
Proceedings of the First International Workshop on Spatial Language Understanding (SpLU-2018), pages 12–20
New Orleans, Louisiana, June 6, 2018. c©2018 Association for Computational Linguistics

Building and Learning Structures in a Situated Blocks World Through
Deep Language Understanding

Ian Perera1, James F. Allen1,2, Choh Man Teng1, Lucian Galescu1

1Institute for Human and Machine Cognition, Pensacola, FL 32502 USA
2University of Rochester, Department of Computer Science, Rochester, NY 14627 USA
iperera@ihmc.us, jallen@ihmc.us, cmteng@ihmc.us, lgalescu@ihmc.us

Abstract

We demonstrate a system for understanding
natural language utterances for structure de-
scription and placement in a situated blocks
world context. By relying on a rich, domain-
specific adaptation of a generic ontology and
a logical form structure produced by a seman-
tic parser, we obviate the need for an interme-
diate, domain-specific representation and can
produce a reasoner that grounds and reasons
over concepts and constraints with real-valued
data. This linguistic base enables more flexi-
bility in interpreting natural language expres-
sions invoking intrinsic concepts and features
of structures and space. We demonstrate some
of the capabilities of a system grounded in
deep language understanding and present ini-
tial results in a structure learning task.

1 Introduction

Even as early as one of the first Blocks World
natural language interaction systems, SHRDLU
(Winograd, 1971), discussions about structures
and space have been viewed as the foundation
for future language understanding systems deal-
ing with more abstract and higher-level concepts.
Since then, the field has advanced in the task of
learning how to understand utterances in Blocks
World and other situated environments by using
statistical methods grounding syntactic trees to en-
tities and actions in the world to learn placement
descriptions (Bisk et al., 2016), predicates (Kol-
lar et al., 2013), actions (Kim and Mooney, 2012;
She et al., 2014) or a combination of paths and ac-
tions (Tellex et al., 2011). However, rather than
considering grounding solely as a mapping to ac-
tions and objects in the world, we use the deep
language understanding capabilities of the TRIPS
parser (Allen et al., 2008) to find deeper concep-
tual connections to primitive, composable, and of-
ten recursive aspects of structures, and use this

knowledge to better understand conceptually-rich
utterances without the need for training data. In-
spired by the cognitive linguistic theory of con-
ceptual mappings (Fauconnier, 1997), we focus
on projection mappings between structure and set
features and demonstrate instances of common sit-
uated language that makes use of such mappings.
With these concepts grounded in a situated space,
we believe we will be poised to extend the con-
cepts in Blocks World into more abstract reason-
ing and language through grounded metaphor.

We also demonstrate the ability of our sys-
tem to build up a model of a class of structures
through natural language dialogue. Rather than
constructing a new domain-specific representation
for storing such knowledge, as in work by Hixon
et al. (2015), we retain the semantic logical form
structure as our base representation, using onto-
logical concepts of comparison and semantic argu-
ment structures to ground concepts and predicates
in the situated environment. We therefore aim to
show that a linguistic structures from a semantic
parser can serve as a strong base for reasoning and
model-building in a situated context.

2 Capabilities and Tasks

We evaluate our system in a situated blocks world
environment with 6-inch cubes placed on a table.
Aside from unique identifiers for tracking, each
cube is considered identical. Our physical appara-
tus consists of two Kinect 2.0’s aimed at the table,
with the multiple Kinects helping to avoid issues
with block occlusion. The depth information is
used to recognize and process position and rota-
tion information that is then relayed to the system.
Currently only block position is used, but orienta-
tion information is also recorded.

For user-system interaction, there is a screen at
the end of the table across from the user which dis-

12



plays an avatar that can speaks system-generated
utterances and display it on-screen. The avatar
can also point to blocks or locations on the ta-
ble, although we do not use this functionality in
our dialogues. When the system wants to place a
block or provide an example structure, it generates
a 3D image of the blocks overlaid with the exist-
ing scene that can be presented to the user or an
assistant that will then place the blocks in the ap-
propriate location. An image of the apparatus is
shown in Figure 1.

Figure 1: The apparatus used to interact with the
system.

