal fixed-length input representation into a variable length out-
put sequence y = (y1, . . . , yny). At each prediction step t, the decoder reads the previous output yt−1
and outputs a hidden state representation st:

st = f(st−1,yt−1), t = 1, . . . , ny (3)

The conditional probability over output characters is modeled at each prediction step t as a function
of the current decoder hidden state st and the current context vector ct:

p(yt|y1, . . . , yt−1, x) = g(st, ct) (4)

where g is a concatenation layer followed by a softmax layer (Luong et al., 2015). The context vector ct
is computed at each step from the encoded input as a weighted sum of the hidden states:

ct =

nx∑
k=1

αtkhk (5)

The weights are calculated by an alignment model which scores how much attention should be given to
the inputs around position k to generate the output at position t:

αtk = φ(st,hk) (6)

where φ is a feed-forward neural network (Bahdanau et al., 2014; Luong et al., 2015). Therefore, the
model learns the alignment between input and output jointly with transduction using a deterministic
function, whereas the alignment is modeled as latent variable in SMT.

The training objective is to maximize the conditional log-likelihood of the training corpus:

L =
1

N

∑
(x,y)

ny∑
t=1

log p(yt|y1, . . . , yt−1, x) (7)

where N is the number of training pairs (x, y).

4.1.1 Integrating Language Models
Before the integration, we assume that a plain ED and a language model (LM) are trained separately. The
ED model is trained on character sequences in a parallel corpus consisting of aligned source words and
their normalized forms (as shown in Table 1). The ED model learns a conditional probability distribution
over the normalized character sequences given the source sequences, as shown in Eq. (4). This probabil-
ity captures context-sensitive individual character mappings, therefore already including the information
provided by a usual LM. We augment this model with an additional LM, separately trained only over the
target side of the corpus. We propose two ways of augmenting the initial ED. First, following Ruzsics
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and Samardžić (2017), we train a word-level LM and fuse it with the character-level ED using the “syn-
chronization mechanism”. Second, following Gulcehre et al. (2016), we augment the training set with
additional target-side data. In the following, we describe how this mechanism allows us to fuse the scores
of different models at the decoding stage in a log-linear fashion.

The “synchronized” decoding approach relies on a beam search to find the prediction steps where
different scores are combined. The beam search is run at two levels of granularity. First, it produces
the output sequence hypotheses (candidates) at the character level using ED scores until the time step
s1, where K best hypotheses {(y1y2 . . . ys1)i}, yt ∈ Ω, i = 1, . . . ,K end with a boundary symbol.5

We consider two boundary symbol types: space, which marks the end of a word in a partial predicted
sequence, and a special eow symbol, which marks the end of a completed predicted sequence. The step
s1 is the first synchronization step where we re-score the normalization hypotheses with a weighted sum
of the ED score and the LM score:

log p(ys1|y1, . . . , ys1−1, x) = log pED(ys1|y1, . . . , ys1−1, x) + αLM log pLM (y1, . . . , ys1) (8)

At this step, y1, . . . , ys1 is considered a sequence of s1 characters by the ED system, and one word by
the LM. After the first synchronization point we continue to produce the re-scored hypotheses using
ED scores until the next synchronization point. The search process ends at the synchronization point
where the last symbol of the best scored hypotheses (using the combined ED and LM score) is the end
of complete prediction symbol eow.

The decoding process scores the hypotheses at two levels: normally working at the character level with
ED scores and adding the LM scores only when it hits a boundary symbol. In this way, the LM score
helps to evaluate how probable the last generated word is based on the predicted word history, that is the
sequence of words generated at the previous synchronization time steps. The described synchronization
mechanism is extended in our study to integrate both character-level LM and higher word-level LM.6

However, in principle, it can be used to add any kind of potentially useful predictors or scores obtained
separately from different data sources.

