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Abstract
Brain-computer interfaces and other aug-
mentative and alternative communication de-
vices introduce language-modeing challenges
distinct from other character-entry methods.
In particular, the acquired signal of the
EEG (electroencephalogram) signal is noisier,
which, in turn, makes the user intent harder
to decipher. In order to adapt to this condi-
tion, we propose to maintain ambiguous his-
tory for every time step, and to employ, apart
from the character language model, word in-
formation to produce a more robust prediction
system. We present preliminary results that
compare this proposed Online-Context Lan-
guage Model (OCLM) to current algorithms
that are used in this type of setting. Evalua-
tions on both perplexity and predictive accu-
racy demonstrate promising results when deal-
ing with ambiguous histories in order to pro-
vide to the front end a distribution of the next
character the user might type.

1 Introduction

Augmentative and alternative communication
(AAC) devices are aimed at individuals facing
communication disabilities, and aim to enable
them to interact with their environment, assisting
with both comprehension as well as expression
of the individual (Beukelman and Mirenda, 2005;
American Speech Language Hearing Association
et al., 2004). In particular, a Brain-Computer In-
terface (BCI) has been employed as an aiding de-
vice for patients who have experienced loss of mo-
tor control, and who might struggle with produc-
ing spoken or written language (Birbaumer et al.,
1999; Sellers et al., 2010) (as in e.g. Amyotrophic
Lateral Sclerosis). A BCI system measures a
user’s brain’s electrical activity, typically using
electroencephalography (EEG), and attempts to
infer intent, often in response to stimuli such as
row-column scanning.

Communication rates in BCI systems tend to
be quite slow. To reduce the prediction time
of the next letter in the sequence, one approach
is to incorporate language models into AAC de-
vices (Vertanen and Kristensson, 2011), and BCI
in particular (Mora-Cortes et al., 2014). The po-
tential advantage of combining a language model
with EEG information in a BCI system is twofold:
achieving higher accuracy of target predictions, as
well as gains in the speed of the process of typ-
ing the user’s intended string (Speier et al., 2011;
Orhan et al., 2011). It may also help with reduc-
ing the number of necessary stimuli required for
symbol selection (Speier et al., 2016).

Mora-Cortes et al. (2014) describe different
types of EEG responses common when employing
a typing-based BCI, and in the review of Speier
et al. (2016), event-related potentials (ERP) seem
to be the prevailing choice in particular. In the
RSVP-Keyboard (Orhan et al., 2012), an ERP sig-
nal is elicited in response to a rapid display of let-
ters. Other systems such as the P300 (Farwell and
Donchin, 1988) present a user with a grid of let-
ters and the ERP signal is retrieved in response to
a flash of each row or column.

In such systems, a language model provides the
prior distribution that serves as a bias to the EEG
evidence when computing the posterior distribu-
tion of a symbol as shown in Equation 1

p(sym|EEG) = p(sym)p(EEG|sym)

p(EEG)
(1)

Traditionally, such BCI systems commit to
a single decision (given their posterior results),
which introduces a problem once the decision is
not aligned with the user. One option is to allow
for a backspace character, though this poses com-
plex modeling challenges (Fowler et al., 2013). In
our system we propose to partly commit to a de-
cision with regard to the user intent, and maintain
more than one candidate for every letter selection.

72



Figure 1: EEG evidence for 6 letter selections

This way, the best path is frequently re-evaluated
and as a result can revise previously typed strings.
Maintaining more than one candidate may re-
duce frustration among users, and minimize time
spent correcting errors. We also, as recommended
by Mora-Cortes et al. (2014) and Speier et al.
(2016), explicitly incorporate word-level informa-
tion and mix word-level and character-level lan-
guage models to improve letter level prediction.
Notably, this approach allows our system to sup-
port out-of-vocabulary (OOV) words.

Ambiguous input is widely used in traditional
Automatic Speech Recognition (Jelinek, 1997)
systems along with the Viterbi algorithm (Viterbi,
1967) to find the best path of the utterance bottom-
up, from acoustic phoneme units (often triphones)
to characters and words (often represented as the
C ◦ L ◦G composition), and recently in keyboard
settings as well by swiping (Ouyang et al., 2017).
To the best of our knowledge, it has rarely been
explored in the area of BCI, with a notable excep-
tion being the work of Speier et al. (2015), who
later found it to be intractable due to complexity
issues (Speier et al., 2016).

