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Abstract

In this paper, we propose three different
methods for automatic evaluation of the
machine translation (MT) quality. Two
of the metrics are trainable on direct-
assessment scores and two of them use de-
pendency structures. The trainable metric
AutoDA, which uses deep-syntactic fea-
tures, achieved better correlation with hu-
mans compared e.g. to the chrF3 metric.

1 Introduction

With the ongoing research of the machine transla-
tion (MT) systems in the past the need for accu-
rate automatic evaluation of the translation quality
became unquestionable. Even though the human
judgment of the MT system outputs still holds as
the most reliable form of evaluation, the high cost
of human evaluation together with the amount of
time required for such evaluation makes human
judgment unsuitable for large scale experiments
where we need to evaluate many different system
configurations in a relatively short timespan. An
additional important limitation of human evalua-
tion is that it cannot be exactly repeated. This led
to development of various methods for automatic
MT evaluation in the past with the aim to elimi-
nate the need for the expensive human assessment
of the developed MT systems.

In this paper we suggest three novel methods for
automatic MT evaluation together with their direct
comparison:

1. AutoDA: A linear regression model using
semantic features trained on WMT Direct
Assessment scores (Bojar et al., 2016) or
HUMEseg scores (Birch et al., 2016).

2. TreeAggreg: N-gram based metric computed
over aligned syntactic structures instead of

the linear representation of the translated sen-
tences.

3. NMTScorer: A neural sequence classifier
which assigns correct/incorrect flags to the
evaluated sentence segments.

Table 1 shows the main properties of the pro-
posed methods. Some of them were mainly devel-
oped for Czech as the target language and were
later modified to be applied to other languages.
The differences in the data preprocessing and their
impact on the resulting evaluator are also de-
scribed in this paper.

2 AutoDA: Automatic Direct Assessment

AutoDA is a sentence-level metric trainable on
any direct assessment scores. The metric is based
on a simple linear regression combining several
features extracted from the automatically aligned
translation-reference pair. There may be also other
established metrics within the features.

The training data with golden direct-assessment
scores available are shown in Table 2.

We describe two variants. The first one works
only on Czech and uses many semantic features
based of rich Czech tectogrammatical annotation
(Böhmová et al., 2003). The second one uses
much fewer features, however, it is language uni-
versal and needs only a dependency parsing model
available.

2.1 AutoDA Using Czech Tectogrammatics
This metric automatically parses the Czech trans-
lation candidate and the reference translation and
uses various semantic features to compute the final
score.

2.1.1 Word Alignment
AutoDA relies on automatic alignment between
the translation candidate and the reference trans-
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Method Resource Type Trainable Metric Type
AutoDA Monolingual/Bilingual* Yes Segment-level Linear Regression
TreeAggreg Monolingual No Tree Segment-level ChrF**
NMTScorer Bilingual Yes Segment-level Classification

Table 1: Overview of the examined methods. Currently, AutoDA uses only monolingual resources even
though extracting additional features from the bilingual data (*) is possible. TreeAggreg can use any
string-level metric for score computation instead of ChrF (**).

Dataset Source Target # Sentences

WMT16 DAseg
TR/FI/CS/RO/RU/DE EN

560
EN RU

WMT15 DAseg
DE/RU/FI/CS EN

500
EN RU

WMT16 HUMEseg EN CS/DE/PL/RO ∼350

Table 2: Overview of the available data for training AutoDA.

lation. The easiest way of obtaining word align-
ments is to run GIZA++ (Och and Ney, 2000) on
the set of sentence pairs. GIZA++ was designed to
align documents in two languages and it can obvi-
ously also align documents in a single language,
although it does not benefit in any way from the
fact that many words are identical in the aligned
sentences. GIZA++ works well if the input corpus
is sufficiently large, to allow for extraction of reli-
able word co-occurrence statistics. While the test
sets alone are too small, we have a corpus of para-
phrases for Czech (Bojar et al., 2013). We thus
run GIZA++ on all possible paraphrase combina-
tions together with the reference-translation pairs
we need to align and then extract alignments only
for the sentences of interest.

