
Proceedings of the Conference on Machine Translation (WMT), Volume 2: Shared Task Papers, pages 661–666
Copenhagen, Denmark, September 711, 2017. c©2017 Association for Computational Linguistics

CUNI System for WMT17 Automatic Post-Editing Task

Dušan Variš and Ondřej Bojar
Charles University, Faculty of Mathematics and Physics,

Institute of Formal and Applied Linguistics,
Malostranské náměstı́ 25, 118 00 Prague, Czech Republic

{varis,bojar}@ufal.mff.cuni.cz

Abstract

Following upon the last year’s CUNI sys-
tem for automatic post-editing of machine
translation output, we focus on exploit-
ing the potential of sequence-to-sequence
neural models for this task. In this sys-
tem description paper, we compare sev-
eral encoder-decoder architectures on a
smaller-scale models and present the sys-
tem we submitted to WMT 2017 Auto-
matic Post-Editing shared task based on
this preliminary comparison. We also
show how simple inclusion of synthetic
data can improve the overall performance
as measured by an automatic evaluation
metric. Lastly, we list few example out-
puts generated by our post-editing system.

1 Introduction

Even with the recent substantial improvements
of the machine translation (MT) quality mainly
thanks to the increasingly popular neural models
(neural MT, NMT), many errors still remain in
the output require further post-editing. This can
be done manually, or as the automatic post-editing
(APE) task expects, automatically.

When phrase-based machine translation
(PBMT) was the indisputable state of the art,
some automatic post-editing (APE) systems
were based on the PBMT techniques (Simard
et al., 2007). With source-sentence information
(Béchara et al., 2011), post-editing results were
quite promising. It is therefore not surprising
that with the rise of the neural machine transla-
tion, neural APE systems based on the findings
in NMT research were built (Pal et al., 2016)
and even won last year’s WMT16 Shared Task
(Junczys-Dowmunt and Grundkiewicz, 2016).

In this paper, we present a baseline comparison
of several recent neural sequence-to-sequence ar-
chitectures, motivations behind our primary sub-
mission for the WMT17 Shared Task and further
improvements of this submission with regard to
model size and additional synthetic data.

2 Experiments

In automatic post-editing, we are expected to take
the output of an MT system that usually contains
various errors (morphological, lexical etc.) and to
generate a corrected version of the output. Most of
the time, there is also additional information avail-
able, e.g. the original sentence in the source lan-
guage and sometimes also some internal scores or
features from the primary MT system.

2.1 Examined Setups
If we look at the recent developments in the field
of NMT, we can see that there are many differ-
ent novel approaches that often bring significant
improvements to the overall performance of the
NMT system. It is natural to ask how these find-
ings can be applied to APE task and how much
they can contribute to the APE system perfor-
mance. We experimented in two areas: (1) how to
feed simultaneously the source sentence and the
MT output (multi-source input), and (2) whether
to use subword units or individual characters.

2.1.1 Multi-Source Input
All our experiments use both the source sentence
and the MT output to be corrected. As far as en-
coding the input is concerned, we examined two
basic approaches. We tried using a single encoder
that received the concatenation of the source sen-
tence and the corresponding MT output as sug-
gested by Niehues et al. (2016). The resulting in-
put sequence becomes longer and it may thus be
more difficult to encode, but it was reported that

661



Figure 1: Illustration of a multiple-encoder sequence-to-sequence architecture as illustrated in Libovický
et al. (2016).

(through the attention mechanism) the decoder is
able to attend to relevant parts of the concatenated
sentences when generating output.

As an alternative option, we also tried using two
separate encoders, one for the source sentence and
one for the MT output (Libovický et al., 2016) as
shown in Figure 1. In this case, both encoders
encode their corresponding input sequences sepa-
rately and the concatenation of their final states is
passed to the decoder. The attention is computed
over the hidden states of both encoders as if they
were produced by a single encoder. Libovický and
Helcl (2017) present other options for combining
the attention of multiple encoders, but the investi-
gation of these methods is not covered in this pa-
per.

2.1.2 Subword Units or Characters

All data-driven approaches to MT suffer in qual-
ity when translating rare words (including words
not seen during training at all) and NMT is no ex-
ception. In out neural approach to APE, we would
still like our APE system to address errors in rare
words (e.g. by fixing their endings). A popular
approach of reducing the vocabulary size in NMT
is called byte-pair encoding (BPE, Sennrich et al.,
2015) which creates a vocabulary of most frequent
words, subword units and individual characters.
This way, even rare words can be successfully han-
dled by modifying their parts.

