
Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 13–23
New Orleans, Louisiana, June 5, 2018. c©2018 Association for Computational Linguistics

Using Paraphrasing and Memory-Augmented Models
to Combat Data Sparsity in Question Interpretation

with a Virtual Patient Dialogue System

Lifeng Jin,1 David King,1 Amad Hussein,2 Michael White,1 and Douglas Danforth3

1Department of Linguistics, 2Department of Computer Science and Engineering,
3Department of Family Medicine

The Ohio State University, Columbus, OH, USA
{jin, king, mwhite}@ling.osu.edu

amadh881@gmail.com, doug.danforth@osumc.edu

Abstract

When interpreting questions in a virtual pa-
tient dialogue system, one must inevitably
tackle the challenge of a long tail of rela-
tively infrequently asked questions. To make
progress on this challenge, we investigate the
use of paraphrasing for data augmentation and
neural memory-based classification, finding
that the two methods work best in combina-
tion. In particular, we find that the neural
memory-based approach not only outperforms
a straight CNN classifier on low frequency
questions, but also takes better advantage of
the augmented data created by paraphrasing,
together yielding a nearly 10% absolute im-
provement in accuracy on the least frequently
asked questions.

1 Introduction

To develop skills such as taking a patient history
and developing a differential diagnosis, medical
students interact with actors who play the part of a
patient with a specific medical history and pathol-
ogy, known as Standardized Patients (SPs). Al-
though SPs remain the standard way to test medi-
cal students on such skills, SPs are expensive and
can behave inconsistently from student to student.
A virtual patient dialogue system aims to over-
come these issues as well as provide a means of
supplying automated feedback on the quality of
the medical student’s interaction with the patient
(see Figure 1).

In previous work, Danforth et al. (2009, 2013);
Maicher et al. (2017) used a hand-crafted pattern-
matching system called ChatScript together with a
3D avatar in order to collect chatted dialogues and
provide useful student feedback (Danforth et al.,
2016). ChatScript matches input text using hand-
written patterns and outputs a scripted response for
each dialogue turn. With sufficient pattern-writing
skill and effort, pattern matching with ChatScript

can achieve relatively high accuracy, but it is un-
able to easily leverage increasing amounts of train-
ing data, somewhat brittle regarding misspellings,
and can be difficult to maintain as new questions
and patterns are added.

To address these issues, Jin et al. (2017) de-
veloped an ensemble of word- and character-
based convolutional neural networks (CNNs) for
question identification in the system that attained
79% accuracy, comparable to the hand-crafted
ChatScript patterns. Moreover, they found that
since the CNN ensemble’s error profile was very
different from the pattern-based approach, com-
bining the two systems yielded a nearly 10% boost
in system accuracy and an error reduction of 47%
in comparison to using ChatScript alone. Perhaps
not surprisingly, the CNN-based classifier outper-
formed the pattern-matching system on frequently
asked questions, but on the least frequently asked
questions—where data sparsity was an issue—
the CNN performed much worse, only achieving
46.5% accuracy on the quintile of questions asked
least often.

In this paper, we aim to combat this data spar-
sity issue by investigating (1) whether paraphras-
ing can be used to create novel synthetic train-
ing items, examining in particular lexical substi-
tution from several resources (Miller, 1995; Le
and Mikolov, 2014; Ganitkevitch et al., 2013; Co-
cos and Callison-Burch, 2016) and neural MT for
back-translation (Mallinson et al., 2017); and (2)
whether neural memory-based approaches devel-
oped for one-shot learning (Kaiser et al., 2017)
perform better on low-frequency questions. We
find that the two methods work best in combina-
tion, as the neural memory-based approach not
only outperforms the straight CNN classifier on
low frequency questions, but also takes better ad-
vantage of the augmented data created by para-
phrasing. Together, the two methods yield nearly
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Figure 1: Virtual Patient Dialogue System

a 10% absolute improvement in accuracy on the
quintile of least frequently asked questions.