2.1.2 Tectogrammatical Parsing
We use Treex1 framework (Popel and Žabokrtský,
2010) to do the tagging, parsing and tectogram-
matical annotation. Tectogrammatical annotation
of sentence is a dependency tree, in which only
content words are represented by nodes. The main
label of the node is a tectogrammatical lemma
– mostly the same as the morphological lemma,
sometimes combined with a function word in case
it changes its meaning. Other function words and
grammatical features of the words are expressed
by other attributes of the tectogrammatical node.
An example of a pair of tectogrammatical trees is
provided in Figure 1. The main attributes are:

• tectogrammatical lemma (t-lemma): the
lexical value of the node,

1http://ufal.mff.cuni.cz/treex

• functor: the semantic value of the syntac-
tic dependency relation. Functors express
the functions of individual modifications in
the sentence, e.g. ACT (Actor), PAT (Pa-
tient), ADDR (Addressee), LOC (Location),
MANN (Manner),

• sempos: semantic part of speech: n (noun),
adj (adjective), v (verb), or adv (adverbial),

• formeme: morphosyntactic form of the node.
The formeme includes for example preposi-
tions and cases of the nouns, e.g. n:jako+1
for nominative case with preposition jako.

• grammatemes: tectogrammatical counter-
parts of morphological categories, such as
number, gender, person, negation, modality,
aspect, etc.

2.1.3 Scores for Matching Attributes Ratios

Given the word- (or node-) alignment links be-
tween tectogrammatical annotations of the trans-
lation and reference sentences, we can count the
percentage of links where individual attributes
agree, e.g. the number of pairs of tectogrammat-
ical nodes that have the same tectogrammatical
lemma. These scores capture only a portion of
what the tectogrammatical annotations offer, for
instance, we they do not consider the structure of
the trees at all. For the time being, we take these
scores as individual features and use them in a
combined model.
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Figure 1: Example of aligned tectogrammatical trees of the reference “Podobně jako kofeinový nápoj
také alkohol zabraňuje vstřebávánı́ vápnı́ku z potravin, které jı́me.” and the candidate translation “Jako
kofeinový nápoj, alkohol v těle zabraňuje vstřebávánı́ kalcia z potravy.”

2.1.4 Linear Regression Training
We collect 83 various features based on match-
ing tectogrammatical attributes computed on all
nodes or a subsets defined by particular seman-
tic part-of-speech tags. To this set of features,
we add two BLEU scores (Papineni et al., 2002)
computed on forms and on lemmas and two chrF3
scores (Popovic, 2015) computed on trigrams and
sixgrams, so we have 87 features in total.

We train a linear regression model to obtain a
weighted mix of features that fits best the WMT16
HUMEseg scores. Since the amount of annotated
data available is low, we use the jackknife strategy:

• We split the annotated data into ten parts.

• For each tenth, we train the regression on all
the rest data and apply it to this tenth.

By this procedure, we obtain automatically as-
signed scores for all sentences in the data. The cor-
relation coefficients are shown in Table 3, along
with the individual features.

In addition to the regression using all 87 fea-
tures, we also did a feature selection, in which
we manually chose only 23 features with a posi-
tive impact on the overall correlation score. For
instance, we found that the BLEU scores can be

metric en-cs
aligned-tnode-tlemma-exact-match 0.449
aligned-tnode-formeme-match 0.429
aligned-tnode-functor-match 0.391
aligned-tnode-sempos-match 0.416
lexrf-form-exact-match 0.372
lexrf-lemma-exact-match 0.436
BLEU on forms 0.361
BLEU on lemmas 0.395
chrF3 0.540
AutoDA (87 features) 0.625
AutoDA (selected 23 features) 0.659

Table 3: Selected Czech deep-syntactic features
and their correlation against WMT16 HUMEseg
dataset. Comparison with BLEU, chrF3, and our
trainable AutoDA (using chrF3 as well).

easily omitted without worsening the correlation.
Conversely, the chrF scores are very valuable and
omiting them would lower the correlation signifi-
cantly.

We see that chrF3 alone performs reasonably
well (Pearson of 0.54), If we combine it with a se-
lected subset our features, we are able to achieve
the correlation of up to 0.659.
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2.2 Language Universal AutoDA
We have seen that deep-syntactic features help to
train an automatic metric with higher correlation
for Czech. Even though we have no similar tools
for other languages so far, we try to extract simi-
lar features for them as well. The source code is
available online. 2

2.2.1 Universal Parsing
We use Universal Dependencies (UD) by Nivre
et al. (2016b), a collection of treebanks in a com-
mon annotation style, where all our testing lan-
guages are present – version 1.3 covers 40 lan-
guages (Nivre et al., 2016a). For syntactic anal-
ysis, we use UDPipe by Straka et al. (2016), a to-
kenizer, tagger, and parser in one tool, which is
trained on UD. The UD tagset consists of 17 POS
tags; the big advantage is that the tagset is the same
for all the languages and therefore we can easily
extract e.g. content words, prepositional phrases,
etc.

