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Abstract

Linguistic phenomena like pronouns, control constructions, or co-reference give rise to co-indexed
variables in meaning representations. We review three different methods for dealing with co-indexed
variables in the output of neural semantic parsing of abstract meaning representations: (a) copying
concepts during training and restoring co-indexation in a post-processing step; (b) explicit indexing
of co-indexation; and (c) using absolute paths to designate co-indexing. The second method gives
the best results and outperforms the baseline by 2.9 F-score points.

1 Introduction

Semantic parsing is the task of mapping a natural language sentence into a meaning representation (a
logical form). One of the problems a semantic parser has to deal with is co-indexed variables, which arise
in antecedent-anaphor relations, proper name co-reference, control constructions and other linguistic
phenomena. Examples of such constructions are given in (1)–(4):

(1) Bobi likes himselfi.
(2) Jacki wants εi to buy an ice-cream.
(3) Peteri sold hisi car.
(4) Suei saw Maryj , but Maryj did not see Suei.

In the context of this paper, we represent meanings using the formalism of Abstract Meaning Rep-
resentation (AMR), as introduced by Banarescu et al. (2013). AMRs can be seen as graphs connecting
concepts by relations. Each concept is represented by a named instance. Co-reference is established
by re-using these instances. For example, the AMRs corresponding to examples (1) and (2) above are
given in Figure 1. Note that, due to the bracketing, the variable b encapsulates the whole entity person
:name "Bob" and not just person, i.e. b stands for a person with the name Bob.

(l / like-01 (w / want-01
:ARG0 (b / person :name "Bob") :ARG1 (p / person :name "Jack")
:ARG1 b) :ARG3 (b / buy-01

:ARG1 p
:ARG2 (i / ice-cream)))

Figure 1: AMRs representing the meaning of examples (1) and (2).

That there is a lot to gain in this area can be seen by applying the AMR evaluation suite of Damonte
et al. (2017), which calculates nine different metrics to evaluate AMR parsing, reentrancy being one of
them. Out of the four systems that made these scores available (all scores reported in van Noord and Bos
(2017)), the reentrancy metric obtained the lowest F-score for three of them.

Various methods have been proposed to automatically parse AMRs, ranging from syntax-based ap-
proaches (e.g. Flanigan et al. (2014); Wang et al. (2015); Pust et al. (2015); Damonte et al. (2017)) to
the more recent neural approaches (Peng et al. (2017); Buys and Blunsom (2017); Konstas et al. (2017);
Foland and Martin (2017); van Noord and Bos (2017)). Especially the neural approaches are interesting,



since they all use some sort of linearization method and therefore need a predefined way to handle reen-
trancy. Peng et al. (2017) and Buys and Blunsom (2017) use a special character to indicate reentrancy
and restore co-referring variables in a post-processing step. Konstas et al. (2017) simply replace reen-
trancy variables by their co-referring concept in the input and never outputs co-referring nodes. Foland
and Martin (2017) and van Noord and Bos (2017) use the same input transformation as Konstas et al.
(2017), but do try to restore co-referring nodes by merging all equal concepts into a single concept in a
post-processing step. All these methods have in common that they are not very sophisticated, but more
importantly, that it is not clear what the exact impact of these methods is on the final performance of the
model, making it unclear what the best implementation is for future neural AMR parsers.

In this paper we present three methods to handle reentrancy for AMR parsing. The first two methods
are based on the previous work described above, while the third is a new, more principled method. These
methods are applied on the model that reported the best results in the literature, the character-level neural
semantic parsing method of van Noord and Bos (2017). In a nutshell, this method uses a character-based
sequence-to-sequence model to translate sentences to AMRs. To enable this process, pre-processing and
post-processing steps are needed. The aim of this paper is to find the best method to handle reentrancy
in neural semantic parsing and to show the specific impact that each of the methods have on general
performance.

2 Abstract Meaning Representations

AMRs, as introduced by Banarescu et al. (2013), are acyclic, directed graphs that show a representation
of the meaning of a sentence. There are three ways to display an AMR: as a graph, as a tree, or as a set of
triples. The AMRs in Figure 1 are shown as trees, which is also the input for our neural semantic parser.
AMR concepts (e.g. like, person) are relating to each other by the use of two-place predicates (e.g.
:ARG0, :ARG1, :name). For example, in the right AMR in Figure 1, want and buy are connected
by the :ARG3 predicate.

For our experiments, we use the annotated AMR corpus LDC2016E25, which contains 36,521 train-
ing, 1,368 development and 1,371 test AMRs. Co-indexed variables occur frequently in this data set, as
can be seen in Table 1. About half of the AMRs contain at least one co-indexed variable, while about
20% of the total number of triples1 contains a variable that has at least one anaphor in the AMR. This
is the number of triples that is used in the reentrancy evaluation metric by Damonte et al. (2017). This
number, however, also includes triples that would be present regardless of whether the variable is co-
indexed (e.g. the instance triple of the antecedent). A more fair number might be the relation triples that
contain an anaphor variable, which is exactly equal to the number of total co-indexed variables. This is
still 3.4 to 4.2% of all triples in the data set.