In this work, we present the Online-Context
Language Model (OCLM) and describe the pro-
cess of producing prior distributions given EEG
evidence as part of our BCI system. Our contribu-
tions are specifically in the context of BCI as we
integrate word language models (within the sys-
tem), allow for OOV words to be typed, and op-
timize over word-level paths to compute optimal
priors. Our mixed-context approach achieves su-
perior performance in the face of noisy input com-
pared with a purely character-level model.

2 Methodology

2.1 Overview

To illustrate our method, the steps presented are
applied on the input in Figure 1, which depicts a
temporal sequence of EEG evidence. Each num-
bered state represents a selection epoch in which
a user has attempted to “type” a letter. Arcs tran-
sitioning between nodes i to i + 1 represent pos-
sible selections, and (though not drawn as such in
this figure) are weighted with the normalized EEG
likelihoods of time step i retrieved from the BCI.

Figure 2: left to right word history and trailing prefix

In this example, the OCLM is currently aiming to
provide a prior distribution for the 7th letter se-
lection given the EEG evidence. Assume that the
intended string the user wishes to type is “the mo”.

The first step taken is to split the EEG history
lattice shown in Figure 1 into two parts: one, con-
taining all strings before the last space (“#” in Fig-
ure 1), which we will call the “word history” lat-
tice, and another, containing all possible strings af-
ter the last space, called the “trailing prefix” (Ftp)
as shown in Figure 2.1

The word history (Fwh) represents all possible
complete words that the user is assumed to have
finished typing. The second part represents the
word that the user is assumed to be in the middle
of typing, and can be thought of as the set of possi-
ble prefixes for the current intended word. We can
use this to generate possible word completions.

A current in-progress word lattice (Fcw) is gen-
erated by finding all possible in-vocabulary words
that start with the “trailing prefix.” By concatenat-
ing both the word history lattice (Fwh) as well as
a lattice of possible in-progress words, and then
composing the result with a word-level language
model (FwLM ), we are able to produce a weighted
n-best list of hypothesized words that the user may
be trying to produce (Ftopn , Equation 2).

Ftopn = (Fwh‖Fcw) ◦ FwLM (2)

F char
topn = projchar(Ftopn ◦ Fspellout) (3)

Fsym = F char
topn ∪ FcharLM (4)

FOCLM = (Ftp‖σ) ◦ Fsym (5)

We next take the lattice of “current words”,
compose that with a word-to-character spellout
machine (Fspellout), project the result into charac-
ter space (Equation 3), and then take the union of
the result with a character language model to pro-
duce a “symbol language model” lattice (Fsym in
Equation 4).

We are now ready to compute probabilities for
the likely next symbol the user intends to select.
We do this by taking our original trailing prefix

1The trailing prefix shown in figure 2 is simplified for il-
lustrative purposes; in this example, it also includes other
paths from state 0 that do not include “#”. Note also
that all paths contain the same number of characters since
backspaces are omitted.
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lattice (Ftp, containing distributions over charac-
ters actually selected by the user), concatenating
it a character “wild card” machine (σ, represent-
ing the next character that the user intends to se-
lect to continue Ftp), and intersecting the resulting
machine with Fsym (Equation 5). At this point,
we are able to extract a probability distribution
over possible character selections by performing
weight pushing to the end of the machine, and
then examining the final set of arcs in FOCLM . All
of these FST operations are implemented with the
OpenFst (Allauzen et al., 2007) and OpenGRM-
NGRAM (Roark et al., 2012) libraries.

2.2 Out of Vocabulary Words
It is crucial that our system allows its users to en-
ter novel, out-of-vocabulary words, which we sup-
port in the following way. Above, we described
how we take the lattice of characters making up
the current, in-progress word and combine it with
a lexicon transducer to produce a weighted lat-
tice of possible word completions. Our approach
deals differently and distinguishes between rarely
seen words in the training set and completely un-
seen words. Infrequent words that were seen less
than five times but at least once during training are
mapped to <unk> word-symbol. In these cases,
an attempt to complete a prefix for such a word re-
sults in an <unk> word token as a possibility in
Fcw’s list. FwLM is also trained on these <unk>
representations suggesting that <unk> is treated
similarly to any other word appearing in the train-
ing after the infrequent word was mapped to it
(following the process in Equations 2 to 5). How-
ever, while the described process applies to un-
common but observed words, when a prefix is part
of an unseen word and there is no possible com-
pletion provided by the lexicon then, Fcw = ∅ and
the process is reduced to Equations 4 and 5 such
that Fsym = FcharLM . The FcharLM contains a
failure (φ) transition such that for every possible
prefix in Ftp that is not found in Fsym (which in
this situation is equivalent to FcharLM ), we back
off to a partial prefix route.