Another option is to use a fully character-level
encoder-decoder architecture. However, this ap-

proach in its basic form results in much longer se-
quences that are generally much harder to learn
for the underlying recurrent neural network (RNN,
Pascanu et al., 2012). Another downside is the in-
creased training and inference time for each sen-
tence. Recently, Lee et al. (2016) presented an en-
coder architecture that uses RNN over the output
of several hundreds convolutional filters that are
applied on the character-level embeddings, com-
bining the benefits of both convolutional and re-
current approaches.

2.2 Baseline Comparison
Based on the approaches described in the previous
section, we decided to compare the following sys-
tem variations:

• a single encoder (concatenated input, “con-
cat”) vs. two separate encoders (“two-enc”),

• BPE2BPE vs. CHAR2CHAR architecture.

Each system variation was trained using a single
Nvidia Tesla K20 5GB GPU. We set embedding
size and both encoder and decoder RNN size to
300 for all the systems. We used BPE vocabulary
of size 50k for the BPE2BPE systems and charac-
ter vocabulary of size 500 for the CHAR2CHAR
systems. We did not use dropout during train-
ing. For the CHAR2CHAR setups (i.e. RNN over
convolutional encoder by Lee et al., 2016), we re-
duced the number of convolutional filters propor-
tionally to the size of the used GPU, used segment
size 5 and highway network of depth 1.

662



System BLEU
BPE2BPE two-enc 42.36
BPE2BPE concat 42.13
CHAR2CHAR two-enc 49.82
CHAR2CHAR concat 49.94

Table 1: Automatic evaluation of the proposed ar-
chitectures we trained. The model size was down-
scaled to 5GB due to the limited computation re-
sources.

The experiments were carried out in Neural
Monkey1 (Helcl and Libovický, 2017), a frame-
work for sequence-to-sequence modeling. Most of
the required neural network components together
with necessary preprocessing and postprocessing
were already implemented in the framework. We
added the RNN over convolutional encoder in this
work.

We used 12k sentences WMT16 APE training
dataset for training and we computed BLEU (Pa-
pineni et al., 2002) on WMT16 APE development
dataset to compare the baselines. The evaluation
was performed during training. We thus did not
use beam search and simply greedily chose the
most probable output at each decoding step to get
the validation output.

The best results for each architecture are shown
in Table 1. We can see that the character-level
post-editing models outperform the subword-level
models. However, the training was done using
only a small dataset which may possibly indicate
that the character level architecture is able to better
exploit the training data. Nevertheless, we chose
the character-level system for our remaining ex-
periments.

3 CUNI System for WMT17 APE Task

After the baseline comparison of the smaller
sequence-to-sequence models, we moved towards
training of the primary submission for the WMT17
post-editing task.

3.1 Common Settings

We decided to use the two-encoder character-
level architecture. Even though the single encoder
character-level architecture with concatenated in-
puts performed slightly better during the baseline
evaluation, we believe that the multi-encoder ar-

1https://github.com/ufal/neuralmonkey

chitecture offers higher potential for further im-
provement.2

The model was trained using GeForce GTX
1080 with 8GB memory with the following pa-
rameters:

• shared character-level vocabulary size: 500

• encoder RNN size: 256

• input embedding size: 300

• segment size: 5

• highway network depth: 2

• convolutional filters (size, number of filters):
(1,150), (2,200), (3,250), (4,250), (5,300),
(6,300), (7,350), (8,350)

• decoder RNN size: 512

• output embedding size: 300

During the inference, we used beam-search of
beam size 20 and length normalization to penalize
shorter sentences. Beam search parameters were
chosen based on the Lee et al. (2016).

First, we used only 23k sentences from WMT17
training dataset to train the system. We used this
model as a baseline which we tried to further im-
prove.

3.2 Synthetic Data

Since the basic training dataset provided for the
task was rather small we also tried to include the
training dataset from the previous WMT16 post-
editing task and furthermore, we added the syn-
thetic data (smaller dataset, ∼500k sentences) as
provided by last year’s submission of Junczys-
Dowmunt and Grundkiewicz (2016). To balance
the ratio of genuine and synthetic sentences in
the final dataset, we duplicated the WMT16 and
WMT17 sentence pairs several times to match
the size of the synthetic dataset. We then took
all the data and shuffled them randomly to create
a dataset consisting of ∼1M training sentences.
We used WMT16 APE dev set to evaluate the
model during the training.

2This still needs to be confirmed though by the future re-
search.

663



Source You can also perform many types of transformations by dragging the bounding box for a selection .
OrigMT Sie können auch zahlreiche Transformationsarten durchführen , indem Sie den Begrenzungsrahmen für eine Auswahl .
Synth Sie können auch zahlreiche Transformationsarten durchführen , indem Sie den Begrenzungsrahmen für eine Auswahl ziehen .
Ref Sie können auch zahlreiche Transformationsarten durchführen , indem Sie den Begrenzungsrahmen für eine Auswahl ziehen .