2 Related Work

Question identification is a task that can be ap-
proached in at least two ways. One way is to treat
it as a multiclass classification problem (e.g., us-
ing logistic regression), which can take advantage
of class-specific features but tends to require a sub-
stantial amount of training data for each class. For-
mally, letting q be the candidate question, Y be a
set of question classes and φ a feature extractor,
we seek to find the most likely label ŷ:

ŷ = argmax
y∈Y

eφ(q,y)
∑

y′∈Y eφ(q,y′) .

Alternatively, a pairwise setup can be used. For
example, for each class a binary classification de-
cision can be made as to whether a given question
represents a paraphrase of a member of the class,
choosing the highest confidence match. More gen-
erally, let qy

i ∈ Ly be the i-th question variant for
label y (where the question variants are the para-
phrases of the label appearing in the training data);
given some similarity metric σ, we seek to find the
label ŷ with the most similar question variant qŷ

i in
the set Lŷ to the candidate question q:

ŷ = argmax
y∈Y

max
qy

i ∈Ly
σ(q, qy

i )

Early work on question answering (Ravichan-
dran et al., 2003) found that treating the task as

a maximum entropy re-ranking problem outper-
formed using the same system as a multiclass clas-
sifier. By contrast, DeVault et al. (2011) observed
that maximum entropy multiclass classifiers per-
formed well with simple n-gram features when
each class had a sufficient number of training ex-
amples. Jaffe et al. (2015) explored a log-linear
pairwise ranking model for question identification
in a virtual patient dialogue system and found it
outperformed a multiclass baseline along the lines
of DeVault et al. (2011). However, Jaffe et al. used
a much smaller dataset with only about 915 user
turns, less than one-fourth as many as in the cur-
rent dataset. For this larger dataset, a straightfor-
ward logistic regression multiclass classifier out-
performs a pairwise ranking model.

In general it appears reasonable to expect that
the comparative effectiveness of multiclass vs.
pairwise approaches depends on the amount of
training data, and that pairwise ranking meth-
ods have potential advantages for cross-domain
and one-shot learning tasks (Vinyals et al., 2016;
Kaiser et al., 2017) where data is sparse or non-
existent. Notably, in the closely related task
of short-answer scoring, Sakaguchi et al. (2015)
found that pairwise methods could be effectively
combined with regression-based approaches to
improve performance in sparse-data cases.

Other work involving dialogue utterance classi-
fication has traditionally required a large amount
of data. For example, Suendermann-Oeft et al.
(2009) acquired 500,000 dialogues with over 2
million utterances, observing that statistical sys-
tems outperform rule-based ones as the amount of
data increases. Crowdsourcing for collecting ad-
ditional dialogues (Ramanarayanan et al., 2017)
could alleviate data sparsity problems for rare cat-
egories by providing additional training examples,
but this technique is limited to more general do-
mains that do not require special training/skills. In
the current medical domain, workers on common
crowdsourcing platforms are unlikely to have the
expertise required to take a patient’s medical his-
tory in a natural way, so any data collected with
this method would likely suffer quality issues and
fail to generalize to real medical student dialogues.
Rossen and Lok (2012) have developed an ap-
proach for collecting dialogue data for virtual pa-
tient systems, but their approach does not directly
address the issue that even as the number of dia-
logues collected increases, there can remain a long
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Figure 2: Label frequency distribution is extremely
long-tailed, with few frequent labels and many infre-
quent labels. Values are shown above quintile bound-
aries.

tail of relevant but infrequently asked questions.
As an alternative to crowdsourcing, we pur-

sue paraphrasing for data augmentation in this
paper, focusing on the simplest methods to em-
ploy, namely lexical substitution and neural back-
translation (see Section 5). The idea is to augment
the observed question instances for questions with
infrequent labels in the dataset with automatically
generated paraphrases, with the aim of making
such questions easier to recognize using machine-
learned models. In future work, we plan to explore
more complex paraphrasing methods, including
syntactic paraphrasing (Duan et al., 2016) and in-
ducing paraphrase templates from aligned para-
phrases (Fader et al., 2013).

