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Abstract

Annotated data is an important resource for the linguistics community, which is why researchers
need to be sure that such data are reliable. However, arriving at sufficiently reliable annotations
appears to be an issue within the field of discourse, possibly due to the fact that coherence is a mental
phenomenon rather than a textual one. In this paper, we discuss recent insights and developments
regarding annotation and reliability evaluation that are relevant to the field of discourse. We focus
on characteristics of coherence that impact reliability scores and look at how different measures are
affected by this. We discuss benefits and disadvantages of these measures, and propose that discourse
annotation results be accompanied by a detailed report of the annotation process and data, as well as
a careful consideration of the reliability measure that is applied.

1 Introduction

Linguistics researchers often make use of large amounts of data that are annotated by two or more
coders. In order to draw conclusions from these data, researchers need to be sure that such data are
reliable. Reliability “is the extent to which different methods, research results, or people arrive at the
same interpretations or facts” (Krippendorff, 2011); data are reliable if coders agree on the labels assigned
to, for instance, discourse relations (Artstein and Poesio, 2008). One way in which the reliability of
annotated data can be measured is by calculating the inter-coder agreement: a numerical index of the
extent of agreement between the coders.

Spooren and Degand (2010) note that sufficiently reliable annotation appears to be an issue within
the field of discourse coherence. As the main reason for this, they point to the fact that coherence is a
feature of the mental representation that readers form of a text, rather than of the linguistic material itself.
Discourse annotation thus relies on coders’ interpretation of a text, which makes it a particularly difficult
task. This idea is for instance supported by studies that show that coders tend to agree more when anno-
tating explicit coherence relations, which are signalled by a connective or cue phrase (because, for this
reason), than when annotating implicit coherence relations, which contain no or less linguistic markers
on which coders can base their decision (e.g., Miltsakaki et al., 2004; Prasad et al., 2008). Spooren and
Degand (2010) argue that low agreement scores may contribute to the fact that reliability scores are often
not reported in corpus-based discourse studies. They discuss several possible solutions to increase the re-
liability of discourse annotation tasks, including providing the annotators with more training, improving
annotation protocols, and changing the definition of what a good or sufficient agreement score is.

Since Spooren and Degand (2010), there have been several new developments both in the discussion
on inter-coder agreement measurement and within the field of discourse. In this paper, we address some
of these insights.1 First, we discuss a relatively new agreement measure, AC1 (Gwet, 2002), that has

1It should be noted that although the focus of this paper will be on discourse-annotated data, some of the data characteristics
we discuss are by no means unique to discourse, and all measures discussed in this paper could be used to calculate agreement
for annotated data from different types of linguistic research as well.
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been gaining popularity in recent years, and explore its suitability for measuring inter-coder agreement
within the field of discourse annotation. AC1 was introduced to solve some of the problems that Cohen’s
Kappa, the inter-coder agreement measure that is most widely used, presents.2 Specifically, Kappa’s
values are sometimes relatively low, despite a high percentage of observed agreement; a problem known
as the “Kappa paradox” (Feinstein and Cicchetti, 1990). As we will elaborate on in the next sections,
this paradox occurs because Kappa is sensitive to certain characteristics of data that are very typical of
discourse data.

After discussing AC1 as a potential alternative for Cohen’s Kappa in measuring the agreement be-
tween two (or more) expert coders, we briefly discuss some of the new methods of annotating discourse
that have recently been used. These methods all involve the use of multiple naive, non-expert coders.
Using non-expert coders is an attractive alternative to the conventional two-or-more expert coder sce-
nario, since it allows researchers to obtain a lot of annotated data without extensive training sessions in
a relatively fast and cheap way, especially when making use of crowdsourcing. For such annotation ap-
proaches, other methods for evaluating the reliability and quality of the annotations have been proposed.