Table 1: Statistics about the co-indexed variables in the AMR data set.

Num AMRs Num AMRs
with reentrancy

Total number
of reentrancies Total triples Triples containing

co-indexed var

Training 36,520 17,589 40,582 968,512 189,426
Dev 1,368 706 1,590 46,737 8,704
Test 1,371 749 2,033 48,252 9,686

Silver 100,00 16,235 18,865 3,001,169 109,676

1Triples are used to evaluate AMR parsing systems, and are explained in Cai and Knight (2013).



3 Method

3.1 Variable-free AMRs

The actual values of the variables for AMR instances are unimportant. Hence, one can rename variables
in an AMR as long as re-occurrences of variables are preserved. If variables are used only once in an
AMR, they can therefore be completely eliminated from an AMR. This insight was used by Barzdins
and Gosko (2016) in the first approach to neural semantic parsing of AMRs, because particular names of
variables are very hard to learn for a neural model given the limited amount of data available. We present
three ways to encode co-reference in variable-free AMRs.2

Method 1A: Baseline Note that if there are co-indexed variables, there is always exactly one instance
of the variable that carries semantic information. In our baseline method, similar to Barzdins and Gosko
(2016) and Konstas et al. (2017), we simply copy this semantic information, while removing the vari-
ables, as is shown below. This method does never output reentrancy nodes and therefore functions as a
baseline. An example is shown in Figure 2.

(like-01 (want-01
:ARG0 (person :name "Bob") :ARG1 (person :name "Jack")
:ARG1 (person :name "Bob")) :ARG3 (buy-01

:ARG1 (person :name "Jack")
:ARG2 (ice-cream)))

Figure 2: Baseline representations of examples (1) and (2).

Method 1B: Reentrancy Restoring This method is created to restore reentrancy nodes in the output
of the baseline model. It operates on a very ad hoc principle: if two nodes have the same concept, the
second one was actually a reference to the first one. We therefore replace each node that has already
occurred in the AMR by the variable of the antecedent node. This approach was applied by van Noord
and Bos (2017) and Foland and Martin (2017).

The model thus never learns to output reentrancy, but the co-indexed variables are restored in a post-
processing step. An example is shown in Figure 3. Note that this process can also erroneously insert
reentrancies when two separate entities would be correct. For example, if the sentence Bobi likes Bobj
refers to two different Bobs, the initial AMR in Figure 3 would have been correct.

(l / like-01 (l / like-01
:ARG0 (p / person :name "Bob") :ARG0 (p / person :name "Bob")
:ARG1 (p2 / person :name "Bob")) :ARG1 p)

Figure 3: Example of the Reentrancy Restoring method for example (1). Initial AMR on the left, reen-
trancy restored AMR on the right.

Method 2: Indexing This method comprises of removing all variables from an AMR, except when
they are co-indexed. The remaining variables are normalised by converting them to numbers, so that
each unique co-indexed variable has a unique identifier. Similar approaches were applied by Peng et al.
(2017) and Buys and Blunsom (2017), and an example is shown in Figure 4. In this approach the model
actually learns where it should output reentrancy nodes, instead of restoring them in a post-processing
step.

However, we do still need some post-processing, as is shown in Figure 5 (after variables are restored).
In this AMR, there is an index that is never instantiated (*3*) and an instantiated index that is never

2All pre- and post-processing scripts are available at https://github.com/RikVN/AMR.



(like-01 (want-01
:ARG0 (*1* person :name "Bob") :ARG1 (*1* person :name "Jack")
:ARG1 (*1*)) :ARG3 (buy-01

:ARG1 *1*
:ARG2 (ice-cream)))

Figure 4: Representations of examples (1) and (2) when applying the Indexing method.

referred to (*2* b / buy). The superfluous *2* can simply be removed, but for *3* we have
multiple options. Algorithm 1 shows how we handle these cases.

For each referent that was never instantiated, we first check if there is also an instantiated index that is
never referred to. If that it is the case, we replace it by that variable. This assumes that the model merely
mismatched the index symbols. This works for *3* in Figure 5, even though the resulting node is still
incorrect. If that was not the case, we try to replace the referent by an instantiated index that already did
have a referent. Since this index already has a referent, we assume it is likely that a mismatched referent
actually referred to this index (in Figure 5, *3* would then be replaced by p) . In the case that both
previous options failed, we simply pick the variable of the concept that is most often a referent in the
training set.

