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Abstract
Translation to morphologically rich languages is a difficult task because of sparsity caused by

morphological richness. In this work we perform a pilot study on predicting the morphologi-

cally rich POS tags of sequences of lemmas. Similar studies have been conducted in the context

of phrase-based statistical machine translation. We implement a state-of-the-art tagger taking

lemmas as input and show that we can successfully predict the morphologically rich POS tags,

with accuracies of up to 91%.

1 Introduction

Modeling sequences of tokens in morphologically rich languages (MRLs) is a difficult task of

great importance in many applications of NLP. For instance, translation from a morphologically

poor language (such as English) to an MRL (such as German or Czech) is known to be difficult.

An effective approach for modeling MRLs is to break the sequence into a factorized represen-

tation, such as lemmas paired with their morphologically rich POS representations (e.g., for a

German noun, the rich representation includes the noun POS tag, and the three grammatical

features gender, number, and case).

In this paper, we assume that we have a good system for generating lemmas and study

whether we can automatically recover the morphologically rich POS representation. This is

more difficult than morphologically rich POS tagging, which takes a sequence of surface forms

and recovers the most likely morphologically rich POS representation, because lemma input

is underspecified. This task was previously studied by Minkov et al. (2007). We differ in

two ways: (1.) we implement a state-of-the-art neural tagger, rather than a Maximum Entropy

Markov model, and (2.) we predict rich morphological POS, rather than surface forms.

Studying the prediction of morphologically rich POS given lemmas is an interesting prob-

lem in its own right. It has implications for NLP applications involving the generation of MRL

sentences including machine translation. A concrete application is to apply it in an end-to-end

MT system. Similar morphological prediction systems have been applied by Toutanova et al.

(2008), Bojar and Kos (2010) and Fraser et al. (2012) in phrase-based SMT. A pipeline of such

a system is depicted in Figure 1.

Given the promising results in this initial study, we plan to combine our tagger with a

standard neural machine translation model, resulting in a multi-task system which produces

pairs of lemmas and morphologically rich POS tags. An important benefit of such a system

over previous approaches which produce such pairs directly using a standard NMT model (e.g.,

Tamchyna et al. (2017)) is that we will be able to train it in a multi-task fashion, where some
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Figure 1: Example of a machine translation system using our morphology tagger (in red) as an

intermediate step in the translation process into a target MRL.

training examples contain source language text (from parallel data), while others do not (from

monolingual data).

In this paper, we present our language-independent neural tagging system implemented

and trained for this task. German, an MRL belonging to the Indo-European family, has been

chosen for a case study. This choice is motivated by the fact that, within MRLs, German has

been widely studied in recent years, and many resources are publicly available.

2 Motivation

2.1 Rich Morphology in Machine Translation: Still Challenging
MRLs are difficult to deal with in natural language processing applications. Naive technologi-

cal approaches without any proper analysis and modeling of morphological phenomena tend to

result in underperforming systems for MRLs. Computational morphology research is therefore

a long-standing subdiscipline of NLP, with an impact on almost any use case that involves an

MRL. Information retrieval systems have traditionally benefited from stemmers or lemmatizers,

which reduce inflected surface forms to a word stem or a canonical form. In MT, translating

from source-side English into an MRL is notoriously more difficult than the other way around

(Bojar et al., 2017). The English→MRL direction requires the system to decide amongst many

possible inflected forms on the output side. The source-side lexical counterpart is morpho-

logically underspecified, which complicates both statistical modeling and search. Data-driven

approaches over MRLs furthermore suffer eminently from data sparsity issues under medium-

to low-resource conditions. Many inflected forms are observed rarely.

Source-side MRL. Rich morphology on the source side can to some extent be tackled via

preprocessing. Syntactic and morphological analyzers can be employed, based on which a

source sentence representation can be constructed which is more appropriate as the input to a

translation system (Popović and Ney, 2004; Popović et al., 2005; Goldwater and McClosky,

2005). E.g., certain morphological features of the source words may be dismissed beforehand.

Non-reversible modifications are uncritical on the source side and can potentially alleviate the

modeling problem and counteract data sparsity. Arabic is a prominent example of a language

that typically undergoes heavy morphosyntactic analysis and preprocessing on the source side

(Lee, 2004; Habash and Sadat, 2006; Hasan et al., 2011).
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Target-side MRL. The more challenging question of how to tackle rich morphology on the

target side has undergone quite some research. Factored phrase-based models (Koehn and

Hoang, 2007) can be used to produce inflected output via a separate decoding path and a gen-

eration step (Bojar, 2007). The blow-up of the search space can make such models impractical.

Backoff techniques (Koehn and Haddow, 2012) or flat factored models with supplementary fea-

tures over lemmas and linguistic annotation (Stymne et al., 2008; Huck and Birch, 2015) are

more tractable alternatives.

