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Introduction

During the last decade, semantic representation of text has focused on extracting propositional meaning,
i.e., capturing who does what to whom, how, when and where. Several corpora are available, and existing
tools extract this kind of knowledge, e.g., role labelers trained on PropBank or NomBank. Nevertheless,
most current representations tend to disregard significant meaning encoded in human language. For
example, sentences 1-2 below share the same argument structure regarding verb contracted, but do not
convey the same overall meaning. While in the first example John contracting the disease is factual, in
the second it is not:

1. John likely contracted the disease when a mouse bit him in the Adirondacks.
2. John never contracted the disease although a mouse bit him in the Adirondacks.

In order to truly capture what these sentences mean, aspects of meaning that go beyond identifying events
and their roles (e.g., uncertainty, negation and attribution) must be taken into account. The Workshop on
Computational Semantics Beyond Events and Roles focuses on a broad range of semantic phenomena
that lays beyond the identification and linking of eventualities and their semantic arguments with relations
such as agent (who), theme (what) and location (where), here so called SemBEaR.

SemBEaR is pervasive in human language and, while studied from a theoretical perspective,
computational models are still scarce. Humans use language to describe events that do not correlate
with a real situation in the world. They express desires, intentions and plans, and also discuss events that
did not happen or are unlikely to happen. Events are often described hypothetically, and speculation can
be used to explain why something is a certain way without a strong commitment. Humans do not always
(want to) tell the (whole) truth: they may use deception to hide lies. Devices such as irony and sarcasm
are employed to play with words so that what is said is not what is meant. Finally, humans not only
describe their personal views or experiences, but also attribute statements to others. These phenomena
are not exclusive of opinionated texts, but they are ubiquitous in language, even in scientific works and
news as exemplified in the sentences below:

• Female leaders might have avoided world wars.
• Political experts speculate that Donald Trump’s meltdown is beginning.
• Infected people typically don’t become contagious until they develop symptoms.
• Medical personnel can be infected if they don’t use protective gear, such as surgical masks and

gloves.
• You can only catch Ebola from coming into direct contact with the bodily fluids of someone who

has the disease and is showing symptoms.
• We have never seen a human virus change the way it is transmitted.
• The government did not release the files until 1998.

In its 2018 edition, the Workshop on Computational Semantics Beyond Events and Roles (SemBEaR)
brought together scientists working on these kind of semantic phenomena within computational
semantics. The workshop was collocated with the 16th Annual Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL
2018) in New Orleans, Louisiana, and took place on June 5, 2018. The program included papers
SemBEaR 2018 is a follow-up of five previous events: the 2010 Negation and Speculation in
Natural Language Processing Workshop (NeSp-NLP 2010), the Extra-Propositional Aspects of Meaning
(ExProM) in Computational Linguistics Workshops held in 2012, 2015 and 2016, and SemBEaR 2017.
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Using Hedge Detection to Improve Committed Belief Tagging

Morgan Ulinski and Seth Benjamin and Julia Hirschberg
Department of Computer Science

Columbia University
New York, NY, USA

{mulinski@cs.,sjb2190@,julia@cs.}columbia.edu

Abstract

We describe a novel method for identifying
hedge terms using a set of manually con-
structed rules. We present experiments adding
hedge features to a committed belief system
to improve classification. We compare perfor-
mance of this system (a) without hedging fea-
tures, (b) with dictionary-based features, and
(c) with rule-based features. We find that using
hedge features improves performance of the
committed belief system, particularly in iden-
tifying instances of non-committed belief and
reported belief.

1 Introduction

Hedging refers to the use of words, sounds, or
constructions that add ambiguity or uncertainty
to spoken or written language. Hedges are often
used by speakers to indicate lack of commitment
to what they say; so, the ability to classify words
and phrases as hedges is very relevant to the task
of committed belief tagging—that is, determining
the level of commitment a speaker has toward the
belief expressed in a given proposition. A major
challenge in identifying hedges is that many hedge
words and phrases are ambiguous. For example,
In (1), around is used as a hedge, but not in (2).

(1) She weighs around a hundred pounds.

(2) Suddenly she turned around.

Currently there are few corpora annotated for
hedging, and these are in a limited number of gen-
res. In particular, there is currently no corpus of
informal language annotated with hedge behavior.
Acquiring expert annotations on text in other gen-
res can be time consuming and may be cost pro-
hibitive, which is an impediment to exploring how
hedging can help with applications based on text
and other genres. In this paper, the application we
focus on is committed belief tagging on a corpus

of forum posts. Since we currently lack a labeled
hedging corpus in this genre, we introduce a new
method for disambiguating potential hedges using
a set of manually-constructed rules. We then show
that detecting hedges using this method improves
the performance of a committed belief tagger.

In Section 2, we discuss related work. In Sec-
tion 3, we describe how we identify hedges. We
describe the committed belief tagger used for our
experiments in Section 4. In Section 5, we de-
scribe our experiments and our results. We con-
clude and discuss future work in Section 6.

2 Related Work

Most work on hedge detection has focused on us-
ing machine learning models based on annotated
data, primarily from the domain of academic writ-
ing. The CoNLL-2010 shared task on learning to
detect hedges (Farkas et al., 2010) used the Bio-
Scope corpus (Vincze et al., 2008) of biomedical
abstracts and articles and a Wikipedia corpus an-
notated for “weasel words.” Most CoNLL-2010
systems approach the task as a sequence label-
ing problem on the token level (e.g. Tang et al.
(2010)); others approached it as a token-by-token
classification problem (e.g. Vlachos and Craven
(2010)) or as a sentence classification problem
(e.g. Clausen (2010)).

Our approach is closest to Velldal (2011), a
follow-up to CoNLL-2010 which frames the task
of identifying hedges as a disambiguation prob-
lem in which all potential hedge cues are located
and then subsequently disambiguated according to
whether they are used as a hedge or not. However,
our work differs in that we use a set of manually-
constructed rules to disambiguate potential hedges
rather than a machine learning classifier. Using a
rule-based rather than machine-learning approach
allows us to apply our hedge detection method to

1



Relational Hedges Propositional Hedges
according to, appear, arguably, assume,
believe, consider, could, doubt, estimate,
expect, feel, find, guess, hear, I mean, I
would say, imagine, impression, in my
mind, in my opinion, in my understanding,
in my view, know, likely, look like, looks
like, may, maybe, might, my thinking, my
understanding, necessarily, perhaps, possi-
bly, presumably, probably, read, say, seem,
seemingly, should, sound like, sounds like,
speculate, suggest, suppose, sure, tend,
think, understand, unlikely, unsure

a bit, a bunch, a couple, a few, a little, a whole bunch,
about, allegedly, among others, and all that, and so
forth, and so on, and suchlike, apparently, approxi-
mately, around, at least, basic, basically, completely,
et cetera, etc, fair, fairly, for the most part, frequently,
general, generally, in a way, in part, in some ways,
kind of, kinda, largely, like, mainly, more or less, most,
mostly, much, occasionally, often, partial, partially,
partly, possible, practically, pretty, pretty much, prob-
able, rarely, rather, really, relatively, rough, roughly,
seldom, several, something or other, sort of, to a certain
extent, to some extent, totally, usually, virtually

Table 1: List of (potential) hedge words and phrases.

a corpus of forum posts that has not been anno-
tated with hedge information. Our work also dif-
fers from previous efforts in that we are interested
not just in the problem of hedge detection itself,
but in its application to committed belief tagging.

3 Identifying Hedge Terms

We first compiled a dictionary of 117 potential
hedge words and phrases. We began with the
hedge terms identified during the CoNLL-2010
shared task (Farkas et al., 2010), along with syn-
onyms of these terms extracted from WordNet.
This list was further expanded and edited through
consultation with the Linguistic Data Consortium
(LDC) and other linguists. For each hedge term in
our dictionary, we wrote definitions defining the
hedging and non-hedging usages of the term. We
use these definitions as the basis for the rules in
our hedge classifier.

This hedging dictionary is divided into rela-
tional and propositional hedges. As described
in Prokofieva and Hirschberg (2014), relational
hedges have to do with the speaker’s relation to the
propositional content, while propositional hedges
are those that introduce uncertainty into the propo-
sitional content itself. Consider the following:

(3) I think the ball is blue.

(4) The ball is sort of blue.

In (3), think is a relational hedge. In (4), sort of is
a propositional hedge.

Our baseline hedge detector is a simple,
dictionary-based one. Using our dictionary of po-
tential hedge terms, we look up the lemma of each
token in the dictionary and mark it as a hedge if

found. This procedure, however, does not take
into account the inherent ambiguity of many of
the hedge terms. To handle this ambiguity, we
implemented rule-based hedge detection. The
rule-based system disambiguates hedge vs. non-
hedge usages using rules based on context, part-
of-speech, and dependency information.

The full list of hedge words and phrases in our
dictionary is shown in Table 1. The hedge terms
for which we have written rules are shown in bold;
the rule-based system classifies others as hedges
by default. Table 2 shows a sample of the rules,
with examples of hedging and non-hedging uses.

We evaluate both dictionary-based and rule-
based approaches in a committed belief tagger.

4 Committed Belief Tagger

We employ the committed belief tagger described
in Prabhakaran et al. (2010) and as Sytem C in
Prabhakaran et al. (2015). This tagger uses a
quadratic kernel SVM to train a model using lex-
ical and syntactic features. Tags are assigned at
the word level; the tagger identifies tokens denot-
ing the heads of propositions and classifies each
proposition as one of four belief types:

• Committed belief (CB): the speaker-writer be-
lieves the proposition with certainty, e.g.

(5) The sun will rise tomorrow.

(6) I know John and Katie went to Paris last
year.

• Non-committed belief (NCB): the speaker-
writer believes the proposition to be possibly,
but not necessarily, true, e.g.
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Hedge term Rule Examples
about If token t has part-of-speech IN, t is

non-hedge. Otherwise, hedge.
Hedge: There are about 10 million packages
in transit right now. Non-hedge: We need to
talk about Mark.

likely If token t has relation amod with its
head h, and h has part-of-speech N*,
t is non-hedge. Otherwise, hedge.

Hedge: We will likely stay home this evening.
Non-hedge: He is a fine, likely young man.

rather If token t is followed by token ’than’,
t is non-hedge. Otherwise, hedge.

Hedge: She’s been behaving rather
strangely. Non-hedge: She seemed in-
different rather than angry.

assume If token t has ccomp dependent, t is
hedge. Otherwise, non-hedge.

Hedge: I assume his train was late. Non-
hedge: When will the president assume of-
fice?

tend If token t has xcomp dependent, t is
hedge. Otherwise, non-hedge.

Hedge: Written language tends to be formal.
Non-hedge: Viola tended plants on the roof.

appear If token t has xcomp or ccomp de-
pendent, t is hedge. Otherwise, non-
hedge.

Hedge: The problem appears to be a bug in
the software. Non-hedge: A man suddenly
appeared in the doorway.

sure If token t has neg dependent, t is
hedge. Otherwise, non-hedge.

Hedge: I’m not sure what the exact numbers
are. Non-hedge: He is sure she will turn up
tomorrow.

completely If the head of token t has neg de-
pendent, t is hedge. Otherwise, non-
hedge.

Hedge: That isn’t completely true. Non-
hedge: I am completely sure you will win.

suppose If token t has xcomp dependent d
and d has mark dependent ’to’, t is
non-hedge. Otherwise, hedge.

Hedge: I suppose the package will arrive next
week. Non-hedge: I’m supposed to call if
I’m going to be late.

should If token t has relation aux with its
head h and h has dependent ’have’, t
is non-hedge. Otherwise, hedge.

Hedge: It should be rainy tomorrow. Non-
hedge: He should have been more careful.

Table 2: Examples of rules used to disambiguate hedge terms.

(7) It could rain tomorrow.

(8) I think John and Katie went to Paris last
year.

• Reported belief (ROB): the speaker-writer re-
ports the belief as belonging to someone else,
without specifying their own belief or lack of
belief in the proposition, e.g.

(9) Channel 6 said it could rain tomorrow.

(10) Sarah said that John and Katie went to
Paris last year.

• Non-belief propositions (NA): the speaker-
writer expresses some cognitive attitude other
than belief toward the proposition, such as de-
sire, intention, or obligation, e.g.

(11) Is it going to rain tomorrow?

(12) I hope John and Katie went to Paris last
year.

4.1 Hedge Features
For the experiments described in this paper, we
add the following additional features to the com-
mitted belief tagger:

• Word features: based on properties of the
current word being tagged. If the word is
classified as a hedge by the hedge detector, ,
HedgeLemma, and HedgeType are set to the to-
ken, lemma, and hedge type (propositional or
relational) of the word. Otherwise, these fea-
tures are null.

• Dependency features: based on attributes
of words related to the current word by the
dependency parse. If the child of a given
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word is classified as a hedge by the hedge
detector, HedgeTokenChild, HedgeLem-
maChild, and HedgeTypeChild are set to
the token, lemma, and hedge type (proposi-
tional or relational) of the child. Otherwise,
these features are null. Likewise, we define
HedgeToken{Parent,Sibling,DepAncestor},
HedgeLemma{Parent,Sibling,DepAncestor},
and HedgeType{Parent,Sibling,DepAncestor}
if the parent, sibling, or ancestor of the word is
classified as a hedge.

