Automatic Post-Editing and Machine Translation Quality Estimation at eBay

Nicola Ueffing eBay MTScience Team 2018-03-21, AMTA Workshop

Intro

Nicola Ueffing

- Research scientist on eBay's machine translation research team since May 2016
 - machine translation for e-commerce content and for natural language generation (incl. APE)
 - A bit of quality estimation
- Prior to eBay:
 - research scientist at Nuance Communications (e.g. Dragon NaturallySpeaking)
 - PostDoc at Interactive Language Technologies team, National Research Council Canada
 - PhD in computer science from RWTH Aachen University: confidence estimation for machine translation

Overview

Why MT at eBay?

MT Quality Estimation for e-commerce content Automatic Post-Editing for Browse Page Titles

Ongoing research

170M

active buyers

of business is nternational

190 Markets

Q4 2017

1.1B live listings

Machine Translation

- Enable cross-border trade
- Translate
 - Search queries
 - Item titles
 - Item descriptions

Browse Pages: Title Generation

 Translate name-value pairs describing items into natural language

Applications of MT technology

How to explore the many items on eBay?

Browse Pages

Idea:

Create permanent "browse" pages for all items & products within a category that share a certain set of name-value pairs, e.g.

- In category "Light Bulbs"
- "Wattage" = "9W"
- "Bulb Shape Code" = "E27"

Users can then navigate to

- Related/refined browse pages
- Hot offers
- Individual products
- => Also beneficial for Search Engines

How to explore so many items?

Browse Pages

eBay is present

- in dozens of countries
- with thousands of categories
- with hundreds of thousands of name-value pairs (products aspects aka slots)

→Millions of potential browse pages (and titles) required!

Browse Pages

Why automatic

title generation?

Step 1: rule-based title generation

First approach we implemented for German: Rule-based approach

- Use hand-written heuristics / shallow parsers to classify each slot
- 2. Order slots based on slot classes

3. Realize each slot separately based on slot class

- Use dedicated heuristics for certain combinations, e.g. Category + Product Type
- 4. Concatenate realizations

Browse Pages

Step 2: APE For German, we have

- Millions of browse page titles in a slightly artificial language
 - (our output from rule-based system)
- Parallel titles in a "natural" language (human curated titles)
- => train an APE system on those

e.g. translate *Kaukasische Wohnraum-Teppiche für Patchwork* into

Kaukasische Wohnraum-Teppiche **mit** Patchwork-**Muster**

Browse Pages

APE Pros & Cons

Browse Pages

Pro

- + Straight forward
- + Large improvements in quality
- + Easy to integrate

Con

- Can only fix data that's there (can't reconstruct missing slots, slot names or context, ...)
- Sometimes learns artifacts from data (esp. when noisy)
- Will learn curation rules present when titles were created

APE Evaluation Results

Browse Pages

corpus	curated titles: #tokens		
train	3.8M		
dev	8.8k		
test	8.8k		

Evaluation on test

Item Titles

- Relatively free word order
- +adequacy
- -fluency

Categories (e-commerce), e.g.

- Cellphones & Smart Phones
- Women's Clothing
- Car Parts & Accessories
- Cycling
- Fishing
- Skin Care
- Jewelry
- ...

eBay item titles

Intro

eBay item titles

Intro

Examples:

- For Samsung Galaxy S5 i9600 S V TPU Crystal Clear Soft Case Ultra Thin Cover NEw
- 0.3mm Thin Crystal Clear Soft Silicone Fitted Case Skin Cover For iPhone 6 4.7"
- Universal 12000mAh Backup External Battery USB Power Bank Charger for Cell Phone
- Luxury Slim Aluminum Alloy Metal Bumper Frame Case/Cover For Apple iPhone 5 5S
- Luxury Ultra thin Metal Aluminum Bumper Case PC Cover For Samsung Galaxy Note 3
- 5000mAh Portable Super Solar Charger Dual USB External Battery Power Bank DX
- Sausage boiler broth boiler butcher's boiler boiler pot boiler insert
- Rasta wig with dreadlocks Rasta Hat Rasta braids
- CUTE HELLO KITTY Stuffed Plush 12" so CUUUUUUUTE!!!!(FREE SHIPPING in USA)

Data

- English-Portuguese
- Phrase-based Statistical MT
- Based on post-edition effort (HTER)
- Approx. 11k translated segments which are post-edited
- 223 different e-commerce categories

Data

eBay item titles

Distribution of HTER for top 3 categories

eBay item titles

Post-edition effort per category

Proceedings for AMTA 2018 Workshop: Translation Quality Estimation and Automatic Post-Editing