2 Inter-coder agreement in (discourse) annotation

The discourse community makes frequent use of manually-annotated data, making inter-coder reliability
a highly relevant issue for this field. However, a lot of research into reliability has been conducted
by researchers from other fields, such as the medical field. These hypotheses and statistical measures
have then been applied to discourse data, but differences between fields might affect the interpretation
of agreement scores, as well as the appropriateness of a measure. For example, to interpret Kappa,
researchers from all fields make use of Landis and Koch (1977)’s scale, which was originally designed
for the medical field. Hripcsak and Heitjan (2002, p.101), however, argue that intermediate levels of
Kappa cannot be interpreted consistently between fields or even within fields, because the interpretation
relies heavily on the type of task and categories, the purpose of the measurement, and the definition
of chance. In this section, we discuss specific characteristics of tasks and categories in the discourse
coherence field, but first we address what sets apart linguistic annotation from other types of annotation,
in order to highlight why different assumptions regarding reliability might be appropriate depending on
the field.

Linguistic annotation differs from annotation tasks in other fields such as medicine for several rea-
sons. In the medical field, patients are diagnosed as positive or negative, i.e., often the only two categories
are ‘yes’ and ‘no.’ A data point often has an ultimate truth (the patient has the disease or does not have
the disease), which can often be determined via different ‘diagnostics’ and for which additional evidence
can emerge over time (due to the developmental course of diseases, for example). In linguistics, however,
annotation tasks often consist of multiple categories. A data point never has an ultimate truth; rather, in
many tasks, linguistics researchers study gradient phenomena where there are no right answers (Munro
et al., 2010) and where it is not uncommon for data to be ambiguous (a coherence relation can for instance
be causal and temporal at the same time). Finally, disagreements seem to be more equal in linguistics
than in medicine. In the medical field, a false negative is worse than a false positive, since diagnosing a
sick patient as healthy is worse than diagnosing a healthy patient as sick (e.g., Cicchetti et al., 2017). In
linguistics, however, one mistake is not worse than another. These differences between domains do not
at all imply that annotation tasks in discourse are easier or more difficult than those in the medical field,
but they can play a role in whether a specific measure is suitable for determining agreement between
coders.

In the next sections, we look at specific characteristics of typical discourse annotation tasks that
influence the result of agreement measures, namely the number of categories and the distribution of
categories. We illustrate our arguments using examples from discourse coherence data. However, the

2Like Kappa, AC1 requires a simple categorical rating system. Gwet (2002) proposed a second statistic, called AC2, for
ordered categorical rating systems. This measure can be used as an alternative to weighted Kappa.
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same arguments are often valid for other types of discourse annotation, including coreference coding
(e.g., Van Deemter and Kibble, 2000), Translation Spotting (e.g., Cartoni et al., 2013), semantic role
labeling (e.g., Palmer et al., 2005) or determining a discourse relation’s segment-specific properties (e.g.,
Andersson and Spenader, 2014; Li, 2014; Sanders et al., 2012). Determining agreement is also relevant
for experimentally obtained data, as in for instance continuation tasks or paraphrase tasks. The uneven
occurrence of categories is an issue relevant to all these tasks, while the varying number of categories
used in annotation is relevant mostly to the annotation of coherence relations, both in natural language
and experimental data.

2.1 Number of categories

When annotating discourse relations, coders use labels to represent the way in which text segments relate
to each other. Several different discourse annotation frameworks have been proposed, all of which have
a different relation inventory. Frameworks differ not only in the exact labels they use, but also in the
number of relational categories they distinguish. The DISCOR corpus (Reese et al., 2007), annotated
within the framework of Segmented Discourse Representation Theory (SDRT), for example, uses 14
relation labels, while the RST Discourse Treebank (Carlson et al., 2003) uses 72 relation labels. The
large variability in the number of categories between frameworks can contribute to low comparability of
reliability scores between annotation efforts. A larger number of labels can for instance lead to more rare
categories, which can in turn result in a lower reliability score, as we will see in the next sections.

