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Abstract

Within human sentence processing, it is
known that there are large effects of
a word’s probability in context on how
long it takes to read it. This relationship
has been quantified using information-
theoretic surprisal, or the amount of new
information conveyed by a word. Here,
we compare surprisals derived from a col-
lection of language models derived from
n-grams, neural networks, and a combi-
nation of both. We show that the mod-
els’ psychological predictive power im-
proves as a tight linear function of lan-
guage model linguistic quality. We also
show that the size of the effect of surprisal
is estimated consistently across all types
of language models. These findings point
toward surprising robustness of surprisal
estimates and suggest that surprisal esti-
mated by low-quality language models are
not biased.

1 Introduction

Decades of work studying human sentence pro-
cessing have demonstrated that a word’s proba-
bility in context is strongly related to the amount
of time it takes to read it. This relationship has
been quantified by surprisal theory (Hale, 2001;
Levy, 2008), which states that processing diffi-
culty of a word w in context c is proportional
to its information-theoretic surprisal, defined as
− log p(w|c). As a word is more likely to occur
in its context, and thus communicates less infor-
mation (Shannon, 1948), it is read more quickly.

One difficulty in testing such effects of a word’s
probability in context is the need to construct esti-
mates of a word’s probability in context. One way
of estimating such probabilities is to give human
subjects a context, have them guess the next word,

and estimate p(w|c) as the proportion of partici-
pants who guess word w in context c. This method,
called a Cloze task (Taylor, 1953), may yield reli-
able estimates for words that have relatively high
probabilities in their context, and it has been used
in a number of studies of the effects of probabili-
ties in context on reading. However, it is an open
question whether these human guess-derived pro-
portions may be biased from objective probabili-
ties in some way (Smith & Levy, 2011). Problem-
atically for studying surprisal specifically, how-
ever, the Cloze task cannot in principle yield reli-
able estimates of word probabilities in context that
are relatively low, say less than 1 in 100, as many
word probabilities are, without requiring an ex-
tremely large number of participants (Levy, 2008).
Additionally, it is not practical to use the Cloze
task to estimate probabilities for large datasets on
which surprisal is often studied, for which there
can easily be tens of thousands of contexts that
would require estimation.

The alternative is to estimate the probabilities
of words in context using computational language
models, which are trained on large language cor-
pora to estimate the probabilities of words in con-
text. Many studies of surprisal have used such lan-
guage models (e.g. Hale, 2001; Levy, 2008; Dem-
berg & Keller, 2008; Mitchell et al., 2010; Mon-
salve et al., 2012).

Unfortunately, however, computational lan-
guage models are still substantially worse than
humans at predicting upcoming words, meaning
there is some mismatch between the probabilities
p(w|c) being estimated computationally and the
implicit probabilities in the brains of readers that
humans are using. This situation raises the ques-
tion of to what extent we can trust results about the
effects of surprisal as estimated by such language
models. To try to get some information about pos-
sible biases that might exist in our results based
on language models being worse than humans at

10



predicting upcoming words, poor linguistic qual-
ity, we can compare a range of computational lan-
guage models of varying linguistic quality and see
how the estimated effects of surprisal change. If
there is a trend in results as the linguistic quality
of the language models improves, that would pro-
vide evidence that such a trend may be even more
present in language models with human-level lin-
guistic quality.

Additionally, recent years have seen rapid
progress in computational language modeling, en-
abled by recent advances in neural networks. As a
result, the linguistic quality of contemporary lan-
guage models is far beyond what has been used
in previous work studying surprisal. In this paper,
we address both these concerns by analyzing how
the predictive power of these surprisal estimates,
their psychological quality, varies as a function of
language model linguistic quality and type.

There has also been substantial interest in the
shape of the effects of surprisal on reading times,
because of theories that predict it to be linear
(Levy, 2008; Smith & Levy, 2013; Bicknell &
Levy, 2010). A secondary goal of this work is
to investigate whether the shape of this effect de-
pends on language model quality or type.

In particular, we compare surprisal estimates
using a range of language models of varying
linguistic qualities and types, from the n-gram
models that have been used in most previous
work on surprisal to state-of-the-art LSTM and
interpolated-LSTM models. We assess the predic-
tive ability and the size and shape of surprisals de-
rived from each language model using generalized
additive mixed-effects models (Wood, 2017) fit to
a corpus of eye movements in reading.