• Sentence features: based on properties of the
sentence containing the current word. If the
hedge detector identifies a hedge anywhere in
the sentence, SentenceContainsHedge is set to
true.

5 Experiments and Results

All the experiments reported below use 5-
fold cross validation on the 2014 Darpa
DEFT Committed Belief Corpus (Release
No. LDC2014E55). The documents in this corpus
are from English discussion forum data. We
compare the performance of the system using (a)
no hedge features (b) hedge features obtained
using the dictionary-based tagger, and (c) hedge
features obtained using the rule-based tagger.
Results are shown in Table 3. Note that our
baseline results differ slightly from the System
C results presented in Prabhakaran et al. (2015)
because the training/evaluation datasets used are
different. Additionally, our baseline uses no hedge
features while System C uses simple word-based
hedge features based on an earlier version of our
hedging dictionary.

As we might expect, hedge features are most
significant in detecting instances of reported be-
lief and non-committed belief. Since these repre-
sent only a small portion of the full corpus, the ef-
fect on the overall performance is not large. How-
ever it is still significant. Using dictionary-based
hedge features, we see an increase of 1.82 in the
f-measure for ROB as compared to the baseline,
from 23.29 to 25.11, and an increase of 2.29 for
NCB, from 23.66 to 25.95. The overall f-score
increases 0.43, from 67.52 to 69.95. Using rule-
based hedge features, the increase compared to the
baseline is more significant. For ROB, the f-score
shows an increase of 4.14, from 23.29 to 27.43.
For NCB, the f-score increases 6.77, from 23.66
to 30.43. The overall increase in the f-score using

the rule-based hedge features is 0.55, from 67.52
to 68.07.

Tag (count) Precision Recall F-measure
ROB (256) 28.02 19.92 23.29
NCB (193) 44.93 16.06 23.66
NA (2762) 77.49 56.34 65.24
CB (4299) 69.80 74.78 72.21
Overall 70.69 64.62 67.52

(a)

Tag (count) Precision Recall F-measure
ROB (256) 30.22 21.48 25.11
NCB (193) 49.28 17.62 25.95
NA (2762) 77.69 56.73 65.58
CB (4299) 70.27 75.04 72.58
Overall 71.18 65.01 67.95

(b)

Tag (count) Precision Recall F-measure
ROB (256) 31.63 24.22 27.43
NCB (193) 50.60 21.76 30.43
NA (2762) 77.89 56.52 65.51
CB (4299) 70.58 74.95 72.70
Overall 71.36 65.07 68.07

(c)

Table 3: Belief results using (a) no hedge detection, (b)
dictionary-based hedge detection, and (c) rule-based
hedge detection.

6 Summary and Future Work

We have shown that hedge detection can improve
the performance of a committed belief tagger, par-
ticularly in identifying instances of reported belief
and non-committed belief. Using hedge features
based on simple dictionary-lookup improves per-
formance compared to the baseline; the addition of
manually constructed rules improves performance
further. While these results are promising, there
are limits to the rule-based approach we have pre-
sented. In many cases, it is not straightforward
to define a simple rule disambiguating hedge from
non-hedge use.

To address these issues, we use Amazon Me-
chanical Turk to construct a corpus of forum posts
labeled with hedge information. Although other
labeled corpora exist, these are in other domains
and may not apply to the forum data we are using.
After finding potential hedges in the forum posts
from the 2014 Deft Committed Belief Corpora
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Figure 1: Example of AMT word disambiguation task.

(Release No. LDC2014E55, LDC2014E106, and
LDC2014E125), we present each potential hedge
to turkers as a highlighted word or phrase within
a sentence. Rather than asking turkers to label the
word as a hedge or not, we show the definitions
of hedging and non-hedging uses of the term from
our hedge dictionary (see Section 3 and ask work-
ers which most closely matches the meaning of the
word. Figure 1 shows an example for the phrase
kind of. In future work, we will use this corpus to
evaluate the rule-based hedge detector and to train
machine learning classifiers directly from the la-
beled corpus. By this means, we hope to continue
to improve the performance of the committed be-
lief tagger as well.
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Abstract
Currently, news articles are produced, shared
and consumed at an extremely rapid rate. Al-
though their quantity is increasing, at the same
time, their quality and trustworthiness is be-
coming fuzzier. Hence, it is important not
only to automate information extraction but
also to quantify the certainty of this informa-
tion. Automated identification of expressions
that affect certainty has been studied both in
the scientific and newswire domains, but per-
formance is considerably higher in tasks fo-
cusing on scientific text. We compare the dif-
ferences in the definition and expression of
uncertainty between a scientific domain, i.e.,
biomedicine, and newswire. We delve into the
different aspects that affect the certainty of an
extracted event in a news article and examine
whether they can be easily identified by tech-
niques already validated in the biomedical do-
main. Finally, we present a comparison of the
syntactic and lexical differences between the
the expression of certainty in the biomedical
and newswire domains, using two annotated
corpora.

1 Introduction

The increasing amount of data readily available in
digital form across various domains presents chal-
lenges for both researchers and the general public.
Although this has greatly improved access to data
and dissemination of knowledge, it is becoming
increasingly difficult to quickly identify a piece of
information that is pertinent to our needs among
the vast amounts of data, as well as to assess its
certainty and credibility. Advances in information
extraction methods and in particular event extrac-
tion tasks (McClosky et al., 2011; Nguyen et al.,
2016; Cao et al., 2016), capture complex infor-
mation structures to that can capture n-ary rela-
tions between entities, and better represent facts
and statements made by authors.

While being able to extract rich information in
a structured manner is important, not all extracted

information is equally trustworthy. It is thus nec-
essary to apply measures of confidence that will
allow us to assess the credibility of events mined
from different documents. Such measures may
take into account different factors affecting our
confidence in a specific event, such as the reliabil-
ity of the source (Lucassen and Schraagen, 2010),
the timeliness of the event (Pustejovsky, 2017),
the performance of the event extraction tool etc.
Along with such “external” factors affecting our
trust in the event, another important aspect is how
certainty is expressed in the context of the event by
the author, since not all information mentioned in
text is expressed with equal certainty. Some events
are explicitly identified as speculations, as hypo-
thetical situations, as disputed allegations, as con-
ditional facts, and so on. Thus, it is important to
complement event extraction methods with identi-
fication of such textual phenomena, in order to en-
rich extracted events with an attribute of certainty.

Identification of textual uncertainty and hedg-
ing is a mature research topic, with an emphasis
on the scientific domain (Hyland, 1998). Meth-
ods to detect certainty and related types of infor-
mation are widely applied in the field of biomed-
ical text mining to assess the veracity of infor-
mation, and the problem is approached both in
terms of framing certainty and annotating cor-
pora accordingly, and by applying machine learn-
ing techniques for the automated identification of
uncertain statements and events (Kilicoglu et al.,
2017; Malhotra et al., 2013). In the news domain,
while machine learning techniques have been used
to mine sentiment, subjectivity etc, efforts con-
cerned with (un)certainty identification have fo-
cussed mostly on the provision of classification
framework for uncertainty (Rubin, 2010) or its
combination with polarity to determine event fac-
tuality (Sauri and Pustejovsky, 2007). However,
there has been less emphasis on applications that
focus on automatically recognising uncertainty,

6



especially in relation to events. Moreover, early
attempts at automated identification of uncertainty
cues (weasels) in both the general and biomed-
ical domains showed more than 0.30 difference
in F-score between the two domains (0.50 for
Wikipedia versus 0.87 for Bio (Tang et al., 2010)),
thus illustrating the challenges of uncertainty iden-
tification in the general language domain.

Newswire text can prove more problematic in
terms of uncertainty identification, since news sto-
ries tend to be reported in a subjective manner
(Godbole et al., 2007; Vis, 2011) and allow for
less strict use of language, while the truth value
of reported events greatly depends on the time
and context in which an article is written. As un-
certainty identification is affected by various tex-
tual phenomena which are challenging to contex-
tualise (metaphorical speech, colloquial expres-
sions, etc), methods that identify event uncertainty
from context are becoming increasingly crucial.
The widespread use of the term “fake news” in re-
cent years highlights the need to distinguish valu-
able and reliable facts, especially when it comes
to automated information extraction. While detec-
tion of fake news is an involved process requir-
ing more in depth discourse and stance analysis
(Thorne et al., 2017), identifying certainty of ex-
tracted events is an important parameter towards
the assessment of credibility of such events. The
availability of an increasing number of resources
annotated with news events and concepts related
to uncertainty provide good opportunities to ap-
ply and adapt uncertainty identification techniques
that are focussed on news articles.

In this work, we present our efforts on adapting
uncertainty event extraction techniques developed
for biomedical text, to allow them to be applied to
newswire text. We use two corpora annotated with
events and meta-knowledge (different types of in-
terpretative information within a sentence that can
affect an event (Thompson et al., 2011)) to anal-
yse the differences between the two domains and
we discuss the challenges that arise. We evaluate a
hybrid machine learning approach to the identifi-
cation of different uncertainty aspects (see Section
3.2.1) and propose ways of improving and cus-
tomising uncertainty identification for newswire.

2 Related Work

In this section, we provide an overview of re-
lated work on uncertainty in both the scientific and

newswire domains. We examine different classifi-
cation frameworks of uncertainty and related con-
cepts, the availability of annotations and existing
classification systems used in each field.

The means of conveying uncertainty have long
been studied by linguists, using a range of dif-
ferent terminology. Palmer (2001) introduced the
term epistemic modality to refer to the degree of
commitment to the truth of a proposition. The
term continues to be used, especially for scientific
text (De Waard and Maat, 2012; Vold, 2006) along
with other related terms, such as factuality, which
combines the notions of uncertainty and polarity
(Saurı́, 2017), veracity and evidentiality (Cornillie,
2009; Davis et al., 2007). The use of hedge words
and their impact on the certainty of statements has
also been studied extensively both in the scientific
(Morante et al., 2010) and generic domain (Ganter
and Strube, 2009). As computational technologies
have evolved, there has been an increasing interest
in the implications of textual uncertainty and the
way it is expressed, resulting in a wide range of
classification frameworks and annotation efforts.

In the scientific domain, Light (2004) studied
uncertainty in biomedical papers, classifying ex-
pressions as denoting high or low certainty. Med-
lock and Briscoe (2007) further expanded the cat-
egorisation to incorporate the cases of admission
of lack of knowledge, relays of hypotheses from
others, speculative questions and hypotheses (in-
vestigation). More recently, Chen (2018) pro-
posed a wider definition of uncertainty that cov-
ers phenomena of citation distortion, contradic-
tions and claim inconsistencies, and also presented
a method based on word embeddings for expand-
ing a small seed list of cues to generate rich re-
sources for uncertainty identification.

The aforementioned concepts have also been
annotated in corpora at different levels of granular-
ity. The BioScope corpus (Vincze et al., 2008), as
well the biomedical part of the CoNLL 2010 task
(Farkas et al., 2010) contain annotations of spec-
ulation and negation cues and their scope within
the sentence. The BioNLP Shared Task corpora
(Kim et al., 2009, 2011; Nédellec et al., 2013)
also contain speculation and negation annotations,
marked-up as attributes of events. The GENIA-
MK corpus (Thompson et al., 2011) also con-
tains event-level attribute annotations, but cover-
ing more meta-knowledge aspects, including cer-
tainty level, polarity and knowledge type (see Sec-
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tion 3.2.1). Various models for the automated
identification of the types of information anno-
tated in the aforementioned corpora have been de-
veloped , with the best performing methods us-
ing a combination of rules and machine learn-
ing approaches. Overall, performance is highest
for sentence-based annotations, with recent work
reaching an F-score of 0.97 on BioScope (Kil-
icoglu et al., 2017), while on the event-level anno-
tations of GENIA-MK, the best reported F-score
surpasses 0.80 for the 3-level certainty classifica-
tion problem (Miwa et al., 2012) and 0.88 for the
binary problem (Zerva et al., 2017).

Bridging definitions of uncertainty across dif-
ferent domains, Szarvas (2012) proposes a hierar-
chical categorisation which distinguishes between
two main classes: hypothetical and epistemic un-
certainty. Vincze (2013), attempts a different cat-
egorization, looking at discourse-level uncertainty
and related phenomena as they appear in text in the
generic domain (Wikipedia). They identify three
different types of uncertainty; weasels (relevant
but insufficiently specified arguments), hedges and
peacocks (exaggerated, subjective statements).

On work dealing with newspaper articles, sub-
jectivity is identified as a further phenomenon
(along with hedging and speculation) that is in-
extricably related to the expression of uncer-
tainty (Rubin, 2007; Morante and Daelemans,
2009). Moreover, Rubin (2010) proposes a four-
dimensional classification of certainty, also point-
ing out the aspect of timeliness and focus (abstract
versus factual information). Their proposed an-
notation schema was applied to a small corpus of
82 documents. In terms of further resources, Fact-
Bank (Saurı́ and Pustejovsky, 2009) is a small cor-
pus consisting of texts from the newswire domain
annotated with events, accompanied with their
factuality value (a combination of certainty level
and polarity) judged from the viewpoint of their
sources. The MPQA corpus (Cardie et al., 2003)
elaborates on the issue of subjectivity and com-
bines it with polarity markers to classify different
opinions. The ACE 2005 corpus (Walker et al.,
2006) contains events from news texts that are
annotated with meta-knowledge attributes, among
which modality and genericity. Subsequently, the
meta-knowledge annotations were extended to in-
clude among others the aspect of subjectivity (see
Section 3.2.1). More recently, there has been sig-
nificant work in assessing factuality and credibility

of news articles, as part of the fake-news challenge
(FNC-I) that focusses on detection of stance.

