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1 Introduction

Suppose possible worlds are strings, rather than physically structured worlds like ours. Then the propo-
sition corresponding to a sentence or a formula in logical language is a set of strings; an epistemic
acquaintance relation is a relation between strings; and in a relational construction of partition semantics
for questions, a question meaning is a relation between strings. If discourse referents, too, are encoded
in the same strings, then dynamic information states are sets of strings, and distributive updates are re-
lations between strings. Finally, in a construction of the temporal development of worlds in an action
logic, actions are also relations between strings.

This paper makes the further assumption that the sets and relations mentioned above are regular sets
and regular relations. These are the sets of strings and relations between strings that can be represented
by finite state acceptors and transducers. In this framework an analysis of intensional complementation
in that- and wh- clauses is developed. A version of dynamic semantics is used to formalize sub-clausal
compositional semantics. The analysis is cast as a defined logical language in a finite state calculus
that includes function definitions. Finally, an English fragment that maps to the logical language is
formulated in an extended categorial grammar.

In a running example, a robot walks through a string of characters with a sequence of turns and steps,
and picks up information by looking at the character in front of it. A world state is a string such as
>+b. -a -t , where the letter string is bat and the character > represents the robot facing right at the
start of the string. We conceive of this world as resulting from the robot starting in the configuration
<-b. -a -t , then turning and looking at the letter in front. In this world, the extensional sentence (1a)
is true. The intensional sentence (1b) is false, because world >+b. -a -b is an epistemic alternative
for the robot, and in that word the complement sentence (2c) is false.

(1) a. A B precedes an A that is adjacent to a T.
b. He knows that there is a T in position three.
c. There is a T in position three.

A semantics for English sentences will be obtained by parsing sentences with a categorial grammar,
to assign the logical forms (2a,b) for (1a,b). Then in the finite state calculus, a set of strings as represented
by a finite state machine is computed for each LF. This is a model-theoretic propositional content for the
sentence or formula. Finally, truth values in particular worlds are found by checking membership in the
propositions.

(2) a. Indef(Let(t), Indef(Intersect(Let(a),Bind(Trace(Indef(Let(b),Pre)))),Adj))
b. Kt(Indef(Let(a), Indef(Pos(3), In)))

The paper is organized like this. Section 2 presents a statement of Hintikka semantics for intensional
complements in the finite state framework. Section 3 looks at sub-clausal compositional semantics, using
an encoding of discourse referents in strings. Section 4 presents the syntax-semantics interface, based
on a categorial grammar. Section 5 extends the semantics to question complements, using partition
semantics for questions. Section 6 describes the implementation. Section 7 comments on applications
and related work.



2 Intensional complementation

A regular Kripke frame is a tuple 〈Σ,W,R〉, where Σ is a finite alphabet,W is a regular subset of Σ∗, and
R is a regular relation on W . This is an ordinary Kripke frame, where the set of worlds W is a regular
set of strings, and the accessibility relation R is a regular relation. Suppose we are given the semantic
value of the complement clause φ in (3a) as a regular subset of W , and want to define the semantic value
of the whole sentence as a set of strings. Or for the LF language, we are given the semantic value (3b)
and want to define (3c).

(3) a. He knows that φ.
b. [[φ]], a regular subset of W
c. [[K(φ)]], a regular subset of W

Hintikka semantics for intensional complementation holdsK(φ) to be true inw if and only if φ is true
in every world v that is an alternative in w. This is stated using world quantification in (4). We want an
equivalent semantics in the finite state calculus, which is an algebra of regular sets of strings and regular
relations on strings, with operations including Boolean operations, composition of relations, Kleene
closure, domain and co-domain of relations, and restriction of relations to domains and co-domains.1 (5)
defines K(φ) using set difference (X − Y ), domain of a relation (Do(R)), and restriction of a relation
R to a codomain X (R ◦X). It subtracts from W those worlds that are R-related to a world where φ is
false. The latter is enforced by restricting R to the codomain W − [[φ]].