3 Data Imbalance

Our dataset currently consists of 4330 question-
answer pairs from 94 dialogues between first year
medical students and the virtual patient. After
classifying an asked question as having a certain
label, the virtual patient replies with the canned
response for that label, as illustrated in Table 1.
Unfortunately, the labels do not have a uniform
distribution with regards to the number of variants
each label has (that is, the number of question in-
stances for that label in the dataset). In fact, most
of the labels are underrepresented.

On average, each question label has 12 variants,
but 8 labels account for nearly 20% of the data,
while 256 labels account for the bottom 20% (Fig-
ure 2). We define a rare label to be any label that is
in that set of 256 infrequent labels. Supplement-
ing the data to account for this imbalance is the
primary focus of our work.

4 Memory-Augmented CNN Classifier

Because of the data sparsity issue, we cast the
problem of sentence classification for infrequent
labels as a problem of few-shot learning. In par-
ticular, we use Kaiser et al.’s (2017) memory mod-
ule together with a CNN encoder (Kim, 2014; Jin
et al., 2017) as our main model, the memory-
augmented CNN classifier (MA-CNN). Our aim
is to take advantage of the MA-CNN’s one-shot
learning capability to mitigate the issue of data
sparsity and also to make better use of data aug-
mentation to achieve better performance.

4.1 The CNN encoder

The CNN encoder follows Kim (2014) and Jin
et al. (2017). We briefly summarize the architec-
ture here and direct interested readers to these two
papers for implementation details. There are four
layers in the encoder: an embedding layer, a con-
volution layer, a max-pooling layer and a linear
layer. Let xi ∈ Rk be a k-dimensional embed-
ding for the i-th element of the sentence s. We
concatenate all of the element embeddings to get
S ∈ R|s|×k as the representation of the whole sen-
tence.

The convolution layer may have many kernels,
which are defined as weight matrices w j ∈ Rhk,
where h is the width of the kernel. They slide
across the sentence representation and then pass
through a nonlinearity to produce a feature map
c j ∈ R|s|−h+1. Then the max-pooling layer uses
max-over-time pooling (Collobert et al., 2011) on
the feature maps to ensure fixed-dimensional out-
puts.

Finally, we concatenate all the outputs from all
the kernels into a single vector o, multiply it with
the weight matrix Wl and apply p2-normalization
to it as the final fully-connected neural network
layer for the CNN encoder:

e =
o ·Wl + bl

‖o ·Wl + bl‖ (1)

Here Wl and bl are the weight matrix and the bias
term for the final layer, respectively.

4.2 The memory module

We follow Kaiser et al. (2017) for implementation
of our memory module. The memory module is a
tuple of three matrices K, V and A, which stores
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Student question Label detected Canned response
hello mr. wilkins hello mr hello doctor. i am so glad to see

you.
can you tell me a little about your issue <None> i’m sorry, i don’t understand

that question. would you restate it?
what brings you in today what brings you in today i was hoping you could help me

with my back pain, it really
hurts! it has been awful.

Table 1: Sample interactions between a first year medical student and the virtual patient. The virtual patient’s task
is to accurately detect the kind of question the medical student is asking and then reply with the appropriate canned
response.

one key, one label and one age of one memory en-
try in each corresponding row. A key is an en-
coded presentation of a training item, a label is the
class identifier that the key belongs to, and the age
is the number of memory updates that have taken
place since the key was inserted or updated. To use
the memory, a normalized query item q is multi-
plied by the key matrix

s> = q ·K (2)

to yield a vector of cosine similarities s between
the query and every entry in the memory. The pre-
diction made by the memory is then v̂ = V[n̂],
where n̂ = argmax(s) and v̂ is the predicted class
label.