In comparison to the scientific domain, there
have been relatively fewer attempts to automati-
cally identify uncertainty in news text, apart from
the classification of particular aspects that embody
uncertainty, such as subjectivity (Wilson, 2008).
The most significant work is the wikipedia related
task of CoNLL 2010, which concerned weasel
cue detection. The best performing systems at
the time compared poorly to the results in the
biomedical field but more recently Jean (2016)
proposed a probabilistic model that achieved an F-
score of 55.7, showing a promising degree of im-
provement. Even more encouragingly, there have
recently been important efforts on the classifica-
tion of factuality values based on FactBank and
related factuality corpora (UW, MEANTIME),
showing great improvements in their predictions
(Stanovsky et al., 2017; Lee et al., 2015) compared
to earlier attempts (Prabhakaran et al., 2010).
Such efforts motivate our interest in studying the
detection of uncertainty in the newswire domain.

3 Methods

In this section, we provide a definition of the prob-
lem we aim to tackle, as well as definitions of
terms that we use subsequently. We also describe
the datasets and resources that we have used, and
we present the methods and technical details used
for the experiments and analysis in Section 4.

3.1 Event Definition

In both the GENIA-MK and the ACE-MK cor-
pora, the definition of events shares some core
properties. An event consists necessarily of one
trigger entity and usually one or more participant
NEs (arguments) that are linked to the trigger. The
trigger entity determines the type of the event, and
is usually one word (can be verb, noun or adjec-
tive) that describes the event. Similarly, the rela-
tion between the trigger and each argument deter-
mines argument’s role. Examples of events from
the two domains are presented in Figure 1.

3.2 Uncertainty Identification Task

As described in the previous section, uncertainty
can be interpreted in different ways. In this work,
we cast uncertainty identification as the task of
identifying textual information (cues) that render
the truth of a specific event uncertain. Hence,
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Figure 1: Event examples extracted from GENIA-
MK (a-b) and ACE-MK (c-d).

uncertainty is treated as an attribute of an event,
rather than an attribute of a sentence or clause.
This is because it has been shown that a given unit
of text may contain more than one event, each with
a potentially different level of uncertainty (Saurı́
and Pustejovsky, 2009; Thompson et al., 2017).
We limit the discovery of uncertainty cues to those
occurring in same sentence as the event in ques-
tion, following the annotations of the two corpora.

We cast uncertainty identification as a binary
classification task, where an event can either be
certain or uncertain. Our decision was motivated
by the findings of Rubin (2007) who showed that
a finer grained classification of uncertainty (5 lev-
els) resulted in unacceptably low levels of inter-
annotator agreement.

We treat uncertainty of an event as an attribute
that can be affected by various factors (modal-
ity, hypothesis, subjectivity etc), that are already
annotated in existing corpora. Hence, we want
to take advantage of existing corpora annotations,
and examine how such annotations relate to un-
certainty, either individually or combined. We
examine the performance and robustness of au-
tomated uncertainty identification method devel-
oped in (Zerva et al., 2017) based on different
combinations of meta-knowledge dimensions to
draw our conclusions, acknowledging that (as dis-
cussed in Section 2) for different domains there
can be different dimensions affecting uncertainty.
In the following section, we describe the datasets
as well the meta-knowledge annotations that we
consider to be related to uncertainty identification
in the biomedical and newswire domains.

3.2.1 Datasets and Uncertainty
We focus our analysis for the newswire do-
main on the recent annotations of the ACE 2005
corpus (Walker et al., 2006) (English version).

The corpus was originally annotated with named
entities (NEs), events, as well as some meta-
knowledge information and has been subsequently
enriched with additional meta-knowledge annota-
tions (Thompson et al., 2017). We refer to the
meta-knowledge annotated version of the corpus
as ACE-MK 1. The corpus comprises of 600 news
articles originating from various sources, and con-
tains annotations for 5349 events. The ACE-MK
meta-knowledge annotation scheme, includes 6
meta-knowledge attributes, of which four (4) were
present in the original 2005 annotated corpus and
the rest were introduced in the 2017 annotation en-
richment effort (the latter are marked with an as-
terisk in the enumeration that follows). The re-
spective cues for each type were annotated when-
ever present within a sentence.

1. Subjectivity (*) towards the event by the
source. Can be Positive, Negative, Neutral or
Multi-valued (two or more sources express-
ing opposite sentiments for the same event).

2. Source (*), that can be Author, Involved (at-
tributed to a specified source, somehow in-
volved with the event) or Third-Party.

3. Modality, that can have four possible val-
ues; Asserted, Speculated, Presupposed(*)
and Other

4. Polarity, that can be either Positive or Nega-
tive.

5. Tense, that can be Past, Present, Future or
Unspecified.

6. Genericity, that can either be Specific (event
referring to a specific occurrence) or Generic.

As discussed in Section 2, various concepts,
such as modality, subjectivity, genericity and time-
liness have been linked to uncertainty in the
newswire domain. In fact, most of the afore-
mentioned event attributes annotated in ACE-MK
could affect event certainty. In this work, we fo-
cus on the dimensions of Modality, Genericity and
Subjectivity. (Saurı́ and Pustejovsky, 2009) Con-
sidering these three different attributes as well as
their combination as uncertainty indicators, we
generate four different test-sets, each correspond-
ing to a different uncertainty definition:

1The ACE-MK corpus annotations and guidelines are
available at http://www.nactem.ac.uk/ace-mk/ .
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1. M: uncertainty corresponds only to Modal-
ity, and only Asserted events are equivalent
to Certain. Based on descriptions in (Baker
et al., 2014; Szarvas et al., 2012).

2. G: uncertainty corresponds only to Generic-
ity, and only Specific events are equivalent
to Certain. We thus claim that that generic,
more vague events lack certainty, inspired by
the distinction between abstract and specific
statements in (Rubin, 2010).

3. S: uncertainty corresponds only to Subjec-
tivity, and only Neutral events are equiva-
lent to Certain. Based on (Wiebe and Riloff,
2005) which has shown that positive or neg-
ative bias can affect the certainty of an event.
Multi-valued instances are treated as Uncer-
tain since contradictory assertions have also
been linked to uncertainty (Alamri, 2016).

4. MGS : uncertainty corresponds to the union
of the above; only an event that is Asserted,
Neutral and Specific is considered Certain.

In both corpora, the annotations of all meta-
knowledge dimensions are on the event level (the
values of each event annotated separately). The
evidence, if it can be attributed to one or more
words in the same sentence as the event, is anno-
tated as a cue, for the dimension annotated, and
linked to the event(s) that it affects. In Figure 2 (a-
b) we demonstrate one example from each corpus
where the cue affects only one of the events in a
sentence. While in both corpora for most dimen-
sions investigated the cues are word sequences dif-
ferent than the trigger of the event, for Subjectiv-
ity, we have cases where the trigger is also act-
ing like a Subjectivity cue. This is because based
on the definition of Subjectivity for ACE-MK, bi-
ased attitude expressed in text denotes subjectiv-
ity (including expressions of intention, command,
fear, hope, condemn etc). Example (c) in Figure 2
demonstrates such a case.

Figure 2: Examples of cue annotations. Cues are in
bold-red while events in green-italic. Events that
are affected by the highlighted cue are underlined
in each sentence.

We train and test separate classifiers for each
case and discuss their performance and the impli-
cation on the predictability of uncertainty.

We should note that Polarity has been identified
as a dimension that is orthogonal to uncertainty
(Saurı́ and Pustejovsky, 2009) and thus we choose
not to include it in our investigation, although both
corpora contain such annotations. In future work,
we would like to further investigate the combina-
tion of certainty and polarity and maybe expand
our analysis on the FactBank corpus. It would also
be interesting, as future work, to expand our exper-
iments and investigate whether Tense could also
be used to account for the timeliness aspect, or
whether Source could help to identify weaselling
phenomena, thus expanding the coverage of uncer-
tainty. For an efficient accounting of these two di-
mensions in future work, we would like to include
additional resources such as timeliness or citation
analysis components.

Apart from comparing performance among the
different uncertainty-related definitions described
above, we compare our results for ACE-MK with
those obtained for a biomedical corpus, GENIA-
MK (Kim et al., 2003; Thompson et al., 2011), for
binary uncertainty identification using the same
hybrid method, as reported in (Zerva et al., 2017).

The GENIA-MK corpus consists of 1000 ab-
stracts extracted from PubMed and annotated with
36,858 events2. It has also been annotated with
meta-knowledge attributes for each event, and
the respective cues. The meta-knowledge at-
tributes for each event include Certainty Level (L1,
L2, L3), Polarity (Positive, Negative), Manner
(High, Low and Neutral), Source (Current, Other)
and Knowledge Type (Investigation, Observation,
Analysis, Method, Fact, Other). Of those, Cer-
tainty Level L1 and L2 as well as Knowledge type
of Investigation were treated as uncertainty indi-
cators (denoting an event as Uncertain).

3.3 Machine Learning Approach

For the experiments described in Section 4.1 we
use a hybrid machine learning approach to clas-
sify ACE-MK events as Certain or Uncertain. We
use a Random Forest (RF) classifier (Liaw et al.,
2002) and a range of semantic, lexical, syntac-
tic and dependency features. The majority of the
lexical features are related to the cue and its sur-

2The GENIA-MK annotations are available at: http:
//www.nactem.ac.uk/meta-knowledge/ .

10



face and grammatical properties, while syntactic
and dependency features are related to the syntac-
tic dependencies between the cue and the event.
Features also include dependency-based rules that
capture one and two-hop paths between the cue
and an event trigger. Finally, there is an addi-
tional set of features related to the semantics of
the event itself (event type, arguments). A more
detailed description and examples of the features
can be found in Appendix A.

The full processing of ACE-MK corpus, includ-
ing other NLP tasks such as sentence splitting,
tokenisation etc, was performed using Argo plat-
form, a web-based, graphical workbench that fa-
cilitates the construction and execution of modu-
lar text mining workflows (Batista-Navarro et al.,
2017). For the implementation of the RF classi-
fier, dedicated components were implemented us-
ing the WEKA API (Frank et al., 2004). We
used 10-fold cross-validation to evaluate and com-
pare the performance of different generated mod-
els. Since some of the features are sentence and/or
document based, we avoided the automated 10-
fold cross validation of the WEKA API, and in-
stead modified the random fold generation so that
no document would be split over several folds,
thus ensuring the models were not biased or over-
fitted to specific documents.

3.4 WordNet-based Analysis

In order to interpret the differences in the perfor-
mance of our models between the GENIA-MK
and the ACE-MK, we compared the lexical and se-
mantic properties of the cues in each corpus. For
this purpose, we used WordNet (Miller, 1995) ver-
sion 3.0 to examine the synsets and relations be-
tween uncertainty cues, the generated word graphs
and the distributions of cues per synset. To process
cues against information contained within Word-
Net, the JWI API (Finlayson, 2014) was used.

In order to study the links between cues, we
consider WordNet as a multi-graph where each
word is a node, and all potential relations between
two words constitute an edge. The types of rela-
tions are used as edge attributes. To generate the
graph from each corpus, we start with the lemma-
tised cues and iteratively expand the graph using
a set of available relations between words as well
as synsets until there are no other nodes to visit.
We use all relations available in WordNet between
synsets and words, but we exclude expansion for

some senses that are semantically irrelevant to all
potential cues, as described in Appendix B.

The analysis and visualisation of the graphs was
performed using Gephi (Bastian et al., 2009).

4 Results and Discussion

4.1 Automated Classification of Uncertainty
As a first step, we used the set of cues extracted
from GENIA-MK for the generation of all features
in the cue and dependency related feature sets. We
then trained and evaluated the performance of the
trained models on each of the test sets of the ACE-
MK corpus, as shown in the top three rows of Ta-
ble 1. The results show that the classifier trained
with GENIA-MK cues does not achieve particu-
larly high performance for any of the three cases
of uncertainty, or for their combination. We subse-
quently proceeded to replace the GENIA-MK cues
with the ones extracted from the ACE-MK corpus,
and repeated the experiments, as shown in the bot-
tom three rows Table 1.

When using ACE-MK cues, F-score increases
significantly (p < 0.01) for all different test sets.
This is mostly due to the consistent improvement
in recall for all test sets (in terms of precision, it is
only the case of Modality that the ACE-MK cues
outperform the GENIA-MK cues). This result
confirms the domain dependence of uncertainty
expressions and stresses the need of domain spe-
cific approaches, to achieve higher performance.

M G S MGS Cues
Precision 0.53 0.27 0.40 0.61

GENRecall 0.55 0.62 0.46 0.69
F-score 0.54 0.38 0.34 0.65
Precision 0.57 0.26 0.40 0.69

ACERecall 0.69 0.67 0.63 0.74
F-score 0.62 0.37 0.49 0.71

Table 1: Performance of uncertainty identification
on each uncertainty test-case using GENIA-MK
(GEN) and ACE-MK (ACE) cues.