(4) [[K(φ)]] = {w|∀v.R(w, v)→ [[φ]](v)}

(5) [[K(φ)]] = W − Do(R ◦ (W − [[φ]]))

In the running example, R is a knowledge modality, so it should be an equivalence relation. Beyond
this, it should tie in a particular way to the development of world states. As the robot acts, it never loses
information. Second, it picks up information by knowing how it acts, and by looking at the letter in front
of it. This provides for a way of encoding the epistemic state of the robot in the world string. To capture
the epistemic state of the robot, all that matters is where the robot is, how it is oriented, what letters the
robot has looked at. In a world state like >+b. -a -t , plus characters + precede the letters that the
robot has looked at, and minus characters - precede the characters that it has not looked at. We assume
the initial state for any world-time line has only minus marks, indicating that the robot has no a-priori
knowledge about the letter sequence in its world.

To develop the running example, define the set of worlds W by the sequence of definitions in (6).
A world is a character sequence with CVC shape, where C is either t or b, and V is either a or e.
Each letter is preceded by a sign + or -, indicating whether the robot has looked at that letter. Finally
each plus/minus sign is preceded by a slot for the agent. This is a character position containing either
< (robot facing left), > (robot facing right), or (no robot). A character position of this same shape
also finishes the string. The conjunct [·∗ A1 ·∗] in the definition of W at the bottom in (6) ensures that
a world string contains at least one robot. The center dot is a variable over all characters, and the star
is asteration (Kleene star). The subtracted term [·∗ A1 ·∗A1 ·∗] ensures that a world string does not
contain two robots. The syntax maps directly to the Fst language that is implemented in the Xfst and
Foma interpreter-compilers (Beesley and Karttunen, 2003; Hulden, 2009). See the code and replication
material Rooth (2017a,b).

1We assume the finite state calculus that is implemented in Xfst and Foma (Beesley and Karttunen, 2003; Hulden, 2009).
Function definitions in Xfst are described in Karttunen (2010). For definition (5), an algebra is needed with Boolean set
operations, domain for relations, and restriction of a relation to a co-domain. Later parts of the paper use relation composition.



(6) C := t | b
V := a | e
S := + | -
A1 := < | >
A2 := < | > |
W := [[A2SC][A2SV ][A2SC]A2] ∧ [·∗A1 ·∗]− [·∗A1 ·∗A1 ·∗]

R in the running example is defined by making substitutions for letters that are marked by a minus
sign, i.e. letters in positions that the robot has not seen. Letters that the robot has seen remain constant
when moving to an epistemic alternative. In (7), substitution is stated using the rewrite notation of the
finite state calculus, which is a defined notation for relations that make substitutions in specified contexts
(Kaplan and Kay, 1994; Kempe and Karttunen, 1996). Rewriting in the finite state calculus is inspired
by the rewrite notation of classical generative phonology (Chomsky and Halle, 1968).

(7) Rc := C → C ‖ −
Rv := V → V ‖ −
R := W ◦Rc ◦Rv ◦W

That R is an equivalence relation can be shown by reasoning about the definition, and can also
be checked computationally for equal-length relations. (8) defines properties characterizing a relation
as being reflexive, symmetric, and transitive, with equivalence relations satisfying all of these. Such
properties in the finite state calculus are modeled as functions that map to truth values, where False is
the empty set and True is the unit set of the empty string. The definitions use a conditional in the finite
state calculus, which is defined in (9). R being an equivalence relation is checked by evaluating Eqv(R).

(8) Rfl(U) := If(IdW − (U ∧ IdW ),False,True)
Sym(U) := If(U − Conv(U),False,True)
Trs(U) := If((U ◦ U)− U,False,True)
Eqv(U) := If(Rfl(U) ∧ Sym(U) ∧ Eqv(U),True,False)

(9) If(X,Y, Z) := (Z − Co(X ◦ (·∗ × ·∗))) | (Y ∧ Co(X ◦ (·∗ × ·∗)))

The above definition of R leaves the robot in the same place and orientation, and keeps the length of
the world constant. So in this example, the robot has a priori knowledge of its location and of the size of
the world. Nothing about this is essential: the general account assumes nothing about W and R, beyond
being a regular set and a regular relation on it. This is as usual in Kripke semantics. It is possible for
W to be countably infinite—the replication supplement includes a version of the running example where
the size of worlds in not bounded.

