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Abstract

Basic categorial grammars are enriched
with a conjunction operation, and it is
proved that the formalism obtained in this
way has the same expressive power as con-
junctive grammars, that is, context-free
grammars enhanced with conjunction. It
is also shown that categorial grammars
with conjunction can be naturally embed-
ded into the Lambek calculus with con-
junction and disjunction operations. This
further implies that a certain NP-complete
set can be defined in the Lambek calculus
with conjunction.

1 Introduction

This paper establishes a connection between two
formal grammar models that emerged within two
different theories of syntax.

One theory is the immediate constituent anal-
ysis, which has its roots in the traditional gram-
mar, and was investigated in the early 20th cen-
tury by the structural linguists. It reached uni-
versal recognition under the name “context-free
grammars,” introduced in Chomsky’s early work.
In this paradigm, a grammar assigns certain prop-
erties to groups of words, such as “noun phrase”
(NP), “verb phrase” (VP) or “sentence” (S). These
properties are known as syntactic categories, or,
in Chomsky’s terminology, nonterminal symbols.
Rules of a grammar, such as S → NP VP, show
how shorter substrings with known properties can
be concatenated to form longer strings belonging
to a certain category.

In the other theory, which was discovered by Aj-
dukiewicz (1935), further developed by Bar-Hillel
et al. (1960), and is nowadays known as cate-
gorial grammars, syntactic categories are defined
in different way. “Noun phrases” are treated as

“the category of phrases equivalent to nouns,”
whereas verb phrases are defined as “the cate-
gory of phrases, which would form a complete
sentence, if a noun, or anything equivalent to a
noun, is concatenated on the left,” denoted by
NOUN\SENTENCE. A categorial grammar ex-
plicitly assigns categories to individual words;
and then, by definition, a concatenation of any
string of type NOUN with any string of type
NOUN\SENTENCE forms a complete sentence.
The crucial feature of this approach is that the
laws that govern reduction of categories, namely,
A (A \B) to B, and (B /A)A to B, are univer-
sal. In contrast, Chomsky’s context-free formal-
ism uses different rules for different categories.

A formal connection between these two models
was established by Bar-Hillel et al. (1960), who
proved them to be equivalent in power: a language
is defined by a context-free grammar if and only if
it is defined by a basic categorial grammar (assum-
ing languages do not contain the empty string).

More than half a century of research gave birth
to many extensions of both basic models. Cate-
gorial grammars were the first to get an interest-
ing extension: the Lambek calculus, introduced
by Lambek (1958), augments the model with ad-
ditional derivation rules. Later, Pentus (1993) es-
tablished that this extended model is still equiva-
lent in power to context-free grammars. Pentus’
translation yields a context-free grammar of ex-
ponential size with respect to the original Lam-
bek grammar. For the special case of unidirec-
tional Lambek grammars, which use only one
kind of division operators (\, /), but not both,
Kuznetsov (2016), using the ideas of Savateev
(2009), presents a polynomial translation into
context-free grammars. Other generalizations of
categorial grammars include combinatory catego-
rial grammars by Steedman (1996), categorial de-
pendency grammars by Dekhtyar and Dikovsky

140



(2008), and others.

Lambek grammars, in their turn, can be gener-
alized further. Modern extensions of the Lambek
calculus with new operations, such as those con-
sidered by Carpenter (1997), Morrill (2011), and
Moot and Retoré (2012), are capable of describ-
ing quite sophisticated syntactic phenomena.

From the point of view of modern logic, the
Lambek calculus is a substructural logical sys-
tem, namely, a non-commutative variation of lin-
ear logic, introduced by Girard (1987), see Abr-
usci (1990), Yetter (1990). Linear logic offers
many logical operations, and some of them can be
used in the non-commutative case for extending
Lambek grammars.

Morrill (2011) and his collaborators, follow-
ing and extending Moortgat (1996), consider a
system, based on the Lambek calculus, with dis-
continuous connectives, subexponentials for con-
trolled non-linearity, brackets for controlled non-
associativity, and many other operations. The use
of negation in categorial grammars was considered
by Buszkowski (1996). Kanazawa (1992) investi-
gated the power of Lambek grammars with con-
junction and disjunction operations that are “addi-
tive operations” in terms of linear logic.