4.2 Character-level Statistical Machine Translation (CSMT)
The core idea behind traditional SMT systems relies on the noisy-channel model, where two basic com-
ponents are combined: the translation model p(f |e),7 responsible for the adequacy of the translation
from source to target sentence, and the language model p(e), responsible for the fluency of a sentence in
the target language, as shown in Eq. (9), where E is the set of all target sentences.

argmax
e∈E

p(e|f) = argmax
e∈E

p(e)p(f |e) (9)

To achieve better context-sensitive source-target mappings, obtained through encoding and memory in
the neural approaches, traditional SMT systems rely on phrase-level translation models. These models
allow to build a phrase table to store aligned phrase pairs, in the source and target language, that are
consistent with the single word alignments established by the IBM models (Brown et al., 1993) with the
Expectation-Maximization (EM) algorithm.8 In phrase-based models, the translation model in Eq. (9) is
decomposed as follows:

p(f̄ I1 |ēI1) =
I∏

i=1

φ(f̄i|ēi)d(starti − endi−1 − 1) (10)

5Some of the best hypotheses can have length shorter than s1, but we assume they are of the same length for the ease of
notation.

6Although it is possible to fuse a character-level LM with the ED system at each prediction step, as in the ”shallow fusion”
of Gulcehre et al. (2016), in our initial experiments the performance of such model was inferior to our synchronized approach,
where we combine the scores for the whole segments at word boundaries.

7While, in section 4.1, x refers to the input sequence and y to the output sequence, here we follow SMT conventions and
use e to refer to the target sequence and f to the source sequence.

8Koehn et al. (2003) improved the mono-directional IBM alignments, which only allow at most one target word to be aligned
with a source word, with a heuristic method based on a bidirectional alignment.
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In Eq. (10), f̄ I1 and ēI1 are sequences of phrases, φ(f̄i|ēi) is the probability distribution that models
phrase translation and d(starti−endi−1−1) the probability distribution that models the reordering of the
target phrases. The various model components (translation, reordering and language model) are weighted
in a log-linear model to scale their contribution to the final translation. The reordering model is ignored
when reordering is disabled under the assumption of a monotonic translation, which is the case in our
experiments.

In CSMT, we simply replace words with characters as the symbols that make up a phrase. CSMT
is a suitable approach for those tasks in which many word pairs in the source and target languages are
formally similar, such as the Swiss German word Sunne normalized as Sonne (‘sun’), or are characterized
by regular transformation patterns that are not captured by word-level systems, such as the pattern ii→
ei, which is responsible for the transformations Ziit→ Zeit (‘time’), wiiter→ weiter (‘further’), Priis→
Preis (‘price’).

This setting requires to pre-process the parallel corpus by replacing spaces between words with un-
derscores and adding spaces between characters. This converts the corpus alignment unit hani↔ habe
ich into h a n i↔ h a b e i c h (‘I have’). As a result, the characters are now the tokens of the align-
ment units, phrases are sequences of characters and the language model is based on character n-grams.
After running Moses, the predictions made by the system are post-processed, by removing spaces and
underscores, before evaluation with a reference.

5 Experiments and Tools

To assess whether our approach provides an improvement over CSMT, we perform a systematic com-
parison, training and testing both systems on our datasets. In this section we describe the details of
the experiments. We run the ED experiments using an extended version of the code from Ruzsics and
Samardžić (2017), which offers the possibility to integrate several LM predictors trained on different
levels.9 In a character-level framework, where most alignment units consist of single words, evaluation
metrics such as precision, recall and BLEU may provide information on the extent to which a unit nor-
malized by the model, viewed as a sequence of characters, differs from its reference. They thus express
the magnitude of the intra-word error. However, we chose to simply assess whether a source sequence
has been correctly normalized or not by the system. For this reason, the accuracy score is used to evaluate
the baseline and the various models implemented.