(w / want-01 (w / want-01
:ARG1 (*1* p / person :name "Jack") :ARG1 (p / person :name "Jack")

:ARG3 (*2* b / buy-01 :ARG3 (b / buy-01
:ARG1 (*1*) :ARG1 p
:ARG2 (i / ice-cream) :ARG2 (i / ice-cream)
:ARG3 (*3*))) :ARG3 b))

Figure 5: Possible output of the model for example (2) on the left, while the fixed AMR after applying
Algorithm 1 is shown on the right.

Algorithm 1 Post-processing algorithm used to replace indexes by variables.

R: all referent indexes in output (e.g. *1*, *3*)
X: all instantiated indexes that do not have a referent (e.g. *2* b / buy-01 )
Y: all instantiated indexes that have a referent (e.g. *1* person :name "Jack" )
C: all concept-variable pairs (e.g. w / want-01)
most freq: function that, given a list of concepts, selects the concept that is most frequently a referent in
the training set

for all ref in R do
if ref ⊆ X then

replace ref by X(ref)
else if X 6= ∅ then

replace ref by most freq(X)
else if Y 6= ∅ then

replace ref by most freq(Y)
else

replace ref by most freq(C)
end if

end for



Method 3: Absolute Paths In this method reentrancy is established by replacing a co-indexed variable
by an absolute path that describes a position within an AMR. Absolute paths start from the top (root) of
the AMR. The examples in Figure 6 show the relative paths. In the first AMR, the path :ARG0 describes
that the node refers to the value of the relation :ARG0. In the second AMR, the path :ARG1 refers in
a similar way to :ARG1. Note that although these examples are straightforward, the paths can become
quite long for larger AMRs, e.g. :op1 :ARG0 :ARG0-of :mod. The longest path in the training
set even contains 14 relations.

(like-01 (want-01
:ARG0 (person :name "Bob") :ARG1 (person :name "Jack")
:ARG1 {:ARG0}) :ARG3 (buy-01

:ARG1 {:ARG1}
:ARG2 (ice-cream)))

Figure 6: Representations of examples (1) and (2) when applying the Absolute Paths method.

This method is perhaps the most attractive from a theoretical point of view. Note, however, that not
every node in an AMR can be described by a unique path, as ambiguities might occur when there are
two edges with the same name (this can occur, for instance, when more than one modifier is present). To
solve these ambiguities an index (e.g. |1|, |2|) is added to each relation in the path.3 This was necessary
for 632 out of the 40,582 paths in the training set. In total, there are 5,760 unique paths, of which 3,447
only occur once. The most frequent path is :ARG0|1|, occurring 5,405 times.

Similar to the Indexing method, a problem with this approach is the fact that we have no control over
what the model will output. Especially for larger AMRs it is likely that the model will output impossible
paths without destination. For example, the model might output :ARG2 instead of :ARG0 in the left
example in Figure 6.

These impossible paths still need to be replaced by a variable to get a valid AMR. The strategy we
opt for here is similar to one used in the Indexing method, namely replacing the path by the variable of
the concept in the AMR that most frequently has a referent in the training set.

3.2 Neural model

We implement a bidirectional sequence-to-sequence model with general attention that takes characters
as input, using the OpenNMT software (Klein et al., 2017). The parameter settings are the same as in
van Noord and Bos (2017) and are shown in Table 2. It is trained for 20 epochs, after which the model
that performs best on the development set is used to decode the test set.

Table 2: Parameter settings of the seq2seq model, as in van Noord and Bos (2017).

Parameter Value Parameter Value

Layers 2 RNN type brnn
Nodes 500 Dropout 0.3
Epochs 20 Vocabulary 100–200
Optimizer sgd Max length 750
Learning rate 0.1 Beam size 5
Decay 0.7 Replace unk true

3.3 Experiments

We test the impact of the different methods on two of our earlier models, described in van Noord and
Bos (2017). The first is a simple baseline model that only takes the characters into account without any

3For clarity, this was omitted in the example in Figure 6.



additional methods to improve performance. This model is referred to as the char-only model.
The second is the approach that produced one of the best results so far in the literature. This model

uses POS-tagged input, clusters together groups of characters (super characters) and exploits 100,000
“silver” AMRs that were obtained by using the off-the-shelf AMR parsers CAMR (Wang et al., 2015)
and JAMR (Flanigan et al., 2014)4. The added AMRs are all CAMR-produced. We must note that
CAMR is not particularly keen on outputting coreference, as the 100,000 silver AMRs only produced
18,865 new reentrancy nodes.

The second approach also employs the postprocessing methods Wikification and pruning, as ex-
plained in van Noord and Bos (2017). The Wikification step simply adds wiki links to :name nodes,
since those links were removed in the input. Pruning is used to remove erroneously produced duplicate
output. This is a common problem for sequence-to-sequence models, since the model does not keep
track of what it has already output. No pre-training or ensemble methods are used for both approaches.