2.3 Word Completion
As described above, while computing the prior
distribution over the next character, every new
piece of evidence that is added to the system (i.e.,
each new attempt at character selection by the
user) is appended to a “trailing prefix,” Ftp, which
we use to compute hypotheses about the current

words the user might be in the middle of typing.
In Equation 2 above, Fcw contains all possible in-
vocabulary words that the user may be trying to
produce, and Ftopn is a refined list of those words.
This means that our architecture is able to produce
both word- and character-level predictions simul-
taneously, and can easily vary the number of such
predictions.

2.4 Auto-correction
While character deletion or insertion events are
not auto-corrected in our approach, we address
auto-correction to some degree. As described in
the main process of computing the prior distribu-
tion, there is a frequent re-assessment the previ-
ously typed words. This history is recalculated
as more EEG evidence of letter selections is in-
troduced; this recalculation occurs mainly when
the space character is introduced as it affects the
word-boundaries and thus the history. As a re-
sult, at each time step, the updated history is re-
scored by the word language-model (FwLM ), as
our estimated most-likely word history may have
changed. In Figure 1, for instance, we start with
“she” and “the” as possible histories. As character
selection continues, we might have “monkey” as
a strongly-predicted possible word completion; in
this case, FwLM will prioritize “the” over “she,”
as “the monkey” is more probable than “she mon-
key”. However, if “modifies” were to be judged
more likely by Ftopn , “she” would get prioritized
over “the”. Making additional and extended use of
this information is part of our future work plan.

3 Experimental Evaluation

In order to evaluate the OCLM, we constructed
a simulated character selection task to compare
the performance of three different algorithms.
The first is a smoothed character 5-gram model
(“NGRAM”),2 in which prediction is conducted
by intersecting the history (EEG evidence, plus
the wildcard σ) with the LM lattice. In this and
our other n-gram models, we used Kneser-Ney
smoothing (Kneser and Ney, 1995). The second
algorithm we evaluated against was a ”prefix lan-
guage model” that included a character language
model (PreLM, Equation 6) explicitly trained on
character prefixes of in-vocabulary words (Fwp)

2Our choice of an ngram order of 5 was for empirical rea-
sons. A larger window would be too sparse and memory-
intensive; a shorter window would not completely capture
some of the shorter words that we wanted the model to learn.
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combined with a closure over the NGRAM model.
This model used an identical prediction mecha-
nism as did the NGRAM model, but was designed
to be better-equipped to handle in-progress words.

PreLM = (FNGRAM‖Fspace)*‖Fwp (6)

The third is the OCLM described in Sec-
tion 2. All models were trained on the Brown cor-
pus (Francis and Kučera, 1979), and data split was
80% for training and 20% for testing. The results
are on the test set. The test set contained 10, 265
sentences and 176, 280 words. Our simulated task
was as follows. For each test sentence, we proceed
character by character. At each point in the sen-
tence, we provide the algorithms with some repre-
sentation of the history of the sentence up to that
point, and ask the models to predict the following
character target.

We evaluated each model in terms of the tra-
ditional average character-level perplexity. Since
our model is intended to be used to support char-
acter prediction, we also measured the reciprocal
rank of the ground-truth target letter, both overall
as well as by position within a word (to compare
performance earlier in words vs. later). We also
looked at the proportion of predictions for which
the model placed the correct target letter in the top
10 sorted guesses (ACC@10). We evaluated under
two conditions: the first simulating a “determin-
istic” history, in which we assume that the EEG
signal is reliable, and an “ambiguous” history, in
which we take the top-n letters from the EEG sig-
nal at each time point as possible selections.

3.1 Deterministic History
In this condition, the language model was pro-
vided with the “correct” character history up to
each prediction point. We refer to this as the n=1
scenario, as it describes the state of deterministic
history of unambiguous and accurate EEG selec-
tion at each time point.

Table 1 shows that NGRAM algorithm has sub-
par performance when compared to both OCLM
and PreLM as its Mean Reciprocal Rank (MRR)
as well as Perplexity (PPX) are lower and higher
respectively. ACC@10 that stands for sentence
average prediction for the target within top 10
guesses also demonstrate inferior performance for
the NGRAM method.

