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Bastings6, Miguel Rios6, Wilker Aziz6,
Philip Williams7, Frédéric Blain8, Lucia Specia8

1RWTH Aachen University, Aachen, Germany
2Charles University, Prague, Czech Republic

3Karlsruhe Institute of Technology, Karlsruhe, Germany
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Abstract

This paper describes the joint submis-
sion of the QT21 projects for the
English→Latvian translation task of the
EMNLP 2017 Second Conference on Ma-
chine Translation (WMT 2017). The sub-
mission is a system combination which
combines seven different statistical ma-
chine translation systems provided by the
different groups.

The systems are combined using either
RWTH’s system combination approach,
or USFD’s consensus-based system-
selection approach. The final submission
shows an improvement of 0.5 BLEU

compared to the best single system on
newstest2017.

1 Introduction

Quality Translation 21 (QT21) is a European ma-
chine translation research project with the aim
of substantially improving statistical and machine
learning based translation models for challenging
languages and low-resource scenarios.

Members of the QT21 project have jointly built
a combined statistical machine translation system,
in order to achieve high-quality machine transla-
tion from English into Latvian.

Core components of the QT21 combined sys-
tem for the WMT 2017 shared task for ma-
chine translation of news 1 are seven individual

1http://www.statmt.org/wmt17/
translation-task.html

English→Latvian translation engines which have
been set up by different project partners.

The outputs of all these individual engines are
combined using the system combination approach
as implemented in Jane, RWTH’s open source sta-
tistical machine translation toolkit (Freitag et al.,
2014a). The Jane system combination is a mature
implementation which previously has been suc-
cessfully employed in other collaborative projects
and for different language pairs (Peter et al., 2016;
Freitag et al., 2013, 2014b,c).

As an alternative way of combining our sys-
tems, all outputs have been merged as the form of a
n-best list and a consensus-based system-selection
applied to obtain as best translation hypothesis the
candidate that is most similar to the most likely
translations amongst those systems.

2 Preprocessing

The training data was pre-processed using a cus-
tom language-specific tokeniser and the Moses
truecaser (truecase.perl). For tokenisation, we
used the Tilde’s regular expression-based to-
keniser for Latvian and English that takes into ac-
count language-specific characteristics (e.g., ab-
breviations, contractions, date, time, and numer-
ical expressions, etc.) and non-translatable enti-
ties (e.g., phone numbers, e-mail addresses, XML
tags, URLs, file paths, various identifiers and
codes, etc.). Only the first word in each sentence
was truecased.

The data (backtranslation included) is fur-
ther cleaned using a simple language identifier
from Shuyo (2010). We simply removed sentence
pairs whose targets cannot be identified by the
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tool. The number of sentences being removed is
approximately 50000.

3 Translation Systems

Each group contributed one or more systems. In
this section the systems are presented in alphabetic
order.

3.1 CUNI

The CUNI component of the system was built
using Neural Monkey2 (Helcl and Libovický,
2017), a flexible sequence-to-sequence toolkit im-
plementing primarily the Bahdanau et al. (2015)
model but useful also in multi-modal translation
and multi-task training.

We used essentially the baseline setup of the
system as released for the WMT17 NMT Training
Task3 (Bojar et al., 2017) for an 8GB GPU card.
This involves BPE (Sennrich et al., 2016) with
30k merges, maximum sentence length for both
source and target limited to 50 (BPE) tokens, no
dropout and embeddings (both source and target)
of 600, vocabulary shared between encoder and
decoder, attention and conditional GRU (Firat and
Cho, 2016). We experimented with the RNN size
of the encoder and decoder and increased them
to 800 instead of 600, at the expense of reducing
batch size to 10. The batch size of 30 with this
enlarged model would still fit into our GPU card
but this run was prematurely interrupted due to a
hardware failure and we noticed that it converges
slower in terms of sentence pairs (not in terms of
wallclock time), so we opted for a more efficient
use of the training data by taking the smaller batch.