5.1 Parameter Settings

ED Hyperparameters and Settings. The character embeddings are shared between input (source)
and output (target) vocabulary and set to 100 for the original corpus and 200 for the modified one.
The forward and backward RNN of the bidirectional encoder have He = 200 hidden units each. The
decoder also has Hd = 200 hidden units. We apply an ensemble of 5 ED models where each model is
trained with random start using SGD optimization. The models are trained for a maximum of 30 epochs,
possibly stopping earlier if the performance measured on the development set stagnates. The training
examples are shuffled before each epoch. We use n-gram order of 7 for the character-level language
models. Additionally, the word-level language models used in some of the ED experiments are built on
3-grams.10 Beam size 3 is used for the final predictions on the test set in all the settings. The weights of
the different components of the model are tuned with MERT by maximizing the accuracy score on the
development set.

CSMT Settings. We used the Moses toolkit with the following adjustments to the standard settings:
i) assuming monotonic character alignment, distortion (reordering) was disabled; ii) in tuning, we used
WER11 instead of BLEU for MERT optimization. We used the KenLM language model toolkit (Heafield,

9https://github.com/tatyana-ruzsics/uzh-corpuslab-normalization
10Kneser-Ney smoothing is used on the modified corpus and modified Kneser-Ney is used on the original one.
11WER: Word Error Rate. This metric becomes Character Error Rate in CSMT.
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2011) with character 7-grams.12

5.2 Baseline and Comparison

The baseline for our task is the one defined by Samardžić et al. (2015), where each original word in
the test set is normalized as follows: if the word is found in the training set, use the most frequent
normalization, otherwise, copy the source word as its normalization (leave unchanged).

To assess how our modifications influence the performance, we run different versions of our ED system
on different datasets. Our plain ED is a soft-attention model described in Section 4.1, with the selected
hyperparameters set as described above. In further ED experiments, we integrate language models trained
at different levels, character and word, and combine their scores over words in a synchronized decoding
approach. The word-level language models are built on the target sides of the two datasets: the train
part of the WUS corpus only and its concatenation with the SMS corpus (WUS+SMS). The character-
level language model is only trained using the WUS+SMS corpus, since the decoder of the ED system
already acts as a (neural) character-level language model over the target side of WUS. In addition, we try
a combination of the ED system with both types of language models.

For the purpose of a systematic comparison, we consider two settings for CSMT. First, we train the
model on the WUS corpus only. Second, we add an additional language model trained over the target
side of the SMS corpus. Note that the CSMT language models operate only at the character level.13

5.3 Train/Test Split

We compute the accuracy of the normalized test set word tokens (token sequences in the case of many-to-
one or many-to-many alignments), by comparison with the manual normalization. We split the randomly
shuffled WUS corpus in 80% training, 10% development and 10% test set, and use these same splits for
all our experiments. The original training set contains 43,385 parallel items; the modified training set is
slightly smaller with 43,370 parallel items, since we removed hyperlinks from the original. Both test sets
contain 5,422 items, the original development set also has 5,422 items, and the modified development set
5,418. For the experiments where we use additional target data, we add 262,494 target token sequences
of the SMS corpus. This results in a total of 305,864 items for the extended target WUS+SMS data.

6 Results

The results of our experiments are shown in Table 2. Both the CSMT and the ED models outperform
the baseline in all settings. With respect to the ED models, the integration of the additional word-level
language model, the first trained on the WUS corpus, the second on the WUS+SMS corpus, results in
better performance. Adding a character-level language model trained on the WUS+SMS corpus produces
a higher accuracy too, when applied in isolation. Further improvements are observed from combining
language models trained on different levels only for the modified corpus. The CSMT method benefits
more than the ED method from the additional character-level LM trained on the SMS corpus. However,
the capability of ED models to overcome certain limitations of the CSMT approach becomes evident
when we exploit the possibility of augmenting them with word-level language models. These produce,
for example, improvements in the normalization of foreign words (e.g. source cream, where CSMT
erroneously forces normalization and gives kream), single source words that are normalized as two or
more target words (e.g. source söuis → reference soll ich es (‘should I [...] it’)), and source words
whose reference normalization is formally very different (e.g. source wg→ reference wohngemeinschaft
‘shared apartment’). The best accuracy overall (87.61% for the original corpus) is obtained by the ED
model augmented with the word-level LM trained over the extended target data. We observe a slight
drop in the performance for the modified corpus which is due to choices of the systems on the ambiguous
source items.