The memory operations include insert, update
and erase, and loss calculation of the memory de-
pends on the memory operations, therefore we
briefly summarize them here. Let n̂ be the row in-
dex in s with the highest similarity score such that
V[n̂] is the true label of the query, ñ be the row
index of the entry with the highest similarity score
that has a different label from the true label, and v
be the true label. When s[n̂] > s[ñ], the memory
loss is a margin loss between the similarity scores
at n̂ and at ñ with some margin α:

loss = [s[ñ] − s[n̂] + α]+ (3)

In this case, the memory entry at n̂ will be updated
by replacing it with the normalized average of it-
self and the query:

K[n̂]← q + K[n̂]
‖q + K[n̂]‖ (4)

When s[n̂] < s[ñ], the memory loss is:

loss = [s[n̂] − s[ñ] + α]+ (5)

In this case, a new entry is inserted at a previously
empty row n′:

K[n′]← q V[n′]← v (6)

In both cases, the entry in A at the update or insert
site will be replaced by 0, and all the other entries
in A will add 1. When the memory is full, a new
insertion will take place where A[n′] is the biggest.

Finally, if there is no entry in K that has the true
label v, the insert operation is carried out without
any loss calculation. The erase operation is to reset
all three matrices to empty, which is used at the
end of a training episode.

4.3 Episodic training and evaluation

We train our memory-augmented CNN classi-
fier using a novel episodic training scheme based
on the episodic training scheme used in one-
shot learning (Vinyals et al., 2016; Kaiser et al.,
2017). The main difference is that in one-shot
learning, most tasks offer a balanced dataset with
many classes but small numbers of instances per
class. In our scenario, the dataset is imbalanced,
and some classes may have a large number of
instances. Moreover, in evaluation, there are
no unseen classes in our case. We modify the
episodic training scheme to accommodate these
differences.

Episodic training
In training, we define an episode to be a complete
k-shot learning trial with gradient updates. At the
beginning of each episode, a batch of |C| × (k + 1)
samples, where |C| is the number of classes, is
sampled from the training data. The first sample
of each class is then encoded and inserted into the
memory with no loss calculated, which we call
loading the memory. From the second sample on,
the encoder encodes each sample, and the mem-
ory calculates its loss according to its prediction.
After all classes have had one sample to complete
this process, the encoder is updated by the gradi-
ents calculated with the memory loss. The mem-
ory is then updated according to the operations
corresponding to its predictions of the seen sam-
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ples in each shot. When all k shots have been pro-
cessed, the memory is completely erased ready for
the next episode (though naturally the updates to
the encoder remain in effect).

It is easy to see that this process involves over-
sampling, which is a known technique for rebal-
ancing imbalanced datasets. Because each class
must have k + 1 samples for each episode, the mi-
nority classes have to be oversampled. However,
experiments show that oversampling itself does
not lead to better performance.

Episodic evaluation
In evaluation, we define a support set to be a batch
of |C| × k samples from the training data. For a
given test set, we first load the memory, then com-
pare each test item to all the entries in the memory
in order to generate the memory prediction for the
test item based on the most similar memory entry.
This forms the model’s 1-shot predictions. Then
we update the memory with the second sample for
each class and redo the prediction step. We now
have the model predictions with 2 shots. We con-
tinue to follow this routine until predictions from
all k shots have been collected.

Because there is some randomness in how a
support set is sampled from the data, we use mul-
tiple support sets in evaluation. Since some of the
classes have a large number of instances, each ran-
domly sampled support set tends to be sufficiently
different from other support sets that using multi-
ple support sets becomes analogous to ensembling
different models.

Finally, letting p be the number of support sets,
we have k × p predicted labels for each item in
the test set. We use majority voting across all the
predicted labels to get the final model prediction.
This capitalizes on the ensembled support sets and
reduces the variance of the model predictions.

5 Data Augmentation

Since previous work (Jin et al., 2017) showed
that the majority of labels in our dataset have 11
variants or fewer, we explore using lexical sub-
stitution (McCarthy and Navigli, 2009) and neu-
ral machine translation (NMT) back-translation
(Mallinson et al., 2017) for data augmentation.
The main difference in our use of lexical substi-
tution and previous works’ is that our setup is un-
supervised, as we have no gold test set for deter-
mining acceptable paraphrases. Similarly for the
NMT system, we do not know which outputs are

acceptable. To mediate this, we employ the use of
both human and automatic filtering of the gener-
ated paraphrases with the end-goal of facilitating
question label identification for infrequent labels.