We trained on 5245514 sentence pairs mixing
the genuine parallel data and synthetic data, as de-
scribed in Section 2. Neural Monkey does not
shuffle the corpus, so we shuffled it beforehand
and kept the order identical for all training epochs.

The training ran for 15 days on NVIDIA
GeForce GTX 1080 and processed 4.7 epochs but
the best model (according to BLEU scores on the
development set, “devset-b”) was actually reached
after 11M sentence pairs (early epoch 3), after 7
days.

Neither ensembling nor beam-search was used
for the run, because they were not yet available

2http://ufal.mff.cuni.cz/neuralmonkey
3http://www.statmt.org/wmt17/

nmt-training-task/

in Neural Monkey. Instead, the translations were
generated using greedy search.

3.2 KIT

The neural machine translation models from KIT
are built with the OpenNMT framework (Klein
et al., 2017), which is a multi-layer LSTM encoder
decoder network. We trained the models with 2.1
million parallel sentence pairs concatenated with
2.8 million pairs from backtranslation provided by
University of Edinburgh. The networks have 1024
hidden units for each of 2 LSTM layers for both
encoder and decoder. Furthermore, we experiment
a number of features with the baseline:

First, we found out that using a context gate to
mask activities between the decoder hidden state
and the source context vector before producing the
distribution at each time step (Tu et al., 2016a)
is simple yet beneficial for performance. Sec-
ond, we strengthen the attentional network with a
coverage vector accumulating the previous atten-
tional information, similar to the work of Mi et al.
(2016) and Tu et al. (2016b).

Using the two techniques helps improve the
BLEU score on the newsdev2017 set by 1.1 (to-
kenized) BLEU. By using ensembling 3 networks
with different configs and rescoring using a model
trained with reversed target sentences, we man-
aged to reach 26.96 BLEU score for the develop-
ment set, which yields 2.8 point of improvement
compared to the baseline model. Details about the
effect of each technique is described in Pham et al.
(2017)

3.3 LIMSI

LIMSI’s intput to this system combination con-
sists of two NMT systems, both trained with the
NMTPY framework (Caglayan et al., 2017) on bi-
text, then on synthetic parallel data. All of them
were rescored with a Nematus system (Sennrich
et al., 2017b). More details about these systems
can be found in (Burlot et al., 2017b,a).

The first system, named baseline, is a BPE-to-
BPE system. Bilingual sub-word units (Sennrich
et al., 2016) were trained on the bitext parallel
data with 90k merge operations. All the param-
eters of the neural network were initialized with
Xavier. The system was optimized with Adam,
dropout was enabled on source embeddings, en-
coder states, as well as output layer. The whole
training process took approximately 1.5 months.
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newsdev2017/1 newsdev2017/2 newstest2017
Individual Systems BLEU TER CTER BEER BLEU TER CTER BEER BLEU TER CTER BEER

Tilde smt 21.3 59.6 57.8 56.5 20.8 61.4 58.5 56.0 15.3 70.6 67.2 51.6
CUNI neuralmonkey 18.9 63.2 62.6 54.8 19.8 63.9 62.1 54.6 13.6 73.2 69.3 50.2
UvA 16.6 70.0 71.9 52.2 16.4 68.8 71.3 51.9 12.0 78.1 76.4 47.9
KIT 26.8 53.4 49.6 60.2 26.8 54.5 49.5 60.0 18.3 66.5 60.5 54.4
UEDIN NMT 25.7 55.1 51.6 59.5 25.6 56.4 50.4 59.4 17.8 67.9 66.7 53.5
UEDIN rescored by KIT 25.9 54.8 52.0 59.6 26.3 55.8 51.3 59.6 17.9 67.7 64.5 53.8
LIMSI factored 24.3 57.3 53.2 58.6 24.8 57.4 52.1 58.5 17.1 69.0 61.5 53.3
System Combination 27.4 53.1 50.9 60.2 27.9 53.9 51.0 59.9 18.8 66.0 67.8 54.3

Table 1: Results of the individual systems for the English→Latvian task. BLEU [%] and TER [%] scores
are case-sensitive.