Phrase-based translation models, accompanied with n-gram language models, have a rela-

tively limited local view. Some morphological phenomena go beyond local context and require

agreement across long distances. In syntax-based systems with a chart-based decoding proce-

dure, engineering adequate agreement constraints is more viable (Williams and Koehn, 2011,

2014). Pursuing a different idea, Avramidis and Koehn (2008) and Daiber and Sima’an (2015)

have attempted to annotate input sentences beforehand with morphological features that are ex-

hibited by the target-side MRL, thus taking the burden of the inflection selection away from the

phrase-based decoder. Chahuneau et al. (2013) and Huck et al. (2017c), on the other hand, have

specifically looked into how to produce unseen morphological variants without resorting to a

factored generation step. To that end, they augment their phrase tables with synthetic entries.

Other researchers have proposed two-step approaches to MT into MRLs, where the output

of the first step (the actual translation) lacks certain morphological features of the MRL, which

in turn have to be predicted by a separate module in a second step in order to end up with

inflected target language sentences (Toutanova et al., 2008; Fraser et al., 2012). Slightly less

supervision might be required by another technique for tackling rich morphology on the target

side: word segmentation, and subsequent modeling on a subword level. Inflected target words in

the training data can e.g. be segmented into stems and morphological affixes (Fishel and Kirik,

2010; Clifton and Sarkar, 2011; Passban et al., 2017). The segmentation of output hypotheses

of the MT system needs to be reverted in postprocessing.

In modern neural machine translation engines, word segmentation by means of a Byte

Pair Encoding (BPE) style algorithm is a common trick to shrink the vocabulary size (Sennrich

et al., 2016). Recent research has shown that NMT of MRLs benefits from word segmentation

techniques that are linguistically more informed than plain BPE (Ataman et al., 2017; Pinnis

et al., 2017; Huck et al., 2017b,a). Not all prior research on MRLs in traditional phrase-based

MT can be readily transferred to NMT. One of the most promising attemps to date is follow-

ing the theme of two-step MT. A second-step module generates inflections from lemmas and

morphological tags. The first-step NMT module outputs interleaved sequences of such lemmas

and their respective tags (Burlot et al., 2016, 2017; Tamchyna et al., 2017). Research on how

to best model morphology with neural networks is ongoing, in MT and in other areas of NLP

(Botha and Blunsom, 2014; Ebert et al., 2016; Vania and Lopez, 2017; Belinkov et al., 2017;

Garcı́a-Martı́nez et al., 2016; Garcı́a-Martı́nez et al., 2017; Burlot and Yvon, 2017).

2.2 Morphological Tagging of Lemmas: Utility and Limitations

Morphological tagging is the task of marking up each token in an input sequence with the

corresponding morphological features which describe its inflectional properties. In the case of

morphologically poor languages, a word can usually be described sufficiently using information

about its POS tag (Mueller et al., 2013). MRLs require a more detailed analysis. The term MRL

refers to a language where word shapes encode a consistent number of syntactic and semantic

features. This behavior is particularly productive in fusional and agglutinating languages, where

it can involve both verbal conjugation and nominal declination. In these situations, a more

accurate morphological label is usually attached to the POS tag. For this reason, morphological

tagging has been also defined as fine-grained POS tagging (Labeau et al., 2015).
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A divide-and-conquer approach is often adopted to deal with data sparsity in MRLs. First,

the MRL inflectional structure is simplified, thus reducing the number of word types and conse-

quently data sparsity. Then, the NLP task is carried out over the simplified MRL data. Finally,

the complete MRL’s inflection is reconstructed as a separate post-processing step. In this way,

a complex problem is decoupled into approachable subtasks. Previous authors have pursued

this approach in MT, e.g. from English or Chinese into simplified representations of MRLs like

Czech (Bojar, 2007), German (Fraser et al., 2012), Spanish (Costa-Jussà and Escolano, 2016).

A disadvantage of these previous attempts is that they require a careful, linguistically-motivated

analysis in order to optimize the choice of morphological features which can be removed from

the MRL, thus decreasing data sparsity, without increasing the difficulty of the final morphology

generation step too much (as in Costa-Jussà and Escolano (2016)). In this work, by contrast, we

investigate the possibility of generating morphological annotations from completely underspec-
ified input sequences. We implement and train a neural morphological tagger which deals with

lemma sequences. The lemmas are uninflected canonical base forms with no morphological fea-

tures at all. Given a morphologically fully underspecified lemma sequence, the task considered

in this work consists of annotating each input symbol with the complete set of morphological

features needed to generate the inflected word forms.

