
Proceedings of Workshop for NLP Open Source Software, pages 34–40
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

34

Baseline: A Library for Rapid Modeling, Experimentation and
Development of Deep Learning Algorithms targeting NLP

Daniel Pressel, Sagnik Ray Choudhury, Brian Lester, Yanjie Zhao and Matt Barta

Interactions Digital Roots

{dpressel, schoudhury, blester, yzhao, mbarta}@interactions.com

Abstract

We introduce Baseline: a library for
reproducible deep learning research and
fast model development for NLP. The li-
brary provides easily extensible abstrac-
tions and implementations for data load-
ing, model development, training and ex-
port of deep learning architectures. It
also provides implementations for simple,
high-performance, deep learning models
for various NLP tasks, against which
newly developed models can be compared.
Deep learning experiments are hard to re-
produce, Baseline provides functionalities
to track them. The goal is to allow a re-
searcher to focus on model development,
delegating the repetitive tasks to the li-
brary.

1 Introduction

Deep Neural Network models (DNNs) now dom-
inate the NLP literature. However, the immense
progress comes with some issues. Often the re-
search is not reproducible. Sometimes the code
is not open source. Other times, available imple-
mentations fail to match the reported performance.
When training DNNs, even simple baselines can
take a lot of time and resources to reach peak per-
formance (Melis et al., 2017). Additionally, a sim-
ple, canonical way to evaluate new models is lack-
ing. Institutional pressures exist to show large rel-
ative gains in papers (Armstrong et al., 2009). As a
result, new models are often compared with weak
baselines.

When software is provided, it is common for
authors to provide the source code as a stand-
alone application. These projects include data pro-
cessing, data cleaning, model training, and eval-
uation code, yielding an error-prone and time-
consuming development process. A complete li-
brary should be used to automate the mundane

portions of development, allowing a researcher to
focus on model improvements. Also, it should be
easy to compare the results of a new model across
various hyper-parameter configurations and strong
baselines.

To solve these problems, we have developed
Baseline1. It has three components.

Core: An object-oriented Python library for
rapid development of deep learning algorithms.
Core provides extensible base classes for com-
mon components in a deep learning architecture
(data loading, model development, training, eval-
uation, and export) in TensorFlow and PyTorch,
with experimental support for DyNet. In addi-
tion, it provides strong, deep learning baselines for
four fundamental NLP tasks – Classification, Se-
quence Tagging, Sequence-to-Sequence Encoder-
Decoders and Language Modeling. Many NLP
problems can be seen as variants of these tasks.
For example, Part of Speech (POS) Tagging,
Named Entity Recognition (NER) and Slot-filling
are all Sequence Tagging tasks, Neural Machine
Translation (NMT) is typically modeled as an
Encoder-Decoder task. An end-user can easily im-
plement a new model and delegate the rest to the
library.

MEAD: A library built on Core for fast Model-
ing, Experimentation And Development. MEAD
contains driver programs to run experiments from
JSON or YAML configuration files to completely
control the reader, trainer, model, and hyper-
parameters.

XPCTL: A command-line interface to track ex-
perimental results and provide access to a global
leaderboard. After running an experiment through
MEAD, the results and the logs are committed to a
database. Several commands are provided to show
the best experimental results under various con-
straints.

The workflow for developing a deep learning
1https://github.com/dpressel/baseline

https://github.com/dpressel/baseline

35

model using Baseline is simple: 1. Map the prob-
lem to one of the existing tasks using a <task,
dataset> tuple, eg., NER on CoNLL 2003 dataset
is a <tagger task, conll> 2. Use the existing im-
plementations in Core or extend the base model
class to create a new architecture; 3. Define a con-
figuration file in MEAD and run an experiment.
4. Use XPCTL to compare the result with the
previous experiments, commit the results to the
leaderboard database and the model files to a per-
sistent storage if desired.