The plan for the remainder of this paper is as
follows. Section 2 introduces the set of language
models we compare and establishes the linguis-
tic quality of each. Then, in Section 3 we quan-
tify the ability of surprisals derived from each lan-
guage model to predict reading times and see the
extent to which this changes with language model
type and quality, assuming that effects of surprisal
on reading times are linear. In Section 4 we do the
same but allow surprisal to have non-linear effects,
and we additionally use the non-linear models to
assess whether there is evidence that the shape of
the surprisal effect changes with language model
type or quality. Finally, Section 5 concludes.

2 Language Models

2.1 Corpus
The corpus used for language model estimation
was the Google One Billion Word Benchmark
(Chelba et al., 2013), hereafter referred to as the
“1b corpus”. The text data was obtained from news
periodicals (similar to the Dundee corpus used for
eye-tracking data below). The final corpus con-
tained approximately 0.8 billion words with a vo-
cabulary size of about 800,000.

Although the Dundee Corpus (Kennedy et al.,
2003) tokenized entire words with punctuation,
our models were trained using separate punctua-
tion as well separated possessives (e.g. Bill’s →
[Bill , ’s]). Contractions were tokenized into their
constituent full-form words, although contractions
were counted as a single word when utilizing word
count in e.g. perplexity calculations. These calcu-
lations can be seen in Table 1.

2.2 Model types
We compare seven language models of three
types: four n-gram models, one LSTM, and two
interpolations.

2.2.1 n-gram
The n-gram, count-based models were calculated
using kenlm (Heafield et al., 2013). kenlm uses
Modified Kneser-Ney Smoothing, and is similar in
functionality but significantly faster than SRILM
(Stolcke et al., 2011). We calculated 5-grams, 4-
grams, trigram, bigrams and unigrams. Unigram
results were not included in the study, but rather
used as a count of word frequency for controlling
other models.

2.2.2 LSTM
Neural network-based language models were gen-
erated from a Recurrent Neural Network (RNN)
with Long-Short Term Memory (LSTM). Each
word was encoded as a 50-dimensional one-hot
vector, This vector was then fed into a sequence
model with an LSTM of 50 hidden units. The
model did not evaluate character-level sequences,
but rather only word-level sequences. The prob-
ability of the next word in the sequence was
selected from the output layer of the sequence
model.

2.2.3 Interpolation
In addition to the LSTM and n-gram models, two
interpolated models were also built from the two
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models with the lowest perplexity on the Dundee
Corpus used in this study (see Table 1). This
was similar to the interpolation method utilized
in Jozefowicz et al. (2016). Similar to Jozefow-
icz et al. (2016), the present study also found op-
timal weightings for combining an LSTM model
with a smoothed n-gram model. Optimal weight-
ing was operationalized as the blend weights that
resulted in the lowest perplexity. Perplexity of
the interpolated LSTM+5=gram model was opti-
mal (lowest) when an interpolated model weighted
the LSTM probabilities by 0.71, with the 5-gram
model weighted by 0.29. In addition to this op-
timal model, a balanced interpolated model was
also constructed using equal weighting of the
LSTM and 5-gram probabilities.

2.3 Dundee corpus surprisals
The Dundee Corpus (see Section 3 for corpus de-
tails) was tokenized at the word (rather than to-
ken) level with leading, trailing and internal punc-
tuation included, e.g. Bill’s, couldn’t or exist!. Be-
cause the 1b Corpus was tokenized, we were re-
quired to break words made up of multiple to-
kens into their constituent parts. The surprisal (log
probability) for each token was matched to the 1b
Corpus surprisals. In order to realign the tokens
with the Dundee Corpus’s words, the log probabil-
ities of each constituent token were added together
to form a sum total log probability of the word.

Of the approximately 61,000 tokens in the
Dundee Corpus, 175 were OOV in the 1b Corpus.
These OOV words were removed from the final
analysis. In adition, although the 1b Corpus used
the sentence-final delimiter </s>, the Dundee
Corpus did not. Therefore, while sentence-final
delimiters were used in constructing the probabil-
ities of the respective language models, they were
also removed from the final analysis.