The number of subtypes distinguished within classes in a single framework may also differ. The Penn
Discourse Treebank 2.0 (PDTB 2.0, Prasad et al., 2008), for example, has 42 distinct labels, ordered in
a hierarchy of four classes with three levels. The framework distinguishes 3 third-level labels within the
class of TEMPORAL relations, but 11 third-level labels within CONTINGENCY relations. Such differences
can make reliability scores difficult to compare between relation types even in a single framework.

2.2 Uneven distribution of categories

Regardless of the number of relation labels used, an uneven distribution of categories seems to be a com-
mon characteristic of discourse annotation. Since discourse annotation generally uses natural language
as its basis, the frequency of a specific label is influenced by the frequency of the type of relation it refers
to. The distribution of categories in discourse annotation can be skewed in multiple ways. For example,
causal relations occur more often in natural text than non-causal relations such as LIST (e.g., Prasad et al.
2007). In addition, texts are characterized by an uneven distribution of connectives, with some connec-
tives being very frequent (e.g., because), and other occurring less often (e.g., consequently). Finally, the
distribution of relation types that specific connectives mark can also vary. Relations signaled by so are
for instance more often RESULT than PURPOSE (e.g., Andersson and Spenader, 2014). Uneven preva-
lence of categories also extends beyond coherence relations. When it comes to coreference patterns, for
instance, pronouns more often refer to the subject than to the object of the previous sentence.

The distribution of categories is also not stable between different types of discourse. The prevalence
of relation types has been shown to differ between language modes (e.g., between spoken and written
discourse, Sanders and Spooren, 2015), text genres (e.g., Demirşahin et al., 2012), and connectives (e.g.,
Andersson and Spenader, 2014), and between implicit and explicitly marked relations (e.g., Asr and
Demberg, 2012). Similarly, coreference patterns can vary depending on the context; in the presence
of an Implicit Causality verb, upcoming pronouns may more often refer back to the object than to the
subject of the sentence (e.g., Garvey and Caramazza, 1974). Such variability in category distribution
can reduce the comparability of reliability measures between annotation efforts, when using the same
framework or the same labels.

The differences between discourse annotation efforts in the number of categories that are distin-
guished and the uneven distribution of categories can influence a reliability statistic such as Kappa, as
will be explained in the next section. The variability in the prevalence of categories makes measuring the
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reliability of discourse annotations even more problematic, since it has a varying effect on the reliability
scores of annotation efforts that have been done using the same relation inventory. Specifically, if the
observed prevalence of items in one of the categories is low, then there is insufficient information in the
data to judge coders’ ability to discriminate items, and Kappa may underestimate the true agreement
(Hripcsak and Heitjan, 2002). This then also complicates a comparison of reliability scores between
discourse annotation frameworks, since it prevents us from determining something along the lines of a
‘framework correction.’ For these reasons, it is important that researchers in the field of discourse anno-
tation understand the distribution of relations in their frameworks and the prevalence in their data, and
know how the agreement measures that they apply to their annotations are affected by this data. Without
such knowledge and the appropriate reporting of these qualities, agreement scores on different discourse
annotation tasks cannot be compared and the reliability of the data cannot be evaluated properly.

3 Inter-coder agreement measures: Kappa and AC

1

The simplest measure of agreement between coders is the percentage of agreement, also known as the
observed agreement. This measure, however, is often not suitable for calculating reliability, as it does not
take into account chance agreement (Scott, 1959). Chance agreement occurs when one or both coders
rate an item randomly. This type of agreement can inflate the overall agreement and should therefore not
contribute to a measure of inter-coder reliability (Artstein and Poesio, 2008).