Additionally, the base models provided by the
library can be exported from saved checkpoints di-
rectly into TensorFlow Serving2 for deployment in
a production environment. the framework can be
run within a Docker container to reduce the instal-
lation complexity and to isolate experiment con-
figurations and variants. It is open-sourced, ac-
tively maintained by a team of core developers and
accepts public contributions. While some compo-
nents from the library can be used for generic ma-
chine learning and computer vision tasks, the pri-
mary focus of Baseline is NLP: currently the data
loaders, models and evaluation codes are provided
for NLP tasks only.

2 Related Work

Baseline is not a general toolkit for deep learning
(Bergstra et al., 2011; Abadi et al., 2016; Chen
et al., 2015; Neubig et al., 2017a; Paszke et al.,
2017). Rather, it builds on TensorFlow (Abadi
et al., 2016), PyTorch (Paszke et al., 2017) and
DyNet (Neubig et al., 2017b). Any model used
in Baseline will be written in one of the sup-
ported, underlying frameworks. Popular NLP li-
braries such as Stanford CoreNLP (Manning et al.,
2014) or nltk (Loper and Bird, 2002) provide ab-
stractions and implementations for different algo-
rithms in a complete NLP architecture: from ba-
sic (tokenization) to advanced (semantic parsing)
tasks. Baseline serves a complimentary purpose:
the models developed here can be used in these
architectures.

To the best of our knowledge, two other soft-
ware efforts have similar goals: AllenNLP (Gard-
ner et al., 2017) and CodaLab 3. AllenNLP is most
similar to our work: like Baseline, it provides data
and method APIs for common NLP problems and
a modular and extensible experimentation frame-

2https://www.tensorflow.org/serving/
3http://codalab.org/

work. The key abstractions of AllenNLP are fo-
cused on data representation and conversion. This
makes the model development easy for semantic
understanding tasks. In Baseline, the key abstrac-
tion is an NLP “task”, making it very generic.
Both Baseline and AllenNLP allow running ex-
periments from JSON configuration files, but Al-
lenNLP currently does not provide utilities to store
these configurations or results in a database in
order to “track” an experiment (section 4). Al-
lenNLP is built on PyTorch, where Baseline sup-
ports PyTorch, TensorFlow and DyNet and has a
flexible design to support other frameworks over
time. The development of Baseline initially be-
gan in early 2016, prior to the development of Al-
lenNLP, and the libraries have been developed in
parallel. The idea of reproducible experimentation
for machine learning was introduced by CodaLab,
but it does not provide abstractions and baseline
implementations specific to deep learning or NLP,
nor does it provide an extensible architecture with
reusable components for building and exploring
new deep learning models.

3 Baseline: Core

The top-level module provides base classes for
data loading and evaluation. The data loader reads
common file formats for classification, CONLL-
formatted IOB files for sequence tagging, TSV
and standard parallel corpora files for Neural Ma-
chine Translation and text files for language mod-
eling. The data is masked and padded as nec-
essary. It is also shuffled, sorted and batched
such that data vectors in each batch have sim-
ilar lengths. For sequence tagging problems,
the loader supports multiple user-defined features.
Also, the reader supports common formats for pre-
trained embeddings. The library also supports
common data cleaning procedures.

The top-level module provides model base
classes for the four tasks mentioned previously.
The lower-level modules provide at least one im-
plementation for each task in both TensorFlow and
PyTorch. For most tasks, DyNet implementations
are also available. The library provides methods
to calculate standard evaluation metrics including
precision, recall, F1, average loss, and perplex-
ity. It also provides high-level utility support for
common architecture layers and paradigms such
as attention, highway and skip connections. The
default trainer supports multiple optimizers, early

https://www.tensorflow.org/serving/
http://codalab.org/

36

stopping, and various learning rate schedules.