3 Compositional semantics

Type theoretic approaches to compositional semantics use functions to express lexical content and the
semantics of complex phrases (Montague, 1973; Janssen, 1996). While function definitions are used in
the finite state calculus in the way illustrated above, functions are not first class objects that themselves
can be the arguments of functions or algebraic operators—really there are only one or two types in the
finite state calculus. Further, the modal space of world-strings as presented above does not represent
individuals. What then is the interpretation of the constants Adj (for adjacent) and Pre (for precede)?
The approach taken here is to include in the model specification a set W1, which we think of as a
space of worlds with a distinguished individual. Similarly for a set W2, a space of worlds with two
distinguished individuals. In the running example, an element of W1 is a string with an index 1 inserted
after some letter, interpreted as a discourse referent for that token letter. So <+b. -a1 -b is the
world <+b. -a -b with a discourse referent for the middle letter. Using terminology from dynamic
semantics, in the extended world <+b. -a1-b , the token letter a is the center (e.g. Bittner 2003).
<+b. -a1 -b2 is the world <+b. -a -b with a center for the second letter, and a secondary center



for the third letter. In the running example, Fol is a subset of W2 that is used as an interpretation for
follow. The object is encoded as the center, and the subject as the secondary center (or pericenter). Fol
includes the two-centered worlds listed in (10).

(10) _+b1_-a2>-t._ _-t1<-e2_+b._ _-b._-a1_-b2> _-t._-a1_+t2>
_-t1_-e2>-t._ _-t1<-e2_+b._ _+t._+a1>+t2_ _-b1_-e2>-b._
_-t1_-e2<+t._ _-b._-a1_-t2> _-b._+e1_+b2< _+b1>+a2_+b._
_+b1<+a2_+b._ _+t._+e1<+t2_ _+t._-e1>+t2_ _-t1_-a2>-t._

The function Indef(X,Y ) seen in (11) is used as a co-predicator on the center. It intersects its
arguments, and then pops the center, with the input pericenter if present being the output center. (11a) is
a subset of W that includes the worlds listed in (11b). Indef is used as a predicator both for the object
and the subject.

(11) a. Indef(Let(t), Indef(Let(a),Fol))
b. >+b._+a._+t._ _-t.<+a._+t._ <-t._-a._-t._

>+t._-a._-t._ _+t._-a.<+t._ <+b._+a._-t._
_+b.<-a._-t._ _+b._-a.<-t._ >+b._+a._+t._

Traces are treated along the same lines, using the marker 0 for traces. The operator Trace maps the
center to the trace center, and maps the pericenter (if present) to the center. Trace(Fol) conceptually
has a trace in the object position of follow, and Trace(Indef(Let(a),Fol)) conceptually has a trace in the
subject position of follow. (12) and (13) show samples of these propositions.

(12) a. Trace(Fol)
b. _-b0_+a1_+b.< _+t._+e0_+t1>

<+t0_-e1_-t._ _-b._+e0<-b1_

(13) a. Trace(Indef(Let(a),Fol))
b. _+b._-a.<+t0_ _-t._+a.<-t0_

<-b._-a._+b0_ _-t._-a._-t0>

The Bind operator seen in (2a) maps the trace center to the ordinary center, converting a phrase with
a free trace to a property of individuals. The Intersect operator intersects two properties of individuals,
and is used to combine a noun with a relative clause.

See the end of Section 6 for a complex LF that includes most of the operators.

4 Syntax-semantics interface

The material from Section 2 and Section 3 is concerned with a formal language with terms such as
K(Indef(Let(a), Indef(Let(t),Fol))). The terms get a model-theoretic interpretation as regular sets of
strings. To tie this in with natural language, lexical items, phrases, and sentences of the natural language
should be mapped to the formal language. Here this is accomplished with a categorial grammar. (15)
lists some simple lexical entries, with word forms in in the first column, categorial types in the second
column, and logical terms in the third. e\N t is the categorial type for a noun. It is a multimodal slash
type that is not active as a function in the grammar—it enters into a derivation only as an argument of a
determiner. In type theoretic semantics, terms of syntactic category e\N t have semantic type et, the type
of functions from individuals to truth values. We keep the syntactic category, but interpret phrases of
that category as subsets of W1. (e\t)/e is the categorial type label for a transitive verb. In type theoretic
semantics, this corresponds to type eet, while in the present system, it is semantically a subset of W2.2

2The type labels et and eet are written in the notation from Link (1979), with right association and without commas or
brackets.