In order to get a reliable index of the extent of agreement between coders, observed agreement has to
be adjusted for chance agreement. Since it cannot be known which agreements between coders occurred
by chance and which agreements are real, the proportion of chance agreement must be estimated (Gwet,
2001). Kappa and AC1 correct for chance agreement on the basis of the same idea, namely that the
ratio between the observed agreement and the expected agreement reflects how much agreement beyond
chance was in fact observed. This idea is expressed in the following formula, which in both cases results
in a score between -1 and 1:

, AC1 =
P
o

� P
e

1� P
e

(1)

where P
o

is the observed agreement, or percentage agreement, and P
e

is the agreement that would be
expected if the coders were acting only by chance. The crucial difference between Kappa and AC1 lies
in the way in which they estimate the expected agreement (P

e

), as they have different assumptions about
the coding distributions. In this section, we introduce each measure in turn, highlighting the differences
between the measures as well as the respective drawbacks. We then illustrate the difference between
Kappa and AC1’s scores using different annotation scenarios. The example data in this section will be
used to illustrate the agreement measures, and will be reported in a two-way contingency table such as
Table 1. This table represents a two-coder reliability study involving coders A and B and two categories.

It should be noted that while Kappa and AC1 both range between 1 (complete agreement) to -1
(complete disagreement), neither score comes with a fixed value at which agreement can be considered
satisfactory; guidelines and conventions on the interpretation of these measures are formed over time and
can differ between fields. As mentioned above, Kappa is often interpreted using the scale proposed by
Landis and Koch (1977), in which for instance 0.41�0.6 = moderate agreement, 0.61�0.8 = substantial
agreement, and 0.81�1 = almost perfect agreement, but the cut-off point for acceptable agreement in
computational linguistics is commonly set at  = 0.67 (Di Eugenio and Glass, 2004), whereas Artstein
and Poesio (2008) recommend considering  > 0.8 as an indication of sufficient annotation quality.
While these guidelines are helpful, they have no theoretical basis (Ludbrook, 2002; Xie, 2013) and are
themselves subject to evaluation.

3.1 Cohen’s Kappa

Cohen’s Kappa assumes that “random assignment of categories to items is governed by prior distributions
that are unique to each coder and that reflect individual annotator bias” (Artstein and Poesio, 2008, p.
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561). In Kappa, chance agreement, or the amount of agreement that would be expected if annotators
were acting only by chance (“expected agreement”), is estimated using the marginal distribution (i.e.,
the probability that a category is used by the coders):

P
e

() = (f1 · g1 + f2 · g2)/N2 (2)

where f1, f2, g1 and g2 correspond to the marginal totals in Table 1.

Coder A
Coder B 1 2 Total

1 a b g1
2 c d g2

Total f1 f2 N

Table 1: Coders and response categories

3.2 Gwet’s AC

1

AC1’s definition of chance agreement is based on the premises that chance agreement occurs when at
least one coder guesses and that only an unknown proportion of ratings is random. AC1 thus assumes
that coders’ agreements are at least in part not due to chance. In addition, AC1 takes into account the
prevalence of the categories for its estimation of chance agreement (Gwet, 2001).

The calculation of chance agreement in AC1 is expressed by the following formula:

P
e

(AC1) =
1

(K � 1)

KX

q=1

✓
N

q

N
· N �N

q

N

◆
(3)

whereby K refers to the total number of categories and q to a specific category. N
q

refers to the average
number of times a certain category is used by a coder and is, in case of two coders, equivalent to (f

q

+
g
q

)/2. N
q

/N thus represents the percentage of items labeled as category q and (N �N
q

)/N represents
the percentage of items not labeled as category q (see also Zhao et al., 2013). Hence, whereas Kappa’s
formula of chance agreement is based on the chance that Coder A and B both categorize an item as ‘1,’
the chance that both coders categorize an item as ‘2’, etc., AC1’s chance agreement formula is based on
the chance that a certain category is used.