2.4 Perplexity
For each language model, the words’ surprisals
(log probabilities) were summed and normalized
by the word count. The exponent of the inverse
of this sum was then calculated. A lower per-
plexity is indicative of a more accurate language
model. For example, a perplexity of 50 means
that the model can guess 1 of 50 different op-
tions for the model with equal probability. There-
fore a lower perplexity means that there are fewer
equally likely model options. The perplexity of the
seven language models is laid out in Table 1. The

Language Model
Perplexity

(All Tokens)
Perplexity

(Excluding OOV)

Interpolated-Optimal 73.39 73.41
Interpolated-Balanced 76.39 76.36

LSTM 113.27 113.59
5-gram 168.98 161.43
4-gram 172.24 164.56
3-gram 191.13 182.65
2-gram 290.88 278.36

Table 1: Perplexity of language models generated
either as a LSTM, n-grams, or an interpolation
of both the LSTM model as well as the 5-gram
model. Perplexities were calculated for the entire
Dundee corpus (60, 916 tokens) as well as for only
the tokens in the 1b corpus (60, 741 tokens).

optimal interpolated model achieved the lowest
perplexity, while the bigram model had the worst
(highest) perplexity.

It should be noted that the perplexities of both
the optimal interpolated model (73) and the LSTM
model (113) are worse than the respective models
reported in Jozefowicz et al. (2016) and Chelba
et al. (2013). Whereas our best 5-gram model
achieves a perplexity of 169 on the Dundee cor-
pus, Jozefowicz et al. (2016) achieves a perplex-
ity of 67 on the lm 1b benchmark using a similar
model. However, an important distinction is that
the perplexities in Table 1 were calculated after all
unknown words were excluded. On the other hand,
Chelba et al. (2013) used an <UNK> token for
words that were OOV on the test portion of the 1b
Corpus. This suggests a substantial mismatch be-
tween the test benchmark corpus and the Dundee
corpus, even though both corpora are sourced from
news media. Nonetheless, both perplexity figures
could be considered strong, low perplexities.

3 Linear effects of surprisal

In this section we investigate the ability of sur-
prisals derived from each of these seven language
models described above to predict reading times in
a large corpus of eye movements in reading.

3.1 Methods

3.1.1 Eye movement in reading data
The eye tracking data for our study came from
English portion of the Dundee Corpus (Kennedy
et al., 2003), which recorded the eye-movement
data from 10 English-speaking participants read-
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ing newspaper editorials in The Independent. For
this paper specifically, we predict gaze durations
for each word, defined to be the sum of all fixa-
tions made on a word between the time the word
is initially fixed and when the eyes first move off
of the word. This measure is only calculated if the
word is fixated by that reader prior to any fixation
on a later word (i.e., during ‘first pass’ reading).
If the word was not fixated during first pass read-
ing, this is missing data. We used a total of about
436,000 valid gaze durations in the English por-
tion of the Dundee corpus. After performing the
exclusions listed below, we were left with a total
of 289,726 gaze durations and a vocabulary size of
37,420 word types.

In line with previous studies of gaze durations
in the Dundee corpus (e.g. Smith & Levy, 2013),
we excluded:

• Words preceding punctuation

• Words with non-alphabetical characters

• Words that were presented to participants at
the beginning or end of a line of text

• Words that were outside the vocabulary of the
1b corpus (and thus the language models)

Because our statistical model of the gaze duration
of each word also included effects of the surprisal
of the preceding word, we also excluded:

• Words following punctuation

• Words that followed words with non-
alphabetic characters

• Words that followed words that were outside
the vocabulary of the 1b corpus (and thus the
language models)

3.1.2 Statistical models
Similar to Smith & Levy (2013), we used general-
ized additive mixed-effects models (GAMMs) to
predict reading times with the mgcv (Wood, 2004)
package in R (R Core Team, 2013). We estimated
seven GAMMs, one for each language model.
Each GAMM modeled gaze duration on a word as
a function of two linear surprisal terms: one for the
surprisal of the current word and one for the sur-
prisal of the previous word. Each GAMM also in-
cluded random intercepts for each of the 10 read-
ers and a range of linear and non-linear covariates
not of direct interest for the present work, identical
to those included by Smith & Levy (2013). These
covariates were:

• a tensor product interaction between ortho-
graphic word length and log-frequency (un-
igram log probability estimated from the 1b
corpus) of the current word