4 Results and Discussion

4.1 Main results

The results of applying our three methods on the baseline and best model are shown in Table 3. All
reported numbers are F-scores obtained by using SMATCH (Cai and Knight, 2013). All three methods
offer an improvement over the baseline, for both the baseline and the best model. Indexing is the highest
scoring method, except for the test set of the best model, since Reentrancy Restoring obtains the same
F-score there. Explicitly encoding the absolute paths resulted in an increase over the baseline, but did
not outperform both Reentrancy Restoring and Indexing, although only by a small margin.

Table 3: Results of the different methods in comparison to the char-only and best model.

Char-only Best model

Dev Test Dev Test

Baseline 54.8 53.1 69.3 68.0
Reentrancy Restoring 55.7 54.2 70.0 69.0
Indexing 55.9 56.0 70.5 69.0
Absolute Paths 54.9 53.9 70.3 68.7

Table 4: Results for each method on AMRs with (coref) and without (no coref) reentrancy nodes.

Char-only Best model

Coref No coref Coref No Coref

Dev Test Dev Test Dev Test Dev Test

Baseline 52.1 50.3 61.6 60.6 66.9 65.1 73.8 74.8
Reentrancy Restoring 53.4 52.0 61.2 60.8 68.3 66.8 73.8 74.8
Indexing 54.2 53.5 60.5 61.6 68.6 66.5 74.8 74.8
Absolute Paths 52.8 51.5 59.6 59.2 68.2 66.3 74.6 74.5

It is interesting to look at whether we indeed improve on parsing AMRs that have co-indexed vari-
ables, in comparison to AMRs that do not contain them. This is shown in Table 4. We see that, in general,
we indeed only improve on both baselines for AMRs that have co-indexed variables. This is the case for
both the dev and the test set. This is the desired scenario: we improve on AMRs with reentrancy, while

4Please see van Noord and Bos (2017) for a full explanation of this process.



performance does not decrease on AMRs without reentrancy. Only applying the Absolute Paths method
on the baseline model scores lower on the test set on AMRs without reentrancy nodes. Similar to the
results in Table 3, Indexing outperforms Reentrancy Restoring for the baseline model, but has similar
scores when applied to the best model.

4.2 Detailed analysis

Table 5 shows the how often the model outputs possible paths for the Absolute Paths method. Unfortu-
nately, about 50% of the time, the model output a path that did not lead to a possible referent, leaving
us to rely on the frequency heuristic. This problem is not as severe for our best model, though, since
about 75% of paths were actually possible. The addition of extra (silver) data thus helped the model in
learning the paths, suggesting that the baseline results might merely be an effect of sparse data. However,
the very long paths still proved to be challenging for the best model. This might mean that, even when
adding more gold data, learning such sophisticated structures is too difficult for end-to-end sequence-to-
sequence models in general.

Table 5: Number of possible (pos) and impossible (imp) paths in the output, for the dev and test set for
both our models, when using the Absolute Paths method.

Char-only Best model

Dev Test Dev Test

Pos Imp Pos Imp Pos Imp Pos Imp

Total paths produced 455 464 534 533 636 200 783 328
Paths of length 1 160 30 148 32 231 12 193 13
Paths of length 2 211 202 265 194 268 68 398 108
Paths of length 3 76 156 106 210 130 80 167 123
Paths of length >3 8 76 15 97 7 40 25 84

Table 6 shows more detailed results of the Indexing method. In the majority of cases, the model does
what it is supposed to do: first instantiating an index, then referring to it. However, for finding the correct
variable replacement for the baseline model, we still have to fall back on heuristics in approximately 30%
of the cases. Most of these instances are then solved by referring to the concept that is most frequently a
referent in the training set. However, for our best model, this reliance is not there anymore. The model
generally only outputs an index when it was instantiated first, which is exactly what was intended.

Table 6: Number of times each step in Algorithm 1 was responsible for replacing an index in the output
when using the Indexing method.

Char-only Best model

Replace index by # Dev # Test # Dev # Test

Variable that was instantiated 749 984 770 1,122
Variable that was instantiated but not referred to 25 28 0 0
Variable of most frequent instantiated index 8 8 3 9
Variable of most frequent concept 248 217 3 10



5 Conclusion

We proposed three methods to handle co-indexed variables for neural semantic (AMR) parsing. The best
results were obtained by the Indexing method, which explicitly encodes co-indexing nodes in the data
set. The perhaps theoretically most attractive Absolute Paths performed the worst, although it did still
offer an improvement over the baseline. Perhaps an interesting direction for future research is to use
relative instead of absolute paths, encoding the path relative to the reentrancy node instead of starting at
the top of the AMR, because this will make the paths shorter and more local.
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