The values from AC1’s formula for chance agreement are crucially different from those of Kappa’s
chance agreement formula because AC1 does not assume a prior individual coder bias. Instead, it is based
on the possibility that one or both of the coders perform a random classification. As such, Gwet (2002, p.
3) argues that a reasonable value for chance agreement probability should not exceed 0.5. Consequently,
AC1’s chance agreement caps the probability within 0–0.5, whereas Kappa’s chance agreement probabil-
ity can be anywhere between 0 and 1. AC1’s limit of 0.5 aims to prevent the occurrence of a similar erratic
behaviour that leads to Kappa’s paradoxes. In addition, AC1’s chance agreement, unlike Kappa’s chance
agreement, is positively correlated with the difficulty of a task, since it includes the chance of coders
annotating randomly (Feng, 2015); as a task gets more difficult, chances that coders guess increase. The
next section will explore Kappa’s and AC1’s behavior in different annotation scenarios.

3.3 Kappa vs. AC

1

in annotation scenarios

Because Kappa bases its chance agreement on individual coder biases, the resulting agreement score
can be greatly affected by the distribution of the categories in the data. Specifically, when the marginal
distributions are imbalanced, the resulting  is lower than when the marginal distributions are balanced.
In Table 2, the distribution is symmetrical and balanced; the coders agree on an equal amount of items for
both categories, and category 1 is used approximately as often as category 2. The observed agreement is
100/120 = 0.83, and the  score for these data is 0.67 (see Table 6 for an overview of all scores).3 In this

3All agreement scores reported in this paper were calculated using the R package agree.coeff2.r.
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Coder A
Coder B 1 2 Total

1 50 12 62
2 8 50 58

Total 58 62 120

Table 2: Symmetrical balanced distribution

Coder A
Coder B 1 2 Total

1 20 12 32
2 8 80 88

Total 28 92 120

Table 3: Symmetrical imbalanced distribution

Coder A
Coder B 1 2 Total

1 0 12 12
2 8 100 108

Total 8 112 120

Table 4: Symmetrical imbalanced distribution
with empty target cell

Coder A
Coder B 1 2 Total

1 5 110 115
2 0 5 5

Total 5 115 120

Table 5: Highly imbalanced distribution in opposite
direction

scenario, AC1’s chance agreement is the same. Consequently, the agreement scores are also the same.
Hence, when the data is distributed evenly, Kappa and AC1 give comparable scores.

In Table 3, the distribution of categories is also approximately the same for each coder (i.e., 30/90),
but category 2 is used more often than category 1, and the distribution is therefore symmetrical but
imbalanced. For these types of distributions, AC1 and Kappa yield different scores. Kappa assumes
that both coders have a bias toward category 2 and that, as such, they would agree often if they guessed
according to their biases. The observed agreement is the same as for the data in Table 2 (0.83), but
Kappa’s chance agreement is higher (0.62), resulting in a lower  score (0.56).4 AC1, by contrast,
assumes that uneven categories are a property of the data. Consequently, AC1 assumes a lower value for
chance agreement than Kappa (0.38), which results in a higher agreement score (0.73).

Table 4 illustrates a scenario in which two coders have reached a high observed agreement (0.83),
but have not managed to agree on a single case for category 1 (resulting in an empty target cell). The 
score for this annotation task is -0.09, which indicates that agreement was around chance level. Kappa
estimates chance agreement at 0.85. This is an extreme case of a low Kappa score for a task with a high
observed agreement. The fact that the Kappa score is much lower than the observed agreement is in this
case not completely unreasonable, since even though both coders used category 1 several times, they did
not agree on a single case for this category. On the other hand, having a reliability score around chance
implies that coders did no better than if they were guessing, even though it seems plausible to assume
that at least part of the items that were classified as category 2 were assigned this label because the coders
were certain that the item belonged to this category.

Because AC1, unlike Kappa, takes into account both the number of categories and the prevalence of
those categories, the chance agreement is much lower than Kappa’s (0.22) and the resulting reliability
score is higher (0.80). Note that AC1’s estimation of chance agreement for Table 4 is lower than for
Tables 2 and 3, and that its reliability score for 4 is therefore higher than for the other two scenarios. This
can be considered counter-intuitive; after all, there is only one category in Table 4 on which the coders
have managed to agree. The coders have not been able to reliably assign any items to the other category,
which constitutes 50% of the categories in a 2⇥2 table. One would expect that the corresponding agree-
ment score is affected by this. Zhao et al. (2013) note that this is an abnormality in AC1: in case of a
very skewed distribution with an empty target cell, AC1 turns out higher than what seems justified.