(14) A e\N t Let(a)
B e\N t Let(b)
follow (e\t)/e Fol

The indefinite determiner is in the lexicon twice, once for use with an object, and once for use with
a subject. In each case the semantics uses Indef, the co-predication operator on the center. See (15).

(15) a (((e\t)/e)\(e\t))/(e\N t) λXλY.Indef(X,Y ) object determiner
a (t/(e\t))/(e\N t) λXλY.Indef(X,Y ) subject determiner

(16) is the first part of the analysis of traces and binding. The syntactic category of a clause with a
bound trace is e\T t. This is again a nominally functional slash type that is not active as a function in the
grammar. The relative morpheme that combines with e\T t on the right, and a noun e\N t on the left, to
form a noun e\N t.

(16) that ((e\N t)\(e\N t))/(e\T t) λXλY.Intersect(X,Y )

(17b) is the target LF for the relative clause (17a), with an object trace. The object trace should
trigger the operator in the term Trace(Fol), converting the center to a trace center. At the level of the
relative clause, the Bind operator should convert the trace center back into an ordinary center. Thus
the trace has both a local semantic effect, and an effect at its scope level. This is enforced in Barker and
Shan’s continuation scope calculus, using the categorial type (e\T t)((((e\t)/e)\(e\t))t). This indicates
a local type ((e\t)/e)\(e\t), which combines with a transitive verb (type (e\t)/e) to form a predicate
(type e\t). Second there is a scope shell (e\T t)( (−)t). This indicates that the trace takes scope at the
clausal type t to form the bound-trace category e\T t. The first line in (18) is the lexical entry for the
object trace. The semantics λk.Bind(k(Trace)) has the effect of applying Trace to the verb meaning Fol
downstairs, because the continuation variable k is applied to Trace in the term k(Trace). The second line
in (18) is the analogous lexical entry for a subject trace. The traces are in the lexicon with the spelling
“e”.

(17) a. a B follows e (e\T t)
b. Bind(Indef(Let(b),Trace(Fol)))

(18) e e\T t( (((e\t)/e)\(e\t))t) λk.Bind(k(Trace)) object trace
e e\T t( ((t/(e\t)))t) λk.Bind(k(Trace)) subject trace

(19) a. e follows a B, (e\T t)
b. Bind(Trace(Indef(Let(b),Fol)))

Some observations are in order about the system of categories and the semantics. Familiar syntactic
categorial symbols are used, such as (e\t)/e for a transitive verb. However, the corresponding semantics
is not ultimately used as a function of type eet, contrary to what happens in type-theoretic interpretation
using function application. The reason is that a term of the form Fol(x) is not a term of the target logical
language. The semantic terms in (15), (16), and (18) use lambda. These terms are meaningful in an
extension using variables and binding by lambda of the logical language described in Section 2 and
Section 3. However, since it is the basic logical language that is targeted, it is important that the lambdas
are eliminated by beta reduction in complete derivations.



5 Question complements

In partition semantics for questions, a question complement contributes an equivalence relation on worlds
(Groenendijk and Stokhof, 1984). Suppose φ is a question complement associated with the relation Q.
Informally, w and w′ are related by Q if and only if the complete answer to the question is the same in w
and w′. Here we will use regular relations between worlds as question denotations.

In a whether-question such as the complement in (20a), there are two cells in the partition associated
with the equivalence relation, one consisting of worlds where the clause (20b) is true, and the other
consisting of worlds where the clause is false. The corresponding relation is defined in the finite state
calculus using Cartesian product and union, see (21).

(20) a. He knows whether there is a B in three.
b. There is a B in three.

(21) Whether(X) := (X ×X) | ((W −X)× (W −X))

The other half of the problem is to define a semantics for question-embedding know in terms of the
epistemic accessibility relation R, and a relation between worlds contributed by a wh-complement. The
robot knows whether Q if his knowledge as represented by R resolves the question encoded by Q. This
is true in a given world w when the set of worlds that are R-related to w are all within a single cell of the
partition corresponding to Q. Let Q̄ be the complement of Q, which relates worlds that are in different
cells of the partition. Let IdW be the identity relation on worlds. The relation R ◦ Q̄ ◦ R−1 relates pairs
(w,w′) such that one can start at w, jump to an epistemic alternative to w in some cell of the partition,
jump using Q̄ to a different cell of the partition, then jump back to w′ using R−1, the inverse of R.
Intersecting with Idw gives us the set of pairs (w,w) such that w is related by R to worlds in different
cells of the question partition. This characterizes worlds w where the robot does not know whether Q.
The set of worlds where the robot knows whether Q is the complement. This leads to the definition (23)
for question-embedding know.3