However, in our approach, not all morphological features can in each and every case ac-

curately be recovered from target-side lemma sequences only, without ever taking the source

sentence into account. Consider the English sentence “the flowers are blossoming” and its Ger-

man translation “die Blumen blühen”. The German lemma sequence is “der Blume blühen”.

Rather than annotating the article lemma “der”, the noun lemma “Blume”, and the verb lemma

“blühen” as plural each, a morphological tagger could just as well predict singular here, re-

sulting in the grammatically correct sentence “die Blume blüht” (English: “the flower is blos-
soming”). Under many circumstances, however, our morphological tagger is able to correctly

disambiguate most features. E.g., for the English sentences (1.) “a flower is blossoming” and

(2.) “many flowers are blossoming” with their respective German lemma correspondences (1.)

“ein Blume blühen” and (2.) “viel Blume blühen”, the number feature can be unambiguously

established from the first lemma in each of the two German lemma sequences, the indefinite

article “ein” and the adverb “viel”. Given their context, noun and verb should also be anno-

tated correctly as singular in the first example and plural in the second. In ambiguous cases, the

morphological tagger will benefit from such contextual clues, as well as from the semantics of

the lemmas, their syntactic order, and co-occurrence frequencies in the training data. Our neural

morphological tagger performs very well on the very difficult task of predicting rich POS from

this very underspecified representation.

3 A Neural Architecture for Morphological Tagging of Lemmas

We consider a tagging task in which, given a lemmatized input sequence x = {x1, x2, ..., xN},

each input symbol is assigned one out of a set T of predefined fine-grained tags, resulting in the

output sequence y = {y1, y2, ..., yN}, where x and y have the same length N . Our architecture

leverages information coming from multiple input channels. For each token, three features are

considered, none of which requires any language-specific tool to be extracted:

• Lemma. The input token itself, which is a canonical word form.

• Capitalization. Following Collobert et al. (2011) and Santos and Zadrozny (2014), a cap-

italization feature has been implemented, which indicates whether a given lemma is com-

pletely uppercased, completely lowercased, capitalized, contains at least one uppercase

character in a position other than the first, or none of these cases. Encoding information

about the capitalization of a token can be useful, in particular for unknown input symbols.
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Figure 2: The architecture of our neural network

model for morphological tagging.

Tagset Tagset
size

Avg. #
labels/stem

Max. #
labels/stem

morph 255 3.96 96
POS+morph 678 4.00 128

Table 1: Tagset statistics.

Feature Values
Gender Masc, Fem, Neut, *
Case Nom, Gen, Dat, Acc, *
Number Sg, Pl, *
Person 1, 2, 3
Degree Pos, Comp, Sup
Tense Pres, Past
Mood Ind, Subj, Imp

Table 2: Morphological features.

Parameter Value
batch size 32
optimizer adadelta
dropout 0.3
lemma embedding size 128
suffix embedding size 40
capitalization embedding size 10
recurrent layer size 256

Table 3: Hyperparameters of the network.

• Suffix. For our purposes, a suffix is defined as the last n characters of a token. Suffixes

can be indicative of a lemma’s syntactic category, or POS. As the inflection pattern largely

depends on the POS, suffixes can also help predict the morphological features of lemmas.

3.1 Neural Network Components

The proposed architecture is composed of a series of modules, or layers (Figure 2). Given an

input sequence of length N , in the first layer each input symbol is mapped to three one-hot

vector representations, corresponding to the three features described above. The one-hot vector

representations are then projected into real-valued dense vector representations (embeddings).

The lemma, the capitalization, and the suffix embeddings are then concatenated in order to

obtain a single vector representation for each input symbol.

The central body of the architecture are three stacked bidirectional recurrent layers, using

GRUs as recurrent cells. The choice of bidirectional recurrent layers over traditional feedfor-

ward layer was motivated by the promising results obtained in other labeling tasks, such as

named entity recognition (Lample et al., 2016). The use of GRUs was preferred over LSTMs

because their simpler internal structure allows for faster training, showing comparable results in

preliminary experiments. Inspired by Heigold et al. (2016), we add skip connections between

the first and the third bidirectional recurrent layer to allow for direct propagation of information

between layers at different levels of depth. At the top of the architecture, a time-distributed

densely-connected layer produces one |T |-dimensional vector per time step, where |T | is the

tagset size. Finally, the output label at each time step is given by a softmax operation over the

tagset. The weights of the network (θ) are jointly estimated using the conditional log-likelihood

F (θ) = −∑N
n=1 log pθ(yn|x1, ..., xN ).
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3.2 Training
In order to train our neural model, a high amount of lemmatized data, tagged with morphological

annotations, is required. In a multi-component end-to-end NLP system that involves our tagger,

one would typically strive for a good match between the training data of the tagger and the

training data of the other components, so as to achieve ideal interaction between them. But

corpora that are manually annotated with lemma and fine-grained POS will rarely ever be at

hand for most tasks. Common practice in most practical scenarios would be to synthetically

annotate the task-specific training corpus. We follow this real-world rationale and work with

synthetic annotation in our study.