We focus on two tasks for evaluating our system
within the context of a natural language dialogue
system. The first is correctly understanding a va-
riety of natural placement utterances and generat-
ing the expected placement of blocks that satisfies
the command. There has been significant previous
work on learning to interpret typical placement in-
structions (Bisk et al., 2016; Misra et al., 2017;
Wang et al., 2016) or descriptions of block scenes
(Bisk et al., 2018). While we have limited capabil-
ities for understanding such instructions, this prior
work is better suited for more robust and precise
placement interaction that does not utilize concep-
tual composition. Therefore, rather than solely un-
derstanding simple phrases such as “Place a block
on top of the leftmost block”, we focus our efforts
towards understanding more complex phrases that
utilize context, such as “Add another one,” and lin-
guistic/semantic composition, as in, “Place three
towers in a row with increasing height”.

The second task is teaching the system to learn
a class of structures by providing it with a set of
constraints. The user is provided with a number
of positive and negative visual examples of a class
of structures to learn (akin to resolving a Bongard
problem (Bongard et al., 1970)), and once they

have determined the underlying constraints of the
structures, they must engage in a dialogue with
the system to teach it the structure class so that
it will be able to recognize structures belonging to
that class. This task importantly differs from the
first task and prior situated language understand-
ing work in that the user is not communicating a
specific goal structure to be achieved by the user
through placement actions, but instead providing
a set of general constraints and concepts that ad-
mit a number of possible structures.

3 System Architecture

We build upon the TRIPS architecture (Allen
et al., 2001), which connects a number of com-
ponents through message passing, with each com-
ponent able to be tailored to a particular domain.

3.1 Semantic Extraction

The first component that sees user language input
is the domain-general, rules-based TRIPS parser
that is backed by a domain-generic ontology aug-
mented with domain-specific concepts, such as
blocks, rows, and columns. The output from the
parser is a logical form semantic graph with a
number of possible speech acts. This output is
then passed to the Interpretation Manager (IM),
which determines the appropriate speech act given
dialogue context and further refines roles and in-
terpretations according to domain-specific rules
and ontological constraints.

3.2 Problem Solving Act Generation

Next, the output of the IM is processed by the Col-
laborative Problem Solving Agent, a central mod-
ule that facilitates the acts that make up collabora-
tive problem solving (i.e. the joint task actions car-
ried out by the user and system). It passes the out-
put to the Collaborative State Manager (CSM) to
generate and store a new goal, query, or assertion.
The appropriate act is then sent to the Behavioral
Agent (BA), tasked with reasoning and acting in
the environment. If the system has a query or goal
proposal for the user, the message passing works
in reverse, with the goal or query added to the goal
hierarchy stored in the CSM. The current goal or
query provides a context for resolving future ut-
terances, providing additional information to aid
in choosing the appropriate speech act.

13



3.3 Application to Tasks

In the structure building task, we primarily make
use of the goal and sub-goal mechanisms to pro-
vide actions to the BA so that it can act in the en-
vironment towards the desired structure. The user
can also provide assertions containing definitions
of substructures to be used in the building process.
In the structure learning task, we primarily pro-
cess assertions that describe the general properties
of the structure type, and queries to ask the user
about properties or ask for an example. The task
to be completed is determined by the user speci-
fying the goal as the first utterance (e.g., “I want
to build a staircase” versus “I want to teach you
what a staircase is”). This top-level goal provides
additional context for utterance resolution. For ex-
ample, the utterance “The left-most block must be
on top” would be processed as a proposed goal in
the structure building task (as it describes a dif-
ference between the current and desired state), but
as an assertion in the structure learning task (as it
describes a property that should generally hold).

4 Semantic Logical Form Backing

Rather than convert semantic information from the
semantic output of a domain-general parser, we di-
rectly use the semantic output of the TRIPS parser
(backed by a combination of a domain-general and
domain-specific ontology) as the underlying logi-
cal representation for assertions, constraints, and
commands. This backing is enabled by a num-
ber of features specific to the output of the TRIPS
parser. First, the ontology provides a method
to generalize multiple related utterances or frag-
ments to a single interpretation to be conveyed to
the reasoning agent and handled similarly. Sec-
ond, the semantic output of the TRIPS parser in-
cludes an ontology and tree-based representation
of scales, which makes feature comparisons ex-
plicit and provides units for evaluating scales us-
ing the appropriate metric. Finally, the semantic
roles (figure for head properties, and ground for
reference properties) provide a more nuanced level
of comparison among object and structure features
than typical semantic parsers focused on events
and higher-level interactions among people. For
example, the sentence, “The left column is taller
than the rightmost column,” taller resolves to a
concept ONT::MORE-VAL (enabling a simple op-
erator extraction), with a scale of ONT::HEIGHT-
SCALE, a figure of “the left column”, and a