(22) Kw(Q) := W − Do((R ◦ (W ×W −Q) ◦R−1) ∧ IdW )

Unfortunately, the relative complement (Q′−Q) is not defined in the finite state calculus for arbitrary
relations Q′ and Q, only for equal-length relations. These are relations where any pair of related strings
have the same length. The running example has worlds with fixed length, so all relations between worlds
are length-preserving. But since we want to include the possibility of countably infinite sets of worlds, it
is not desirable to rely on worlds having a fixed string length.4 We are better off if the question comple-
ment contributes the complement relation to begin with. This is easy enough for whether-complements.
See the revised definitions (23) and (24).

(23) Whether2(X) := (X × (W −X)) | ((W −X)×X)

(24) Kw2(Q) := W − Do((R ◦Q ◦R−1) ∧ IdW )

We would also like to interpret embedded constituent questions such as the ones in (25). This is not
in the current system.

(25) a. He knows what letter is in position three.
b. He knows what vowels follow what consonants.

3If R is assumed to be symmetric, R can be substituted for R−1. In the finite state calculus as implemented in Xfst and
Foma, the identity relation on a given set is not distinguished from the set, so W can be substituted for IdW . For the same
reason, the domain operator Do can be dropped.

4Possibly the problem can be partially finessed, by including for a world w of basic length n also a world of lenght n+m
that is obtained from w by adding m dummy characters.



6 Computational implementation

The proposal is implemented using a parser for categorial grammar, and a toolkit for the finite state
calculus. The parser is Barker and Shan’s parser for continuation categorial grammar (Barker and Shan,
2005). The grammar is a lexicon given in Scheme-Lisp format, consisting of a list of tuples of word
forms, syntactic category symbols, and semantic terms. (26) is the lexical entry that corresponds to the
first version of the indefinite article in (15). This lexical entry and the rest are isomorphic to what was
seen in Section 4.

(26) (("a" ((((e \ t) / e) \ (e \ t)) / (e \N t))) (ˆ P (ˆ f (Indef P f))))

A sentence is presented to the parser with a Scheme parse command (see (27b). If the parser finds
a derivation, an LF is printed in Lisp format, see (27c). This is converted to the logical language using
a Lex program, by moving parentheses and inserting commas, to obtain (27d). Now this formula is
read as a term denoting a regular set into an interpreter for the finite state calculus, in an environment
where functions have been defined in the way characterized in Sections 2 and 3. Xfst or Foma is used
as the interpreter for the finite state calculus. To illustrate the proposition that results, a random set of
elements of the proposition are printed. Or one can test entailment or equivalence between propositions
contributed by two sentences. (28) shows the procedure for printing a sample of the proposition in Xfst.
(In the code the letter nouns are written “ay” and “bee”, rather than “A” and “B”.)

(27) a. a ay that a bee follow e follow a tee
b. (parse ’(a ay that a bee follow e follow a tee))
c. (Indef (Intersect (Bind (Indef (Let b) (Trace Fol))) (Let a))

(Indef (Let t) Fol))
d. Indef(Intersect(Bind(Indef(Let(b),Trace(Fol))),Let(a)), Indef(Let(t),Fol))

(28) regex Pr(Indef(Intersect(Bind(Indef(Let(b),Trace(Fol))),Let(a)),
Indef(Let(t),Fol)));

xfst[17]: print random-words
_+t._-a._-b.<
_-t._+a.>+b._
_+t._-a.>-b._
_-t._-a._-b.>
_-t._+a.<+b._
...

These steps are tied together using file interfaces. With the input sentence in an input file s1.snt,
parsing can be triggered from a make file, with the LF written into a file s1.lf, and the sample written
into a file s1.wld. See the examples in the replication supplement.