Data and preprocessing. We train on the Europarl v7 corpus (Koehn, 2005). The conven-

tional Europarl test sets (test2006, test2007, test2008) that had been released for the WMT

shared task are used for development and testing.1 Our main tagging evaluation results will be

reported on test2007, which we abbreviate as test in most tables, while test2006 serves as our

dev set. The corpora are tokenized and frequent-cased using scripts from the Moses toolkit.2

They are then annotated with lemmas, POS tags, and morphological tags with the pretrained

tagging model for German provided by the MARMOT toolkit.3 MARMOT is a CRF-based

tagger with a reported accuracy of 97.94 for POS tagging and of 91.65 for morphological anno-

tations on the TIGER test set (Mueller et al., 2013). The toolkit produces lemmas using LEM-

MING (Müller et al., 2015), a language-independent token-based lemmatizer which is reaching

state-of-the-art accuracy of 98.10 for the German language. Our training corpus contains 1.9M

sentences, the dev and test set 2,000 sentences each.

Tagsets. As in (Mueller et al., 2013), two tagsets are considered in our work. The first tagset

(morph) is composed of morphological annotations, while the second (POS+morph) is obtained

by concatenating the POS tag and the morphological annotation of each input lemma. For exam-

ple, the lemma “Parlament” in the context “im Parlament” (in the parliament) would receive the

POS+morph label NN+case=dat|number=sg|gender=neut, where NN is the POS tag

and the segment case=dat|number=sg|gender=neut corresponds to the morph label,

specifying the values taken by the morphological features case, number, and gender. As shown

in Table 1, considering POS+morph labels increases both tagset size and classification ambigu-

ity. Morphological labels show a compositional property (Cotterell and Schütze, 2015). In fact,

each label is represented by a concatenation operation over a set of feature : value pairs.

Table 2 reports the morphological features used for annotation. Some features are specific to

certain word classes, such as mood for finite verbs. Other features can occur in more contexts,

such as gender and case (articles, pronouns, adjectives, and nouns).

Vocabularies. In order to increase training speed, we reduce the lemma vocabulary to the 40K

most frequent entries. This allows for an OOV rate of 0.016 over the training and of 0.019 on

the test sets. After some preliminary experiments, we commited to suffixes of size n = 4. No

vocabulary reduction is performed on the suffix vocabulary.

Model setup. Neural models are trained to predict labels from the two tagsets, morph and

POS+morph, respectively. The same hyperparameters of the network architecture are config-

ured for both models (Table 3). During training, the input sequences are padded or cut up to the

length of 70 tokens for the morph tagset and of 60 for the POS+morph tagset. At test time, the

sentences are padded up to the length of the longest sequence in the dataset. Our implementation

takes around one week to train 15 epochs on a Nvidia GeForce GTX 750 GPU.

1http://www.matrix.statmt.org/test_sets/list/
2https://github.com/moses-smt/mosesdecoder/
3https://github.com/muelletm/cistern/tree/master/marmot
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Tagset Max. Freq. Freq. Lookup CRF Our Neural Tagger
dev test dev test dev test dev test

morph 39.15 38.92 59.97 60.32 87.77 87.91 91.22 91.34
POS+morph 7.65 7.47 56.52 56.78 86.96 86.78 90.61 90.92

Table 4: Accuracy obtained on morphological tagging of lemmas considering morph and

POS+morph tagsets.

4 Empirical Evaluation

Three non-neural baselines have been built to provide lower bounds, two dummy classifiers and

a CRF-based model:

• Maximum frequency. The first baseline (Max. Freq.) always predicts the most frequent

label in the tagset.

• Frequency lookup. The second baseline (Freq. Lookup) uses a lookup table to return, for

each lemma, the label it is most frequently annotated with in the training corpus.

• CRF. A CRF model was trained on the lemmatized Europarl corpus, using the MARMOT

toolkit with its default parameters.

4.1 Intrinsic Evaluation: Tagging
Table 4 reports on the results of tagging on the development and test set. Our neural tagger

clearly beats all the baselines taken as lower bound, considering both tagsets.

Quantitative analysis. In order to understand the performance of our models at predicting

each single feature, the morphological labels were split into their components and performance

is measured according to the following metrics:

• F1-score A. Performance is measured only across word classes which present the given

feature in the gold. For example, degree is measured only in adjectives.