ground of “the rightmost column”.
Developing and relying on the semantic struc-

ture for reasoning provides a long-term advan-
tage for extending the physical domain to handle
reasoning in different domains or at a more ab-
stract level. Currently, the structures used to tie
the semantic structures to the domain could eas-
ily be extended to other domains simply by mod-
ifying the interpretation of predicates and gen-
erating new features, while referring expression
and dialogue processing can remain largely un-
changed. A metaphorical reasoning system, for
example, could make use of the same semantic
structures and simply modify the reasoning envi-
ronment and generate inference from a physical
simulation or concrete projection of abstract con-
cepts, and could borrow predicates and features
from Blocks World.

5 Predicates

Predicates describe binary positional aspects re-
lating a block or structure to a particular context.
All predicates have at least one argument, the sub-
ject, but typically also admit a context (e.g., other
blocks, or the rest of the scene). For example, even
though the top predicate may seem to take only
one argument, we resolve it using a second argu-
ment that contains the complement of the scene (in
the case of “the top block”) or a contrast set (in the
case of “the top block of the left column”). Pred-
icates are used both for referring expressions to
choose a particular group of blocks and for apply-
ing constraints to structure properties and place-
ment instructions. For example, the command “the
top block must be on the left” uses a predicate for
both the referring expression (the top block) and a
constraint on its location (on the left).

Rather than defining logical formulas for evalu-
ating predicates, our predicates are designed pro-
grammatically using real-valued coordinates in 3D
space with an emphasis on relations dealing with
a vertical 2D plane between the user and the
system’s viewpoint. They are evaluated either
by comparing positions and dimensions over the
quantification of the blocks in the structures or
over axis-aligned bounding boxes encapsulating
the blocks. For example, the predicate above(a,b)
requires that the x- and y-coordinate extents of the
bounding boxes of the a and b intersect and that
the minimum z-coordinate value of a is greater
than the maximum z-value of b (with z being the

14



vertical dimension). Each predicate is mapped to
one or more TRIPS ontological concepts for eval-
uating when such a predicate appears in the logi-
cal form. The ontology is specific enough that no
concept could yield more than one predicate inter-
pretation. All predicates also include tolerances to
account for real-world variations in the input data,
but because of the nature of the depth data and the
known size of the blocks, there is little noise in the
positions of the blocks.

6 Features

The term “features” in the context of Blocks World
refers to all quantifiable aspects of blocks and
block arrangements. However, we also extend this
definition to include potential ways of perceiv-
ing, discussing, or processing blocks and groups
of blocks. For example, a set of blocks could be
considered as a column, a row with or without a
particular ordering, or simply a set of blocks with
no relation to each other. The values of such fea-
tures can be integers, real numbers, vectors, or an
arrangement. Furthermore, arrangements can have
multiple features assigned to them forming a fea-
ture group. For example, a sequence arrangement
can generate a row feature, a column feature, the
count of the number of blocks or structures within,
an origin as a vector, and a direction as a vector.

6.1 Feature Mention Extraction

Given the semantic parser output, the reasoning
agent parses the features described in multiple
passes. First, referring expressions are extracted
by finding mentions of objects that the reason-
ing agent knows how to recognize or instantiate in
the environment (i.e., blocks, rows, columns, and
spaces), and then storing constraints according to
modifiers on its location (represented using pred-
icates). Next, the features are extracted from the
same parse tree, which typically contains a feature
name as an arrangement name (e.g., a column),
a scale (e.g., width-scale), or a number (e.g., the
number of blocks in the specified set). Finally, the
relevant operator (e.g., less than, at least, equal to)
is extracted and sets up the constraint on the values
or referenced features mentioned. In certain cases,
the TRIPS parser explicitly provides the compara-
tor (e.g., providing an ONT::MIN concept and ap-
propriate arguments for “at least”), and in other
cases, the comparator and its arguments must be
inferred by the appearance of sets with a specified