GENIA-MK cues ACE-MK cues
Precision 0.94 0.82
Recall 0.83 0.86
F-score 0.88 0.84

Table 2: Performance for uncertainty identification
on GENIA-MK corpus using different cues.
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More interestingly however, we notice that even
when using ACE-MK cues, the performance we
obtain is significantly lower compared to the per-
formance obtained when the same method is ap-
plied to the GENIA-MK corpus. Indeed we see in
Table 2 that on GENIA-MK even when using cues
extracted from ACE-MK, performance is signifi-
cantly higher for all metrics (Zerva et al., 2017).

Genericity seems to be the hardest attribute to
distinguish, especially in terms of precision. This
can be explained through an examination of the
training data, which reveals that there are very few
Generic event instances that are linked to a Gener-
icity cue. Thus, while there is a sufficient num-
ber of training instances for Generic events (1132
Generic versus 4217 Specific) strong feature vec-
tors can only be produced for a few of them. The
classifier also seems to be having difficulties in
predicting Subjectivity, but for different reasons.
Looking more closely at the results for Subjectiv-
ity, we discovered that one issue relates to Multi-
valued test cases, which are particularly complex
since they often involve the existence of more than
one Subjectivity cue linked with the event, and at
the same time they are significantly under-sampled
(18 instances). Moreover, Subjectivity cues seem
to involve more nouns and longer, often colloquial
expressions compared to other dimensions.

Further enhancement of the machine learning
approach and feature engineering could try to ad-
dress such issues, in order to better identify Sub-
jectivity and Genericity dimensions. A possible
future direction would be to enhance current vec-
tors methods that can account for positive or neg-
ative bias of nouns, or other methods borrowed
by work on subjectivity. Coupled with a training
corpus containing more positive instances, such
methods could help drawing further conclusions.

In the last column of Table 1 we present
the performance of the models trained on the
combined dimensions. By combining the meta-
knowledge dimensions into one uncertainty identi-
fication task, we can see that we get improved per-
formance, compared to the individual tasks. This
provides an indication that relationships exist be-
tween these different dimensions in the context of
detecting uncertainty. Still, as mentioned earlier,
we notice that for all possible combinations, per-
formance is lower compared to results reported for
biomedical corpora using the same machine learn-
ing approach, even when we use cues extracted

from the same corpus. This difference in score,
even in the case of Modality, much like the one
seen in the work of (Tang et al., 2010) for the
CoNLL datasets, provides motivation to look more
closely into the differences between the means
of expressing uncertainty in the two different do-
mains. In the next section, we attempt to interpret
this difference in performance, explore why the
cue and dependency based features used might be
less effective for the newswire domain, and what
could be done to remedy this.

4.2 Comparison of the Properties of
Uncertainty Cues Between Corpora

4.2.1 Dependency-based Comparison
As mentioned in Section 3.2.1 the machine learn-
ing classifiers used in this work, are heavily de-
pendent on features related to the dependencies
between potential uncertainty cues and the trig-
gers of events. For the extraction of dependency
paths we use a dependency parser in order to ex-
tract the dependency relations for each sentence of
the corpus. The Enju dependency parser (Miyao
et al., 2008) was used for both corpora, with mod-
els trained on biomedical and newswire data for
GENIA-MK and ACE-MK respectively.

We then treat the dependencies as a directed
graph and examine the shortest paths between an-
notated cues and event triggers as shown in the ex-
ample of Figure 4. In case of multi-word cues or
multi-word events we consider the shortest pos-
sible path between any word of the cue and any
word of the trigger. The comparison of depen-
dency path lengths for the two corpora can be seen
in Figure 3.

It is clear from the distribution that the depen-
dency paths for the GENIA-MK corpus (gray-

Figure 3: Histogram of length distribution for
shortest dependency paths between uncertainty
cues and triggers for ACE-MK and GENIA-MK.
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striped bars) follows a long-tail pattern, with more
than 50% of the cues being directly linked to the
trigger and more than 85% being at a distance of
three or less dependency links. On the contrary for
ACE-MK corpus we have a more evenly spread
distribution of dependency paths, since to contain
85% of the cases we need to reach dependency
paths of length 7. Looking at the last bar of the
histogram, which accounts for paths longer than
ten (10) hops or non-existent paths, we note that
the percentage of such cases is double for ACE-
MK compared to GENIA-MK.

This difference in the dependency path distri-
bution, could explain why features based on de-
pendency paths as well as dependency rules are
not as efficient for newswire documents. Indeed,
analysis of feature informativeness (using Mutual
Information measures (Battiti, 1994)) for the two
corpora further supports these observations. In the
30 top scoring features for GENIA-MK, 19 are de-
pendency features (14 of them dependency rules)
versus only 5 dependency features for ACE-MK
(and only 1 dependency rule). These observations
reveal a potential higher complexity in the sen-
tence syntax and language structure in newswire
texts as opposed to scientific texts. For example, in
ACE-MK we observe more occurrences of event
triggers being nouns that are not close to the main
verb (and surrounding modals) and of cues indi-
cating uncertainty (especially Subjectivity) found
in a different sub-phrase than the event (see Figure
3). There are also some wrongly structured sen-
tences where the dependency paths are distorted
due to problematic syntax.

This difference may occur as a result of the

Figure 4: Dependency paths between cue (red-
bold) and trigger (green-underlined) for ACE-MK.
Arrows denote the edges of the dependency graph
that participate in the shortest path between cue
and trigger. In (a) could is a Modality cue, influ-
encing a Personel nominates event. In (b) we have
a phrase that is annotated as a Subjectivity cue and
the event is Personnel end position.

greater freedom of expression in news articles as
opposed to scientific texts, where language and
syntax follow stricter rules, and formal expres-
sions are preferred to colloquial ones. Although
it has be shown that even in scientific text, many
statements are far from factual assertions, we
can expect phenomena of vagueness, weaselling,
hedging and speculating to be much more preva-
lent in news articles compared to scientific ones. It
should though be noted that this difference might
be further aggravated by the fact that GENIA-MK
consists of abstracts, where requirements for pre-
cise language are even stricter.

4.2.2 Lexical Comparison

It seems that it is not only in syntax that the two
corpora and respective domains differ. By fo-
cussing on the lexical and semantic properties of
the cue lists in each case, we also found a set of
differences at this level. A simple initial observa-
tion concerns the differences between the lengths
of cues, in terms of the number of words, between
the two domains. We can see in Figure 5 that
in GENIA-MK, with the exception of some very
lengthy outliers, most of the cues are one or two
word expressions. In contrast, ACE-MK contains
more lengthy uncertainty expressions, including
various colloquial expressions, weasels etc.

We also examined the semantic properties of the
two cue-lists and generated two WordNet graphs
for each corpus as described in Section 3.4. Apart
from the sense limitation mentioned before, there
was no further attempt to disambiguate cues that
belonged to more than one synset. Instead, all
possible synsets for each word were added to the
graph ending, resulting in a total of 781 synsets
covered by the cues for GENIA-MK, compared to
1444 synsets for ACE-MK. Thus the cues in ACE-

Figure 5: Histogram of words per cue distribution
for ACE-MK and GENIA-MK corpora.
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MK seems to have a far broader semantic cover-
age, which means much greater lexical variability
and harder to predict cues. To generate the graphs,
we use the words in the cue list as seed nodes and
then expand them to include all 1-hop neighbors
and corresponding edges for each cue. We end up
with a graph of 4293 nodes for GENIA-MK and
6123 nodes for ACE-MK.

Looking at the connectivity properties of the
two graphs and the number of fully connected
components (sub-graphs), we notice that the
GENIA-MK graph has only two fully connected
sub graphs, versus fifteen (15) for ACE-MK. The
difference in sub graphs is another indication sup-
porting the difference in semantic range for the
two corpora, although it should be noted that for
both corpora 85% of the nodes is contained in the
largest sub graph.

We then proceeded to carry out modularity
based community detection for the two graphs
(Newman, 2006) in order to identify and visualise
patterns in the senses of each graph. We focussed
on the first 10 largest communities (size calculated
on the basis of node count) and their central nodes.
To identify central nodes, we ranked nodes using
three different centrality measures: betweenness,
closeness (Brandes, 2001) and eccentricity (Hage
and Harary, 1995) and then used the intersection
of the top ranked nodes for each measure. We pro-
vide the visualisation of the graphs in Appendix C.
As expected, in both graphs the communities are
semantically related, and it is easy to see that in
some communities the central nodes are related to
uncertainty (likelihood, probability etc). Some of
the communities evolve around similar concepts,
such as ability, probability, communication and in-
vestigation, although the concepts are expressed
using different terms.

It is important to note that using only 1-hop ex-
pansion of the original cues gathered from the two
corpora, we were able to generate a graph with
semantically meaningful communities. Hence, it
would be interesting to further explore the use of
WordNet and other semantic graphs as an unsuper-
vised way to expand cue lists and use them on pre-
viously unseen data. This could prove particularly
useful for domains lacking annotated resources.

5 Conclusion

In this paper we have analysed uncertainty iden-
tification in the newswire domain and compared

it with the scientific (biomedical) domain both in
terms of uncertainty definition and performance
of methods. We have explored different meta-
knowledge aspects available in newswire corpora,
in terms of their relation to uncertainty and the fea-
sibility of their automated identification in text.

We have shown that it is possible to trans-
fer methods similar to the ones employed in the
biomedical domain for the automated identifica-
tion of uncertain events in the news text. How-
ever we found that regardless of whether detect-
ing uncertainty is restricted to individual dimen-
sions, or they are treated as a combined task, the
performance is significantly lower than the perfor-
mance obtained by applying the same methods to
biomedical articles. To try to understand reasons
for this difference, we have analysed the syntac-
tic and lexical properties of textual uncertainty in
the newswire domain, and have discovered a num-
ber of factors that render the task of uncertainty
identification more difficult to tackle in newswire
documents. Our analysis has highlighted the role
of longer dependencies between cues and events
as one of the main issues that complicate the task
in newswire articles, along with lengthy cues with
increased semantic variability.

We consider this work a promising first step
towards a more detailed and fine-tuned approach
to uncertainty identification in the newswire do-
main. As future work, we aim to take advantage
of our findings regarding the syntactic and lexi-
cal properties that were highlighted above, in or-
der to build more robust classifiers. Moreover, we
would like to expand our analysis of uncertainty in
the newswire domain using word-embeddings and
potentially expand the uncertainty definition in a
similar fashion to (Chen et al., 2018). To support
this goal, we also intend to experiment with fur-
ther corpora in the newswire domain.

Efficient uncertainty identification will provide
a useful tool for a more meaningful and semanti-
cally interpretable information extraction.
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A Appendix A: Machine Learning
Features

The features presented in Table 3 are used in the
models that were generated for all the experiments
presented in Section 4 of the main part of the arti-
cle. The table presents the main feature categories
that are extracted for each event (columns 1 and
2), providing a brief description (column 3) and
feature type (column 3).

We should note that for the GENIA-MK cor-
pus, features analysis showed that the contribu-
tion of lexical features for cues is overshadowed
by the dependency rule features, that capture a
combination of surface for and dependencies. On
the contrary, such features are more informative
for the case of ACE-MK uncertainty classification,
since as we have shown in the main document, de-
pendency paths are often longer in ACE-MK ren-
dering the dependency rules inefficient in captur-
ing such relations. Moreover, lexical features for
events score very high in terms of informativeness
in ACE-MK and quite low in GENIA-MK. This
could be attributed to the more uniform type of
events in GENIA-MK.

We note that for constituency features, com-
mand of a word a over a word b, signifies that in
the syntactic tree a is the head of a branch that
contains b. In both corpora, constituency features
scored very high in terms of informativeness.

For dependency path rules, features capture the
dependency path as a chain of words (lemma-
tised3) and the type of dependency edges between
them. For the experiments presented in this work
(Section 4.1 of the main part of the article), rules
spanning up to 2 consecutive edges were used (1-
hop and 2-hop rules). In Figure 6 we present an
example of rule extraction from a sentence. The
sentence contains one Modality cue (would stipu-
late) and one Subjectivity cue (hates). All the paths
between any word of each cue and the the event
trigger (war) is extracted based on the dependen-
cies (shown above the sentence). Subsequently, all
paths that have length equal or shorter than 2 are
converted to rules, as shown below the sentence.

3Stanford lemmatiser from the CoreNLP toolkit and Enju
parser were used for lemmatisation in all features that re-
quired lemmas and/or surface forms of words.
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In the case of 2-hop rules, the lemma of the word
between the cue and the event trigger in the path,
is also captured as part of the rule (as shown in the
Modality rule of Figure 6).

Figure 6: Example of dependency based rule ex-
traction for a phrase extracted from ACE-MK.

B Appendix B: WordNet Senses

When using Wordnet for the graph generation we
excluded some of the lexicographic sense groups
that are available in WordNet, since they were
judged to be too distant to uncertainty expressions
(eg referring to specific objects etc). The choice
was guided by the description of each sense, in or-
der to avoid senses that do not relate to any of the
dimensions of uncertainty described in the main
document. By thus excluding senses related to
concepts such as food, countries, activities etc we
achieve reduced complexity, size and processing
time of the resulting graphs. Nevertheless, inclu-
sion of such senses could be interesting to con-
sider in future experiments to see if they can better
account for metaphors and colloquial expressions.
Alternatively, graphs generated by word embed-
ding approaches could be studied and compared
against the WordNet ones.