The results shown in Table 1 correspond to an en-
semble of our three best models, which produced
n-best hypothesis. Finally, these hypothesis were
rescored using a Nematus system trained on the
same data as the baseline and with similar hyper-
parameters.

The second system is an experiment with fac-
tored NMT, which is part of the NMTPY frame-
work (Garcı́a-Martı́nez et al., 2016). The hyper-
parameters mentioned above for the baseline also
hold for this system. The specific setup we have
used consisted in an architecture that enables train-
ing towards a dual objective: at each time-step in
the output sentence, a normalized word and a PoS-
tag are produced. To obtain the first factor vocabu-
lary, all target words have been normalized (Burlot
and Yvon, 2017a), i.e. all grammatical informa-
tion that is redundant wrt. English has been re-
moved from the words. In a nutshell, the normal-
ization system performs a clustering of the mor-
phologically rich language by grouping together
words that tend to share the same translation(s) in
English. As a result, words are represented by a
lemma and a cluster identificator containing the
morphological features that have been merged. In
our setup, the cluster identificator was systemati-
cally split from the lemma. BPE segmentation was
thus learnt and applied to lemmas.

Given a lexical unit and a PoS-tag, word forms
are retrieved with a dictionary lookup. In the
context of morphologically rich languages, deter-
ministic mappings from a lemma and a PoS to
a form are very rare. Instead, the dictionary of-
ten proposes several word forms corresponding to
the same lexical unit and morphological analysis.
To address this issue, we let a word-based sys-
tem select the right word form from the dictionary.
To this end, k-best hypothesis from the dictionary
were generated, as well as the n-best hypothesis

from the factored NMT system, leading to nk-best
rescoring.

Our factored NMT system is an ensemble of
two best models and rescoring is performed with
our single best Nematus model.

3.4 Tilde

The Tilde system is a Moses phrase-based SMT
system that was trained on the Tilde MT plat-
form (Vasiļjevs et al., 2012). The system was
trained using all available parallel data - 1.74
million unique sentence pairs after filtering, and
3 million unique sentence pairs that were ac-
quired by re-translating a random selection of in-
domain monolingual sentences with a neural ma-
chine translation system (Pinnis et al., 2017). The
system has a 5-gram language model that was
trained using KenLM (Heafield, 2011) on all avail-
able monolingual data (27.83 million unique sen-
tences).

3.5 UEDIN

The University of Edinburgh’s system is an atten-
tional encoder-decoder (Bahdanau et al., 2015),
trained using the Nematus toolkit (Sennrich et al.,
2017c).

As training data, we used all parallel and syn-
thetic data, which was tokenized, truecased, and
filtered as described in Section 2. After filtering,
the data was segmented into subword units us-
ing byte-pair-encoding (BPE), for which we used
90,000 operations, jointly learned over both sides
of the parallel corpora.

We used word embeddings of size 512 and hid-
den layers of size 1024, with the size of the source
and target network vocabularies fixed to the size
of the respective BPE vocabularies. In order to
reduce the size of the models, the target-side em-
bedding weights were tied with the transpose of
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the output weight matrix (Press and Wolf, 2017).
We used a deep transition architecture inspired by
the one proposed by Zilly et al. (2016) for lan-
guage modelling. In experiments conducted dur-
ing feature development, we found that this gave
consistent improvements across multiple language
pairs. We also applied layer normalisation (Ba
et al., 2016) to all recurrent and feed-forward lay-
ers, except for layers that are followed by a soft-
max. In preliminary experiments, we found that
using layer normalisation led to faster convergence
and resulted in slightly better performance.