In the implementation of the running example, a term is actually not interpreted directly as a set of
strings like the ones seen at the end in (28), and elsewhere in the paper. Instead, a world is a 15-element
bit vector that can be printed to a world string of the other kind, see (29.)5 This explains the presence of
the operator Pr in (28). The motivation for this is two-fold. First, it results in more structured definition
of the modal space, based on the primitive propositions listed in (30).

(29) regex Pr({011110110000000});
xfst[19]: print words
>+t._+a._-b._

5Curly brackets in {011110110000000} explode the contained string into the character sequence 0 1 1 1 1 0 1 1
0 0 0 0 0 0 0.



(30) A b vs. t is in letter position 1
B a vs. e is in letter position 2
C b vs. t is in letter position 3
D letter position 1 has been seen
E letter position 2 has been seen
F letter position 3 has been seen
G robot is in position 1 or 2 (and not 3 or 4)
H robot is in position 1 or 3 (and not 2 or 4)
I robot is facing left
J dref2 in 2 or 3 (vs dref2 in 1 or no dref2)
K dref2 in 1 or 3 (vs dref2 in 2 or no dref2)
L dref1 in 2 or 3 (vs dref1 in 1 or no dref1)
M dref1 in 1 or 3 (vs dref1 in 2 or no dref1)
N trace dref in 2 or 3 (vs trace dref in 1 or no trace dref)
O trace dref in 1 or 3 (vs trace dref in 2 or no trace dref)

A second motivation has to do with a goal of incorporating actions and the temporal development
of worlds in the modal space. The idea is to assume four primitive actions Step (the robot stepping
forward), Turn (the robot turning), Look (the robot picking up information from the position in front of
it) and R. The latter is a pseudo-action of non-deterministically moving to an epistemic alternative. In
a development of the action logic in Kleene algebra with tests (Kozen, 1997), the Kleene elements are
Step,Turn,Look, and the propositions in (30) are generators for the Boolean algebra of tests. A world at
a time is a sequence of Kleene elements (actions), with interleaved stative propositions. Models with this
structure are generally comparable to the action and epistemic models that figure in research on situation
calculus (Moore, 1984; Reiter, 2001; Scherl and Levesque, 2003; Levesque and Lakemeyer, 2008). They
have the specific structure of trace models for Kleene algebra with tests. We have developed a partial
axiomatization of the logic based on an implementation of KAT with hypotheses (Pous, 2015). This is
strictly work in progress, but is relevant here as motivation for the definition of the finite state semantics
using generating propositions.

Figure 1 and (31) give an abbreviated derivation for the complex sentence (31a). In the figure,
only phrases that have an interpretation in the finite state calculus are listed. A sample is included of
four words from the proposition that corresponds to the LF in the example model. The proposition
corresponding to (31a) and (31b) is a set of eight worlds, which are listed in (31c). They differ just in the
position and orientation of the robot, giving 4×2 worlds. Each of them has the letter sequence tab, and
in each of them the robot has seen each letter. Moreover, restricted to this set, R is the identity relation.
In other words, in the example model, (31b) is true only when the robot has identified its world.

(31) a. He know that a tee adjacent a ay that follow a bee.
b. K(Indef(Let(t), Indef(Intersect(Bind(Trace(Indef(Let(b),Fol))),Let(a)),Adj)))
c. <+t._+a._+b._

>+t._+a._+b._
_+t._+a.<+b._
_+t._+a.>+b._
_+t._+a._+b.<
_+t._+a._+b.>
_+t.>+a._+b._
_+t.<+a._+b._



he know that a tee adjacent a ay that follow a bee , t
K(Indef(Let(t), Indef(Intersect(Bind(Trace(Indef(Let(b),Fol))),Let(a)),Adj)))

a tee adjacent a ay that follow a bee , t
Indef(Let(t), Indef(Intersect(Bind(Trace(Indef(Let(b),Fol))),Let(a)),Adj))
<+b._+a._-t._
_-b._-a._-t.>
_-b._-a.<-t._
_-b._+a.<+t._

tee, e\N t
Let(t)
>-t1_+a._-t._
_+t12_+e0<+b._
_-t._+a.<+t012_
_-b2_+a0>+t1_
adjacent a ay that e follow a bee,(e\t)
Indef(Intersect(Bind(Trace(Indef(Let(b),Fol))),Let(a)),Adj)
_-b1>-a._+t._
<-b._+a._+b1_
_-b1_-a._+t.>
<-b1_-a._-b._

adjacent,(e\t)/e
Adj
_-b1>+a2_-b._
_-b.>-e2_-b1_
_-t._-e2>+t1_
_-t2>+a1_+b._
ay that e follow a bee, e\N t
Intersect(Bind(Trace(Indef(Let(b),Fol))),Let(a))
_+b.<-e1_-b._
_+b.<-e1_-t._
_+b.>+a1_+b._
<-b._-e1_+t._

ay, e\N t
Let(a)