Model architecture development is a common
use-case for a researcher. The library is de-
signed to make this process extremely easy. In
Baseline, a new model is known as an ad-
don, which is a dynamically loaded module
containing user-defined code. The addon code
should be written as a python file in the for-
mat <task-name> <model-name>.py and
should be available to the python interpreter
(the location should be in the system PYTHON-
PATH variable). The model should be written
in one of the supported deep learning frame-
works. If the task is not one of the exist-
ing ones, the mead.Task class has to be ex-
tended. The methods create model() and
load model() have to be overridden and ex-
posed as shown in listing 1. To run the code, the
model-name has to be passed as an argument to
the trainer program. The default trainer and data
loaders can be overriden in a similar way.

The following sections describe the tasks and
the implemented algorithms.

Classification: For Classification, the input is
typically a sequence of words. These words are
represented with word embeddings, a composition
of character embeddings, or both. Sentences are
represented as a combination of word representa-
tions using pooling or the final output of an RNN.
A final linear layer and softmax is used for classi-
fication (Kim, 2014; Collobert et al., 2011). Base-
line currently supports these models and an MLP
built on pre-trained word embeddings with max-
over-time pooling or mean-pooling (Neural Bag of
Words) (Kalchbrenner et al., 2014).

Sequence Tagging: For Sequence Tagging, in-
put words are represented similarly to the method
used for Classification. State-of-the-art tagging is
typically performed using bi-directional LSTMs
(BLSTMs) with a Conditional Random Field
(CRF) layer on top to promote global coher-
ence (Lample et al., 2016; Ma and Hovy, 2016;
Peters et al., 2017). Two common variants of
this architecture differ primarily in the treatment
of character-composition, either using a convo-
lutional (Dos Santos and Zadrozny, 2014) or
BLSTM layer (Ling et al., 2015). The convolu-
tional composition approach is simpler and faster,
yet achieves performances similar to the BLSTM
(Reimers and Gurevych, 2017). Baseline imple-
ments this model and makes the CRF layer op-

tional. It improves this model using multiple
parallel convolutional filters and residual connec-
tions. It also supports multiple features such as
gazetteer information.

Encoder-Decoders: Encoder-Decoder frame-
works are used for Machine Translation, Image
Captioning, Automatic Speech Recognition, and
many other applications. Sequence-to-Sequence
models are Encoder-Decoder architectures with an
input sequence and an output sequence, which typ-
ically differ in length. We implement the most
common version of this architecture for NLP: a
stack of recurrent layers for the encoder and the
decoder. We support multiple types of RNNs, in-
cluding GRUs and LSTMs, as well as bidirectional
encoders, multiple mechanisms of bridging the in-
put encoder to the output decoder, and the most
common types of global attention. We also pro-
vide a beam-search decoder for testing the model
on standard tasks such as NMT.

Language Modeling: Language Modeling
with RNNs operate at the word level or at the
character level. Most baseline implementations
use word-based models following (Zaremba et al.,
2014) but character-compositional models (Kim
et al., 2016; Józefowicz et al., 2016) may signif-
icantly reduce the number of parameters. Baseline
has implementations for both word-based models
and character-compositional models, closely fol-
lowing the model architecture of Kim et al. (2016).

3.1 Dataset and Results

Table 3.1 summarizes the TensorFlow implemen-
tation results. The PyTorch results are equiva-
lent. Detailed results and hyper-parameter config-
urations are maintained in the library codebase.