We trained the models with adam (Kingma and
Ba, 2015), using a learning rate of 0.0001 and
mini-batch size of 80. Training was automatically
stopped when the validation cross-entropy failed
to reach a new minimum for 10 consecutive save-
points (saving every 10000 updates).

For our final system, we trained eight indepen-
dent models: four left-to-right and four right-to-
left. We used results on newsdev2017 to select
one checkpoint from each model. An ensemble
of the four left-to-right models was used to gen-
erate a 50-best list, which was rescored using the
right-to-left models.

For a more detailed description of the system,
see Sennrich et al. (2017a).

3.6 UvA: syntactically aware NMT with
GCNs

We focus on exploiting structural information on
the source side, i.e. in the encoder. We hy-
pothesize that an encoder that incorporates syntax
will lead to more informative representations of
words, and that these representations, when used
as context vectors by the decoder, will lead to an
improvement in translation quality. Our model
(Bastings et al., 2017) is an attentive encoder-
decoder (Bahdanau et al., 2015) where in the en-
coder side we exploit the power of GCNs (Kipf
and Welling, 2016) to induce syntactically-aware
representations (Marcheggiani and Titov, 2017).
GCNs operate by convolving nodes in a neigh-
bourhood defined by a graph. In our case, a node
corresponds to a position in the source sentence
which is initially represented by a BiRNN hidden
state. We then define a syntactic neighbourhood
by following edges in an automatically produced
dependency parse. Instead of relying on linear or-
der only (as the BiRNN does), the GCN allows
the encoder to ‘teleport’ over parts of the source

the
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big
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home

building

house
house

Figure 1: System A: the large building; System B:
the large home; System C: a big house; System D:
a huge house; Reference: the big house.

sentence connecting words that are potentially far
apart. The model might not only benefit from this
teleporting capability however; also the nature of
the relations between words (i.e. dependency re-
lation types and directionality) may be useful, and
the GCN exploits this information.

4 System Combination

We conducted experiments with two methods for
system combination that only require the trans-
lated hypotheses. This allows us choose the con-
tributing systems without any restrictions.

4.1 Confusion Network

System combination produces consensus transla-
tions from multiple hypotheses which are obtained
from different translation approaches, i.e., the sys-
tems described in the previous section. A system
combination implementation developed at RWTH
Aachen University (Freitag et al., 2014a) is used to
combine the outputs of the different engines. The
consensus translations outperform the individual
hypotheses in terms of translation quality.

The first step in system combination is the gen-
eration of confusion networks (CN) from I in-
put translation hypotheses. We need pairwise
alignments between the input hypotheses, which
are obtained from METEOR (Banerjee and Lavie,
2005). The hypotheses are then reordered to match
a selected skeleton hypothesis in terms of word or-
dering. We generate I different CNs, each having
one of the input systems as the skeleton hypothe-
sis, and the final lattice is the union of all I gener-
ated CNs. In Figure 1 an example of a confusion
network with I = 4 input translations is depicted.
Decoding of a confusion network finds the best
path in the network. Each arc is assigned a score of
a linear model combination of M different mod-
els, which includes word penalty, 3-gram language
model trained on the input hypotheses, a binary
primary system feature that marks the primary hy-
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newsdev2017/1 newsdev2017/2 newstest2017
Systems BLEU TER CTER BEER BLEU TER CTER BEER BLEU TER CTER BEER