Numerous generalized models have also been
introduced in the paradigm of immediate con-
stituent analysis, as extensions of the context-free
formalism. One direction is to extend the form of
constituents, that is, sentence fragments to which
syntactic categories are being assigned in a gram-
mar. The most well-known of these models are the
multi-component grammars, introduced by Vijay-
Shanker et al. (1987) and by Seki et al. (1991), in-
spired by an earlier model by Fischer (1968): these
grammars define the properties of discontinuous
constituents, that is, substrings with a bounded
number of gaps. Extensions of another kind aug-
ment the model by introducing new logical opera-
tors to be used in grammar rules: for instance, con-
junctive grammars, featuring a conjunction oper-
ation, and Boolean grammars, further equipped
with negation, were introduced by Okhotin (2001,
2004). Earlier, Latta and Wall (1993) argued for
the relevance of such operations in linguistic de-
scriptions. The main results on conjunctive gram-
mars indicate that they preserve the practically
useful properties of context-free grammars, such
as efficient parsing algorithms, while substantially
extending their expressive power. The known re-

sults on conjunctive grammars are presented in a
fairly recent survey by Okhotin (2013).

A few years ago, Kuznetsov (2013) compared
the expressive power of Lambek grammars with
conjunction, as considered by Kanazawa (1992),
with that of conjunctive grammars. It was proved
that a large subclass of conjunctive grammars
(namely, conjunctive grammars in Greibach nor-
mal form) can be simulated in the Lambek calcu-
lus with conjunction, but the exact power of the
latter remains undetermined.

This paper makes a fresh attempt at introduc-
ing conjunction in categorial grammars. The new
model extends basic categorial grammars, rather
than Lambek grammars, and for that reason it uses
categories and rules of a simpler form than in the
earlier model by Kanazawa (1992) and Kuznetsov
(2013). Yet, it is shown that this model can simu-
late every conjunctive grammar. A converse sim-
ulation is presented as well, which implies the
equivalence of the two models.

As compared to the classical equivalence re-
sult for context-free grammars and basic catego-
rial grammars, the new result requires a more
elaborate construction. One particular difficulty
is that the normal form theorems for conjunctive
grammars are weaker than those for the context-
free grammars: in particular, no analogue of the
Greibach normal form is known for conjunctive
grammars. For this reason, the simulation of
conjunctive grammars by the proposed conjunc-
tive categorial grammars relies on a different nor-
mal form by Okhotin and Reitwießner (2010).
This leads to a representation of the whole class
of conjunctive grammars, in contrast to the re-
sult by Kuznetsov (2013), which is valid only for
grammars in Greibach normal form.

The second result is that conjunctive catego-
rial grammars, as defined in this paper, can be
represented in the Lambek calculus with the con-
junction operation, as considered by Kanazawa
(1992), and therefore this extension of the Lam-
bek calculus is at least as powerful as are the
conjunctive grammars. Furthermore, it is proved
that Kanazawa’s model (Kanazawa, 1992) can de-
scribe an NP-complete language, which conjunc-
tive grammars cannot describe unless P = NP.
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2 Basic Categorial Grammars and
Context-Free Grammars

Let Σ be a finite alphabet of the language being
defined. Its elements are called symbols. In lin-
guistic descriptions, symbols typically represent
words of the language. The set of non-empty
strings over Σ is denoted by Σ+. Throughout this
paper, any subset of Σ+ is a language, that is, all
languages are assumed to be without the empty
string.

The models considered in this paper are derived
from two classical formal grammar frameworks:
basic categorial grammars and context-free gram-
mars.

Basic categorial grammars (BCG) have their
roots in the works of Ajdukiewicz (1935). Let Σ
be an alphabet. Let Pr = {p, q, r, . . . } be a finite
set of primitive categories, and let s ∈ Pr be a
designated target category of all syntactically cor-
rect sentences.

The set BCat of basic categories is defined as
follows.

• Every primitive category is a basic category.

• If A ∈ BCat and p ∈ Pr, then (p \A) ∈
BCat and (A/p) ∈ BCat.

The definition of a basic categorial grammar is
given in terms of logical propositions, which are
expressions of the form B(v), where B ∈ BCat
and v ∈ Σ+. This proposition states that v is a
string of syntactic category B.