• F1-score B. Performance is measured across all word classes. If a given feature is not

predicted for a label, or it is not present in the gold annotation, its value is set to an artificial

NNN class. In this way, features which are correctly not predicted by the system, such as

gender for verbs, count as true positives.

Results of this evaluation are reported in Table 5. The overall feature performance is

satisfactory in line with both evaluation criteria. The performance scores for all features are

slightly improved using the model predicting POS+morph labels. In fact, as POS tags are

indicators of word classes, jointly predicting them with the morphological labels could help the

system learn which features should be predicted and which should not be produced.

Considering evaluation of type A, the best results are obtained for the gender feature. Con-

trary to what happens for the other features, gender constitutes a lexical attribute of nouns,

and an inflectional feature for other nominal constituents. This could have had the effect of

simplifying the classification problem for nouns, thus also strengthening performance on de-

pendent tokens, such as determiners and adjectives. Moving to evaluation of type B, an overall

enhancement in performance can be observed for all features, suggesting that the systems are

successfully able to learn when a certain morphological feature should be predicted or not.

In general, the performance of tagging with respect to single morphological features seems

to highly depend on the distributional characteristics of the corpus, as well as on the relative

balance within a single feature’s values. Highest performance is obtained on the morphological

features which present the highest support in the training set. Figure 3 reports the confusion
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Figure 3: Normalized confusion matrices considering the morphological features gender, num-

ber, case, and tense. The value NNN refers to morphological labels where the given feature is

not present in gold or predicted by the system, while * indicates that the given feature is present

or predicted, but undefined.

Morph Support Number morph labels POS+morph labels
Feature (% in train set) of values F1-score A F1-score B F1-score A F1-score B
POS 100.00 48 - - 98.45 98.45
Case 50.41 5 93.69 96.41 93.87 96.52
Gender 49.86 4 96.57 97.93 96.61 97.94
Number 58.05 3 95.12 96.63 94.99 96.57
Person 12.00 3 94.69 99.52 94.70 99.56
Degree 8.42 3 82.36 99.63 82.21 99.63
Mood 7.65 2 90.14 99.27 90.01 99.29
Tense 7.64 2 85.06 98.86 85.44 98.90

Table 5: Performance of tagging considering single morphological features. Support is defined

as the number of labels where a given feature is defined, divided by the total number of labels

in the training set.
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matrices of case and gender, two highly frequent morphological features which distinguish be-

tween the highest number of possible values. Considering case, the tagger was able to learn

to discriminate relatively well between the four cases, due to their distributionally different

characteristics. The highest number of misclassifications occurs between Nom and Acc, which

present some similar distributional patterns in the German language. Excluding the * value,

which occurs with a support lower than 1%, the lowest performance is obtained on Gen, which

is also the less frequent value for this morphological feature. Moving to gender, the best perfor-

mance is achieved with Fem. This is not only the most frequent value, but also the gender which

contains most of the substantives obtained through derivational morphology (Matthews, 1991),

thus presenting a pattern which can be easily spotted by the suffix feature. In contrast, mis-

classifications are more common in case of morphological features which present a high class

imbalance, especially when the classes tend to appear in similar context. This is exemplified by

the features number and tense, whose confusion matrices are reported in Figure 3. In the case

of number, the morphological feature with the highest support, our tagger tends to misclassify

Plur occurrences in favour of the most frequent value Sing, which occurs roughly twice as

often. The same pattern can be observed also in the confusion matrix of tense, a feature with a

considerably lower support in the training corpus (as it occurs only for verbs). Here, the extreme

feature imbalance induces the system to wrongly label almost half of the Past occurrences as

Pres, which accounts alone for almost 85% of the training samples.

Qualitative analysis. These observations are supported by a qualitative analysis of the sys-

tems’ output on the test set4. In particular, our tagger is able to learn to produce verbs in the

correct tense when an explicit temporal mention is present in the sentence, as in the example

below, which contains both a past and a present adverbs (in italics):

• Wie ich bereits gestern Abend sagte, und ich tue dies heute erneut, [...]

As I said last night - I will say it again today, [...]

Number can be disambiguated when a clue such as viel (En.: many) is found:

• .[...], enthält der diesjährige Haushaltsentwurf viele politische Botschaften [...]

.[...], there are many political announcements coming out of this year’s Budget [...]

Moreover, our system can also learn complex distributional patterns, being also able to

cope with long-distance dependencies. In the following example, the combination of the two

modal verbs hätten ... müssen (separated by 16 tokens) can only accept the Subj mood. The

tagger correctly predicts:

• Dann hätten sich die französischen Behörden [...] an uns wenden müssen.

The French authorities ought to have consulted us [...]