KIT 20best Bleu 25.8 54.5 51.3 59.3 26.0 55.4 51.0 58.8 17.8 66.9 61.6 53.8
KIT 20best ChrF 25.4 55.0 50.5 59.6 25.7 56.0 50.4 59.2 17.6 68.0 60.9 53.9
KIT 20best Beer 26.0 54.1 50.2 60.0 26.3 55.0 50.6 59.6 18.0 66.7 60.8 54.2
LIMSI Factored 12best Bleu 19.7 60.4 55.7 55.4 19.9 61.0 54.8 55.3 14.2 71.7 63.9 50.8
LIMSI factored 12best ChrF 19.7 60.3 55.4 55.6 19.8 61.1 54.5 55.4 14.2 71.7 63.7 50.9
LIMSI factored 12best Beer 19.8 60.3 55.5 55.6 19.8 61.0 54.7 55.4 14.2 71.7 63.8 50.9
LIMSI factored 100best Bleu 21.5 59.1 55.5 55.9 21.3 59.8 54.8 55.7 15.3 70.7 63.6 51.2
LIMSI factored 100best ChrF 21.9 58.6 54.3 57.1 21.7 59.4 53.6 56.9 15.4 70.5 62.9 52.0
LIMSI factored 100best Beer 21.7 58.7 54.3 57.1 21.6 59.4 53.7 56.9 15.5 70.4 62.9 52.1
Consensus-based System-selection Bleu 19.8 72.5 60.1 51.8 20.5 72.9 59.7 51.6 17.4 69.7 61.9 53.3
Consensus-based System-selection ChrF 26.5 54.1 49.3 60.4 26.8 54.6 48.9 60.2 18.3 67.1 59.9 54.5
Consensus-based System-selection Beer 27.1 53.0 49.6 60.5 27.3 53.8 49.1 60.3 18.6 66.2 60.0 54.6
System Combination 27.4 53.1 50.9 60.2 27.9 53.9 51.0 59.9 18.8 66.0 67.8 54.3
System Combination + Cons-based Beer 27.4 52.7 50.0 60.5 27.7 53.6 51.7 60.2 18.7 66.1 62.0 54.4

Table 2: USFD rescoring and combination experiments English→Latvian task. BLEU [%] and TER [%]
scores are case-sensitive.

pothesis, and a binary voting feature for each sys-
tem. The binary voting feature for a system is 1 if
and only if the decoded word is from that system,
and 0 otherwise. The different model weights for
system combination are trained with MERT (Och,
2003) and optimized towards 8·BLEU −TER.

4.2 Consensus-based System Selection
As a secondary solution for system combination,
we used USFD’s consensus-based n-nbest list se-
lection approach (Blain et al., 2017) for system
combination by combining each system’s output
in the form of a n-best list. Inspired by DeNero
et al. (2009)’s work on consensus-based Minimum
Bayes Risk (MBR) decoding which compares dif-
ferent types of similarity metrics (BLEU, WER,
etc.) under a SMT setup, USFD designed a re-
ranking approach to empirically evaluate the effect
of consensus on the varying n-best list in NMT.

Given a n-best list, each translation hypoth-
esis is scored against the other MT candidates
of the search space towards an automatic met-
ric. In our experiment we considered three au-
tomatic metrics amongst the most widely used
and which have been shown to be well corre-
lated with human judgments (Bojar et al., 2016):
BLEU, BEER (Stanojevic and Simaan, 2014) or
CHRF (Popovic, 2015). The entire list of MT can-
didates is then entirely re-ranked according to the
averaged score of each candidate. Different from
most re-ranking approaches which make use of ad-
ditional information usually treated as new model
components and combined with the existing ones,
we here focus only on the MT candidates. The
difference between the consensus-based n-best list
selection and an oracle translation is the absence

of reference translation: each translation hypothe-
sis is scored against all the other hypotheses used
as references while in an oracle translation each
translation hypothesis is scored against a single
reference. This results in obtaining as best transla-
tion hypothesis the candidate that is most similar
to the most likely translations.

5 Experimental Evaluation

Since only one development set was provided we
split the given development set into two parts:
newsdev2017/1 and newsdev2017/2. The first part
was used as development set while the second
part was our internal test set. The single systems
and the system combintaion are optimized for the
newsdev2017/1 set.