For Classification, we use three public datasets:
2-class Stanford Sentiment Treebank (SST2)
(Socher et al., 2013), TREC QA (Voorhees and
Tice, 2000), and DBpedia (Auer et al., 2007).
The Sequence Tagger has been tested on several
problems including NER (CoNLL 2003 (Sang and
Meulder, 2003), wnut17 (Derczynski et al., 2017)
datasets), POS Tagging (Twitter dataset (Gimpel
et al., 2011): TwPOS) and Slot Filling (ATIS
dataset (Dahl et al., 1994)). The CRF layer is
critical for NER but not necessary for ATIS and
the Twitter POS corpus. For Language Model-
ing, our model improves on Zaremba et al. (2014)
using pre-trained word embeddings. The state-of-
the-art for Language Modeling has changed sig-

37

def create_model(embeddings, labels, **kwargs):
return MyModel.create(embeddings, labels, **kwargs)

def load_model(modelname, **kwargs):
return MyModel.load(modelname, **kwargs)

Listing 1: Methods to override and expose in a user-defined model

nificantly since our implementation and we antic-
ipate releasing a new baseline model in the future
(Yang et al., 2017). Our Encoder-Decoder model
is tested on English-Vietnamese Translation Task
on TED tst2013 corpus (Cettolo et al., 2015) and
achieves strong results.

Apart from these base models, we provide im-
plementations of more advanced models that can
demonstrate the software architecture and pro-
vide a stepping stone for researchers developing
their own models. Some of these implementations
show better results than the existing state of the
art. For example, using pre-trained ELMo embed-
dings from TensorFlow Hub (Peters et al., 2018),
our tagger has 42.19% F1 for the wnut17 dataset,
which is better than the last reported highest score
(41.86%) on the dataset (Derczynski et al., 2017).
The repository 4 is updated continually with the
list of available implementations.

4 MEAD and XPCTL

DNNs are heavily dependent on hyper-parameter
tuning, yet many papers do not report the ex-
act hyper-parameters. This often leads to non-
reproducible research. To solve this problem,
we have developed MEAD and XPCTL to track
hyper-parameters, model architecture, and results
of a deep learning experiment.

MEAD: MEAD provides a driver program that
runs experiments from a configuration file (in
JSON/YAML format). We define a problem as a
<task, dataset> tuple. For any task, the config-
uration file should contain 1. The dataset name,
2. Embedding type, 3. Reader type, 4. Model
type, 5. Model hyper-parameters (number of lay-
ers, convolution filter size), 6. Training parame-
ters (number of epochs, optimizers, optimizer spe-
cific parameters, patience for early stopping), 7.
Pre-processing information. Reasonable default
values are provided where possible. Thus, the
whole experiment including hyper-parameters is
uniquely identified by the sha1 hash of the con-

4https://github.com/dpressel/baseline/
tree/master/python/addons

figuration file. An experiment produces compre-
hensive logs including step-wise loss on the train-
ing data and task-specific metrics on the develop-
ment and test sets. The reporting hooks support
popular visualization frameworks including Ten-
sorboard logging and Visdom. The model is per-
sisted after each epoch, or, when early-stopping is
enabled, whenever the model improves on the tar-
get development metric. The persisted model can
be used to restart the training process or perform
inference.

XPCTL: XPCTL (experiment control) can be
used to track and compare the results with the
previous ones by providing a command line in-
terface to a database. The current implementa-
tion supports common databases including Mon-
goDB, PostgreSQL and SQLite. The existing base
classes can be extended to support other databases
if needed. The configuration file, logs, and results
can be stored in the database through a command.
XPCTL also helps to maintain a leaderboard for
these tasks. The results for a problem (<task,
dataset>) can be sorted by any evaluation metric,
filtered for particular users and limited by a num-
ber. Configuration files can be downloaded and
the model files can be stored in a persistent stor-
age location using the same utility.

The current implementation delegates the
database creation and maintenance to the user. In
future, we plan to maintain a global database ac-
cessible to all users. The user can also have her
own local database, and push to the global leader-
board as needed. XPCTL will provide command
line utilities for this purpose.