However, when no explicit clue is present in the sentence, and the distributional charac-

teristics of a morphological feature’s values are similar, the tagger chooses the value which

was most frequently associated with the given lemma in the training corpus, such as the Plur
Number considering the substantive in the Nominative case Nachbarland (English: neighbour-
ing country):

• Unsere Nachbarländer haben (correct: Unser Nachbarland hat) sich [...] während der

letzten zehn Jahre [...] bemüht.

Our neighbouring countries have (correct: Our neighbouring country has) struggled [...]
over the last decade [...]

4For the sake of clarity, in this section we report the re-inflected samples obtained using the predicted morphological

labels, instead of showing the labels themselves (which could be difficult to interpret).
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Our Tagger LAMB

Suffix Embeddings Lemma Embeddings
-ISCH -RUNG -EREN SOLIDARISCH KOOPERATION SOLIDARISCH KOOPERATION

-lich -lung -rken generell Kommunikation Solidarität Zusammenarbeit
-ativ -hung -ösen uneingeschränkt Kohäsion Elitenförderung Kooperationsprojekt
-rell -tung -üben systematisch Steuerung Selbstverantwortung Gemeinschaftsprojekt
-iell -gung -üfen schrittweise Produktion Lebensrecht Kooperationsvertrag

Table 6: 4-nearest neighbors of the embeddings encoding of three suffixes (columns 1-3) and

two lemmas (columns 4-5) from the training set, computed using cosine similarity on the vectors

jointly learned by our POS+morph neural tagger after 15 epochs. The 4-nearest neighbors of

the corresponding purely semantic LAMB lemma embeddings (Ebert et al., 2016) are reported

for comparison purposes (columns 6-7).

In fact, where the sentence offers no clue to disambiguate a particular morphological fea-

ture, it is in principle impossible to recover the correct feature’s value from the lemmatized

sequence. The system can rely only on the statistical characteristics of the corpus to infer it.

It should be observed, however, that even when the system predicts a wrong morphological

feature, the complete sequence of labels is nevertheless usually grammatical and coherent, as

shown in the example above (where the singular subject unser Nachbarland agrees in number

with the principal verb hat).
An analysis of the embedding matrices jointly learned during training shows that our model

is able to learn complex relations of morphological similarity, leveraging information coming

from both lemmas and suffixes. As reported in Table 6, our learned suffix embeddings tend to

cluster together with suffixes denoting the same word class (adjectives for -isch, feminine nouns

for -rung, and verbs for -eren). This holds true also for lemma embeddings, which cluster

with input symbols belonging to the same morphological class, and with which they share

almost no semantic content. This is particularly evident when comparing our learned lemma

embeddings with the purely semantic LAMB embeddings (Ebert et al., 2016). The nearest

neighbor of the lemmatized adjective solidarisch (En.: solidary) in our model is the adjective

generell (En.: general), while the corresponding LAMB nearest neighbor is the noun Solidarität
(En.: solidarity), as reported in Table 6. For Kooperation (feminine noun, En.: cooperation),

the nearest neighbors in our space are all feminine nouns, while the nearest LAMB vectors are

semantically related nouns with different genders.

4.2 Extrinsic Evaluation: Inflection Generation
Inflection generation, also called morphology generation, is the NLP task of generating an

inflected word from its lemma paired with its morphological tag. This task offers a nice oppor-

tunity for an extrinsic evaluation of our tagger’s predictions. We implemented an inexpensive

lookup-based inflection generation system. At each position i, the inflected word wi corre-

sponding to the lemma li is produced according to the following chain of backoff operations:

1. POS+morph bigram+1: max
wi

(count({(li, ti, ti+1) → wi}))
2. POS+morph unigram: max

wi

(count({(li, ti) → wi}))
3. Lemma bigram+1: max

wi

(count({(li, li+1) → wi}))
4. Lemma unigram: max

wi

(count({(li) → wi}))
5. Unseen lemma: li → li

where ti corresponds to the POS+morph label predicted by our tagger. Lookup tables are

calculated over the training corpus.
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MT System Lemma-BLEU

test2007 test2008
Baseline 28.9 28.7
Lemma NMT 29.3 29.2

Table 7: Quality of lemma translation. Base-

line hypothesis translations and references

have been lemmatized with LEMMING.

MT System BLEU

test2007 test2008
Baseline 25.8 25.7
Pipelined 24.8 24.5

Table 8: Machine translation quality. We

report case-sensitive BLEU of fully inflected,

postprocessed translations.

Reinflection accuracy over the test set reaches 99.22 using gold labels, and 95.54 using our

predicted labels. We believe that adopting state-of-the-art neural inflection generation systems

such as the one by Kann and Schütze (2016), or using language-specific tools, as done in previ-

ous works on German (Fraser et al., 2012) and Spanish (Costa-Jussà and Escolano, 2016), could

further enhance this performance. The purpose of this extrinsic evaluation, however, was not

to propose a new competitive Inflection Generation system, but rather to prove that our labels

constitute a good input to such a system and that, even with the limitations discussed in the

previous section, it is possible to obtain satisfactory results in reconstructing the inflection of

lemmatized input.