Source 3D comments added to other views are listed as components of that view in the Model Tree .
OrigMT 3D hinzugefügten Kommentare zu anderen Ansichten als Komponenten anzuzeigen , die in der Modellhierarchie aufgeführt sind .
Synth 3D-Kommentare zu anderen Ansichten werden als Komponenten angezeigt , die in der Modellhierarchie aufgeführt sind .
Ref Anderen Ansichten hinzugefügte 3D-Kommentare werden in der Modellhierarchie als Komponenten dieser Ansicht aufgeführt .

Source Choose an option from the Key Algorithm menu .
OrigMT Wählen Sie eine Option aus dem Menü ” Algorithm . ”
Synth Wählen Sie eine Option aus dem Menü ” Algorithmu . ”
Ref Wählen Sie eine Option aus dem Menü ” Schlüsselalgorithmus . ”

Source Shift-drag to constrain the movement of the object horizontally , vertically , or diagonally .
OrigMT Halten Sie beim Ziehen des Zeigers über die Bewegung des Objekts horizontal , vertikal oder diagonal einzuschränken .
Synth Halten Sie beim Ziehen die Bewegung des Objekts die Bewegung des Objekts horizontal , vertikal oder diagonal eingeschränkt .
Ref Halten Sie beim Ziehen des Objekts die Umschalttaste gedrückt , um nur horizontale , vertikale oder diagonale Bewegungen zuzulassen .

Figure 2: Sample outputs from the original MT and our submitted model “Synth”. In the first two
examples, our model helped to produce correctly the main verb (in bold). In the third example, it
introduced a spelling error (underlined). The last example shows that the model can also severely damage
the sentence, introducing repetitions common in NMT output. The original output for the last sentence
was not perfect either, it does not mention the shift key at all (and our model does not fix it).

3.3 Predicting Edit Operations

Finally, inspired by Libovický et al. (2016), we
also trained a separate model that generates a se-
quence of post-editing operations (“editops”) in-
stead of directly generating the target sequence
of characters. Aside from generating characters
present in the training data, the model learns to use
special tokens “<keep>” and “<delete>”, or to
normally produce characters present in the train-
ing data, to indicate the modifications needed for
the MT output. We used the same network param-
eters and data (including the synthetic dataset) for
the model with and without BPE.

3.4 Evaluation

We evaluated these three models using the
WMT16 APE test set3, computing the BLEU
score on the produced outputs: baseline
CHAR2CHAR setup (Baseline), the model
trained with synthetic data (Synth) and the model
which produces edit operations instead of com-
plete sentences (Synth+editops). Table 2 shows
the results of the evaluation.

We can see that even when we choose the best
architecture based on the relative comparison and
increase the model capacity (“Baseline”), it is still
not enough to even get close to the original MT
output quality (“Original MT”). Introducing ad-
ditional synthetic data (“Synth”) fixed this and
actually outperformed the original MT, reaching

3http://www.statmt.org/wmt16/ape-task.
html

System BLEU
Original MT 62.09 (±1.04)
Baseline 50.86 (±3.96)
Synth 66.04 (±1.16)
Synth+editops 62.08 (±1.05)

Table 2: Automatic evaluation of the final 8GB
APE setups. The score of the original MT output is
shown for comparison. The± values are empirical
confidence intervals reflecting the variance in the
test set (Koehn, 2004).

BLEU of 66.04. We chose this system as our pri-
mary submission for the WMT16 APE task.

We were a little surprised that there was no im-
provement when using model that learned to gen-
erate post-editing operations (“Synth+editops”).
When we manually examined the generated out-
put, we found out that the system took the safer
path of keeping most of the machine translation
output because it probably resulted in fewer errors
than trying to change it. This could be probably
avoided by discouraging the model from keeping
the whole MT output unchanged and we plan in-
vestigating this approach in the future.

Even though we did not perform a thorough
manual evaluation, we present some examples of
our submitted system (“Synth”) outputs to give the
reader some insight to the model performance in
Figure 2. Our post-editing helped with the main
verb, but in other cases, it also damaged the sen-
tence structure or introduced spelling errors.

664



4 Conclusion

In this paper, we compared several sequence-to-
sequence architectures that were previously pro-
posed for the NMT task and evaluated their per-
formance in automatic post-editing of English-to-
German MT output. Our setup relies on the origi-
nal source sentence and uses either subword units
(BPE) or individual characters.