• a tensor product interaction between ortho-
graphic word length and log-frequency of the
previous word

• a spline effect of word number within the text

• a binary variable of whether or not the previ-
ous word had received a fixation

3.1.3 Analysis
We compare the predictive power of different lan-
guage models for reading times by comparing the
log likelihoods across GAMMs that include sur-
prisals derived from different language models.1

To enable comparison of log likelihoods across
models, we change two aspects of mgcv’s default
GAMM fitting procedure: we use maximum like-
lihood fitting instead of REML and we use splines
with fixed degrees of freedom instead of penalized
splines. We set the fixed degrees of freedom for
each covariate to be a bit above the estimated de-
grees of freedom from a GAMM estimated in the
default way (which was relatively constant across
models).

To measure the added predictive power of the
two linear surprisal terms in each model, we sub-
tract the models’ log likelihood from a model
that only includes the covariates, yielding a mea-
sure we denote ∆LogLik. (Note that because
these models are in a subset relationship -2 times
∆LogLik is a Chi-square distributed deviance as
in a likelihood ratio test.)

To assess the extent to which this measure of
predictive power is related to the language model’s
linguistic quality, we correlate this ∆LogLik met-
ric with perplexity. Additionally, since these mod-
els with linear effects of surprisal also estimate the
coefficient of surprisal for predicting reading times
– both for the current word’s surprisal and the prior
word’s – we also assess the correlation between
these coefficients and the model’s perplexity. To
the extent to which there are systematic relation-
ships between these coefficients and the language
model’s linguistic quality, it may suggest that poor

1Technically, these models include log10 probabilities,
which must be multiplied by -1 to get a surprisal, and also
converted from bans to bits.
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Figure 1: Improvements in log likelihood for lin-
ear models, charted against decreases in perplex-
ity. Distance from the central trend line is indica-
tive of larger departures in log likelihood as a func-
tion of perplexity. The blue line represents a linear
best fit, with a coefficient of−1.66 and R2 = 0.94

quality language models cannot be trusted to ac-
curately estimate the size of the effect of surprisal
on reading times.

3.2 Results and discussion

3.2.1 Log Likelihood

As shown in Figure 1 and Table 2, there is a mono-
tonic effect of language model quality on predic-
tive power. Better language models (lower per-
plexity) yield surprisal values that better predict
reading times, as seen by increased ∆LogLik. In-
deed, Figure 1 shows a strikingly strong relation-
ship between a language model’s linguistic qual-
ity (measured by perplexity) and the ability of sur-
prisal values derived from that model to predict
reading times (measured by ∆LogLik). These two
values have an R2 of 0.94.

However, there is one relatively clear depar-
ture from this tight linear relationship. Namely,
the large decrease in the perplexity going from the
5-gram model to the LSTM is not reflected in a
large jump in ∆LogLik. Put another way, although
there is a clear systematic relationship between
language model linguistic quality and ∆LogLik,
there is also some evidence for effects of language
model type, such that the LSTM is less useful for
predicting reading times than would be expected
given its perplexity.

Figure 2: Changes in the current word’s coefficient
for linear models, charted against increases in per-
plexity. Distances from the central trend line are
indicative of larger departures of the current word
coefficient from the expected trend. Regardless of
perplexity, the coefficient is stable. The blue line
represents a linear best fit, with a coefficient of
−2.79 and R2 = 0.007.

3.2.2 Current Word
The effects of two words’ surprisal was incorpo-
rated into the GAMs: the surprisal of the current
word and the surprisal of the previous word. De-
spite the different models’ very different perplex-
ities, the size of the effects of surprisal were es-
timated very stably across language models. As
seen in Figure 2, all models had surprisal coef-
ficients around 3 (although the LSTM model is
again somewhat of a low outlier). There is no clear
relationship between the coefficients for the sur-
prisal of the current word and language model
quality, with both the best model (optimal inter-
polation) and the worst model (bigrams) having a
value of 3.04.

3.2.3 Previous Word
Similar to the results above for the current word,
the previous word’s surprisal also had an inconsis-
tent effect across models. In other words, the coef-
ficient for the previous word’s surprisal (see Table
2) bore no clear relationship with relative improve-
ments in language model perplexity.