4.3 Machine Translation Evaluation

We build neural machine translation engines to evaluate the pipelined MT approach as illus-

trated in Figure 1. For comparison, a baseline NMT system translates directly from English to

fully inflected German word surface forms. The pipelined architecture from Figure 1 is evalu-

ated against this baseline. For the pipelined architecture, we train an NMT engine on a parallel

corpus with lemmatized German target side. At test time, the latter engine performs the first step

(MT from English words to German lemmas) in the pipeline. The second step is conducted by

our tagger, which annotates the lemma hypothesis translation with morphological tags. Finally,

the lookup-based inflection generator from Section 4.2 is employed to map the paired lemmas

and predicted morphological tags to inflected German words.

We use the Nematus toolkit’s implementation of encoder-decoder NMT with attention and

GRUs (Sennrich et al., 2017). We train and test on the English–German Europarl data. In

the NMT systems’ training corpus, words are tokenized and frequent-cased, then segmented

via byte-pair-encoding (BPE) (Sennrich et al., 2016) with 50K merge operations; likewise for

lemmas, but with BPE operations extracted from the lemmatized data. We configure dimensions

of 500 for the embeddings and 1024 for the hidden layer. We train with the Adam optimizer, a

learning rate of 0.0001, batch size of 50, and dropout with probability 0.2 applied to the hidden

layer. Translation quality is measured case-sensitive with BLEU (Papineni et al., 2002).

In Table 7, we use BLEU computed on lemmas (Lemma-BLEU), to show that we get a

small gain in lexical choice (of the lemma) in the pipelined approach, where the NMT engine

is trained to produce lemmas. However, the BLEU scores over fully inflected words in Table 8

suggest that a simple pipelined approach is not sufficient for end-to-end MT. We looked at the

MT output and saw that it was mostly coherent, but there was confusion on features like number,

tense, and mood. The slightly improved lexical choice of the lemma does not compensate for

the loss that derives from the inherent limitations of completely decoupling lemma prediction

and morphology prediction, as was discussed intuitively in Section 2.2 and later highlighted in

detail empirically (Section 4.1, Figure 3, Table 5). The neural architecture yields surprisingly

strong accuracy at morphological tagging of lemma sequences, but the pipelined approach from

Figure 1 with completely underspecified lemma sequences and strict decoupling of the different

components is too limiting for MT.
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5 Relation to Previous Work on Morphological Tagging

Morphological tagging of inflected sequences. Fine-grained tagging of completely under-

specified lemma sequences has not been studied much before, possibly because earlier non-

neural models were deemed not powerful enough to tackle the task. Morphological tagging of

inflected words, however, has been intensely investigated. The best performance for German

(92% accuracy on TIGER) was achieved by Heigold et al. (2016) with a neural system which

combines word and character embeddings. As observed by Santos and Zadrozny (2014) for

POS tagging, character embeddings are particularly useful for processing MRLs, since they can

help spot inflectional regularities. However, when dealing with completely uninflected input,

this property is less useful. It is true that lemmas sometimes retain some kind of morphological

information, like in derivation; however, this can be easily captured with suffix embeddings. In

fact, a character-based model did not outperform our architecture in preliminary experiments.

Morphological tagging of (partially) underspecified sequences. Recently, Costa-Jussà and

Escolano (2016) proposed a three-staged approach to Chinese–Spanish MT. First, a statistical

MT system translates from Chinese into a morphologically impoverished version of Spanish

which does not present two features: number and gender. Then, two neural classifiers separately

annotate the simplified Spanish tokens with the missing features. As a last step, full forms are

generated.In this way, the authors claim to beat the previous state-of-the-art performance for

this specific language pair, reaching a classification accuracy higher than 90% on both features.

No direct comparison can be drawn with our system, since their separate neural classifiers are

trained on partially uninflected input (all other morphological features are still present). In our

work, on the contrary, all features are considered. In particular, instead of separately training a

different network for each feature, our single architecture makes one joint decision at each time

step. In this way, our system, which is trained for a more complex task, can reach good results

on all features. Furthermore, our choice of a joint prediction strategy allows for a completely
language-independent approach. The carefully selected morphological simplification proposed

by Costa-Jussà and Escolano (2016) would not generalize to other language pairs.

6 Conclusion

This work introduces a system for morphological tagging over lemmatized (that is, completely

unspecified) input sequences. A detailed intrinsic and extrinsic evaluation showed that our lan-

guage independent tagger reaches a very high performance by jointly predicting up to 8 mor-

phological features, leading up to 678 possible combinations (considering POS+morph labels).