With additional synthetic data, we were able to
improve over the original MT output in terms of
BLEU, but a quick manual inspection reveals that
errors can be easily also introduced and BLEU (or
other automatic metric) is not likely to give a reli-
able picture of the post-editing performance.

Acknowledgments

This work has been in part supported by the EU
grants no. H2020-ICT-2014-1-644402 (Health
in my Language) and H2020-ICT-2014-1-645452
(QT21), as well as by the LINDAT/CLARIN
project of the Ministry of Education, Youth
and Sports of the Czech Republic (project
LM2015071) and Charles University SVV project
no. 260 453.

Computational resources were also supplied
by the Ministry of Education, Youth and Sports
of the Czech Republic under the Projects CES-
NET (Project No. LM2015042), CERIT-Scientific
Cloud (Project No. LM2015085) provided within
the program Projects of Large Research, Develop-
ment and Innovations Infrastructures.

References
Hanna Béchara, Yanjun Ma, and Josef van Genabith.

2011. Statistical Post-Editing for a Statistical MT
System. In Proceedings of the 13th Machine Trans-
lation Summit. pages 308–315.

Jindřich Helcl and Jindřich Libovický. 2017. Neural
monkey: An open-source tool for sequence learn-
ing. The Prague Bulletin of Mathematical Lin-
guistics (107):5–17. https://doi.org/10.1515/pralin-
2017-0001.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2016. Log-linear combinations of monolin-
gual and bilingual neural machine translation
models for automatic post-editing. In Pro-
ceedings of the First Conference on Machine
Translation, WMT 2016, colocated with ACL
2016, August 11-12, Berlin, Germany. The As-
sociation for Computer Linguistics, pages 751–
758. http://aclweb.org/anthology/W/W16/W16-
2378.pdf.

Philipp Koehn. 2004. Statistical Significance Tests for
Machine Translation Evaluation. In Proceedings of
EMNLP 2004. Barcelona, Spain.

Jason Lee, Kyunghyun Cho, and Thomas Hof-
mann. 2016. Fully character-level neural machine
translation without explicit segmentation. CoRR
abs/1610.03017. http://arxiv.org/abs/1610.03017.

Jindřich Libovický and Jindřich Helcl. 2017. Attention
strategies for multi-source sequence-to-sequence
learning. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers). Association for Compu-
tational Linguistics, Vancouver, Canada.

Jindřich Libovický, Jindřich Helcl, Marek Tlustý,
Ondřej Bojar, and Pavel Pecina. 2016. Cuni system
for wmt16 automatic post-editing and multimodal
translation tasks. In Proceedings of the First Confer-
ence on Machine Translation. Association for Com-
putational Linguistics, Berlin, Germany, pages 646–
654. http://www.aclweb.org/anthology/W16-2361.

Jan Niehues, Eunah Cho, Thanh-Le Ha, and Alex
Waibel. 2016. Pre-translation for neural ma-
chine translation. In Nicoletta Calzolari, Yuji
Matsumoto, and Rashmi Prasad, editors, COL-
ING 2016, 26th International Conference on Com-
putational Linguistics, Proceedings of the Con-
ference: Technical Papers, December 11-16,
2016, Osaka, Japan. ACL, pages 1828–1836.
http://aclweb.org/anthology/C/C16/C16-1172.pdf.

Santanu Pal, Sudip Kumar Naskar, Mihaela Vela, and
Josef van Genabith. 2016. A neural network based
approach to automatic post-editing. In Proceed-
ings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2016, Au-
gust 7-12, 2016, Berlin, Germany, Volume 2: Short
Papers. The Association for Computer Linguistics.
http://aclweb.org/anthology/P/P16/P16-2046.pdf.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. Bleu: A method for au-
tomatic evaluation of machine translation. In
Proceedings of the 40th Annual Meeting on As-
sociation for Computational Linguistics. Asso-
ciation for Computational Linguistics, Strouds-
burg, PA, USA, ACL ’02, pages 311–318.
https://doi.org/10.3115/1073083.1073135.

Razvan Pascanu, Tomas Mikolov, and Yoshua
Bengio. 2012. Understanding the explod-
ing gradient problem. CoRR abs/1211.5063.
http://arxiv.org/abs/1211.5063.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words
with subword units. CoRR abs/1508.07909.
http://arxiv.org/abs/1508.07909.

Michel Simard, Cyril Goutte, and Pierre Isabelle.
2007. Statistical phrase-based post-editing. In

665



Human Language Technologies 2007: The Confer-
ence of the North American Chapter of the Asso-
ciation for Computational Linguistics; Proceedings
of the Main Conference. Association for Computa-
tional Linguistics, Rochester, New York, pages 508–
515. http://www.aclweb.org/anthology/N/N07/N07-
1064.

666