_-b._+a1>+b._
_+b._+a1_+t.>
_-b._-e1_+b.>
_+b.>-a1_-b._
e follow a bee, e\T t
Bind(Trace(Indef(Let(b),Fol)))

follow a bee,e\t
Indef(Let(b),Fol)

follow,(e\t)/e
Fol
bee, e\N t
Let(b)

Figure 1: Abbreviated derivation for a complex sentence, including word sequence, syntactic category,
LF, and a sample of four words from the proposition.



7 Discussion

The material presented here has been used in a second semester graduate course in linguistic semantics.
The course adds computational topics and methodology to the curriculum on compositional semantics
and possible worlds semantics. This is done in part by using parsers and derivation calculators, including
a categorial-grammar parser (Barker and Shan, 2005), and a derivation calculator that interprets logical
forms in a typed intensional logic (Champollion et al., 2013). Finite state intensional semantics adds the
possibility of actually computing propositional denotations as sets of worlds, rather than just computing
logical terms associated with phrases. In addition to the material on intensional complementation and
questions, the course included computing with premise semantics for modality (Kratzer, 1981; Lewis,
1981), in a framework where the ordering propositions are a finite set of regular propositions.

Research and publications in linguistic semantics frequently refer to toy possible worlds models with
a handful of worlds, in order to illustrate and test ideas. The methods introduced here allow this to be
scaled up, even to countable sets of worlds, and to avoid error, by virtue of the formal methodology. And
they start to bridge ideas about model structures and computation between possible worlds semantics as
applied in natural language semantics, and the research program of cognitive robotics, where constructed
possible worlds models are used to reason about action, planning, modality, and knowledge (Moore,
1984; Reiter, 2001; Scherl and Levesque, 2003; Levesque and Lakemeyer, 2008).

Tim Fernando and Lauri Carlson have developed approaches to natural language semantics using fi-
nite state methods (Fernando, 2007; Carlson, 2009). They mostly focus on tense, aspect, and the structure
of events, rather than as here the syntax-semantics interface for intensional complementation. Fernando
discusses intensions in his system of finite state semantics in Fernando (2017). Comparing and integrat-
ing the approaches is an important topic for future work.

The epistemic model in the running example is constructed to reflect certain intuitions, but this is
done in an ad-hoc way. The topic of constructing epistemic action models in a systematic way was ap-
proached by Baltag et al. (1999) using action alternatives, and a large body of research has followed. See
Van Ditmarsch et al. (2007) and Van Ditmarsch et al. (2015) for surveys. It is hoped that connecting with
this literature and methodology will lead to richer examples, and an expansion in the set of embedding
verbs that are can be covered.

Systems of quantified modal logic and intensional typed interpretation use models built from a set of
worlds and a set of individuals (Lewis, 1968; Gallin, 2011). Where are the individuals in the current sys-
tem? In Section 3, the strings in W1 were described as worlds with a distinguished individual, or worlds
with a discourse referent marking an individual. It is possible to directly view W1 as the set of individ-
uals. In model structures as defined by Lewis, individuals are not shared between possible worlds, and
each individual can be mapped to its world. This suggests using model frames 〈Σw,ΣD,W,D, π,R,C〉,
where Σw and ΣD are alphabets, W is a regular subset of Σ∗W , D is a regular subset of Σ∗D, π is a func-
tional regular relation between D and W , and R is a regular relation on W , and C is a regular relation
on ΣD. π maps individuals to their worlds. C is the cross-world counterpart relation. It is hoped that
the addition of C will make it possible to include de re LFs with know in the analysis. Another part
of the analysis of know is presupposition. Collard (2016) introduced a version of the finite state system
explained here that uses three-valued evaluations, in order to model presupposition.
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