A similar abnormality in AC1 is that unused categories influence the reliability score. For instance,
4Sometimes, KappaMAX is used to correct Kappa in case of uneven categories. KappaMAX is calculated using the same

formula as Kappa, but the ‘1’ in formula 1 is replaced by the maximum value for observed agreement possible (if f1 is the
smallest marginal total, maxp

o

= (f1 + g2)/N ; if f2 is the smallest marginal total, maxp

o

= (f2 + g1)/N (see also Feinstein
and Cicchetti, 1990)). Although KappaMAX can correct Kappa’s prevalence problem, it has been reported to overcorrect in
case of coder bias (Feinstein and Cicchetti, 1990).
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Table P
o

Kappa AC1
P
e

 P
e

AC1

2 0.83 0.50 0.67 0.50 0.67
3 0.83 0.62 0.56 0.38 0.73
4 0.83 0.85 -0.09 0.22 0.80
5 0.08 0.08 0.004 0.50 -0.83

Table 6: Values for observed agreement, chance agreement and reliability scores for Tables 2-5.

if we were to add an empty category (‘3’) to Table 2, the AC1 score would rise from 0.67 to 0.78. Kappa,
by contrast, is not affected by the unused category, and gives a score of 0.67 in both cases. This may be
perceived as a positive feature of AC1, since the measure can reflect that coders have successfully not
attributed any of the items to a certain category. On the other hand, it makes AC1 vulnerable to inflation
through the inclusion of useless categories in an annotation task. It should, however, be noted that the
inflation effect of unused categories decreases as the number of used categories increases.

Instead of being low relative to the observed agreement, Kappa can also be high. Table 5 presents an
extreme case of coder disagreement. The observed agreement is very low (0.08), but  is 0.0004, which
suggests that agreement was around chance. Looking at the table, however, it appears that there is almost
perfect disagreement. It could be argued that this too is a type of agreement; even though the coders
did not use the same label, they did make the same categorization of the data. The agreement should
therefore close to -1. AC1’s agreement score for the data in Table 5 (0.80) therefore much better reflects
the almost perfect disagreement that the coders showed. Although such extreme cases of disagreement
are rare in annotation, this example demonstrates Kappa’s potential to be relatively high when coders
disagree on many items. Ideally, a measure would be able to deal properly with all possible scenarios,
including one of almost perfect disagreement.

3.4 Using AC

1

to evaluate discourse annotations

As discussed in Section 2, skewed data are fairly common in discourse annotation tasks and distributions
can vary depending on the context or the task. This variation complicates a comparison of reliability
scores between annotation efforts. In addition, discourse frameworks often have many categories and
the prevalence of these categories in a text or dataset is unknown. Empty categories are therefore very
likely to occur in discourse annotation tasks. Disagreements on a rare category can have a big impact on
the Kappa score, especially when the target cell for that category remains empty. AC1 is more robust to
skewedness and variability in the distribution of categories, and therefore seems promising as a measure
for evaluating agreement in discourse annotation. Results from several studies and simulations have
suggested that AC1 is a reliable alternative measure for calculating inter-coder agreement (e.g., Gwet,
2001; Wongpakaran et al., 2013; Xie, 2013). Moreover, AC1 has been applied often in the medical field
(e.g., Bryant et al., 2013; Crowle et al., 2017; Fuller et al., 2017; Marks et al., 2016) and has also been
used in the computational linguistics field (Besser and Alexandersson, 2007; Haley, 2009; Hillard et al.,
2007; Kranstedt et al., 2006; Purpura and Hillard, 2006; Yang et al., 2006), but no research in the field of
discourse annotation has used AC1 as of yet.