4 Non-linear effects of surprisal

In addition to the previous set of analyses analyz-
ing the predictive power of linear effects of sur-
prisal on reading times, we conducted another set
of analyses allowing for non-linear effects of sur-
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Language Model ∆LogLik
Current Word

Coefficient
Previous Word

Coefficient

Interpolated-Optimal 284 -3.04 -4.57
Interpolated-Balanced 280 -3.12 -4.68

LSTM 231 -2.32 -2.56
5-gram 228 -2.69 -3.82
4-gram 224 -2.69 -3.81
3-gram 218 -2.97 -3.92
2-gram 151 -3.04 -3.98

Table 2: As the perplexity of a language model increases, its improvement over baseline log likelihood
(∆LogLik) decreases. The coefficients for both the current and previous words do not bear a consistent
relationship with model perplexity.

Figure 3: Regression plot of coefficients on the
previous word. The blue line represents a linear
best fit, with a coefficient of 0.001 and R2 = 0.03.

prisal. These models also let us ask whether the
shape of the estimated effect of surprisal on read-
ing times varies with language model quality.

4.1 Methodology

The primary methodology was identical to that
from the previous analysis, except that instead of
including linear effects of current and previous
word surprisal in the GAMMs, we included cubic
splines (40 d.f.) of current and previous word sur-
prisal. For this non-linear model, since there are
not coefficients of current and previous word sur-
prisal, we also investigate the F statistic associated
with the strength of each surprisal term predictor.

Additionally, to analyze whether the shape of
the surprisal effect differs across conditions, we
fit additional GAMMs that had the same struc-
ture but were estimated in mgcv’s usual way (i.e.,
with splines penalized and REML). These addi-

R2 p

Linear
Log Likelihood 0.94 0.0003
Current Word Coefficient 0.01 0.86
Previous Word Coefficient 0.03 0.73
Non-Linear
Log Likelihood 0.98 0.00002
Current Word F 0.25 0.26
Previous Word F 0.99 0.000008

Table 3: Correlation results for metrics of predic-
tors of linear and non-linear GAMMs

tional models were only used for visualization.

4.2 Results and discussion

When allowing for non-linear effects of surprisal,
the relationship between linguistic quality and pre-
dictive power for reading times becomes even
more clear. The relationship between ∆LogLik
and perplexity becomes even stronger (Figure 4),
with an R2 of 0.98. Further, as seen in Table 4,
while the F statistic for the current word surprisal
is inconsistent as model perplexity improves (sim-
ilar to the coefficients of surprisal in the linear
models), the F statistic of the previous word is
tightly related to perplexity. As perplexity of a
model improves, the F statistic of the previous
word improves in lockstep. This suggests that at
least in the non-linear models, many of the im-
provements in predictive ability may come specif-
ically from effects of prior word surprisal.

As can be seen in the GAM plots in Figures 5
and 6, there are no large differences in the shape
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Figure 4: Improvements in log likelihood for non-
linear models, charted against decreases in per-
plexity. The blue line is a linear best fit line with a
coefficient of -1.66, R2 = 0.98.

Figure 5: GAM plots on current word using nor-
mal estimation

of surprisal as language model quality improves –
all look roughly linear. If a trend in shape does ex-
ist, the highest quality models (interpolation) ap-
pear to have the most linear slopes. Additionally,
the slope for surprisal of the prior word appears to
flatten out for LSTMs for high surprisals.2

5 General Discussion

Taking all of the results together, we have shown
evidence here for a strong effect of language
model linguistic quality on the predictive power
of surprisals estimated from that language model
for reading times. This effect holds regardless of
whether surprisal is modeled as a linear or non-
linear effect. Despite this clear relationship with
linguistic quality in terms of predictive power, we
also saw remarkable consistency. Across language

2This approach was followed rather than performing a sta-
tistical model comparison testing for non-linearity because
our GAMM models lacked by-word random slopes. Because
the model lacks these parameters, we would expect the model
to capture variance across word tokens in the corpus by bend-
ing the curve away from linearity.

Figure 6: GAM plots on previous word using nor-
mal estimation

models that varied by more than a factor of 4 in
perplexity, the size of the effect of surprisal was
estimated to be the similar and the shape of the ef-
fect of surprisal was estimated to be roughly linear.
These results suggest that we can put a reasonable
amount of trust in results about surprisal estimated
with computational language models, despite the
state-of-the-art still being far from human quality.