size parameter.
While certain features, like the size of a set,

have an explicitly defined value, we also generate
features that have an implicit value that may not
be meaningful to the user. For example, linearity
can take a value from 0-1 based on the deviation
of the elements from a line of best fit. If the user
states, “The bottom blocks must be in a line”, we
calculate the value and compare against a thresh-
old to determine whether the constraint holds, or
can compare using an operator against the linearity
of another set of blocks. Features of this type are
often difficult to explain linguistically or symbol-
ically, and thus lean more on specific visual pro-
cessing and could be tied to statistical computer
vision models in the future.

6.2 Structure Models and Constraint
Satisfaction

In the structure learning task, the system learns a
set of constraints that describes a structure. As
the goal is to teach the system a general concept
rather than describe one particular instance, the
learned constraints apply as rules that will apply
in various configurations, rather than applying to
particular blocks currently on the table. There-
fore, referring expressions in the constraints for
a model are reevaluated each time a particular in-
stance is tested. We currently process four types of
constraints: feature, predicate, structure, and exis-
tential constraints. Feature constraints, describe a
property (such as width or height) that generally
holds for the structure as a whole, such as “The
height is at least 3 blocks”. Predicate constraints
enforce that a particular set of blocks satisfy a
particular predicate (e.g., “The leftmost column is
next to the center column”). Structural constraints
enforce that the blocks referred to by a referring
expression obeys a feature constraint (e.g., “The
leftmost column has at least 3 blocks”). Predi-
cate and structure constraints can also be modified
to be satisfied if they are exclusively satisfied by
only one grounding of an object type in a referring
expression (e.g., “Only the leftmost column has a
height greater than 2”).

7 Recursive and Compositional Feature
Understanding

Recursive and composition representations of fea-
tures are essential for deep language understand-
ing even in the simplified environment of Blocks

15



Ontological Concept Lemmas # of Arguments
ONT::ABOVE above 2
W::HIGHER higher 2
ONT::BELOW below, beneath, under, underneath 2
W::LOWER lower 2
ONT::ADJACENT adjacent (to), next to, beside, by, 2

contiguous (with), flush
ONT::CONNECTED abut, adjoin, connect, touch 1,2
W::TOGETHER together 1,2
ONT::ON on, on top of 2
ONT::LEVEL level with 1,2
ONT::TOP-LOC... top 1,2
ONT::MIDDLE-LOC... middle (1),2
ONT::BOTTOM-LOC... bottom 1,2
ONT::BETWEEN (in) between 2
ONT::CENTER center (1),2
ONT::LEFT-LOC left, lefthand, leftmost (1),2
ONT::RIGHT-LOC right, righthand, rightmost (1),2
W::ANYWHERE anywhere 1

Table 1: The list of predicates understood by the system, with their concept in the TRIPS ontology, the
matching lemmas that can resolve to that concept during parsing (designated by hand or from WordNet
mappings (Miller, 1995)), and the number of arguments each predicate can take. An argument number
in parentheses indicates that the second argument, the reference, is inferred to be the scene complement
of the first argument. Predicates like ONT::CONNECTED admit sets of blocks as their single argument.

Ontological Concept Data Type
ONT::WIDTH-SCALE real+, count
ONT::HEIGHT-SCALE real+, count
ONT::LENGTH-SCALE real+, count
ONT::CENTER point
ONT::LOCATION point
ONT::STARTPOINT point
ONT::ENDPOINT point
ONT::TOP-LOC... point
ONT::BOTTOM-LOC... point
ONT::NUMBER count
ONT::COL-FORMATION column
ONT::ROW-FORMATION row
ONT::DIRECTION vector
ONT::HORIZONTAL (real+)
ONT::VERTICAL (real+)
ONT::LINE (real+)

Table 2: The features generated by the system for
blocks, sets of blocks, and sequences, listed by
their concept in the TRIPS ontology and the result-
ing data type. A data type in parentheses indicates
the value is not presented to the user but is com-
pared against thresholds or other sets of blocks.