The single system scores in Table 2 show that
the KIT system is the strongest single system
closely followed by the UEDIN NMT system.
The rescoreing of the UEDIN NMT nbest lists by
KIT showed only a small improvement on new-
stest2017. The system combination of all these
systems showed an improvement of 1.1 BLEU on
newsdev2017/2 and 0.5 BLEU on official test set,
newstest2017.

Table 3 shows a comparison between all sys-
tems by scoring the translation output against each
other in TER and BLEU. We see that the outputs of
the two best performing systems KIT and UEDIN
are very close.

6 Morphology Evaluation

In order to get some insight regarding the qual-
ity of the morphological correctness of the outputs
produced by the systems involved in the combina-
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CUNI KIT LIMSI Tilde UEDIN UEDIN r. UvA USFD Average
CUNI - 38.1 32.4 23.9 37.8 38.2 22.3 40.2 33.3
KIT 43.8 - 49.3 29.9 60.1 62.6 28.3 77.0 49.3
LIMSI 49.8 33.2 - 26.1 48.6 49.4 27.5 56.7 41.4
Tilde 57.0 47.4 52.7 - 30.1 30.2 19.4 31.6 27.3
UEDIN 45.1 25.6 35.1 48.9 - 91.1 28.5 76.2 53.2
UEDIN rescored by KIT 44.5 23.8 34.3 48.4 5.4 - 28.7 78.4 54.1
UvA 62.9 56.6 57.5 65.8 57.1 56.7 - 30.3 26.4
USFD 42.0 13.9 28.1 45.9 15.8 14.2 54.7 - 55.8
Average 49.3 34.9 41.5 52.3 33.3 32.5 58.8 30.7

Table 3: Comparison of system outputs against each other, generated by computing BLEU and TER

on the system translations for newstest2017. One system in a pair is used as the reference, the other as
candidate translation; we report the average over both directions. The USFD system is similar to the
”Consensus-based System-selection Beer” in Table 2. The upper-right half lists BLEU [%] scores, the
lower-left half TER [%] scores.

verbs pronouns nouns mean
System past future fem. plur. number
Tilde smt 68.8% 70.4% 56.0% 71.8% 65.0% 66.4%
UvA 75.2% 84.2% 46.4% 80.8% 66.8% 70.7%
UEDIN NMT 74.6% 83.6% 57.0% 88.6% 69.4% 74.6%
LIMSI NMT 68.8% 84.6% 64.2% 86.8% 73.0% 75.5%
LIMSI factored 69.6% 82.8% 62.0% 89.0% 70.6% 74.8%
KIT 74.2% 89.0% 56.6% 89.8% 71.6% 76.2%

Table 4: Sentence pair evaluation (A-set).

coordinated verbs coord.n pronouns to nouns prep. mean
System number person tense case gender number case case
Tilde smt 49.6% 32.8% 50.2% 47.6% 24.0% 25.4% 19.0% 48.5% 37.1%
UvA 61.8% 52.4% 63.2% 31.6% 36.8% 38.8% 36.6% 50.9% 46.5%
UEDIN NMT 70.6% 60.8% 72.0% 30.2% 46.4% 44.8% 43.4% 56.7% 53.1%
LIMSI NMT 69.2% 57.6% 70.4% 41.8% 40.0% 40.8% 35.8% 54.6% 51.3%
LIMSI factored 72.4% 63.4% 73.2% 34.8% 43.0% 42.2% 41.4% 55.5% 53.2%
KIT 73.4% 64.8% 74.0% 37.4% 51.4% 49.8% 48.8% 55.0% 56.8%

Table 5: Sentence pair evaluation (B-set).

nouns adjectives verbs mean
System case gender number case number person tense
Tilde smt .436 .755 .735 .768 .254 .337 .258 .506
UvA .295 .629 .613 .643 .157 .187 .160 .383
UEDIN .234 .598 .596 .628 .115 .190 .114 .354
LIMSI NMT .255 .616 .610 .644 .139 .221 .134 .374
LIMSI factored .233 .587 .582 .612 .117 .182 .113 .346
KIT .244 .599 .594 .633 .102 .186 .108 .352

Table 6: Sentence group evaluation with Entropy (C-set).