We list the inclusion/exclusion decision
for each of the senses in the Table 4, along
with the description of the lexicographer
file according to WordNet documentation
(https://wordnet.princeton.edu/
documentation/lexnames5wn).

Cat. Sub-cat. Feature Output

Event

Lexical
Event-trigger
surface form

Nom.

POS tags Nom.

Semantic
Event type Nom.
Argument type Nom.
Argument role Nom.

Complexity Complex/simple Bin.

Cue Lexical

Existence of
cue

Bin.

Cue surface
form

Nom.

POS tag of the
cue

Nom.

Event
&
Cue

Relative
position

#words be-
tween cue and
event trigger

Num.

Position of
cue on the
left/right of
the event
trigger

Bin

Dependency

Direct depen-
dency between
cue and trigger

Bin.

Shortest de-
pendency path
length

Num.

Existence of
dependency
path rule (see
example)

Bin.

Dependency
path rule (see
example)

Nom.

Constituency
(syntactic)

Command
of cue over
trigger

Bin.

Command
of cue over
arguments

Bin.

Table 3: Features used for uncertainty identifica-
tion with the RF classifier. The output column
shows the type of the generated feature; Nom. de-
notes nominal features, Bin. denotes binary fea-
tures and Num. denotes numeric features.
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# Name Description Incl/Excl
0 adj.all all adjective clusters Included
1 adj.pert relational adjectives (pertainyms) Included
2 adv.all all adverbs Included
3 noun.Tops unique beginner for nouns Excluded
4 noun.act nouns denoting acts or actions Included
5 noun.animal nouns denoting animals Excluded
6 noun.artifact nouns denoting man-made objects Excluded
7 noun.attribute nouns denoting attributes of people and objects Included
8 noun.body nouns denoting body parts Excluded
9 noun.cognition nouns denoting cognitive processes and contents Included
10 noun.communication nouns denoting communicative processes and contents Included
11 noun.event nouns denoting natural events Excluded
12 noun.feeling nouns denoting feelings and emotions Included
13 noun.food nouns denoting foods and drinks Excluded
14 noun.group nouns denoting groupings of people or objects Excluded
15 noun.location nouns denoting spatial position Excluded
16 noun.motive nouns denoting goals Included
17 noun.object nouns denoting natural objects (not man-made) Excluded
18 noun.person nouns denoting people Excluded
19 noun.phenomenon nouns denoting natural phenomena Excluded
20 noun.plant nouns denoting plants Excluded
21 noun.possession nouns denoting possession and transfer of possession Included
22 noun.process nouns denoting natural processes Included
23 noun.quantity nouns denoting quantities and units of measure Included
24 noun.relation nouns denoting relations between people or things or ideas Included
25 noun.shape nouns denoting two and three dimensional shapes Excluded
26 noun.state nouns denoting stable states of affairs Included
27 noun.substance nouns denoting substances Excluded
28 noun.time nouns denoting time and temporal relations Included
29 verb.body verbs of grooming, dressing and bodily care Excluded
30 verb.change verbs of size, temperature change, intensifying, etc. Included
31 verb.cognition verbs of thinking, judging, analyzing, doubting Included
32 verb.communication verbs of telling, asking, ordering, singing Included
33 verb.competition verbs of fighting, athletic activities Included
34 verb.consumption verbs of eating and drinking Excluded
35 verb.contact verbs of touching, hitting, tying, digging Excluded
36 verb.creation verbs of sewing, baking, painting, performing Excluded
37 verb.emotion verbs of feeling Included
38 verb.motion verbs of walking, flying, swimming Excluded
39 verb.perception verbs of seeing, hearing, feeling Included
40 verb.possession verbs of buying, selling, owning Excluded
41 verb.social verbs of political and social activities and events Included
42 verb.stative verbs of being, having, spatial relations Included
43 verb.weather verbs of raining, snowing, thawing, thundering Excluded
44 adj.ppl participial adjectives Included

Table 4: WordNet sense description and eligibility for graph generation.
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C Appendix C: WordNet Graphs

We present below the ACE-MK and GENIA-MK graphs that are described in Section 4.2.2 of the main
part of the article. Different colors signify different communities as identified by community detection
based on the modularity index of nodes. We visualise only the ten largest (in terms of the participat-
ing nodes) communities). We also visualise the top scoring words (regarded as representatives of each
community) for the combination of Closeness, Betweenness and Eccentricity metrics.

In Figure 7 we observe the graph for the ACE-MK corpus while in Figure 8 the one for GENIA-MK.

Figure 7: Generated word graph based on WordNet relations for ACE-MK cues.

Figure 8: Generated word graph based on WordNet relations for GENIA-MK cues.
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Abstract
Detecting sarcasm in text is a particularly
challenging problem in computational seman-
tics, and its solution may vary across differ-
ent types of text. We analyze the performance
of a domain-general sarcasm detection sys-
tem on datasets from two very different do-
mains: Twitter, and Amazon product reviews.
We categorize the errors that we identify with
each, and make recommendations for address-
ing these issues in NLP systems in the future.

1 Introduction

Sarcasm detection is a tricky problem, even for
humans. The definition of sarcasm is hazy, sar-
casm can be heavily context-dependent, and it is
often marked more by prosodic cues than syntac-
tic characteristics, all of which make its compu-
tational detection particularly complex. Nonethe-
less, some researchers have achieved success in
predicting whether or not instances of text contain
sarcasm based on domain-specific features (May-
nard and Greenwood, 2014; Rajadesingan et al.,
2015), sentiment (Riloff et al., 2013), text patterns
(Davidov et al., 2010), and other semantic features
(Ghosh et al., 2015; Amir et al., 2016).

Since most prior work in this area has been
domain-specific, the findings resulting from these
models may not be broadly applicable. For ex-
ample, Twitter, a popular domain for sarcasm re-
searchers, constrains posts to 140 (or as of very
recently, 280) characters; this means that the type
of sarcasm found in tweets may be quite different
from that found in a domain that allows lengthy
posts, such as Amazon product reviews. Previ-
ously, we explored this phenomenon by experi-
menting with various models to identify an ap-
proach better capable of learning domain-general
sarcasm detection (Parde and Nielsen, 2017) . In
this paper, we build upon that work by conduct-
ing a performance analysis of our best-performing

approach on two different text domains, and iden-
tifying common types of errors made by the sys-
tem. We follow this with recommendations for im-
provement in future sarcasm detection systems.

2 Background

Research on automatic sarcasm detection to date
has taken place on a variety of domains, includ-
ing news articles (Burfoot and Baldwin, 2009),
web forums (Justo et al., 2014), product reviews
(Buschmeier et al., 2014), and tweets (Maynard
and Greenwood, 2014; Rajadesingan et al., 2015;
Liebrecht et al., 2013; Riloff et al., 2013; Bamman
and Smith, 2015; González-Ibáñez et al., 2011;
Reyes et al., 2013; Ghosh et al., 2015; Amir et al.,
2016). The last of these, Twitter-based sarcasm
detection, has dominated the research arena.

Twitter is a popular domain choice for sarcasm
researchers because tweets are readily-available
and may be freely downloaded, and moreover
many tweets are self-labeled by Twitter users
for various attributes using hashtags, or key-
words prefaced with the “#” symbol. However,
tweets are not necessarily representative of text
in general. Their strict length requirement causes
users to adopt sometimes-confusing acronyms and
shorthand spellings. Hashtags often consist of
smashed-together words without any token mark-
ers, and may convey critical content not otherwise
detectable in the tweet text. Finally, tweets may re-
fer to external context that renders them confusing
to later readers. For example, tweeting “Great.”
minutes after an election is called may be easily
understandable to readers at that moment, but am-
biguous to readers who see the tweet several days
later, and much too vague for today’s computa-
tional sarcasm detector to decipher.

Researchers who have focused on detecting sar-
casm in tweets have taken several approaches.
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Maynard and Greenwood (2014) learned hashtags
that commonly correspond with sarcastic tweets,
and checked for those in subsequent tweets to de-
termine whether or not the tweets were sarcastic.
Other researchers utilized Twitter histories, devel-
oping behavioral models of sarcasm usage specific
to individual users (Rajadesingan et al., 2015), or
features based on the users, their audiences, and
the author-audience relationship of the tweet in
question (Bamman and Smith, 2015). Some re-
searchers considered the sentiment (Riloff et al.,
2013) or emotional scenario (Reyes et al., 2013) of
a tweet when deciding whether or not it contained
sarcasm, and finally others experimented with n-
grams (Liebrecht et al., 2013) and word embed-
dings (Ghosh et al., 2015; Ghosh and Veale, 2016;
Amir et al., 2016).

Amazon product reviews, which have also in-
terested sarcasm researchers, differ from tweets in
several key ways: they are of variable (and of-
ten much longer) length, they do not utilize hash-
tags, and they generally contain more context. The
primary domain-specific feature employed by sar-
casm detection researchers using Amazon prod-
uct reviews has been a product’s “star rating” (the
number of stars assigned to the product by the
review writer) (Buschmeier et al., 2014; Parde
and Nielsen, 2017). Other characteristics that re-
searchers have considered in this domain include
syntactic features (Buschmeier et al., 2014; Davi-
dov et al., 2010) and the presence of interjections
or laughter terms (Buschmeier et al., 2014).

Finally, we learned a general sarcasm detection
model from many tweets and fewer Amazon prod-
uct reviews (Parde and Nielsen, 2017). We found
that by applying a domain adaptation step prior
to training the model, we were able to achieve
higher performance in predicting sarcasm in Ama-
zon product reviews over models that trained on
reviews alone or on a simple combination of re-
views and tweets. Our prior work was notable
in that it was the first approach that specifically
sought domain-generality. We analyze its perfor-
mance on different datasets in this work.

3 Sarcasm Detection Methods

We train our sarcasm detection approach on the
same training data used in our previous work
(3998 tweets and 1003 Amazon product reviews),
and apply it to two test datasets: AMAZON,
a 251-instance set of sarcastic (87) and non-

sarcastic (164) Amazon product reviews origi-
nally collected by Filatova (2012), and TWIT-
TER, a 1000-instance set of sarcastic (391) and
non-sarcastic (609) tweets containing the hash-
tags #sarcasm (the sarcastic class) or #happiness,
#sadness, #anger, #surprise, #fear, or #disgust
(the negative class).1 The approach utilizes fea-
tures that seek to convey informative characteris-
tics from the domains considered as well as gen-
eral characteristics expected to remain indicative
of sarcasm across many domains. We briefly de-
scribe each in Table 1; for additional information,
the reader is referred to our earlier paper.

3.1 Classification Algorithm

All features were extracted from each instance, re-
gardless of its domain (feature values were left
empty when it was impossible to fill them, e.g.,
star rating for tweets). Then, the feature space
was transformed using the domain adaptation ap-
proach originally outlined by Daumé III (2007).
Daumé’s approach works by modifying the fea-
ture space such that it contains three mappings of
the original features: a source version, a target ver-
sion, and a general version. More formally, letting
X̆ = R3F be the augmented version of a feature
space X = RF , and Φs,Φt : X → X̆ be map-
pings for the source and target data, respectively,

Φs(x) = 〈x,0,x〉, Φt(x) = 〈0,x,x〉 (1)

where 0 = 〈0, 0, ..., 0〉 ∈ RF is the zero vector. It
is then left to the classification algorithm to decide
how to best take advantage of this supplemental
information. We use Naı̈ve Bayes, following our
earlier work.

4 Model Performance

We compute precision (P ), recall (R), and f-
measure (F1) on the positive (sarcastic) class for
both TWITTER and AMAZON, and report results
relative to the performance of other systems on the
same data (Table 2). Our results on AMAZON are
identical to those reported originally (Parde and
Nielsen, 2017). Our previous paper reported re-
sults on TWITTER when training only on Twitter
data; here we instead apply the same model as ap-
plied to AMAZON and achieve slightly higher re-
sults. Thus, the approach outperforms other sar-

1These hashtags were removed prior to using the data.
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Feature Type Description
CONTAINS TWIT-
TER INDICATOR

Multiple binary features indicating whether the instance contains one of the sarcasm-related hash-
tags, emoticons, and/or indicator phrases learned by Maynard and Greenwood (2014).

TWITTER-BASED
PREDICATES AND
SITUATIONS

Multiple binary features indicating whether the instance contains a positive predicate, positive sen-
timent, and/or negative situation phrase learned by Riloff et al. (2013) from a corpus of tweets.
Includes an additional binary feature that indicates whether one of those positive predicates or sen-
timents precedes one of those negative situation phrases by ≤ 5 tokens.

STAR RATING The number of stars (1-5) associated with the review.
LAUGHTER AND
INTERJECTIONS

Multiple binary features indicating whether the instance contains: hahaha, haha, hehehe, hehe,
jajaja, jaja, lol, lmao, rofl, wow, ugh, and/or huh.

SPECIFIC CHAR-
ACTERS

Multiple binary features indicating whether the instance contains an ellipsis, an exclamation mark,
and/or a question mark.