2.2.2 Monolingual Alignment
Unlike from Czech, we did not known about the
existing corpus of paraphrases available across
other languages,3 so we used a simple monolin-
gual aligner based on word similarities and rel-
ative positions in the sentence. Our implemen-
tation is inspired by the heuristic Monolingual
Greedy Aligner written by Martin Popel (Rosa
et al., 2012), which is available in the Treex frame-
work.4

First, we compute scores for all possible align-
ment connections between tokens of the reference
and translated sentence:

score(i, j) = w1JaroWinkler(W t
i ,W

r
j )

+ w2I(T
t
i = T r

j )

+ w3(1− |(i/len(t)− j/len(r)|),
(1)

where JaroWinkler(W t
i ,W

r
j ) defines similarity

between the given words (Winkler, 1990), I(T t
i =

T r
j ) is a binary indicator testing the identity of

POS tags, and (1−|(i/len(t)−j/len(r)|) tells us
how close are the two words according to their rel-
ative positions in the sentences. The weights were

2https://github.com/ufal/auto-hume
3Multilingual corpus of paraphrases has been released by

Chris Callison-Burch’s group and is available here: http:
//paraphrase.org/#/download

4https://github.com/ufal/treex/

set manually to w1 = 8, w2 = 3, and w3 = 3;
they were not tuned for this specific task. When
we have the scores, we can simply produce uni-
directional alignments (i.e. find the best token in
the translation for each token in the reference and
vice versa) and then symmetrize them to create in-
tersection (one-to-one) or union (many-to-many)
alignments. We finally use union symmetrization,
since it achieved slightly better correlation with
humans.

2.2.3 Extracting Features
We distinguish content words from function ones
by the POS tag. The tags for nouns (NOUN,
PROPN), verbs (VERB), adjectives (ADJ), and
adverbs (ADV) correspond more or less to content
words. Then there are pronouns (PRON), symbols
(SYM), and other (X), which may be sometimes
content words as well, but we do not count them.
The rest of POS tags represent function words.

Now, using the alignment links and the content
words, we can compute numbers of matching con-
tent word forms and matching content word lem-
mas. The universal annotations contains also mor-
phological features of words: case, number, tense,
etc. Therefore, we also create equivalents of tec-
togrammatical formemes or grammatemes. Our
features can thus check for instance the percent-
age of aligned words with matching morphologi-
cal number or tense.

2.2.4 Regression and Results
We compute all the scores proposed in the pre-
vious section on the four languages and test the
correlation on WMT16 HUMEseg dataset (Birch
et al., 2016). German UD annotation does not con-
tain lemmas and morphological features, so some
scores for German could not be computed.

Similarly as in Section 2.1.4, we trained a lin-
ear regression on all the features together with
chrF3 score. The results computed by 10-fold
cross-validation on WMT16 HUMEseg dataset
and comparison with chrF and NIST5 scores is
shown in Table 4.

3 Tree Aggregated Evaluation

TreeAggreg is a simple sentence-level metric, re-
motely inspired by HUME. Rather than being
a full standalone metric, it can be regarded as

5Unlike in previous experiment, we compare the results
using NIST rather than BLEU since it is better suited for
segment-level evaluation.
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metric en-cs en-de en-pl en-ro
NIST 0.436 0.481 0.418 0.611
NIST cased 0.421 0.481 0.410 0.611
chrF1 0.505 0.497 0.428 0.608
chrF3 0.540 0.511 0.419 0.638
NIST on content lemmas 0.416 – 0.361 0.542
matching lemmas 0.431 – 0.393 0.565
matching forms 0.372 0.478 0.405 0.576
matching content lemmas 0.359 – 0.408 0.536
matching content forms 0.321 0.470 0.427 0.552
matching formemes 0.347 0.170 0.357 0.420
matching tense -0.094 – -0.118 0.079
matching number 0.286 – 0.205 0.404
AutoDA (linear regression) 0.604 0.525 0.453 0.656

Table 4: Pearson correlations of different sentence-level metrics on WMT16 HUMEseg dataset. Standard
NIST and chrF metrics are compared with our individual features matching. AutoDA combines all the
features together with the chrF3 score and the NIST score computed on content lemmas only. Other
NIST scores are not included in AutoDA, since they do not bring any improvement.

a metric template, for in principle, any string-
based MT metric can be plugged into it; we used
chrF3 (Popovic, 2015) in our work.