353



tion, we ran the evaluation method introduced in
(Burlot and Yvon, 2017b). The evaluation of the
morphological competence of a machine transla-
tion system is performed on an automatically pro-
duced test suite. For each source test sentence
from a monolingual corpus (the base), one (or sev-
eral) variant(s) are generated, containing exactly
one difference with the base, focusing on a spe-
cific target lexeme of the base. These variants dif-
fer on a feature that is expressed morphologically
in the target, such as the person, number or tense
of a verb; or the number or case of a noun or an
adjective. This artificial test set is then translated
with a machine translation system. The machine
translation system is deemed correct if the trans-
lations of the base and variant differ in the same
way as their respective source. Another setup fo-
cuses on a word in the base sentence and produces
variants containing antonyms and synonyms of
this word. The expected translation is then syn-
onyms and antonyms bearing the same morpho-
logical features as the initial word.

There are three types of contrasts implying dif-
ferent sorts of evaluation:

• A: We check whether the morphological fea-
ture inserted in the source sentence has been
translated (eg. plural number of a noun). Ac-
curacy for all morphological features is aver-
aged over all sentences.

• B: We focus on various agreement phenom-
ena by checking whether a given morpholog-
ical feature is present in both words that need
to agree (eg. case of two nouns). Accuracy is
computed here as well.

• C: We test the consistency of morphologi-
cal choices over lexical variation (eg. syn-
onyms and antonyms all having the same
tense) and measure the success based on the
average normalized entropy of morphologi-
cal features in the set of target sentences.

The results for the A-set are shown in Table 4
and reflect the adequacy of an output towards the
source, or the quantity of morphological informa-
tion that has been well conveyed from the source.
Certain morphological features indicate rather low
contrasts between statistical and neural systems
(verb tense and pronoun gender), which shows
the relevance of SMT systems in the combination.

Sets B and C are more forcused on target mono-
lingual phenomena, such as agreement, and as-
sess the level of fluency of a system output. Here,
the observed contrasts between statistical and neu-
ral systems are far more obvious: all B-set SMT
scores are below 50%, whereas NMT scores are
always above. Here again, the superior perfor-
mance of KIT is noticed, at least for sets A and B.
As for the C-set, LIMSI factored, KIT and UEDIN
show a comparable high confidence in their mor-
phology predictions across lexical variety.

6.1 Consensus-based re-ranking

We report in Table 2 the results of the consensus-
based approach for either system re-ranking or
system combination.

First, we applied our approach on both KIT and
LIMSI-factored outputs. While we never outper-
form original systems’ performances, we observe
that increasing the n-best size does help with a sig-
nificant difference between LIMSI’s system 12-
or 100-best. One would note that in both cases,
consensus-based n-best list re-ranking with BEER

seems to be performing the best amongst all met-
rics.

Then, we applied our approach at system-level
by combining the outputs of all systems described
in Section 3. Once again, we observe better perfor-
mance with BEER compared to the other two met-
rics, reaching similar results as the system combi-
nation based on confusion network. The only no-
ticeable exception being the CTER score on new-
stest2017 which is significantly lower compared
to the other system combination, most likely the
benefit of using character-based metrics.

Finally, we combined both consensus-based se-
lection confusion-based combination and although
we observe similar performance to each system in-
dividually but a worse CTER.

7 Conclusion

Our combined effort shows again that the com-
bination of different SMT systems results in a
better overall system. The final result improved
by 0.5 BLEU points. Consensus-based re-ranking
showed a performance close to the confusion net-
work approach.
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Ondřej Bojar, Jindřich Helcl, Tom Kocmi, Jindřich Li-
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