POLARITY Multiple features indicating the most polar (positive or negative) unigram in the instance, the po-
larity score (-5 to +5) associated with that unigram, the average polarity of the instance, the overall
(sum) polarity for the instance, the largest difference in polarity between any two words in the
instance, and the percentages of positive and negative words in the instance.

SUBJECTIVITY The percentages of strongly subjective positive words, strongly subjective negative words, weakly
subjective positive words, and weakly subjective negative words in the instance.

PMI Multiple features indicating the pointwise mutual information (PMI) between the most polar uni-
gram and the 1, 2, 3, and 4 words that immediately follow it.

CONSECUTIVE
CHARACTERS

Multiple features indicating the highest number of consecutive repeated characters in the instance
(e.g., “Sooooo”⇒ 5) and the highest number of consecutive punctuation characters in the instance.

ALL-CAPS Multiple features indicating the number and percentage of all-caps words in the instance.
BAG OF WORDS Two types of bag-of-words features: one in which the words included in the “bag” are those most

closely associated with four groups of training instances (Sarcastic × Non-Sarcastic) × (Amazon
× Twitter), and one in which the words in the “bag” were the most common words in those groups
(any duplicates across groups were removed).

Table 1: Features included in the sarcasm detection system.

P R F1

TWITTER
Parde and Nielsen
(2017) 0.55 0.62 0.58

Our Results 0.53 0.68 0.59

AMAZON
Buschmeier et al.
(2014) 0.82 0.69 0.74

Our Results 0.75 0.82 0.78

Table 2: Performance of our sarcasm detection model
relative to prior work on the same datasets.

Amazon Twitter
Predicted Sarcastic 24 235
Predicted Non-Sarcastic 16 127

Table 3: Errors included in the analysis.

casm detection methods on both AMAZON and
TWITTER.

5 Error Analysis

5.1 Methodology

We conduct our error analysis on all misclassified
instances (402 total) in both AMAZON and TWIT-
TER. The errors were distributed as shown in Ta-
ble 3. For both datasets, there were more false
positives (instances predicted to be sarcastic when
they really weren’t) than false negatives.

We analyzed each misclassified instance, mak-
ing notes regarding characteristics that may have
led to the misclassification. We then compiled

these notes into more general error categories,
identified (with examples from our data) in Tables
4 and 5. Some instances were assigned to multiple
error categories.

5.2 Results

There were several leading trends in the misclassi-
fications. Among false negatives in both datasets,
in many cases the sarcasm expressed could only
be inferred using world knowledge (an example
tweet from this category, noted in Table 4, is When
my 10 yr old niece texts me to let me know she
is taller than me. #thanks #sarcasm #hateyoubut-
loveyou). Within tweets specifically, some (23)
did not convey sarcasm once the sarcasm hashtag
was removed. Some (8) also contained sarcastic
content only in other hashtags associated with the
tweet. Other tweets (13) were found upon man-
ual inspection to not be sarcastic, despite contain-
ing the sarcasm hashtag; instead, these tweets dis-
cussed sarcasm in some way.

Nine false negatives contained words typically
associated with sarcasm; developing better ways
of identifying these words could eliminate such er-
rors. For product reviews, a common trait of mis-
classified instances was that they developed sar-
castic stories about the product (for instance, one
review describes the magical qualities of a pair of
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Type Amazon Twitter Example
Requires World
Knowledge 7 63 When my 10 yr old niece texts me to let me know she is taller than me.

#thanks #sarcasm #hateyoubutloveyou

Formatted as Story 4 0

I thought that I had shrunk everything in the dryer, so I gave up and put
on these new Hanes cushioned crews. Immediately, I felt a sense of joy.
It was strange, like the first time you kiss someone, or how you felt as a
kid when waking up on Christmas morning. I kept wondering if it was the
socks that made me feel that way, or if I was just somehow subconsciously
triggered to reminisce. That day, in it’s entirety, was wonderful. At least
50 people I had never spoken to before somehow knew my name. These
were people on the street, even. At the coffee shop, the girl who normally
had the demeanor of a disgruntled, middle-age cafeteria worker actually
gave me a free coffee and tried to flirt with me. Not just to flirt, but a
stumbly sort of flirting that only comes about when desire has made you
lose your grasp of language structure. At the university, I was excused
from an upcoming midterm for a reason I don’t even remember. I think it
involved being “an attentive enough listener at lectures.”

Positive Sentiment +
Negative Situation 0 9 #HappyBirthdayTwitter Thanks for providing a platform where people

can troll and abuse each other #sarcasm
Negative Sentiment +
Positive Situation 0 3 No one’s awake at home, should’ve gone to the gym. Life is tough doing

nothing all day #messyhouse #nodinner #sarcasm

Highly Negative 1 3

Don’t waste your money on this convoluted and unfriendly piece of over-
priced junk. ... If you find out too slowly how lousy this item is, you are
stuck with it. And don’t give it as a gift at Xmas - your recipients can’t
return it either. You have given them an expensive paperweight unless
all the stars are in alignment for them, andthen they’ll probably find it
useless anyway.

Many All-Caps Words 0 6 My brain at 3am = ALWAYS A GREAT TIME. #sarcasm
Requires #sarcasm 0 23 Some people know how to really make you feel valued #sarcasm
Sarcasm in Hashtags 0 8 Oh hi LA! Long time no see! #sarcasm #yesterday #IneedALLTHENAPS
Contains Sarcastic
Word or Phrase 0 9 Not jealous at all of anyone who could afford a pair of the #Irregular-

Choice #AliceInWonderland shoes today. Ohh no, not at all. #sarcasm

Mostly Non-Sarcastic
with Some Sarcastic
Phrases

4 1

I drive a Toyota Sienna minivan with JBL stuff on my speakers. Appar-
ently that was important. Now it works great. Reception in Houston has
been great. It plays through the line-in Aux port great (I use it with my
ipod and creative zen) and USB keys work. I’m not sure it ever shows
the file names it’s playing off the USB, which is weird but not worth $100
to upgrade to a better stereo. So, it works but had quite a bit of fiddling
to make it go. It’s great for the $. I have fairly low standards...I only
listen to audiobooks, podcasts, NPR, etc. So I have no idea what the au-
diophiles would think. (and, for the snarky, YES, there was a sale on the
word “great” today.)

Non-Sarcastic 1 13 I was being sarcastic with that tweet by the way incase people thought I
was serious.... #sarcasm

Table 4: Errors: Instances incorrectly predicted as non-sarcastic.

socks at length); in such stories there tend to be
particularly few linguistic indicators of sarcasm.

False positives were typified by different char-
acteristics. Many tweets (109) in this category in-
cluded excessive punctuation, a trait commonly
associated with sarcastic text. Other instances
(29 tweets and 5 product reviews) contained a
mix of positive and negative sentiment, which
the model mistook for sarcasm. Some misclassi-
fied instances contained many technical or “niche”
words, for which few of the polarity-based fea-
tures could have been computed, and others in-
cluded ambiguous phrases often found in sarcas-
tic text (e.g., Jeez, how am I supposed to react to
meeting someone who identifies her spirit animal
as Claire Underwood? #HouseOfCards #Fear).

Some tweets contained misspellings that may have
confused the model, and some product reviews
were non-sarcastic reviews of “silly” products. In
the case of these latter reviews, the model may
have simply learned to mark any reviews associ-
ated with those products as sarcastic. Finally, upon
manual inspection we found that four of the Ama-
zon product reviews marked as non-sarcastic ac-
tually contained at least some sarcastic text, and
27 of the tweets that did not contain the sarcasm
hashtag were in fact sarcastic.

5.3 Recommendations

Based on our analysis, we recommend that the
following factors be taken into account in future
systems. Beyond their anticipated direct bene-
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Type Amazon Twitter Example
Odd Product/Product
that Seems Sarcastic 5 0 I haven’t had the chance to use it yet as the whip is broken. I’m hoping

I can either get a replacement whip or just get my money back.
Mix of Positive and
Negative Sentiment 5 29 Good morning. Coffee. Portfolio. Torment. School. #school #sadness

Very Negative 6 5

This book is so terrible that I couldn’t even make it past the first 1/4
of it - the characters were horrible, shallow people, and the plot is so
see-through. Clearly, this book is one of Sophie’s earlier works - the
“plot” is terrible. Don’t waste your money - don’t take a chance in case
you crack the spine - you won’t be able to return it!

Very Positive 0 9 Be happy. Not because everything is good, but because u can see the
good side of everything #happiness

Ambiguous Phrases 2 26 Jeez, how am I supposed to react to meeting someone who identifies her
spirit animal as Claire Underwood? #HouseOfCards #Fear

Contains Technical
Terminology 3 31

But it’s not much louder than the two-stage oillube compressor it re-
placed. I needed something that could be moved in a pinch, something
that could run off 110V 15A service I have in the garage, and something
with enough capacity to run my air ratchets, cut off tools, etc.

Lots of Punctuation 3 109 #SongToday WORK by @rihanna heavyyyyyyyyy!!!!! #fancy #happi-
ness

Short 3 11 Oh exams coming up #sadness

Many All-Caps Words 1 14 Episode 42 of @TTGpodcast is outstanding! I was like “yeah good
qustion Rocket–OMG THAT WAS ME I ASKED THAT!!” #surprise

Contains Misspellings 0 13 Thank u Spring for this beautuful snow #Spring #snow #Surprise

Sarcastic 4 27 I’m truly thrilled to find out which of my bodily fluids will start leaking
next. Is there a bingo card for the third trimester? #surprise

Table 5: Errors: Instances incorrectly predicted as sarcastic.

fits, adopting these recommendations should de-
crease reliance on syntactic features (e.g., exces-
sive punctuation and all-caps words).

World Knowledge: For many false negatives,
the sarcasm expressed was detectable only through
knowledge of the world. Frame-semantic re-
sources could be used to detect some sarcasm
instantiated through script-based inconsistencies.
Furthermore, features could be derived from com-
monsense knowledge bases such as that of the
Never-Ending Language Learner (Mitchell et al.,
2015) to better detect contradictory expressions.

Text Normalization: When detecting sarcasm
in user-generated content (e.g., Twitter), word
splitting algorithms should be applied in the fu-
ture to disambiguate compound hashtags into their
constituent words, and spelling correction algo-
rithms can be applied to normalize text. The lat-
ter should be done with caution, as in some cases,
spelling normalization may not be desirable—for
instance, “sooooo” may convey something differ-
ent from “so,” while “mihgt” likely conveys the
same information as “might.”

Enhanced Lexicon of Sentiment and Situa-
tion Phrases: Some of the errors we identified
could have been easily addressed had the system
understood that they described negative situations
in positive terms, or vice versa. We attempted to
capture this phenomenon by employing features

based on the work of Riloff et al. (2013). How-
ever, we found that the phrases identified by Riloff
et al. were virtually non-existent in our Twitter
dataset. To properly employ these types of fea-
tures, new events and sentiment phrases should
be continually mined from Twitter to account for
evolving linguistic patterns and trends in public
opinion.

6 Conclusion

In this work, we analyze the performance of a
domain-general sarcasm detection approach on
two datasets: TWITTER and AMAZON. We verify
that the approach outperforms others on the same
data, and conduct an analysis of the misclassified
instances to identify common error types. Finally,
we make recommendations for addressing these
errors. It is our hope that these insights will en-
able researchers to build high-performing sarcasm
detection systems suited to many text domains.
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Abstract
This paper describes the first version of
an open-source semantic parser that creates
graphical representations of sentences to be
used for further semantic processing, e.g. for
natural language inference, reasoning and se-
mantic similarity. The Graphical Knowledge
Representation which is output by the parser
is inspired by the Abstract Knowledge Repre-
sentation, which separates out conceptual and
contextual levels of representation that deal re-
spectively with the subject matter of a sentence
and its existential commitments. Our repre-
sentation is a layered graph with each sub-
graph holding different kinds of information,
including one sub-graph for concepts and one
for contexts. Our first evaluation of the system
shows an F-score of 85% in accurately repre-
senting sentences as semantic graphs.

1 Introduction

Semantic parsing to construct graphical meaning
representations is an active topic at the moment
(Banarescu et al., 2013; Perera et al., 2018; Flani-
gan et al., 2014; Wang et al., 2015; Berant et al.,
2013). It is not without its critics, however. Ben-
der et al. (2015) object to the conflation of sen-
tence meaning with speaker meaning, inherent in
trying to use annotations to learn a direct mapping
from sentences onto highly domain specific mean-
ing representations. Bos (2016) and Stabler (2017)
have also questioned the expressive power of Ab-
stract Meaning Representation (AMR) (Banarescu
et al., 2013), one of the most popular graphical
meaning representations.

We believe that both lines of criticism are well-
founded, but that there is still value in parsing to
produce graphical representations. This paper de-
scribes the first version of an open source semantic
parser that creates graphical representations that
are inspired by those produced by the proprietary
system described in Boston et al. (forthcoming).
Salient features of the system are:

• It uses the enhanced dependencies (Schus-
ter and Manning, 2016) of the Stanford Neu-
ral Universal Dependency parser (Chen and
Manning, 2014) to create dependency graphs,
on top of which fuller semantic graphs are
constructed.

• Interaction between different sub-graphs is
used to account for phenomena like Booleans
(negation, disjunction), modals and irrealis
contexts, distributivity and quantifier scope,
co-reference, and sense selection.