In TreeAggreg, we are trying to improve an
existing string-based metric by applying it in a
syntax-tree-based context. This is motivated by
our belief that dependency trees are a good means
of capturing sentence structure, which may be rel-
evant for MT evaluation metrics, as the MT out-
put should presumably transfer the information
present in the source sentence into a similar syn-
tactic structure as the reference translation uses.
However, in string-based MT metrics, the syntac-
tic structure of a sentence is typically ignored.

In our rather light-weight attempt to employ
syntactic analysis in MT evaluation, we segment
the sentences into phrases based on their depen-
dency parse trees, and evaluate these phrases inde-
pendently with the string-based MT metric. The
resulting scores are then aggregated into a final
sentence-level score using a simple weighted av-
erage.

Our source codes are available online.6

3.1 Method

To be able to apply TreeAggreg to measuring the
correspondence of a translation t to the reference
r, we first need to apply a set of NLP tools in a
pre-processing pipeline:

6https://github.com/ufal/auto-hume/
tree/rudolf

1. align reference and translation

2. parse reference

3. parse translation

We use the monolingual aligner presented in Sec-
tion 2.2.2, using the unidirectional alignment from
reference to translation; i.e. for each reference
word we get exactly one translation word aligned
to it (not necessarily unique). We use the UDPipe
tool to provide the dependency parse trees (see
Section 2.2.1).

Next, both the reference and the translation are
split into the following types of segments:

1. the whole sentence (sr, st)

2. the sentence root (rr, rt)

3. for each immediate dependent (dir, dit) of the
root, the continuous span defined by its sub-
tree (pir, pit)

Whole sentence This is simply the base string-
based MT metric applied in the standard way.

Sentence root The sentence root is selected ac-
cording to the parse trees; usually this is the main
verb in the sentence.

Subtree spans As we expect the dependency
analysis of the reference to be much more accurate
than that of the translation, we only use the ref-
erence parse tree to identify the root dependents’
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spans, and the word alignment to identify the cor-
responding spans in the translation:

• pir contains all words from sr that are transi-
tively dependent on dir, the ith dependent of
rr; pir includes dir but excludes rr

• pit contains the first and last word from st
which are aligned to any of the words in pir,
and all of the words between them

The string-level metricm(r, t) is then computed
on each corresponding pair of the reference and
translation segments. A weighted average of the
segment-level scores is computed, where longer
segments are given higher weight: the weight is
the sum of the numbers of words in the reference
segment and in the translation segment. Addition-
ally, for the (sr, st) segment pair, which is still the
most important component of the metric, we use
a double weight. Thus, the final score m is com-
puted as follows:

ms = m(sr, st) · (|sr|+ |st|) · 2
mr = m(rr, rt) · 2
mi

p = m(pir, p
i
t) · (|pir|+ |pit|)

m =
ms +mr +

∑
i∈Dep(rr)

mi
p

2|sr|+ 2|st|+ 2 +
∑

i∈Dep(rr)
|pir|+ |pit|

Dep(rr) are all immediate dependents of rr.

3.2 Development
When developing the TreeAggreg metric, we tried
multiple configurations, evaluating each of them
on the WMT16 HUMEseg dataset for correlation
with human judgments, and then selected the one
that performed best, which we have just described.

For example, we also experimented with more
fine-grained segmentations, such as taking each
node together only with its immediate dependents
as a span. However, such setups performed poorer,
probably because they depend more heavily on the
high structural similarity of the translation to the
reference. Still, it seems reasonable to assume that
at least the arguments of the root node should usu-
ally correspond well between the reference and the
candidate translation.

We also tried to put more weight to certain
words that we expected to be more important, such
as dir (immediate dependents of the root rr) How-
ever, this always led to a deterioration in the corre-
lation of the metric to human judgments. Thus, an

Lang. chrF3 TreeAggreg Difference
en-cs 0.5403 0.5473 +0.0070
en-de 0.5111 0.5078 −0.0033
en-pl 0.4186 0.4266 +0.0080
en-ro 0.6314 0.6226 −0.0088
Average 0.5254 0.5261 +0.0007

Table 5: Evaluation of TreeAggreg (our metric)
and chrF3 (baseline) with Pearson’s correlation to
human judgments.

important property of our metric seems to be that
each reference word is taken into account exactly
twice.7

3.3 Evaluation

To evaluate our metric, we measured Pearson’s
correlation of chrF3-based TreeAggreg scores
with sentence-level human judgments on the
WMT16 HUMEseg dataset. For comparison, we
also measure the correlation of a baseline metric,
which is the vanilla sentence-level chrF3.