5 Exporting Models

DNNs can be deployed within a model serving
framework such as TensorFlow Serving, a high-
performance and highly scalable deployment ar-
chitecture. All of the baseline implementations
have exporters, though some customization may
be required for user-defined models, for which
we provide interfaces. The exporter transforms
the model to include pre-processing and service-

https://github.com/dpressel/baseline/tree/master/python/addons
https://github.com/dpressel/baseline/tree/master/python/addons

38

Problem Dataset Algorithm Metric Score

Tagging

ConLL 2003 CNN-BLSTM-CRF

F1

90.88
wnut17 CNN-BLSTM-CRF 39.19
TwPOS CNN-BLSTM 88.91
ATIS CNN-BLSTM 96.74

Classification

SST2
CNN

accuracy

87.9
LSTM 87.1

TREC-QA
CNN 93.2

LSTM 91.8

DBpedia
CNN 99.05

LSTM 98.95
Language Modelling PTB RNN perplexity 77.22

Encoder-Decoder TED tst2013 Seq2Seq BLEU 25.21

Table 1: Results for TensorFlow implementations in Baseline

consumable output.

6 Conclusion and Future Work

We have presented Baseline, a library for repro-
ducible experimentation and fast development of
DNN models in NLP. Our goal is to help automate
the frustrating parts of the process of model de-
velopment and deployment to allow researchers to
focus on innovation. The library is currently used
in a production environment for various problems,
attesting to the fact that it is suitable for a complete
research-to-deployment pipeline. Currently, the li-
brary has implementations for many strong base-
line models which we will continue to update and
improve as the state-of-the-art changes. Future
versions of the software will attempt to improve
the development process further by assisting with
automatic parameter tuning and model selection,
support for more deep learning frameworks, im-
proved visualization, and a simpler cross-platform
deployment mechanism.

Acknowledgments

We thank Patrick Haffner, Nick Ruiz and John
Chen for their valuable feedback. Funding for this
research was provided by Interactions LLC.

References

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Is-
ard, Manjunath Kudlur, Josh Levenberg, Rajat
Monga, Sherry Moore, Derek Gordon Murray,
Benoit Steiner, Paul A. Tucker, Vijay Vasudevan,

Pete Warden, Martin Wicke, Yuan Yu, and Xiao-
qiang Zheng. 2016. Tensorflow: A system for large-
scale machine learning. In 12th USENIX Sympo-
sium on Operating Systems Design and Implemen-
tation, OSDI 2016, Savannah, GA, USA, November
2-4, 2016., pages 265–283.

Timothy G. Armstrong, Justin Zobel, William Webber,
and Alistair Moffat. 2009. Relative significance is
insufficient: Baselines matter too.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary Ives.
2007. Dbpedia: A nucleus for a web of open data.
In Proceedings of the 6th International The Seman-
tic Web and 2Nd Asian Conference on Asian Seman-
tic Web Conference, ISWC’07/ASWC’07, pages
722–735, Berlin, Heidelberg. Springer-Verlag.

James Bergstra, Olivier Breuleux, Frederic Bastien,
Pascal Lamblin, Razvan Pascanu, Guillaume Des-
jardins, Joseph Turian, David Warde-Farley, and
Yoshua Bengio. 2011. Theano: A cpu and gpu math
compiler in python. In Proc. 9th Python in Science
Conf, volume 1.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa
Bentivogli, Roldano Cattoni, and Marcello Federico.
2015. The iwslt 2015 evaluation campaign. In
IWSLT 2015, International Workshop on Spoken
Language Translation.

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan
Zhang, and Zheng Zhang. 2015. Mxnet: A flexible
and efficient machine learning library for heteroge-
neous distributed systems. CoRR, abs/1512.01274.

Ronan Collobert, Jason Weston, Lon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel P. Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12:2493–2537.