World. Take for example the utterance “lengthen
the first column of the row by 2”. Such an utter-
ance refers to multiple features both for identify-
ing the relevant set of blocks and for the desired
action. However, beyond identifying the set of rel-
evant blocks, it also enforces a conceptual model
on the blocks that is necessary for the interpre-
tation of “lengthen”, which requires a sequence
rather than a set. Similarly, the notion of “first”
implies an ordering of the row, taken in reading or-
der (left-to-right) unless another context, such as a
specified placement order, overwrites it.

The fact that these representations arise from
simple interactions and often without explicit def-
inition motivates our notion of such concepts as
“features”. Thus in the above example, the place-
ment of the blocks admits a “row” feature group
consisting of a direction, a length, and a sequence
of “column” features, each also having a sequence
of blocks (which itself has a length feature) and an
upward direction, as well as a “height”.

We also represent the composition of these fea-
tures for utterances such as “place the columns in a
row with increasing height”. Our main method for
composition is projection, which in this context

16



we take to mean the reduction of features (with
the number of features being the dimensionality
of the concept) to enable composition with other
features of the appropriate type. In this case, the
phrase “increasing height” generates an increasing
sequence of integers which is then projected onto
the row to replace the individual height features of
each of its constituent columns, generating the de-
sired structure. Note that while the row itself could
have a height as a structure as a whole, this single
value would not be compatible with the sequence.
This process is illustrated in Figure 2.

The example in Figure 2 also illustrates the ad-
vantage of such a technique in providing robust-
ness in the face of linguistic ambiguity. For ex-
ample, the “increasing height” could be modify-
ing the placement of the columns, the columns
themselves, or, as the TRIPS parser outputs, the
row. Because of the restrictions on projection, we
can correctly apply the modification to the rele-
vant features even when the target of the modifica-
tion is not directly modifiable in a way that paral-
lels the semantic interpretation. In some cases, the
ontological interpretation of projection-indicating
terms differ from our interpretation, and such in-
formation must be discarded. For example, while
the parser may extract the ONT::IN-LOC con-
cept from the word “in”, in the above example
the ONT::MANNER concept is more appropriate.
The projection restrictions allow us to determine
the correct sense regardless of the specific concept
while not being strictly dependent on the lemma.

7.1 Conceptual Features and Context

Moving away from the notion of sets as the only
output of a referring expression confers an addi-
tional benefit in providing context for placement
actions. Take, for example, the utterance “add an-
other one”. Treating the current set of blocks as
a set of blocks would not provide the intended lo-
cation of the next block (or group of blocks). To
interpret such an utterance, we make use of dis-
course context, goal context, and the conceptual
context of the last command. If the previous com-
mand involved an ordered sequence of some type
of structure, “add another one” would make use
of the conceptual context of the sequence which
should be appended. In the case of a row, for
example, we would pick the last element in the
sequence, and place a duplicate in the next point
when the direction vector is extended.

In certain cases, the conceptual context may not
be available or sufficient. If the last utterance was
“Place a block on top of the row”, then “another
one” might refer to either another block on top of
the row or a block on top of the just placed block.
In this case, we can make use of the overarching
goal context. If the system is aware that the user is
building a tower, increasing the height of the struc-
ture would be the expected next step. The system
can make use of this context even without explic-
itly knowing the process for building a tower if
the user provides a definition of the structure (e.g.,
“A tower is a structure taller than its diameter”),
by choosing actions which bring the constraints
closer to satisfaction.

8 Simulation and Querying Capabilities

While our system does not include a planner, we
can nevertheless create a structure according to a
set of constraints provided that the structure con-
forms to a grid-based structure. We generate a
set of multiple iterations with blocks randomly
dropped in a grid with the size determined either
by default dimensions or constrained by global
features of width and height. Once we find an
arrangement that satisfies the constraints, we re-
turn the structure to the user to ask if the exam-
ple is correct. In the 2D plane, the number of
possible structures is constrained enough to gen-
erate an example satisfying the constraints in real-
time. While we can then provide this structure to
the user or assistant in the 3D view, we currently
do not support generation of natural language de-
scriptions for the placement of each block.