• Though oriented to using formal ontologies
to support a Natural Logic (MacCartney and
Manning, 2007) style of Natural Language
Inference (NLI), it also supports the some-
what different task of measuring semantic
similarity.

• More philosophically, we view our graphs
as first-class semantic objects that should be
directly manipulated in reasoning and other
forms of semantic processing. We do not see
them as just a prettier way of writing down
formulas in first- or higher-order logic.

In the next section we briefly describe the pre-
cursors and motivations behind our approach. In
section 3 we present the Graphical Knowledge
Representation (GKR) and how it is constructed.
Section 4 evaluates the current parsing into GKR,
while section 5 discusses our future additions to
the system. In section 6 we compare GKR to other
similar representations and parsers. In the last sec-
tion we offer our conclusions and point to a com-
panion paper discussing named graphs.

2 AKR and Layered Graphs

The so-called Abstract Knowledge Representation
(AKR)1 (Bobrow et al., 2007b,a) focused on in-

1AKR is the semantic component of the XLE platform
(Maxwell and Kaplan, 1996)
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Figure 1: Concept graph (blue), property graph (yellow) and context graph (grey) from Boston et al.
(forthcoming) for Negotiations prevented a strike.

tensional phenomena in natural language, with the
sentence Negotiations prevented a strike being a
driving example (Condoravdi et al., 2002). The
claim was that, viewed in the right way, the logi-
cal formula

∃n, s. negotiation(n)∧ strike(s)∧
prevent(n, s)

was a correct but incomplete semantic represen-
tation. It is correct if the variables n and s are
construed as referring to sub-concepts of the con-
cepts negotiation and strike, rather than to an indi-
vidual strike or negotiation. The formula just de-
scribes the subject matter: some kind of preven-
tion, restricted to a relation between some kind of
negotiation and some kind of strike. The formula,
construed as talking about concepts, makes no as-
sertions about the existence or otherwise of any
such negotiations or strikes. To complete the rep-
resentation it is necessary to add a contextual level
that makes assertions about whether instances of
the concepts exist. In this case there are two con-
texts. A top level context in which the negotia-
tion concept is asserted to have an instance; and
a hypothetical (prevented) context in which the
strike is claimed to have an instance. The two con-
texts are in an anti-veridical relationship, meaning
that the strike concept that has an instance in the
lower hypothetical context has no instance in the
top context. Later work (Nairn et al., 2006) used
this framework to capture a wide variety of rel-
ative polarity inferences arising from factive and
implicative verbs.

A semantics for a variant of AKR was presented
in the form of a Textual Inference Logic (TIL)

(de Paiva et al., 2007). This recast AKR as a con-
texted description logic, but was not strictly faith-
ful to AKR’s eschewal of reference to individuals
in favor of reference to concepts. The underly-
ing semantics for TIL followed that of description
logic by not taking concepts as primitive, but in-
stead defining concept relations in terms of rela-
tions between sets of individuals in concept exten-
sions.

The approach was revisited in an explicitly
graphical form (Boston et al., forthcoming), re-
casting AKR as a set of layered sub-graphs, in-
cluding a conceptual graph, a contextual graph,
along with a property graph, syntactic dependency
graph, a co-reference graph, and with the possi-
bility of layering in further sub-graphs should an
application demand it. The graphical representa-
tion of Negotiations prevented a strike is shown in
Figure 1.

The graphical format was more than just nota-
tional sugar to provide more colorful and accessi-
ble representations. First, dominance in the con-
cept and property graphs is strictly aligned with
concept restriction: the parent concept is subsec-
tively restricted by the child concept or property.
Second, a strict separation between the concept
and context graph is enforced: concepts cannot
be restricted by contexts. Just one kind of link
between contexts and concepts is permitted: a
context-head that indicates the main concept that
is held to have an instance within the context, but
whose instantiation may flip in a higher context.
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3 The Graphical Knowledge
Representation

Following these motivations we implement a se-
mantic parser that rewrites a given sentence to a
layered semantic graph. The implementation of
the parser is done in Java. The semantic graph
consists of at least four sub-graphs, layered on
top of a central conceptual (or predicate-argument)
sub-graph. Each such graph encodes different in-
formation. As will be shown, this approach in-
creases the depth of expressivity and precision be-
cause we can, if needed, ignore some sub-graphs
and lose precision but we will not lose accuracy.
Each semantic graph is a rooted, node-labeled,
edge-labeled and directed graph that consists of a
dependencies sub-graph, a conceptual sub-graph,
a contextual sub-graph, a properties sub-graph and
a lexical sub-graph. It can include further sub-
graphs as well, such as the co-reference and the
temporal sub-graphs. In the following we describe
the five obligatory sub-graphs of the sentence The
boy faked the illness. and what rewritings are re-
quired to obtain those graphs.

3.1 The Dependency Graph

The dependency graph represents the full parse of
the sentence as this is produced by the Univer-
sal Dependencies (UDs). For GKR we use the
Stanford CoreNLP Software to produce the depen-
dencies and precisely to produce the enhanced++
UDs (Schuster and Manning, 2016). The en-
hanced++ UDs make implicit relations between
content words more explicit by adding certain re-
lations, e.g. in the case of subjects of control verbs
the relation between the subject of the main verb
and the control verb is marked by adding an ex-
tra edge pointing from the control verb to the sub-
ject. The enhanced++ UDs offer a very good basis
for our approach because they already deal with
many of the phenomena that any semantic parser
needs to deal with. The output graph of the Stan-
ford parser is rewritten to our own implementation
of the dependency graph (see Figure 2) so that it
conforms to the constraints of our layered seman-
tic graph.

3.2 The Conceptual Graph

The conceptual graph shown in Figure 3 (left) con-
tains the basic predicate-argument structure of the
sentence as we can extract it from the UDs: fake
has boy as one of its arguments (this is the agent,

Figure 2: The dependency graph of The boy faked
the illness.

Figure 3: The conceptual graph (left) and the con-
textual graph (right) of The boy faked the illness.

the A0, the semantic-subject or whatever else any
other theory might call it) and illness as its other
argument (again, this is the patient, A1, semantic-
object). The conceptual graph is the core of the
semantic graph and glues all other sub-graphs to-
gether. Thus, if we just look at the concept graph,
we know the subject matter of the sentence. A
more formal representation might look like this:
fake(f) & boy(b) & illness(i) & agent(f,b) & pa-
tient(f,i). As with AKR (section 2), the variables f,
b, and i are not individuals but concepts. The for-
mula illness(i) does not say that i is an instance of
illness, but that i is some sub-concept of the lexi-
cal concept illness. This means that the concep-
tual graph does not convey all information con-
veyed by the sentence; it makes no claims about
the existence or otherwise of boys or illnesses. But
insofar as it goes, the conceptual graph is accu-
rate; what it expresses is correct but incomplete.
It allows judgments to be made about semantic
similarity between sentences, but not on its own
judgments about truth or entailment. The separa-
tion of completeness from correctness, and simi-
larity from entailment, is hard to achieve for more
conventional logical representations that quantify
over individuals.

3.3 The Contextual Graph

The contextual graph provides the existential com-
mitments of the sentence. It introduces a top con-
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Figure 4: The conceptual graph (left) and the contextual graph (right) of The dog is not carrying the stick.

text (or possible world) which represents what-
ever the author of the sentence takes the described
world to be like; in other words, whatever he/she
commits to be the “true” world. Below the top
context additional contexts are introduced, corre-
sponding to any alternative worlds introduced in
the sentence. Each of these embedded contexts
makes commitments about its own state of af-
fairs, principally by claiming, through the ctx hd
link, that the context’s head concept is instantiated
within that context.

Linguistic phenomena that introduce alternative
worlds and thus such embedded contexts are nega-
tion, disjunction, modals, clausal contexts of be-
lief and knowledge, implicatives and factives, im-
peratives, questions, conditionals, and distributiv-
ity. Apart from the latter four, the rest of the phe-
nomena have already been implemented for this
first version of the system by rewriting them to the
corresponding contexts. The implicatives and fac-
tives are the only contexts that cannot be recog-
nized and dealt with from the surface form of the
sentence because their factuality predictions are
inherent in their meaning. Therefore, their signa-
tures have to be looked up. For this purpose we use
the open source, extended lexicon of Stanovsky
et al. (2017) which is based on the works of Kart-
tunen (1971), Karttunen (2012) and Lotan et al.
(2013). The lexicon holds more than 2,400 unique
words, each assigned to a signature for positive
and negative contexts. Predicates are assigned to
signatures based on their finite and infinite com-
plements. The extracted signatures are utilized for
introducing the necessary contexts.

Our example sentence The boy faked the illness.
contains such an implicative context. In its con-
textual graph in Figure 3 (right), the top context
says that there is an instance of faking in which an
instance of a boy is faking an instance of an ill-
ness. The top context has an edge linking it to its
head fake, which shows that there is an instance
of faking in this top context. The top context has
a second, anti-veridical edge linking it to the con-

text ctx(illness) which has illness as its head. This
head edge asserts that there is an instance of illness
in this contrary-to-fact context ctx(illness). But
since ctx(illness) and top are linked with an anti-
veridical edge, it means that there is no instance
of illness in the top world which is accurate as the
illness was faked.2 Any other concepts, e.g. boy,
involved in the sentence but not explicitly repre-
sented in the contexts graph are taken to exist in
the top context.

The introduction of contexts or possible worlds
to deal with intensional predicates is familiar,
though maybe not so much so when combined
with reference to concepts rather than individuals.
The treatment of Boolean operations like negation
and disjunction through contexts is less familiar
(though a feature too of AKR). Negation intro-
duces an anti-veridical context. For the sentence
The dog is not carrying the stick. (see Figure 4)
the negated context has as its head the concept of
carrying, restricted to be a carrying of a stick by
the dog. In the negated context, it is asserted that
there is an instance of this kind of carrying; but in
the top context this concept is asserted to be unin-
stantiated. The impact of the negation is only seen
in the context graph; the concept graph is identical
for the negated and un-negated sentence. At the
moment, we do not deal with morphological nega-
tion, e.g. The boy is unhappy., i.e. no additional
context is introduced for such negations. Such
negations are dealt as normal lexical items for the
moment; the mapping to the lexical resources is to
account for the correct negative meaning.

Disjunction and conjunction do have an impact
on the concept graph. Both introduce an addi-
tional complex concept that is the combination of
the individual disjoined/conjoined concepts. Each
component concept is marked in the concept graph
as being an element of the complex concept (Fig-

2Note that definiteness does not project up through pre-
suppositions in a way that predicts existence. Definiteness in-
dicates that some specific kind of illness is presupposed, e.g.
a (claimed) sore throat that kept the boy away from school,
but not some specific individual.
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Figure 5: The conceptual graph (left) and the contextual graph (right) of The boy walked or drove to
school.

Figure 6: The lexical graph (on top of the concep-
tual graph) of The boy faked the illness.

ure 5, left). The difference between conjunction
and disjunction is that disjunction introduces addi-
tional contexts for the components of the complex
concept (Figure 5, right). These contexts say that
in one arm of the disjunct the walking concept is
instantiated, while in the other arm it is the driv-
ing concept that is instantiated. The conjunction
would just say that both concepts are instantiated
in the upper context.

3.4 The Properties Graph

The properties graph (Figure 7) imposes further,
mostly non-lexical, restrictions on the graph. It
associates the conceptual graph with morphologi-
cal and syntactical features such as the cardinal-
ity of nouns, verbal tense and aspect, finiteness
of specifiers, etc. For now, for building the prop-
erty graph we use our own shallow morphological
analysis that is based on the Part-Of-Speech (POS)
tags provided by the parser. It is clear that such
an analysis cannot capture all complex nuances of
phenomena like that of tense and aspect and that
it only offers a simplification of those. Still, the
properties graph remains accurate; it does not con-
vey all that is there but whatever is conveyed is
correct. We plan to implement a temporal graph
which is expected to account for the current sim-
plification.

3.5 The Lexical Graph

The lexical graph of Figure 6 carries the lex-
ical information of the sentence. It associates
each node of the conceptual graph with its dis-
ambiguated sense and concept, its hypernyms and
its hyponyms, making use of JIGSAW3 by Basile
et al. (2007), WordNet4 by Fellbaum (1998) and
SUMO5 by Niles and Pease (2001) and Pease
(2011). For building the lexical graph, the whole
sentence is first run through the knowledge-based
JIGSAW algorithm which disambiguates each
word of the sentence by assigning it the sense with
the highest probability. Briefly, JIGSAW exploits
the WordNet senses and uses a different disam-
biguation strategy for each part of speech, taking
into account the context of each word. It scores
each WordNet sense of the word based on its prob-
ability to be correct in that context. The sense with
the highest score is chosen as the disambiguated
sense and is added as a new node to the lexical
graph, with an edge linking the word to its sense.
Although the sense is the only lexical information
that is visible on the graph, there is more informa-
tion encoded behind this sense node. Firstly, we
encode the SUMO concept corresponding to the
disambiguated sense. SUMO is the largest, pub-
licly available ontology that maps WordNet senses
to concepts (Niles and Pease, 2003). We access
our local copy of the SUMO ontology and extract
the concept mapped to the disambiguated sense as
well as the hypernyms and hyponyms correspond-
ing to that sense and concept. This information
is then stored within the node so that it is easily
accessible at all times. The lexical graph can and
will be expanded with more information like the
one coming from word embeddings. We plan to
integrate this component at the next stage of our
work.