5.1 Paraphrase generation

We exploit advances in lexical substitution and
NMT to automatically produce paraphrases. We
also combine these approaches to determine their
collective effectiveness in our downstream label
identification task.

Lexical substitution
Lexical substitution has often been held up as a ex-
emplary task for paraphrase generation. In its sim-
plest form, one must simply replace a given word
with an appropriate paraphrase, i.e. one that re-
tains most of the original sentence’s meaning. As
an example, in the question have you ever been
seriously ill?, seriously could be replaced with
severely, and we would consider this to be an ap-
propriate substitution. However, if we instead sub-
stituted solemnly for the same word, we would not
accept this as the meaning would have deviated too
far.

For generating paraphrases, we employ three re-
sources: WordNet (Miller, 1995), Word2Vec (Le
and Mikolov, 2014), and paraphrase clusters from
Cocos and Callison-Burch (2016). To evaluate
these resources, we took the mean average preci-
sion (MAP) of a given resource’s ability to pro-
duce a lexical substitution which matched a word
that already existed in another variant for the same
label. That is, if the label how has the pain affected
your work? had only two variants, has the injury
made your job difficult? and is it hard for you to
do your job?, and a resource successfully produces
the swap of hard → difficult (producing the sen-
tence is it difficult for you to do your job?), this
would positively affect a resource’s MAP score.
We only performed this evaluation on labels with
30 or more variants as this form of evaluation dis-
proportionately penalizes labels with fewer vari-
ants.

These preliminary experiments indicated that
pooling candidates from all three resources per-
formed better than any given one alone did. We
also found that in the case of multiple word senses
(e.g. bug meaning an insect, an illness, or a flaw
in a program), simply picking the first sense pro-
duced a higher MAP score than a variety of other
selection algorithms. This is not surprising since,
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in the case of WordNet, the first synset is the most
frequently used sense of a given word. For Co-
cos and Callison-Burch’s semantic clusters, these
were ordered by a given cluster’s average mutual
paraphrase score as annotated in the Paraphrase
Database (Ganitkevitch et al., 2013). Although
our domain is medical, the dialogues are patient
directed, less technical, and more colloquial, al-
lowing us to use such a simple selection method
for word sense disambiguation.

For augmenting the data in a way that would
help the most sparse labels, we focused our lex-
ical substitution task on labels with less that 11
variants. After pooling all the lexical substitution
candidates from each resource, we ranked the sub-
stitutions by subtracting the original sentence’s n-
gram log probability from its paraphrase’s.1 We
then extracted the top 100 scoring paraphrases for
our initial unfiltered data set.

Neural machine translation
We additionally use Neural Machine Translation
(NMT) to generate paraphrases by pivoting be-
tween languages. In multiple back-translation, a
method developed in Mallinson et al. (2017), we
take a given English source sentence and generate
n-best translations into a pivot language. This is
the forward step. For each pivot translation we
generate an m-best list of translations back into
English. Thus this backward step yields n×m para-
phrases for a given source sentence, where each
paraphrase within this final set has a weight based
on which of the original n translations it came
from in the forward step and its ranking among
the m translations in the back step. Any dupli-
cates within this final set are collapsed and their
weights are combined before the set is ranked ac-
cording to weight. This method favors transla-
tions which come from high quality sources (high-
ranking translations in the lists n and m) as well as
translations which occur multiple times.

In our work we translated each given source
sentence into 10-best forward translations and 10-
best back translations before finally collapsing and
ranking the 100 paraphrases. We used a model
from Sennrich et al. (2016) and chose German as
our pivot language given the quality of the transla-
tions and paraphrases we observed.2

1We used a 5-gram language model with back off, trained
on the Gigaword (Parker et al., 2011).

2We found that the pretrained model for German pro-
duced the best back-translations when compared to other pre-

Figure 3: A graphical representation of the pseudo-
oracle selection process. For a given test item (here
Target), the n-gram overlap with the paraphrase must
be greater than the overlap with the source sentence that
paraphrase was derived from.