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
http://codalism.com/research/papers/azwm09_sigir_fire_workshop.pdf
http://codalism.com/research/papers/azwm09_sigir_fire_workshop.pdf
http://dl.acm.org/citation.cfm?id=1785162.1785216
http://svn.ucc.asn.au:8080/oxinabox/Uni%20Notes/honours/Background%20Reading/theano_scipy2010.pdf
http://svn.ucc.asn.au:8080/oxinabox/Uni%20Notes/honours/Background%20Reading/theano_scipy2010.pdf
http://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1512.01274
http://dblp.uni-trier.de/db/journals/jmlr/jmlr12.html#CollobertWBKKK11
http://dblp.uni-trier.de/db/journals/jmlr/jmlr12.html#CollobertWBKKK11

39

Deborah A. Dahl, Madeleine Bates, Michael Brown
adn William Fisher, Kate Hunicke-Smith, David
Pallett, Christine Pao, Alexander Rudnicky, Eliza-
beth Shriberg, John S. Garofolo, Jonathan G. Fis-
cus, Denise Danielson, Enrico Bocchieri, Bruce
Buntschuh, Beverly Schwartz, Sandra Peters, Robert
Ingria, Robert Weide, Yuzong Chang, Eric Thayer,
Lynette Hirschman, Joe Polifroni, Bruce Lund, Goh
Kawai, Tom Kuhn, and Lew Norton. 1994. Atis3
training data ldc94s19.

Leon Derczynski, Eric Nichols, Marieke van Erp,
and Nut Limsopatham. 2017. Results of the
WNUT2017 shared task on novel and emerging en-
tity recognition. In Proceedings of the 3rd Workshop
on Noisy User-generated Text, NUT@EMNLP 2017,
Copenhagen, Denmark, September 7, 2017, pages
140–147.

Cı́cero Nogueira Dos Santos and Bianca Zadrozny.
2014. Learning character-level representations for
part-of-speech tagging. In Proceedings of the 31st
International Conference on International Confer-
ence on Machine Learning - Volume 32, ICML’14,
pages II–1818–II–1826. JMLR.org.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. Allennlp: A deep semantic natural language
processing platform.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flani-
gan, and Noah A. Smith. 2011. Part-of-speech tag-
ging for twitter: Annotation, features, and experi-
ments. In The 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Proceedings of the Conference,
19-24 June, 2011, Portland, Oregon, USA - Short
Papers, pages 42–47.

Rafal Józefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring the lim-
its of language modeling. CoRR, abs/1602.02410.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
655–665, Baltimore, Maryland. Association for
Computational Linguistics.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1746–1751.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M. Rush. 2016. Character-aware neural lan-
guage models. In Proceedings of the Thirtieth AAAI

Conference on Artificial Intelligence, February 12-
17, 2016, Phoenix, Arizona, USA., pages 2741–
2749.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In NAACL HLT 2016, The 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, San Diego California, USA, June 12-17,
2016, pages 260–270.

Wang Ling, Chris Dyer, Alan W. Black, Isabel Tran-
coso, Ramon Fermandez, Silvio Amir, Luı́s Marujo,
and Tiago Luı́s. 2015. Finding function in form:
Compositional character models for open vocabu-
lary word representation. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2015, Lisbon, Portugal,
September 17-21, 2015, pages 1520–1530.

Edward Loper and Steven Bird. 2002. Nltk: The natu-
ral language toolkit. In Proceedings of the ACL-02
Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Com-
putational Linguistics - Volume 1, ETMTNLP ’02,
pages 63–70, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1064–1074, Berlin, Germany.
Association for Computational Linguistics.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics, ACL 2014, June 22-27, 2014, Baltimore,
MD, USA, System Demonstrations, pages 55–60.