It is important that researchers are aware that both Kappa and AC1 behave abnormally under some
conditions. Zhao et al. (2013) point out that we cannot be entirely sure exactly when a measure like
AC1 – which assumes that coding happens randomly only part of the time – overestimates reliability
or by how much and, vice versa, when a measure like Kappa – which assumes maximum-randomness
– underestimates reliability. The choice for any agreement statistic should be well-motivated and re-
searchers should be transparent about the distributions in their data. It might also be warranted that the
guidelines for what constitutes satisfactory agreement are slightly stricter for AC1 compared to those for
Kappa, whether they be ‘formalized’ guidelines such as Landis and Koch (1977), framework-specific
guidelines, or practices developed over annotation efforts.
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Since AC1 is still a relatively new agreement measure, it is possible that more frequent use and more
examination will uncover more issues. We encourage discourse researchers to consider using both AC1
and Kappa, and to be explicit about the characteristics of their data that might influence the suitability
of their inter-coder agreement measure. Regardless of which measure researchers choose for their data,
we advise them to include contingency tables to make annotation results more transparent and to allow
readers to evaluate the results as well.

4 Multiple coders and crowdsourcing

Traditional annotation tasks consist of two expert coders. However, as Krippendorff (2004) notes, using
more, non-expert coders can help ensure the reliability of the annotated data. In recent years, studies have
begun to explore whether non-expert, non-trained (also referred to as naive) coders can also be employed
for discourse annotation tasks (compared to expert coders). There are several advantages in employing
such coders: non-experts are easier to come by, making it easier to employ a large number. Multiple
annotators reduce the risk of coder bias in the data (Artstein and Poesio, 2005). Moreover, employing
non-expert coders allows for a cost-effective and fast approach to collecting large amounts of data.

For non-expert annotations to be valuable, researchers have to be sure that they are sufficiently re-
liable (compared to expert annotations). There are several ways to evaluate annotations generated by
non-expert, non-trained coders. For example, coders can be compared to each other based on their per-
formance (Peldszus and Stede, 2013). Alternatively, they can be compared to a gold standard developed
by an expert (Scholman et al., 2016). Typically, an adapted version of Kappa (i.e., Fleiss’ Kappa, Davies
and Fleiss, 1982) is used to calculate agreement for tasks with multiple coders, but AC1 could in fact also
be used. Recall, precision, and F-scores can also provide valuable insights into problematic categories in
the framework that is used.

To facilitate crowdsourced annotation projects without a gold standard set by experts, new methods
of coding evaluation have been proposed, such as models that can extract a gold standard from crowd-
sourced data. Aroyo and Welty (2013), for instance, propose creating binary annotation vectors for all
annotated items. These vectors then function as a gold standard to which individual annotations can be
compared: comparing individual coder vectors to the total item vectors (minus the data supplied by that
coder) gives an indication of coder disagreement, or the quality of each individual coder, whereas com-
paring all coder vectors for a single item to the averaged item vector functions as a measure of sentence
clarity, or sentence ambiguity (for details, see Aroyo and Welty, 2013).

Another, more commonly used method is an approach using probabilistic item-response models that
draw inferences about annotated data (Hovy et al., 2013; Passonneau and Carpenter, 2014). Such models
use unsupervised learning to estimate the probability of labels for every item and coder. The utility of
such a model lies in its ability to support meaningful inferences from the data, such as an estimate of
the true prevalence of each category. Specifically, two features of probabilistic models make them an
attractive alternative to more traditional reliability measurement methods. First, the models allow re-
searchers to differentiate between coders; specifically, they can adjust for annotations from noisy coders,
since some coders perform better than others. This is for instance done by giving different weights to
annotators that answer correctly less often than others (Hovy et al., 2013). Second, probabilistic models
cannot only identify the correct label for an item based on the crowdsourced annotations, they can also
provide a confidence measure that indicates how likely it is that this label is indeed the correct label (cf.
Hovy et al., 2013; Passonneau and Carpenter, 2014). This allows researchers to balance between cover-
age, i.e., the amount of data that is annotated, with accuracy, i.e., the trustworthiness of each annotation;
as Hovy et al. 2013 explain, researchers can favor a different trade-off between coverage and accuracy
depending on their research purposes. With the exception of Kawahara et al. (2014), no work has eval-
uated crowdsourced discourse relation annotations using probabilistic models. This seems a promising
topic for future research.