As a next step we will explore the implementation of a a multi-task system which produces

pairs of lemmas and morphological labels. Niehues and Cho (2017) explored a multi-task NMT

system producing coarse POS labels for the source language as well as words in the target lan-

guage. We will instead produce lemmas in the target language, and at the same time use our tag-

ger component to produce rich target POS. By giving our tagger access to the source sentences,

we will overcome the limitations in our currently semantically underspecified representation,

where, e.g., plural is not marked. Importantly, we will be able to train this system in a multi-

task fashion, where some training examples contain source language text (from parallel data),

while others do not. These examples will be taken from target monolingual data, allowing us to

learn from large monolingual corpora how to inflect lemmas, as we did in this paper.
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Costa-Jussà, M. R. and Escolano, C. (2016). Morphology generation for statistical machine translation

using deep learning techniques. arXiv preprint arXiv:1610.02209.

Cotterell, R. and Schütze, H. (2015). Morphological Word-Embeddings. In Proc. of NAACL, pages 1287–

1292, Denver, CO, USA.

Daiber, J. and Sima’an, K. (2015). Machine Translation with Source-Predicted Target Morphology. In

Proc. of MT Summit, pages 283–296, Miami, FL, USA.

Ebert, S., Müller, T., and Schütze, H. (2016). LAMB: A Good Shepherd of Morphologically Rich Lan-

guages. In Proc. of EMNLP, pages 742–752, Austin, TX, USA.

Fishel, M. and Kirik, H. (2010). Linguistically Motivated Unsupervised Segmentation for Machine Trans-

lation. In Proc. of LREC, Valletta, Malta.

Proceedings of AMTA 2018, vol. 1: MT Research Track Boston, March 17 - 21, 2018   |  Page 51



Fraser, A., Weller, M., Cahill, A., and Cap, F. (2012). Modeling Inflection and Word-Formation in SMT.

In Proc. of EACL, pages 664–674, Avignon, France.

Garcı́a-Martı́nez, M., Barrault, L., and Bougares, F. (2016). Factored Neural Machine Translation. In

Proc. of IWSLT, Seattle, WA, USA.

Garcı́a-Martı́nez, M., Barrault, L., and Bougares, F. (2017). Neural Machine Translation by Generating
Multiple Linguistic Factors, pages 21–31. Springer International Publishing, Cham.

Goldwater, S. and McClosky, D. (2005). Improving Statistical MT through Morphological Analysis. In

Proc. of EMNLP, pages 676–683, Vancouver, BC, Canada.

Habash, N. and Sadat, F. (2006). Arabic Preprocessing Schemes for Statistical Machine Translation. In

Proc. of NAACL, pages 49–52, New York City, USA.

Hasan, S., Mansour, S., and Ney, H. (2011). A comparison of segmentation methods and extended lexicon

models for Arabic statistical machine translation. Machine Translation, pages 1–19.

Heigold, G., Neumann, G., and van Genabith, J. (2016). Neural morphological tagging from characters

for morphologically rich languages. arXiv preprint arXiv:1606.06640.

Huck, M. and Birch, A. (2015). The Edinburgh Machine Translation Systems for IWSLT 2015. In Proc.
of IWSLT, pages 31–38, Da Nang, Vietnam.

Huck, M., Braune, F., and Fraser, A. (2017a). LMU Munich’s Neural Machine Translation Systems for

News Articles and Health Information Texts. In Proc. of WMT, pages 315–322, Copenhagen, Denmark.

Huck, M., Riess, S., and Fraser, A. (2017b). Target-side Word Segmentation Strategies for Neural Machine

Translation. In Proc. of WMT, pages 56–67, Copenhagen, Denmark.

Huck, M., Tamchyna, A., Bojar, O., and Fraser, A. (2017c). Producing Unseen Morphological Variants in

Statistical Machine Translation. In Proc. of EACL, pages 369–375, Valencia, Spain.

Kann, K. and Schütze, H. (2016). MED: The LMU System for the SIGMORPHON 2016 Shared Task on

Morphological Reinflection. In Proc. of SIGMORPHON, pages 62–70, Berlin, Germany.

Koehn, P. (2005). Europarl: A Parallel Corpus for Statistical Machine Translation. In Proc. of MT Summit,
Phuket, Thailand.

Koehn, P. and Haddow, B. (2012). Interpolated Backoff for Factored Translation Models. In Proc. of
AMTA, San Diego, CA, USA.

Koehn, P. and Hoang, H. (2007). Factored Translation Models. In Proc. of EMNLP-CoNLL, pages 868–

876, Prague, Czech Republic.
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