Gábor Melis, Chris Dyer, and Phil Blunsom. 2017. On
the state of the art of evaluation in neural language
models. CoRR, abs/1707.05589.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017a. Dynet:
The dynamic neural network toolkit. CoRR,
abs/1701.03980.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal

https://aclanthology.info/papers/W17-4418/w17-4418
https://aclanthology.info/papers/W17-4418/w17-4418
https://aclanthology.info/papers/W17-4418/w17-4418
http://dl.acm.org/citation.cfm?id=3044805.3045095
http://dl.acm.org/citation.cfm?id=3044805.3045095
https://arxiv.org/pdf/1803.07640.pdf
https://arxiv.org/pdf/1803.07640.pdf
http://www.aclweb.org/anthology/P11-2008
http://www.aclweb.org/anthology/P11-2008
http://www.aclweb.org/anthology/P11-2008
http://arxiv.org/abs/1602.02410
http://arxiv.org/abs/1602.02410
http://www.aclweb.org/anthology/P14-1062
http://www.aclweb.org/anthology/P14-1062
http://aclweb.org/anthology/D/D14/D14-1181.pdf
http://aclweb.org/anthology/D/D14/D14-1181.pdf
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12489
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12489
http://aclweb.org/anthology/N/N16/N16-1030.pdf
http://aclweb.org/anthology/D/D15/D15-1176.pdf
http://aclweb.org/anthology/D/D15/D15-1176.pdf
http://aclweb.org/anthology/D/D15/D15-1176.pdf
https://doi.org/10.3115/1118108.1118117
https://doi.org/10.3115/1118108.1118117
http://www.aclweb.org/anthology/P16-1101
http://www.aclweb.org/anthology/P16-1101
http://aclweb.org/anthology/P/P14/P14-5010.pdf
http://aclweb.org/anthology/P/P14/P14-5010.pdf
http://arxiv.org/abs/1707.05589
http://arxiv.org/abs/1707.05589
http://arxiv.org/abs/1707.05589
http://arxiv.org/abs/1701.03980
http://arxiv.org/abs/1701.03980

40

Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017b. Dynet:
The dynamic neural network toolkit. CoRR,
abs/1701.03980.

Adam Paszke, Sam Gross, and Adam Lerer. 2017. Au-
tomatic differentiation in pytorch.

Matthew E. Peters, Waleed Ammar, Chandra Bhaga-
vatula, and Russell Power. 2017. Semi-supervised
sequence tagging with bidirectional language mod-
els. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics, ACL
2017, Vancouver, Canada, July 30 - August 4, Vol-
ume 1: Long Papers, pages 1756–1765.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Nils Reimers and Iryna Gurevych. 2017. Reporting
score distributions makes a difference: Performance
study of lstm-networks for sequence tagging. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
338–348. Association for Computational Linguis-
tics.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning, CoNLL 2003, Held in cooper-
ation with HLT-NAACL 2003, Edmonton, Canada,
May 31 - June 1, 2003, pages 142–147.

Richard Socher, A. V. Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Conference on Empirical Methods in Nat-
ural Language Processing.

Ellen M. Voorhees and Dawn M. Tice. 2000. Building
a question answering test collection. In SIGIR 2000:
Proceedings of the 23rd Annual International ACM
SIGIR Conference on Research and Development
in Information Retrieval, July 24-28, 2000, Athens,
Greece, pages 200–207.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and
William W. Cohen. 2017. Breaking the softmax bot-
tleneck: A high-rank RNN language model. CoRR,
abs/1711.03953.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
CoRR, abs/1409.2329.

http://arxiv.org/abs/1701.03980
http://arxiv.org/abs/1701.03980
https://openreview.net/pdf?id=BJJsrmfCZ
https://openreview.net/pdf?id=BJJsrmfCZ
https://doi.org/10.18653/v1/P17-1161
https://doi.org/10.18653/v1/P17-1161
https://doi.org/10.18653/v1/P17-1161
http://aclweb.org/anthology/D17-1035
http://aclweb.org/anthology/D17-1035
http://aclweb.org/anthology/D17-1035
http://aclweb.org/anthology/W/W03/W03-0419.pdf
http://aclweb.org/anthology/W/W03/W03-0419.pdf
https://doi.org/10.1145/345508.345577
https://doi.org/10.1145/345508.345577
http://arxiv.org/abs/1711.03953
http://arxiv.org/abs/1711.03953
http://arxiv.org/abs/1409.2329