5.2 Filtering

Since both the lexical substitution and NMT meth-
ods generate helpful and unhelpful paraphrases,
we needed a way to select useful paraphrases. Al-
though a typical next step might be to manually
filter each system’s output by hand, we were un-
sure if expensive human filtering would produce
any gain in downstream performance. To explore
this question, we experimented with a fully auto-
matic pseudo-oracle.

The pseudo-oracle is an automatic filter which
we designed to look at a particular test item in a
cross-validation setup and select the paraphrases
whose n-gram recall with that test item was higher
than the original source sentence’s, as illustrated in
Figure 3. In using this initial step of filtering, we
are able to isolate the paraphrases which are most
likely to be helpful for classifying question labels.
In preliminary experiments using logistic regres-
sion, we tested the performance of the pseudo-
oracle selection process on the downstream clas-
sification task, where we found that the pseudo-
oracle was able to facilitate classifying question
labels, whereas using all the outputs from the lex-
ical substitution and NMT paraphrase generations
systems (without filtering) led to a drop in perfor-
mance.

Thus, to lessen the expense of human filter-
ing, we used the pseudo-oracle as an automated
first step, under the assumption that the selected
paraphrases would mostly be kept as well using
manual filtering. Next, using the same Giga-
word trained language model from Section 5.1,
we ranked the lexical substitution and NMT out-

trained models. In future work, we plan to train our own mod-
els across various pivot languages to produce an increased
variety of paraphrases.
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puts. From these ranked lists, we extracted the
highest scoring subsets such that each paraphrase
not only had a high log probability, but also con-
tributed a unique n-gram (i.e., if two paraphrases
contributed the same new n-gram, only the highest
scoring paraphrase was selected). This diversity-
enhancing filtering reduced the size of the dataset
to around 20% of the original raw lexical substi-
tution output and 2.5% of the raw NMT output,
greatly lessening human annotation costs.

Since we instructed the annotators (a subset
of the authors) to only select useful paraphrases
which contributed novel n-grams not present in
any other variant, their task was necessarily differ-
ent from the pseudo-oracle’s. Annotators required
16 hours per annotator to manually filter the data.
We found that the annotators selected paraphrases
which might not necessarily help the downstream
task in a cross-validation setup, but which could be
expected to help with completely unseen data. For
this reason, we chose to combine the pre-selected
paraphrases chosen by the pseudo-oracle together
with the human-filtered paraphrases in our evalua-
tion.

6 Experiments

We use the best model in Jin et al. (2017), namely
a stacked convolutional neural network (Stacked-
CNN), together with the model proposed in this
work (MA-CNN) in all of the experiments. Our
task is to accurately predict a question’s label
based solely on the typed input from the medical
student. With improved accuracy, the virtual pa-
tient will be able to more coherently answer the
students’ questions.

We shuffle the gold dataset first and use 10-fold
cross-validation to evaluate our data augmentation
process. We specifically focus our analysis on
rare labels since that is also where we concentrate
our data augmentation efforts. The model we pro-
pose here is targeted at improving performance for
the rare labels, therefore we are interested in how
the model performs on them. Paraphrases are not
added to test sets, and paraphrases derived from
those test items are filtered from training. Finally,
we compute significance using the McNemar test
(McNemar, 1947).

6.1 Hyperparameters

We mostly follow Jin et al. (2017) in setting the
hyperparameters of the CNN encoder in MA-

CNN. We only use word-based features in the en-
coder. Following Jin et al. (2017), we set the num-
ber of kernels of the encoder of MA-CNN to be
300. We use kernels of widths 3 to 5 for the CNN
encoder. All non-linearities in the models are rec-
tified linear units Nair and Hinton (2010). We
use Adadelta (Zeiler, 2012) as the optimizer for
the whole MA-CNN, and use the recommended
values for its hyperparameters (ρ = 0.9, ε = 1 ×
10−6, learning rate = 1.0). We initialize the em-
beddings with Word2Vec but allow them to be
tuned by the system (Mikolov et al., 2013).