79 QuEst features:

- Black-box
- Complexity
- Adequacy
- Fluency

Item title embeddings

- Adequacy
- Concatenation of source and translation embeddings
- From paragraph2vec

NER-based

- Adequacy
- Numbers and ratio of NER tags found in source and translation

Quality Estimation

Features

Extremely Randomized Trees

- Ensemble of decision trees
- Random forests
 - Build on random samples from training data
 - Choose best split for random subset of features
- Extremely randomized: additionally choose best threshold from random set of thresholds

AdaBoost

- Sequence of weak learners (very small decision trees)
- Fit them on original dataset
- Then fit additional copies of classifier on same data, but adjust weights of incorrectly classified instances s.t. subsequent classifiers focus more on difficult cases
- Final prediction: weighted majority vote of all iterations
- Time consuming

Both:

- Non-linear
- Provides feature importances

Quality Estimation

Learning algorithms

Quality Estimation

Experimental setup

- regression
- HTER labels clipped in [0, 1]
- 75/25 train/test splits
- Model selection
 - Randomized search with 5-fold cross validation (100 iterations)
 - Optimized for mean absolute error
- Evaluation
 - mean absolute error (MAE) ↓
 - Pearson's correlation

Cellphones & Accessories

		Extremely Randomized Trees		AdaBoost		
		MAE↓	Pearson ↑	MAE↓	Pearson	
	Baseline: Mean	15.4	0	15.4	0	
	QuEst79	14.3	47.3	13.6	50.3	
	QuEst79 + embeddings	14.3	47.6	13.8	46.4	
s I	QuEst79 + NER	13.8	50.4	13.1	56.0	
	QuEst79 + NER + embeddings	13.8	49.9	13.5	51.9	

Quality Estimation

Experimental results I

Cellphones & Smartphones

		Extremely Randomized Trees		AdaBoost	
		MAE↓	Pearson↑	MAE↓	Pearson
	Baseline: Mean	12.9	0	12.9	0
	QuEst79	12.4	39.6	11.7	45.6
	QuEst79 + embeddings	12.5	38.7	12.2	41.6
ults II	QuEst79 + NER	12.2	44.2	11.1	53.5
	QuEst79 + NER + embeddings	12.3	43.4	11.8	49.3

Quality Estimation

Experimental results II

Women's Clothing

		Extremely Randomized Trees		AdaBoost	
Quality		MAE↓	Pearson↑	MAE↓	Pearson
Estimation	Baseline: Mean	13.0	0	13.0	0
	QuEst79	12.8	13.2	13.1	6.8
	QuEst79 + embeddings	12.9	10.0	12.6	11.3
Experimental results III	QuEst79 + NER	12.8	12.2	12.9	10.8
	QuEst79 + NER + embeddings	12.9	7.2	12.7	4.1

- Fewer named entities than other 2 categories
- More generic description of items •
- \Rightarrow NER not very helpful
- Many bad translations •

Quality

Quality Estimation

Analysis

- Quality prediction in the tails of the test set distribution is problematic
- Tails equals to
 - Good translations (HTER close to 0)
 - Bad translations (HTER close to 1)

Analysis

Best model, AdaBoost:

- Accuracy @ 25% worst translations (HTER near 1) CPA: 52.83
 - CPS: 53.12

WC: 32.69

- Accuracy @ 25% best (HTER near 0) CPA: 60.37 CPS: 43.75 WC: 30.76
- Random guess (baseline): ~25%

Analysis

Quality Estimation

Conclusion

- Best feature set on average: Quest79 + NER
- AdaBoost presents the best accuracy, but slow
- Extremely Randomized Trees offer best trade-off between accuracy and computing time
- Models can predict bad and good translations with more than 50% accuracy
- Models for single categories, no pooling

Quality Estimation

Ongoing research

Ongoing research

- User feedback from star ratings => bandit learning
- Quality estimation for natural language generation (browse page titles)
 - Random forest with features, mix of common and task-specific
 - Neural approach
- (Potential) QE applications
 - Do not display low-quality MT/NLG on site
 - Decide about updating existing title / translation
 - Routing for post edition
 - Data selection for post edition

References

Browse page title generation: APE approach and other MT-based methods described in: International Conference on Natural Language Generation, Santiago de Compostela, Spain, September 2017 Generating titles for millions of browse pages on an e-Commerce site Prashant Mathur, Nicola Ueffing, Gregor Leusch

Quality Estimation research described in: MT Summit - User's Track, Miami, Florida, October 2015 **MT Quality Estimation for E-Commerce Data** Jose G. C. de Souza, Marcello Federico, Hassan Sawaf

http://research.ebay.com/research-areas/research-machinetranslation

Thank you to my colleagues José GC de Souza, Prashant Mathur, Gregor Leusch

