@inproceedings{hardt-rambow-2017-predicting,
title = "Predicting User Views in Online News",
author = "Hardt, Daniel and
Rambow, Owen",
booktitle = "Proceedings of the 2017 {EMNLP} Workshop: Natural Language Processing meets Journalism",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-4202",
doi = "10.18653/v1/W17-4202",
pages = "7--12",
abstract = "We analyze user viewing behavior on an online news site. We collect data from 64,000 news articles, and use text features to predict frequency of user views. We compare predictiveness of the headline and {``}teaser{''} (viewed before clicking) and the body (viewed after clicking). Both are predictive of clicking behavior, with the full article text being most predictive.",
}
Markdown (Informal)
[Predicting User Views in Online News](https://aclanthology.org/W17-4202) (Hardt & Rambow, 2017)
ACL
- Daniel Hardt and Owen Rambow. 2017. Predicting User Views in Online News. In Proceedings of the 2017 EMNLP Workshop: Natural Language Processing meets Journalism, pages 7–12, Copenhagen, Denmark. Association for Computational Linguistics.