For episodic training, we set the number of
shots to be 10. For the episodic evaluation, we use
5 support sets. For each support set, we also do
10-shot evaluation. Therefore for each test item,
there are 50 predictions in total. We combine all
predictions with majority voting, weighted by the
similarity score of each prediction.

6.2 MA-CNN on rare labels
We first train our model MA-CNN and the stacked
CNN model from Jin et al. (2017) using just the
original VP dataset and explore how the model
architecture affects rare label accuracy. Table 2
shows the test accuracy for both models. MA-
CNN performs very well on the rare labels. The
performance difference between the stacked CNN
model and MA-CNN is highly significant, which
shows that the pairwise-classification approach
paired with episodic training is really powerful on
the items which belong to labels with few train-
ing instances. We can also see that MA-CNN does
not perform as well as the CNN ensemble on all
labels, which is consistent with the previous ob-
servation that non-pairwise classifiers work bet-
ter when training data is large. It is worth not-
ing though that the stacked CNN ensemble con-
sists of 10 CNNs that take in word- and character-
based features as their inputs, meanwhile the en-
coder of the MA-CNN is just a single word-based
CNN. This further illustrates how a pairwise sys-
tem which is designed specifically for dealing with
classes with few training instances can help im-
prove performance on those classes by using near-
est neighbor comparison and episodic training in-
spired by one-shot learning.

6.3 Generated paraphrases as training data
We further explore the effect on model perfor-
mance of using the generated paraphrases along
with the gold training data in training. We use the
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System Full Acc Rare Acc
StackedCNN 79.02 46.54

MA-CNN 75.22 51.78***

Table 2: Test results for the stacked CNN ensemble (Jin
et al., 2017) and the memory-augmented CNN clas-
sifier (MA-CNN) without any generated paraphrases.
The difference of performance on the rare items is
highly significant (p = 9.5 × 10−5, McNemar’s test).

System Full Acc Rare Acc
StackedCNN 78.45 53.04

MA-CNN 75.33 56.14***

Table 3: Test results for the stacked CNN ensem-
ble and the memory-augmented CNN classifier (MA-
CNN) with the manually filtered paraphrases. The
gain brought by the adding the automatically generated
paraphrases into training data for MA-CNN is highly
significant (p = 1.6 × 10−4, McNemar’s test).

manually filtered dataset with both paraphrasing
methods, and train both the stacked CNN ensem-
ble and MA-CNN with it plus the gold set. Table 3
shows the results on the test set. First, we can see
that both models benefit in terms of rare label ac-
curacy by using the augmented dataset. The differ-
ence between MA-CNN trained with only the gold
dataset and the augmented dataset is highly signif-
icant, showing that the generated paraphrases are
of high quality and help MA-CNN to achieve even
better performance on the rare labels. It is interest-
ing to note that for full accuracy, performance of
both models does not significantly change, show-
ing that the paraphrases are of high enough quality
to not be harmful to the frequent labels.

6.4 Effects of data augmentation

Table 4 shows the effect of using pseudo-oracle
and manually filtered data on rare labels. We find
that the MA-CNN is able to use the data augmen-
tation in a way that directly benefits the rare labels.
Specifically, the MA-CNN benefits from the hu-
man filtered data, indicating that it benefits from
information provided to it that raw n-gram overlap
does not capture. At the same time, however, fil-
tering using the pseudo-oracle evidently provides
a reasonable approximation of what improvements
in accuracy can be obtained with human filtering
of the generated paraphrases.

System Rare Acc
Pseudo-oracle 54.87

Manual 56.14

Table 4: Test results for the memory-augmented
CNN classifier (MA-CNN) with different filtering tech-
niques.

Paraphrases Rare Acc
No paraphrases 51.78

Lexical substitution 53.16
Neural Machine Translation 55.22

Both 56.14

Table 5: Test results for the memory-augmented CNN
classifier (MA-CNN) with different subsets of the man-
ual filtered paraphrases generated using different para-
phrase methods.