The language of propositions is indeed very
simple: all propositions are atomic, there are no
variables and quantifiers (if the syntactic category
B is considered, in the spirit of first-order logic,
as a predicate, then its argument, v, is a constant
term).

A categorial grammar is regarded as a logical
calculus for deriving categorial propositions. It
includes a finite set of axioms (axiomatic propo-
sitions) of the form A(a), where A ∈ BCat and
a ∈ Σ, and the following inference rules.

p(u) (p \A)(v)

A(uv)

(A/p)(u) p(v)

A(uv)

The string w belongs to the language generated
by the BCG if and only if the proposition s(w) is
derivable by means of this calculus.

Example 1. The basic categorial grammar with
the following axiomatic propositions and with s as

the target category (Pr = {s, p, q}) describes the
language {bancan | n > 0}.

(s / p)(b), p(c), (p / q)(a), (p \ q)(a)

Another, more well-known formal grammar
framework is the phrase-structure formalism, de-
fined by Chomsky (1956) and later renamed into
context-free grammars (CFG). In a CFG, there is
a fixed finite set of categories N (usually called
“non-terminal symbols”), and one of them is des-
ignated as the initial symbol S ∈ N . The gram-
mar is defined by a finite set of rules (or “produc-
tions”) of the form A → β, where A ∈ N and
β ∈ (Σ ∪N)+.

Even though Chomsky’s original definition of
context-free grammars was given in terms of string
rewriting, it is more convenient—at least in this
paper—to present it as a logical derivation similar
to the one in categorial grammars. Propositions in
the context-free framework are of the form β(u),
where β ∈ (Σ ∪ N)+ and u ∈ Σ+. Intuitively,
such a proposition means that u can be derived
from β using the rules of the CFG. Axioms of
the calculus of propositions are of the form a(a),
a ∈ Σ, and the rules of inference are as follows.

β1(u1) β2(u2)

(β1β2)(u1u2)

β(v)

A(v) for each rule A→ β

Again, the stringw belongs to the language gen-
erated by this grammar if and only if the proposi-
tion S(w) is derivable.
Example 2. The language from Example 1 is de-
scribed by the following CFG.

S → bA

A→ aAa | c
As usual, “A→ aAa | c” is a short-hand notation
for two rules, A→ aAa and A→ c.

There is an important difference between BCGs
and CFGs: in BCGs, the linguistic information is
stored in the axioms (in other words, it is lexical-
ized), while the inference rules are the same for all
BCGs. For CFGs, the situation is opposite: ax-
ioms are trivial, and all information is kept in the
rules. However, these two formalisms are equiva-
lent in power.
Theorem A. A language is generated by a BCG
if and only if it is generated by a CFG. (Bar-Hillel
et al., 1960)
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b(b)

a(a)

c(c)

B(c) a(a)

B(aca) c(a)

a(a)

A(a)

bBcA(bacaca)

b(b)

a(a)

A(a) c(a)

a(a)

c(c)

B(c) a(a)

B(aca)

bAcB(bacaca)

S(bacaca)

Figure 1

3 Conjunction in Grammars

In this section, both grammar formalisms are en-
riched with a conjunction operation. Using con-
junction, one can impose multiple syntactic con-
straints on the same phrase at the same time. The
extension of context-free grammars with conjunc-
tion, called conjunctive grammars, was introduced
by Okhotin (2001).

Let Σ be the alphabet, and let N be the set of
categories (“non-terminal symbols”), with S ∈ N
representing all well-formed sentences. A con-
junctive grammar is defined by a finite set of rules
of the form A → β1 & . . .&βk, with βi ∈ (Σ ∪
N)+. If k is 1, then this is an ordinary ruleA→ β,
as in an ordinary context-free grammar.

Propositions in a conjunctive grammar are of
the form β(u), where u ∈ Σ+ and β ∈ (Σ∪N)+.
Axioms of the calculus of propositions are of the
form a(a), where a ∈ Σ. The first inference rule
is as follows.

β1(u1) β2(u2)

(β1β2)(u1u2)

The other inference rule is valid for each grammar
rule A→ β1 & . . .&βk and for each string v.

β1(v) . . . βk(v)

A(v)

The string w belongs to the language generated
by the grammar if and only if the proposition S(w)
is derivable from the axioms.