The system is also able to generate questions
about structures when learning, in order to extract
clear constraints from the user. When appropri-
ate in dialogue, the system generates a random un-
derspecified constraint that has not yet been men-
tioned, typically concerning general features (e.g.,
width or height), or more specific constraints (e.g.,
the placement restrictions of the top block). Spe-
cific constraints dealing with specific structures
are generated based on user examples. For exam-
ple, the system would ask about the placement of
the top block only if there was a single top block in
a previously shown example. In our architecture,
we are then able to interpret a response fragment,
fill the constraint parameters, and add the con-
straint to the model. We find that such questions
greatly increase the quality of the user’s given con-

17



Figure 2: An example of the projection processing for the utterance “Place three columns in a row with
increasing height.” The features (boxed in the parse tree) are extracted and used to generate new individ-
ual instances with appropriate features. The columns are then projected into the appropriate feature of
the row, and the height sequence projects onto the row of columns to create the final structure.

straints, as the questions provide an example of the
types of constraints the system is most capable of
handling and provide guidance for the user in or-
ganizing their conception of the structure class.

9 Evaluation

Currently evaluation is in preliminary stages, with
an emphasis on expanding capabilities in terms of
the variety of structures able to be built and rec-
ognized. A comprehensive evaluation task can be
difficult for this system, given its symbolic back-
ing. As there is no statistical learning, the useful-
ness of the system is primarily determined by the
coverage of understood linguistic constructions at
two levels – at the semantic parser level and at
the level of interpretation given a correct seman-
tic parse. One challenge faced in accurately eval-
uating the system is that users in a dialogue can
be biased to choose language that the system un-
derstands, thereby reducing the average expressiv-
ity and linguistic complexity of their utterances.
To partially address this, we have begun evalua-
tions of our structure learning task, as we believe
this task better illustrates the variety of language
used to describe spatial concepts and structures,
compared to the structure building task, which of-
ten consists solely of simple “place a block 〈loca-
tion〉” utterances. Users are provided with positive
and negative examples of a structure class (Figure
3) and must teach the system the concept.

Our initial evaluation to determine possible ar-
eas of improvement before actual trials began with

Figure 3: In the structure learning task, the user
must determine the patterns followed by the pos-
itive examples that do not match the negative ex-
amples and explain these constraints to the system.

Wizard of Oz experiments. An advantage of a
Wizard of Oz task is that the user maintains the
complexity of their utterances as they see posi-
tive results from their descriptions, providing us
with valuable insight into the various types of ut-
terances our system must understand. We con-
ducted 3 tasks with each of the 3 participants who
were unaware of the details of the project, yielding
90 user utterances. A researcher took the place
of the system by asking questions and present-
ing examples. By using a tablet that generated
common questions and responses to be spoken by
the avatar, these experiments could be carried out
without the participants aware of the researcher’s
role as a stand-in for the system. To evaluate the
system’s performance at the semantic parser level,

18



we ran the parser on the users’ utterances in these
experiments and correctly parsed 89% of the utter-
ances. In evaluating the grounded interpretation
level, we determine which of the correct parsed
trees yield the desired constraint. Of the correctly
parsed utterances, 90% yielded the desired con-
straint in the current state of the system with some
development occurring after these trials. Further
testing is required once the system’s capabilities
are finalized to see the performance of the system
in an unrestricted setting with new users. Typi-
cal failures of the grounded interpretation level of
the system involve utterances containing ordinal
references (e.g., the second column), multiple val-
ues for constraints, ranges for feature values, or
negative examples. All of these system abilities
are near-future work. During this evaluation we
also found that dialogue actions such as asking
about features greatly simplified user utterances
and therefore improved performance.

We also have begun trials of the complete dia-
logue system with promising results. The system
is able to understand a number of different struc-
ture classes through dialogue, such as a staircase,
an L shape, and a U shape. An example dialogue
is shown in Figure 4, where the user was presented
with the visual examples in Figure 3.

User: I want to teach you a shape.
System: Okay. Can you tell me something
about the structure?
User: The bottom row must be at least 2.
System: Hmm, I didn’t quite get that.
User: The bottom row has at least 2 blocks.
System: Okay. What is the greatest the width
can be?
User: 5.
System: Okay, got it. Can you show me an
example?
User: Yes. This is an example. 〈user shows
example〉
System: Okay. Where can the top block be?
User: The top block is always on the left.
System: Okay.
User: 〈user builds example〉 Is this right?
System: I think so, because the bottom row’s
number is greater than or equal to 2 and the
width is less than or equal to 5 and the top
block is on the left.