OCLM and PreLM appear to have similar per-
formance, which surprised us given how different

metric NGRAM PreLM OCLM
MRR 0.4 0.7 0.75
PPX 4.4 1.8 1.9
ACC@10 0.69 0.96 0.96

Table 1: Evaluation Results (n=1)
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Figure 3: Reciprocal Ranks of letter positions within
words (n=1)

their approaches are. In order to explore more
deeply, we attempted to examine the internal be-
havior within each word in the test set. In Figure 3
the Reciprocal Ranks (RR), are presented for each
letter position within a word. The OCLM algo-
rithm demonstrates has higher RR (than PreLM)
earlier in the word (position 5 vs. position 11)
which is maintained for a longer period of time
(10 positions in a row vs 7). Arguably, it is de-
sired that the algorithm would predict correctly as
early as possible, as its impact is on greater num-
ber of words (there are more words with 5 letters
than with 10) and, a longer duration of high RR
contributes to more accurate predictions as well.
An analogous analysis of perplexity found a simi-
lar pattern of lower perplexity at earlier positions,
together with similar duration, and a similar per-
formance profile in OCLM vs PreLM.

3.2 Ambiguous History

Maintaining an ambiguous history of characters
for each character selection has the potential to
preserve routes the system might have missed oth-
erwise. Erroneous decisions of the system with
regards to character predictions unfortunately ex-
ist, especially given a noisy channel to process
the data from such as the BCI system (different
to some degree than typing with a keyboard). In
this experiment we examined the performance of
OCLM and PreLM with a simulated ambiguous
history. We evaluated the OCLM and PreLM al-
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gorithms’ performance when given histories con-
sisting of the most n likely EEG characters at each
time point for n ∈ {2, 3}. In all cases, the target
character was included, but it was not always the
most “probable.” Likelihoods were drawn from a
Gaussian PDF functions of target and non-target
simulating a high performing user 3.

In BCI settings, utterances are often shorter than
those that are common in datasets such as the
Brown Corpus; therefore, we evaluated on a subset
of the test-set containing all sentences of 10 words
or less, resulting in 2, 954 sentences with 16, 519
words. For reasons of computational tractability,
we simulated an ambiguous history over a win-
dow of the immediate past 10 characters; beyond
that, we treated history as “fixed,” and provided
the models with correct targets.4

Table 2 presents the results for ambiguous in-
put of n=2 and n=3. Overall adding more history
to these type of algorithms degrades their perfor-
mance. However, the level of degradation seems to
vary between OCLM to PreLM. OCLM can pro-
duce more accurate predictions and has a higher
MRR rate for both ns. PPX also is slightly lower
than in PreLM.

nbest metric PreLM OCLM
MRR 0.29 0.51

n=2 PPX 3.5 3.0
ACC@10 0.69 0.87
MRR 0.26 0.44

n=3 PPX 4 3.9
ACC@10 0.63 0.83

Table 2: Evaluation Results (n=2, n=3)

A further inspection5 into the letter position per-
formance of n=2 shows that OCLM’s MRR re-
mains relatively high (close to 1) especially from
the fifth letter position while PreLM falls to val-
ues around 0.2. While not shown, the PPX val-
ues are consistent again with the MRR behav-
ior. The same pattern appears with a noisier his-
tory of n=3. There, OCLM experienced addi-
tional degradation, and its high MRR lasted for
a shorter term; from the seventh position to the
tenth. PreLM’s MRR revolved around slightly less
than 0.2. OCLM’s PPX was relatively low yet
higher than of n=2 and was higher for PreLM.
This, together with Table 2 indicate a performance

3The PDFs were overlapping to some degree to enable
likelihood confusions of target with non-target

4PreLM fails to run on complete ambiguous history
5Not included in this work for reasons of space.

degradation in OCLM, but a break-down in per-
formance for PreLM. These results emphasize the
durability of OCLM over PreLM when the input
has more than one possibility.

4 Conclusions

We presented the OCLM architecture for predic-
tive typing with a brain-computer interface. The
OCLM enables incorporating ambiguous histories
and word-level knowledge to improve its predic-
tions. The OCLM demonstrated improved predic-
tion quality as it takes place earlier in the process
and for a longer duration across different condi-
tions of ambiguous input to the system. Our ar-
chitecture also allows for personalization by em-
ploying another lattice to Equation 4 of a user’s
probable words.

Our future work will focus on integrating the
OCLM architecture into our group’s BCI system,
and evaluating the algorithm with real end-users to
see if it reduces the number of sequence displays
for each letter selection. Since speed is an impor-
tant component in the usability of a BCI system,
we also plan to assess total typing time as well as
accuracy; note that, as our system’s predictions be-
come more accurate, the downstream components
of our BCI system will also improve.

Another important area of future work will be to
more thoroughly investigate our system’s handling
of OOV words, and identify avenues for improve-
ment as needed. We also hope to take advantage
of our model’s architecture to provide user-level
personalization, and to explore more concrete ap-
proaches to autocorrection. Our work to date has
focused on the AAC literature, and there is current
work in areas such as spelling correction that may
prove useful here.
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