Example 3. The following conjunctive grammar
describes the language {bancancan | n > 1}.

S → bBcA& bAcB

A→ aA | a
B → aBa | c

The rules for A and B use no conjunction, and
have the same effect as in ordinary context-free
grammars. Thus, bBcA(w) is true for all strings

of the form w = bancancai, with n > 0, i > 1,
whereas bAcB(w) holds true for strings of the
form w = baicancan. The conjunction of these
two conditions is exactly the condition of member-
ship in the desired language, and the rule for S
ensures it by derivations of the following form.

bBcA(bancancan) bAcB(bancancan)

S(bancancan)

A full derivation of the string w = bacaca is given
in Figure 1.

The notion of a conjunctive categorial gram-
mar is defined by extending basic categorial gram-
mars with the conjunction operation. Let Pr =
{p, q, r, . . . } be the set of primitive categories,
s ∈ Pr is the target category.
The set of conjuncts, Conj, is defined as follows:

1. every primitive category is a conjunct;

2. if p1, . . . , pk ∈ Pr, then (p1 ∧ · · · ∧ pk) ∈
Conj.

The set of basic categories with conjunction,
BCat∧, is defined as follows.

1. Every primitive category belongs to BCat∧.

2. If C ∈ Conj and A ∈ BCat∧, then
(C \A) ∈ BCat∧ and (A/ C) ∈ BCat∧.

Categorial propositions are expressions of the
form B(v), where v ∈ Σ+ and B ∈ BCat∧ ∪
Conj. A conjunctive categorial grammar is a log-
ical theory deriving categorial propositions. It in-
cludes an arbitrary finite set of axioms of the form
A(a), with A ∈ BCat∧ and a ∈ Σ, and the fol-
lowing inference rules.

p1(v) . . . pk(v)

(p1 ∧ · · · ∧ pk)(v)

C(u) (C \A)(v)

A(uv)

(A/ C)(v) C(u)

A(vu)
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(s /(x ∧ y))(b)

(p / q)(a)

p(c) (p \ q)(a)
q(ca)

p(aca) (p \(x / r))(c)

(x / r)(acac) r(a)

x(acaca)

r(a)

((r \ y) / p)(c)
(p / q)(a)

p(c) (p \ q)(a)
q(ca)

p(aca)

(r \ y)(caca)
y(acaca)

(x ∧ y)(acaca)

s(bacaca)

Figure 2

The string w belongs to the language generated
by this grammar if and only if the proposition s(w)
is derivable.

Example 4. The categorial conjunctive gram-
mar with the set of primitive categories Pr =
{s, x, y, p, q, r}, s as the target category, and with
the following set of axioms describes the language
{bancancan | n > 1}, the same as in Example 3.

r(a), (r / r)(a),

p(c), (p / q)(a), (p \ q)(a),

(p \(x / r))(c), ((r \ y) / p)(c),

(s /(x ∧ y))(b).

The category p is defined in the same way as in
Example 1. Then, using further categories without
conjunction, the propositions x(ancancai) and
y(aicancan), for all n > 0, i > 1, are derived
as in an ordinary categorial grammar. The only
strings that satisfy both conditions, x and y, are
those of the form ancancan, and these are there-
fore all strings in the category s, derived as fol-
lows.

(s /(x ∧ y))(b)

x(ancancan) y(ancancan)

(x ∧ y)(ancancan)

s(bancancan)

A complete derivation of the proposition
s(bacaca) is presented in Figure 2.

The calculus used in the conjunctive categorial
grammar formalism enjoys the following inverted
subformula property (ISF): if a category of the
form (C \A) or (A/ C) appears somewhere in the
derivation, then it is a subexpression of some cate-
gory used in an axiom. (The notion of subexpres-
sion on categories is defined in a standard way:
each conjunct (in particular, primitive category) is
a subexpression of itself, and subexpressions of
(C \A) include C \A, C, and all subexpressions

of A; symmetrically for (A/ C). To prove the ISF,
we trace the rightmost branch of the derivation up-
wards; finally we reach an axiom that includes the
goal category as a subexpression.)

Another useful property is the fact that the rule
for ∧ is invertible: if (p1∧. . .∧pk)(v) is derivable,
then so are p1(v), . . . , pk(v). Indeed, the only way
to derive (p1∧ . . .∧pk)(v) is by applying this rule.