12We have observed improvements with order 12, but we chose to use a general setting for normalization and to leave this
investigation for future work.

13It is not a trivial task to incorporate a synchronized LM over words into the CSMT framework and to the best of our
knowledge such work has not been done before.
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System Corpus
Original Modified

ED + LMwus+sms:char + LMwus+sms:word 87.57 87.22
ED + LMwus+sms:char + LMwus:word 87.38 87.09
ED + LMwus+sms:word 87.61 87.05
ED + LMwus+sms:char 87.38 87.07
ED + LMwus:words 87.15 86.55
ED ensemble 5 87.03 86.50
ED average 5 85.03 84.70
CSMT LMwus+sms:char 86.35 86.43
CSMT LMwus:char 85.30 85.85
Baseline 84.45 84.45

Table 2: Text normalization accuracy scores. Original: corpus with hyperlinks and emojis as description
of the symbol. Modified: corpus without hyperlinks and with emojis as symbols. ED: character based
encoder-decoder model. CSMT: character-level statistical machine translation. LM: language models
on words or characters. ED average 5: average over five encoder-decoder models. ED ensemble 5:
ensemble of five encoder-decoder models (all other ED models, except the average, are extensions of
this ensemble). wus: corpus of WhatsApp messages. sms: corpus of sms messages.

We carried out a comparison of the predictions made by the best model of each approach with the
reference (5,422 test set normalization units), when the original corpus is used. The analysis reveals
229 cases in which only CSMT is wrong, and 161 in which only ED is wrong. A wrong prediction is
made by both models in 511 cases. In particular, in 354 cases they make the same error, whereas in
157 cases they make different errors. Many errors common to both models are related to ambiguity in
the source text, that arises when one source word has more than one normalization form in the training
set. For example, the source word di is manually normalized 83 times as dich (‘you’ as object), and 68
times as die (feminine definite article). Moreover, both systems have difficulty normalizing source words
characterized by irregularities such as vowel reduplication, e.g. bitteeeee instead of the more plausible
bitte (‘please’), and by spelling which is not due to an arbitrary choice of the writer, but rather to a typo
(e.g., ado instead of the more plausible aso (‘so’)).

Of a total of 166 emojis, all of them are correctly normalized by both models in the original version
of the corpus. This means that the models are able to effectively process them, thus avoiding the need
for solutions that could be cumbersome in terms of framework engineering, such as copying emojis at
decoding time.

7 Conclusion

We have shown in this paper that integrating different-level language models into a neural encoder-
decoder framework allows a neural method to reach and even improve the performance of character-
level statistical machine translation methods, previously considered superior to neural methods in the
task of text normalization. The method that we propose is an adaptation of mechanisms introduced in
machine translation and morphological segmentation. While the experiments conducted in this paper
show the advantage of integrating different-level language models, the adaptation that we propose can be
extended to integrating other potential scores into a single encoder-decoder framework. This possibility
can be exploited for further improvements of text normalization methods.
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Eva Pettersson, Beáta B. Megyesi, and Joakim Nivre. 2014. A multilingual evaluation of three spelling normal-
isation methods for historical text. In Proceedings of the 8th Workshop on Language Technology for Cultural
Heritage, Social Sciences, and Humanities (LaTeCH), pages 32–41, Gothenburg, Sweden.

Felicity Rash. 1998. The German language in Switzerland: multilingualism, diglossia and variation. Lang, Bern.

Beni Ruef and Simone Ueberwasser. 2013. The taming of a dialect: Interlinear glossing of Swiss German text
messages. In Marcos Zampieri and Sascha Diwersy, editors, Non-standard Data Sources in Corpus-based
Research, pages 61–68, Aachen.
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