Figure 4: A user dialogue taken from initial runs
of the evaluation.

10 Future Work

We plan to continue working towards improving
robustness in evaluations, implementing new ways
of discussing structure building and structural con-
straints, and providing more dialogue actions to
guide the user through their explanation and deal
with errors or misunderstood assertions. In addi-
tion, we will be creating a database of predicate
and feature definitions with multimodal ground-
ings to begin our long-term goal of extending
these physical groundings of concepts into ab-
stract domains. Currently the TRIPS architecture
is used as a base for a number of domains involv-
ing dialogue-assisted creation, such as biological
models, music composition, and automated movie
direction, and therefore provides a strong base for
extending such concepts.

11 Acknowledgements

This work is supported by the DARPA CwC pro-
gram and the DARPA Big Mechanism program
under ARO contract W911NF-14-1-0391. Spe-
cial thanks to SRI for their work in developing the
physical apparatus, including block detection and
avatar software.

References
J. Allen, Mary Swift, and Will de Beaumont. 2008.

Deep Semantic Analysis of Text. In Symposium on
Semantics in Systems for Text Processing (STEP),
pages 343–354, Morristown, NJ, USA. Association
for Computational Linguistics.

James Allen, George Ferguson, and Amanda Stent.
2001. An architecture for more realistic conversa-
tional systems. In Proceedings of the 6th interna-
tional conference on Intelligent user interfaces - IUI
’01, pages 1–8.

Yonatan Bisk, Kevin J Shih, Yejin Choi, and Daniel
Marcu. 2018. Learning Interpretable Spatial Opera-
tions in a Rich 3D Blocks World. In Proceedings of
the 32th AAAI Conference on Artificial Intelligence.

Yonatan Bisk, Deniz Yuret, and Daniel Marcu. 2016.
Natural Language Communication with Robots.
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 751–761.

M. M. (Mikhail Moiseevich) Bongard, Joseph K.
Hawkins, and Theodore Cheron. 1970. Pattern
recognition. Spartan Books.

Gilles. Fauconnier. 1997. Mappings in Thought and
Language. Cambridge University Press.

19



Ben Hixon, Peter Clark, and Hannaneh Hajishirzi.
2015. Learning Knowledge Graphs for Question
Answering through Conversational Dialog. NAACL,
pages 851–861.

Joohyun Kim and Raymond J Mooney. 2012. Unsu-
pervised PCFG Induction for Grounded Language
Learning with Highly Ambiguous Supervision. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing and Natu-
ral Language Learning (EMNLP-CoNLL ’12), July,
pages 433–444.

Thomas Kollar, Jayant Krishnamurthy, and Grant
Strimel. 2013. Toward interactive grounded lan-
guage acquisition. In Robotics: Science and Sys-
tems (RSS).

George A. Miller. 1995. WordNet: a lexical
database for English. Communications of the ACM,
38(11):39–41.

Dipendra Misra, John Langford, and Yoav Artzi. 2017.
Mapping Instructions and Visual Observations to
Actions with Reinforcement Learning. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 1004–1015.

Lanbo She, Shaohua Yang, Yu Cheng, Yunyi Jia,
Joyce Y Chai, and Ning Xi. 2014. Back to the
Blocks World: Learning New Actions through Sit-
uated Human-Robot Dialogue. Proceedings of the
SIGDIAL 2014 Conference, (June):89–97.

Stefanie Tellex, Thomas Kollar, and Steven Dickerson.
2011. Understanding Natural Language Commands
for Robotic Navigation and Mobile Manipulation.
AAAI.

Sida I Wang, Percy Liang, and Christopher D Manning.
2016. Learning Language Games through Interac-
tion. In The 54th Annual Meeting of the Association
for Computational Linguistics, pages 2368–2378.

Terry Winograd. 1971. Procedures as a Representation
for Data in a Computer for Understanding Natural
Language. Technical report, Massachusetts Institute
of Technology Artificial Intelligence.

20