In addition, the way that the language models
were composed seems to play a role in its fit to
the data. The LSTM-based model does seem to be
somewhat of a low-performing outlier. However,
when the LSTM model is used with the 5-gram
model in interpolation, these yield superior results.
Therefore, although a purely LSTM-based model
does not predict reading time as well as other
models, it provides a good fit for the data. When
used in conjunction with a count-based model, this
combination provides more accurate predictions
of the reading time data.

A number of studies have used the Dundee eye-
tracking corpus in conjunction with a probabilistic
language model. Demberg & Keller (2008), using
less sophisticated linear models, found that sur-
prisal is an accurate measure of processing com-
plexity as measured by eye gaze duration. Ac-
cording to Demberg & Keller (2008), greater word
surprisal invokes higher “integration costs,” which
accounts for prolonged gaze duration.

In a neural network language model, word de-
pendencies can span an arbitrary word distance,
i.e. not all dependencies are contingent upon adja-
cent words or even a neighboring word. For ex-
ample, ellipsis can span multiple clause bound-
aries to resolve an anaphoric relationship. For this
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Language Model ∆LogLik
Current Word

F Statistic
Previous Word

F Statistic

Interpolated-Optimal 297 21.13 63.8
Interpolated-Balanced 294 21.76 63.27

LSTM 284 17.58 55.16
5-gram 250 21.31 50.47
4-gram 246 21.18 50.13
3-gram 241 22.86 48.12
2-gram 166 15.6 34.94

Table 4: Log likelihood and F statistics for GAMMs with nonlinear smoothers on all covariates

reason, surprisal that accounts for the hierarchical
structure of language has also been studied, to see
if taking hierarchy into account can better predict
eye gaze duration. Frank & Bod (2011) concludes
that including hierarchy information does not bet-
ter account for variance compared to a sequence-
based model. According to their study, hierarchi-
cal information does not noticeably affect the gen-
eration of expectations of the following word.

Fossum & Levy (2012), on the other hand, make
various modifications to the models used in Frank
& Bod (2011), adding additional lexical informa-
tion to the unlexicalized hierarchical models. Fos-
sum & Levy (2012) concludes that hierarchical in-
formation, when properly lexicalized, can improve
sequence-only lexical models. Similarly, Mitchell
et al. (2010) created a model that interpolates syn-
tactic and distributional semantic information, and
found that this improved the prediction of eye
tracking durations.

As this bears on the present study, the LSTM
model is able to detect word relationships that
span arbitrary distances. While the LSTM model
is not explicitly representing hierarchical informa-
tion, the model does capture long distance infor-
mation. Our results show that the LSTM model
outperforms the purely n-gram models in terms
of predictive capabilities. Thus, while we do not
need to build hierarchical information explicitly
into our model, the long-distance information does
improve both linguistic and psychological accu-
racy. This could point to the conclusion that eye
gaze duration is also sensitive to, if not hierar-
chical information, then information provided at
a long distance from the current word.

In a similar vein to our results, Monsalve et al.
(2012) shows that perplexity of a language model
(linguistic accuracy) bears a strong relationship to
the log likelihood of a reading time model (psy-

chological accuracy). The key differences between
this study and ours is that Monsalve et al. (2012)
analyzes self-paced reading data rather than eye-
tracking, and that we use higher-performing state-
of-the-art language models.

Finally, the present study can, in many respects,
be viewed as a follow-up to Smith & Levy (2013).
(Smith & Levy, 2013) measured the shape of the
surprisal curve, similar to our experiment in Sec-
tion 4; however, the present study demonstrates
that the the effect of surprisal is still linear even
with much more (linguistically and psychologi-
cally) accurate language models.

As many studies have noted (Monsalve et al.,
2012; Frank et al., 2013), a corpus such as the
Dundee corpus, collected from newspapers, of-
ten requires a great deal of global, extra-sentential
context. Therefore, when processing a given sen-
tence, the reader must also take into account in-
formation provided many sentences prior, or even
not provided in the document at all. This limitation
could impact the results reported herein.

Despite possible limitations, the results above
provide consistent evidence that improving the lin-
guistic accuracy of language models will improve
the models’ ability to make psychological predic-
tions. This underscores the importance of under-
standing language structure in order to better un-
derstand cognitive processes such as eye gaze du-
ration.
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