As shown in Table 5, our metric performs com-
parably to the chrF3 baseline, leading to a slight
improvement for two language pairs, and a slight
deterioration for the other two.

Thus, our approach of employing sentence syn-
tactic structure into a string-based MT metric
seems to affect the metric only minimally. More-
over, the TreeAggreg metric was developed and
evaluated on the same data and therefore the com-
parison in Table 5 is not quite fair, however, the
number of configurations tested was very little.

4 Neural MT Scorer

Neural MT Scorer is a model that predicts a proba-
bility for a given source/target translation pair us-
ing a simplified architecture that is based on ex-
isting NMT models with attention. The predicted
number should reflect how much the meaning of
source and target matches. We used that model
for a different task (scoring phrase table entries in
PBMT) where it performed well. Note that as of
now, Neural MT Scorer indeed does not make any
use of the reference translation, so it is effectively
a quality estimation method.

The training data for the model are bilingual
corpus (set of sentences that should be classified

7The same holds for words in the translation only if the
pit spans do not overlap, are contiguous, include both the first
and the last word in the sentence, and do not include rr .
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as entirely correct) as well as a set of sentences
that should be classified as incorrect (we obtain
these by performing some random operations on
the bilingual corpus). We do not train it on data
specific for the metrics task (i.e. the model is only
trained to recognize correct and incorrect transla-
tions, but small differences among different trans-
lations of the same sentence might not be recog-
nized), therefore there is a room for potential im-
provement.

We do not use any smoother labeling than 0/1
(correct/incorrect), since even a single word omis-
sion may cause completely different meaning of
the sentence. At inference time, the output is a
float number between 0 and 1.

4.1 Architecture

We use two LSTM encoders, one for source and
one for target side. The vector representations of
the source words are fed into the source LSTM
encoder to obtain one representation ps of the en-
tire sentence. Also, the intermediate outputs of the
source LSTM encoder are used in an attentional
layer when processing the target sentence in the
target LSTM encoder. The final cell states ps and
pt are used to measure the bilingual similarity by
σ(pTs pt). The entire architecture is very similar to
(Bahdanau et al., 2014), except that we use the at-
tention mechanism while encoding the target side.
Note that there is also no softmax layer over the
word dictionary – we know the entire source and
target sentences and so we do not need to predict
the next word; we just need one score between 0
and 1. This should allow for faster training of the
model; however, we need to provide labeled train-
ing data. We currently generate wrong sentences
using these basic operations:

• change a few words to completely random
ones from the source/target dictionary

• take a translation of a completely different
sentence

• utilize WordNet to change the polarity of a
sentence

• remove/add some random words at a random
place

4.2 Evaluation

We evaluated the model on the WMT16 HUME-
seg dataset, but currently it performs poorly. It

Languages NMT Scorer
en-cs 0.4099
en-de 0.3462
en-pl 0.3261
en-ro 0.4792
Average 0.3903

Table 6: Evaluation of NMT Scorer with Pearson
correlation to human judgments.

should be possible to improve it significantly by
optimizing the training process for the metrics task
(for example by adding another layer that uses the
final representations ps and pt to predict human
scores and finetune the entire model on some man-
ually evaluated datasets). The Pearson correlation
coefficients to human judgements are shown in Ta-
ble 6.

5 Conclusion

We presented three metrics. AutoDA is a trainable
metric combining syntactic features matching and
chrF and naturally significantly outperforms chrF
on all four tested languages.

In TreeAggreg, we tried to enrich a string-based
MT metric with light-weight information about
the syntactic structure of the sentences, but the re-
sults seem rather disappointing.

NMTScorer in which we used two LSTM en-
coders for source sentence and candidate transla-
tion and predicted sentence similarity also did not
prove to work well.
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Rudolf Rosa, Ondřej Dušek, David Mareček, and Mar-
tin Popel. 2012. Using parallel features in pars-
ing of machine-translated sentences for correction of
grammatical errors. In Proceedings of Sixth Work-
shop on Syntax, Semantics and Structure in Statis-
tical Translation (SSST-6), ACL. ACL, Jeju, Korea,
pages 39–48.
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