6.5 Quality of generated paraphrases

We also want to see how the performance on rare
labels is connected to the method with which the
paraphrases are generated. We use the individ-
ual subsets each of which is generated by a sin-
gle method to augment the training data. Table 5
shows how these methods compete against each
other. Surprisingly, simple lexical substitution
is already good at providing information that is
helpful to MA-CNN, but the neural machine back
translation is an even better method at providing
paraphrases that have positive impact on rare label
accuracy. We inspect the paraphrases generated by
both methods and find that paraphrases from back
translation are generally more diverse in phrasal
structure and contain more novel words than those
generated with lexical substitution. The combined
dataset gives further improvement, showing that
lexical substitution and neural machine translation
are at least partially complementary to each other
as generation methods.

6.6 Combining the stacked CNN and the
MA-CNN

Given the fact that the MA-CNN performs very
well on rare labels, but not so well on all la-
bels, it is interesting to see if a combined system
with the stacked CNN and MA-CNN can provide
a further performance increase. We here choose
a relatively simple logistic regression model as
our model combiner, though a more sophisticated
model could be used in principle. Using 1-5 grams
of words and stemmed words as well as 2-5 grams
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System Full Acc Rare Acc
StackedCNN 79.02 46.54

MA-CNN 75.33 56.14
Combiner 79.86*** 50.98

Table 6: Test results for the combiner as well as the
two combined subsystems: the stacked CNN ensem-
ble trained with gold and the memory-augmented CNN
classifier trained with gold and generated paraphrases.
The gain compared to stacked CNN on full accuracy is
highly significant (p = 1.9 × 10−9, McNemar’s test).

of characters, we trained the model to predict the
rarity of a label for a question, i.e. if a candidate
question belongs to a rare label or not. This rarity
predictor gets 94.2% accuracy on all labels, and
78.1% accuracy on rare labels. Note that the ma-
jority baseline for all labels is 80%, but for rare
labels it is 20%. This rarity predictor serves as our
combiner; that is, we use the combiner to choose
whose result to trust between the two classifica-
tion systems. If the combiner predicts that an item
belongs to a rare label, we choose the prediction
from the MA-CNN; if the combiner instead pre-
dicts it belongs to a frequent label, we choose the
prediction for it from the stacked CNN. This is
done with 10-fold cross validation, just like how
the classifiers were trained above.

The stacked CNN model we use here is the one
trained with only gold training data, which is the
model with the best accuracy on all labels. We use
the MA-CNN model trained with both gold and
generated data. With the combiner, we get 50.98%
accuracy on rare labels, and 79.86% accuracy on
all labels, as shown in Table 6. The result indicates
that the two systems are complementary to each
other, and simple combination is already effective
in providing a significant performance boost. Al-
though the accuracy on rare labels is not as high as
the MA-CNN by itself, it is higher than the stacked
CNN model by 5 points, and all of these points are
translated into an accuracy increase on all labels
that is close to 1 point.

7 Conclusion

In this paper, we have investigated the use of
paraphrasing for data augmentation and neural
memory-based classification in order to tackle the
challenge of a long tail of relatively infrequently
asked questions in a virtual patient dialogue sys-
tem. We find that both lexical substitution and
neural back-translation yield paraphrases of ob-

served questions that improve system performance
on rare labels once the generated paraphrases are
manually filtered down to ones taken to be use-
ful, with neural back-translation contributing more
to gains in accuracy than lexical substitution. We
also find that neural memory-based classification
with a novel method of episodic training outper-
forms a straight CNN classifier on low frequency
questions and takes better advantage of the gener-
ated paraphrases, together yielding a nearly 10%
absolute improvement in accuracy on the least fre-
quently asked questions. Finally, using a simple
logistic regression model to combine the predic-
tions of the straight CNN and memory-based clas-
sifier, we find that the combined system performs
better on all labels, and the gain is from more ac-
curate predictions of rare labels. We expect these
gains to yield increased user engagement and ulti-
mately better learning outcomes. In future work,
we plan to investigate using the memory-based
classifier for fully automatic paraphrase filtering
as well as more advanced methods of paraphras-
ing, including deep generative paraphrasing, syn-
tactic paraphrasing and using aligned paraphrases
to induce paraphrase templates. More powerful
models may also be explored to better combine the
models.
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