The use of multiple (naive) coders also opens up other possibilities for representing the data. It al-
lows researchers to study the distribution of responses over many coders, rather than specific data points
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(Munro et al., 2010). This can be beneficial in unsupervised approaches where it is assumed that there is
no one ground truth. Rohde et al. (2016) and Scholman and Demberg (2017), for example, present con-
fusion matrices, percentage agreement and distribution plots to show that, often, multiple interpretations
are possible for a single discourse relation. Rohde et al. (2016) argue that without gathering judgements
from a crowd of coders, differences in annotation might be written off as coder error or bias, or a low
level of inter-coder agreement. Based on their crowdsourced data, they conclude that disagreements on
the interpretation of certain relations might be due to the fact that not every item can be assigned one
right answer. Using the distribution of responses from multiple coders to determine whether disagree-
ments are due to biases or errors, or caused by genuine ambiguity or double meanings could in the future
lead to valuable insights for the evaluation of discourse annotation efforts by a limited number of expert
annotators as well, especially if we can determine a subset of relations (or relation characteristics) that
tend to allow multiple interpretations.

While there are many benefits to crowdsourcing annotations, using a large number of naive coders
to annotate discourse relations may not be without its difficulties. As discussed in Sections 1 and 2,
annotating discourse relations is a highly complicated task. Expert annotators usually spend a long time
developing or acquainting themselves with an annotation framework and its relation inventory, annota-
tion manuals tend to be very extensive, and annotation tasks often involve practice phases and discussion.
Replicating this process in a crowdsourcing setting may be difficult, if not inconceivable. Instead of try-
ing to use existing annotation manuals and procedures, however, researchers should consider developing
methods that allow them to reap the benefits of crowdsourcing, while at the same time approximating
the results yielded by a traditional annotation scenario. They may, for instance, opt for connective/cue
phrase insertion tasks (cf. Rohde et al., 2016; Scholman and Demberg, 2017), in which case the connec-
tives coders can choose from should be reliably associated with a specific type of relation. In addition,
the annotation process could be simplified by cutting it up into several different steps, as in Scholman
et al. (2016), or by including only a limited set of relations, as in Kawahara et al. (2014). Alternative
solutions could be training coders to annotate only a small subset of relations, such as temporal rela-
tions, or teaching them to annotate only a single distinction, for instance the difference between RESULT
and PURPOSE relations, between contrastive and temporal while, or between inclusive and exclusive
DISJUNCTION relations.

5 Conclusion

This paper reviewed some recent developments concerning reliability evaluation within linguistic anno-
tation in general and discourse annotation in specific. We explored the suitability of a relatively new
agreement measure, AC1, to evaluate the reliability of discourse annotation. This measure could be con-
sidered as a possible alternative for, or be used in addition to Cohen’s Kappa. In general, the comparison
demonstrated how agreement statistics can be influenced by properties of the data. We also discussed
some annotation methods that have been used as alternatives to the two-or-more expert coders procedure,
how the reliability can be determined for these methods, and how findings from these studies could help
further our understanding of the practice of discourse annotation.

When reporting the results of a study that involves annotation, it is advisable to be transparent about
the annotation process and to carefully consider which agreement measure is reported. Reporting (mul-
tiple) agreement scores and making raw annotation data available would facilitate other researchers to
judge the reliability of the annotated data and, consequently, the findings of a study. In addition, it would
enable a comparison between different annotation efforts and frameworks.
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