3Available under https://github.com/pippokill/JIGSAW
4Available under http://wordnet.princeton.edu/
5Available under http://www.ontologyportal.org
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Figure 7: The property graph (on top of the conceptual graph) of The boy faked the illness.

4 Evaluation of GKR

4.1 Intrinsic Evaluation

We would like to evaluate our semantic parser to
see how many phenomena can already be accu-
rately represented and what should still be im-
proved or implemented. To this end, we use the
HP test suite by Flickinger et al. (1987), an ex-
tensive test suite with various kinds of syntac-
tic and semantic phenomena, originally created
for the evaluation of parsers and other NLP sys-
tems. The test suite features 1250 sentences deal-
ing with some 290 distinct syntactic and seman-
tic phenomena and sub-phenomena. Some of the
contained sentences are ungrammatical on pur-
pose (and marked as such). For our testing we
chose to use a subset of the test suite consisting
of 781 sentences (and 180 phenomena, an average
of 4.3 sentences pro phenomenon). We decided to
exclude ungrammatical sentences (314) and sen-
tences with typos (20) since our testing is aiming
at testing the coverage of the semantic graphs and
not the accuracy of the parser — which we in-
evitably and indirectly do as will be shown shortly.
We also excluded all sentences (135) with condi-
tionals, anaphora and ellipsis phenomena because
such cases are still under implementation and thus
yet not part of our system. The test set does not
include challenging lexical semantics phenomena,
e.g. polysemous words, as it aims at the cover-
age of syntactic and deeper semantic phenomena.
We run the test set of 781 sentences through our
semantic parser and got human-readable represen-
tations of the semantic graphs which 2 annotators
manually evaluated for their correctness. A rep-
resentation was judged correct when the concepts,
contexts and properties sub-graphs exactly capture
the information they should. If the dependency
graph is wrong, then the whole representation is
labelled as parser error. Erroneous syntactic pars-
ing will always produce erroneous conceptual and
contextual graphs, which we do not deal with at

the moment. The lexical sub-graph was also not
judged for the correctness of the selected senses as
this would result in evaluating the disambiguation
algorithm and the coverage of the lexical resources
themselves, which is not the goal of this work.
However, any failures in the lexical resources and
thus in the lexical sub-graph do not have an im-
pact on the rest of the graphs, which again con-
firms the flexibility of the layered graph approach.
The results of the manual evaluation are shown in
Table 1.

Label Sentences Percentage
correct 591 75.6%
false 5 0.6%
parser error 185 23.6%
Total 781

Table 1: Evaluation results.

Table 1 shows that 185 cases could not be cor-
rectly parsed by the Stanford Parser and thus the
output semantic representation is inevitably wrong
as well. From the remaining 596 sentences for
which a correct parse was given, 591 were rewrit-
ten to correct semantic graphs and 5 had semantic
graphs with missing or wrong information. The
overall performance of the system can be seen in
Table 2. The initial version of our semantic parser
achieves an F-score of 85% when tested on this
subset of the HP test suite. Although this test suite
and evaluation are not exhaustive, the performance
of the system delivers promising results. Note that
the relative quality of the integrated tools, e.g. the
syntactic parser, the implicatives-factives lexicon,

Metric Percentage
Precision 0.99
Recall 0.76
F-score 0.85

Table 2: Overall performance of the system.
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Figure 8: Schematic NLI computation for the pair A= No onion is being cut by a man. (left) B= An onion
is being cut by a man. (right).

etc., has a direct impact on the overall quality of
the semantic representations and the performance
of our parser.

4.2 Schematic Computation of Natural
Language Inference

We would like to very briefly demonstrate how
GKR facilitates semantic processing tasks, such
as natural language inference (NLI) and semantic
similarity, by describing the inference computa-
tion of the pair A = No onion is being cut by a man.
B= An onion is being cut by a man.6 For doing
NLI (see Figure 8) we determine specificity rela-
tions7 between pairs of individual concept nodes,
one from the premise (A) and one more from the
hypothesis (B) sentence. In the figure these corre-
spond to equality relations and are represented by
the orange arrows. These initial specificity judg-
ments can then be updated with any further re-
strictions placed on the nodes from the properties
and lexical graphs. The context graph is then used
to determine which concepts are instantiated or
uninstantiated within which contexts. In our ex-
ample, we can see that cut is instantiated, i.e. is
the ctx head of the top of B but is antiveridical in
the top of A. Similarly, in B onion is veridical in
top (and therefore it is not explicitly represented)
while in A it is veridical only in context of cut and
since ctx(cut) is antiveridical in top, onion is also
antiveridical in top through transitivity. As a final
step for inference, instantiation and specificity are

6The pair comes from the SICK corpus (Marelli et al.,
2014).

7The specificity relations are taken as discussed in Mac-
Cartney and Manning (2007) and Crouch and King (2007).

combined to determine entailment relations.
In the same process, if we choose to ignore the

context graphs and the instantiation of concepts,
we can also measure semantic similarity — which
does not require judgments about truth or entail-
ment. The semantic similarity between the two
sentences can be measured on the basis of the con-
cepts graphs of the sentences. Since the concept
graph represents “what is talked about”, the com-
parison of the concepts graphs can compute the
overall similarity by computing the similarity of
the different concept pairs of the two sentences
and merging them together.

5 Future Work

At this point, old-school semanticists will proba-
bly be asking: but what about quantifier scope?
This is a rarer phenomenon than the literature
would have you believe. The primary reading for
a sentence like Three boys ate five pizzas involves
no scope variation: there were just three boys and
five pizzas, and eating. This cumulative reading is
difficult to express in standard logical representa-
tions without recourse to branching quantifiers, or
to treating three and five not as generalized quan-
tifiers but as cardinality restrictions on existential
quantifiers. It is an inelegance that scoped read-
ings are the default in these representations, while
being the exception in practice.

That being said, quantifier scope — or rather,
distributivity — does occur; take two tablets three
times really does involve six tablets. We regard
distributivity as context inducing (Figure 9). The
distributional context has two arcs into the concept
graph. In addition to the normal context head arc,

33



Figure 9: Distributivity for Take two tablets three times.

which marks the body of the distribution, there is a
context restriction arc that marks the concept to be
distributed over: in this case the times that com-
prise individual sub-concepts of the concept 3-
times; see (van den Berg et al., 2001) for more de-
tails on individual sub-concepts. For each individ-
ual sub-concept in the distributive restriction, there
is asserted to be an instance of the head concept
further restricted by the individual sub-concept.

Distributive contexts are similar to our proposed
conditional contexts, which also have head (con-
sequent) and restriction (antecedent) arcs. This
is reminiscent of the use of conditionals to ex-
press universal quantification in Discourse Repre-
sentation Theory (Kamp and Reyle, 1993). That
quantification is treated as having a modal aspect
should not be that surprising. In first order modal
logic, modal operators switch the context of eval-
uation of sub-formulas by altering the assignment
of a possible world. Quantifiers switch the con-
text of evaluation by altering the assignment to a
variable. Both, in other words, switch contexts of
evaluation. Our contextual treatment of distribu-
tivity just makes this similarity more apparent.

The proposed layered semantic graph can in-
volve further sub-graphs as mentioned before.
One of them may be the co-reference sub-graph
which should link together any elements referring
to the same entities, e.g. to resolve any pronouns
involved or to identify two elements as “identi-
cal”, i.e. as referring to the same entity. A sim-
ple example of those kinds of linking can be see
in Figure 10 for the sentence John, our neighbor,
loves his wife. Here, the pronoun his is resolved to
its referent John and John is set as “identical” to
neighbor. Similar co-reference graphs expanding
over the level of a single sentence should be able to
account for some inter-sentential semantics where
the co-referring entities of different sentences, e.g.

Figure 10: Co-reference graph for John, our neigh-
bor, loves his wife.

of the premise and of the hypothesis in the natu-
ral language inference task, are inter-connected to
each other and thus facilitate the further process-
ing.

6 Related Work

How does GKR differ from its precursor, AKR?
While the two representations are very close, they
differ in that a) AKR is based on the syntax pro-
duced by LFG while GKR is based on UDs and
that b) AKR is rather flat-structured while GKR
is based on graphs. Although LFG is probably
more informative and could offer us for free some
of the features that we need to implement extra
for UDs, its parsing is either not robust enough or
not openly available in comparison to state-of-the-
art dependency parsers. Also, it is not straight-
forwardly combinable with other state-of-the-art
techniques that we wish to utilize, e.g. with word
embeddings. Additionally, a graph-based repre-
sentation is beneficial for our purposes, as already
discussed in Section 1. Last but not least, AKR
and its most recent revision in Boston et al. (forth-
coming) is proprietary software and our intention
is to produce a semantic parser that can be offered
freely and openly to the community.

A more recent meaning representation is the
AMR (Banarescu et al., 2013), which aims at in-
troducing a semantic representation language with
which a given sentence can be translated to its se-
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mantic formula. The representation is based on
manual annotation of the structures and is thus
expensive, while the attempts for automatic cre-
ation of AMRs are currently showing low accu-
racy (Flanigan et al., 2014; Wang et al., 2015). But
this is not the only drawback: AMR ignores func-
tion words, tense, articles and prepositions which
means that important information for the semantic
processing remains unused. Additionally, AMR
has limited expressive power for universal quan-
tification (Bos, 2016), models negation in an in-
convenient way (Bos, 2016) and does not make
a distinction between real and irrealis events (as
in our example The boy faked the illness.). An-
other disadvantage is the fact that AMR is biased
towards English as pointed out by the creators. Al-
though our system is also built for English and
the lexical resources necessary are also language-
dependent, the approach and GKR itself are highly
language-independent. Furthermore, the fact that
the sentential representation is conflated in only
one graph does not facilitate semantic tasks that
require stepwise access to different kinds of infor-
mation, e.g. semantic similarity tasks.

A more venerable representation is DRT (Kamp
and Reyle, 1993). This follows a first-order,
individual based approach to predicate-argument
structure rather than the concept based approach of
AKR. However, the ability to name sub-Discourse
Representation Structures (DRSs), and have those
sub-DRSs act as arguments of (modal) predicates
is very closely connected to our use of contexts.
DRT shows a willingness to freely mix individual
and context-denoting discourse referents, which
tends to bring a highly realist approach to possi-
ble worlds in its wake. GKR, on the other hand,
is careful to impose a kind of blood-brain barrier
between concepts and contexts.

DepLambda (Reddy et al., 2016) uses a lambda
calculus based method to transform dependencies
into logical forms. Similar to GKR in availing it-
self of general dependency parsers, the semantic
representation is essentially non-graphical, and we
are unsure about how existential commitments are
dealt with and whether this approach could really
be practically used for the tasks of inference and
reasoning. We are also skeptical about the fact
that the semantic representations of semantically-
identical sentences, e.g. a passive/active sentence,
do not look alike, as the authors themselves ob-
serve.

Although AKR, AMR, DRT and DepLambda
are the closest to our representations, there are a
couple of other approaches that can be viewed as
a step towards producing semantic representations
for semantic processing. Firstly, there is the work
of Schuster and Manning (2016) who bring UDs a
step further by enhancing them with more explicit
relations which are needed for any kind of further
semantic processing. Their work is the basis of
GKR, not only because the produced UDs are of
high quality (Schuster and Manning, 2016), but
also because different linguistic phenomena that
can change how a semantic representation looks
like are already solved, e.g. the subject of raising
verbs is made explicit. There are still cases that
are not optimally solved, e.g. copulas and exple-
tives, and we hope that they can be improved in the
future. A similar attempt is the system PropS by
(Stanovsky et al., 2016) which is designed to ex-
plicitly express the proposition structure of a sen-
tence. The system abstracts away from the syntac-
tic structure by adding relations such as outcome
and condition for conditionals while not becoming
too abstract as AMR is. It is thus going this “next”
step towards semantics without however offering
a more complete semantic structure.

7 Conclusions

We have presented an expressive, graph-based
semantic formalism that supports semantic pars-
ing, as well as modal and hypothetical textual
inference. Future work will account for the formal
definitions of the notions presented in this paper.
The first version of the parser is publicly available
under https://github.com/kkalouli/
GKR_semantic_parser. A companion
paper (Crouch and Kalouli, 2018) discusses in
more detail the benefits of such layered graphs for
semantic representation.
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Computational Argumentation:
A Journey Beyond Semantics, Logic, Opinions, and Easy Tasks

Invited talk

Ivan Habernal
UKP Lab, Technische Universität Darmstadt

habernal@ukp.informatik.tu-darmstadt.de

Abstract

The classical view on argumentation, such that arguments are logical structures consisting of
different distinguishable parts and that parties exchange arguments in a rational way, is prevalent
in textbooks but nonexistent in the real world. Instead, argumentation is a multifaceted commu-
nication tool built upon humans’ capabilities to easily use common sense, emotions, and social
context. As humans, we are pretty good at it. Computational Argumentation tries to tackle these
phenomena but has a long and not so easy way to go. In this talk, I would like to shed a light on
several recent attempts to deal with argumentation computationally, such as addressing argument
quality, understanding argument reasoning, dealing with fallacies, and how should we never ever
argue online.
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