The calculus used in conjunctive categorial
grammars also enjoys the following cut elimina-
tion property.

Lemma 1. Let A(u) (for some A ∈ BCat∧ and
u ∈ Σ+) be derivable in the given conjunctive
categorial grammar. Consider a new conjunc-
tive categorial grammar over an extended alpha-
bet Σ ∪ {b}, where b /∈ Σ. The new grammar has
all the same axioms as the original grammar, and
an additional axiom A(b). Then, if the new gram-
mar derives B(v1bv2), for some B ∈ BCat∧ and
arbitrary, possibly empty, strings v1, v2 over Σ,
then B(v1uv2) is derivable in the original gram-
mar.

Proof. Consider the derivation of B(v1bv2) in the
extended grammar and substitute u for all occur-
rences of b. Applications of inference rules remain
valid; the same for axioms of the old grammar
(they don’t include b). The new axiom A(b) be-
comes A(u), which is derivable in the old gram-
mar by assumption.

4 Equivalence of Conjunctive Grammars
and Conjunctive Categorial Grammars

The main result of this paper is an extension of
Theorem A for grammars with conjunction, stated
as follows.

Theorem 1. A language is generated by a con-
junctive grammar if and only if it is generated by
a conjunctive categorial grammar.
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The proof uses the following two known prop-
erties of conjunctive grammars. The first result is
their closure under quotient with a single symbol.

Lemma B. If L is a language over Σ described
by a conjunctive grammar, and a ∈ Σ is any
symbol, then there exists a conjunctive grammar
that describes the language a−1L = {w | aw ∈
L}. (Okhotin and Reitwießner, 2010, Thm. 2)

The other result is a normal form theorem. A
conjunctive grammar G with the initial symbol S
is in the odd normal form, if all its rules are of the
following form, with A ∈ N , a ∈ Σ, Bi, Ci ∈ N ,
and ai ∈ Σ.

A→ a

A→ B1a1C1 & . . .&BkakCk

S → aA

Rules of the latter kind are allowed only if S is
never referenced in any rules.

Theorem C. Every language described by a con-
junctive grammar can be described by a conjunc-
tive grammar in odd normal form. (Okhotin and
Reitwießner, 2010)

Proof of Theorem 1. The “if” part is easier. A
conjunctive grammar equivalent to a given cate-
gorial grammar G has the set N comprised of all
categories used in the axioms of G, and of all their
subexpressions (categories and conjuncts). The
conjunctive rules are now as follows.

(p1 ∧ . . . ∧ pk)→ p1 & . . .& pk,

A→ C (C \A),

A→ (A/ C) C,

for all (p1 ∧ . . . ∧ pk), (C \A), (A/ C) ∈ N , and

A→ a, if A(a) is an axiom in G.

For the “only if” part of the proof, the first
step is to transform a given conjunctive grammar.
Let Σ = {a1, . . . , an}. For each symbol ai, by
Lemma B, there is a conjunctive grammar Gi that
describes the quotient a−1i L. By Theorem C, this
grammar can be assumed to be in the odd normal
form. It can also be assumed that, for i 6= j, the
grammars Gi and Gj have disjoint sets of non-
terminal symbols. Let Si be the initial symbol of
Gi. Then this grammar is further modified as fol-
lows. Every rule

A→ B1a1C1 & . . .&BkakCk

is replaced with k + 1 new rules:

A→ X̃1 & . . .& X̃k and X̃i → BiaiCi,

where X̃i are fresh non-terminals. For the sake of
uniformity, rules of the form

Si → aA

are replaced with

Si → Ỹ and Ỹ → aA,

and rules of the form

A→ a

are replaced with

A→ Z̃ and Z̃ → a.

Finally, a new conjunctive grammar for L is ob-
tained by joining these grammars together, for all
i, adding the following extra rules for the new ini-
tial symbol S̃.

S̃ → a1S1, . . . , S̃ → anSn

In the resulting grammar, all non-terminals are
of two sorts (with and without a tilde), and the
rules have the following form.

A→ X̃1 & . . .& X̃k (here k could be 1)

X̃ → BaC, Ỹ → aA, and Z̃ → a

It is then transformed to a conjunctive catego-
rial grammar, with the set of primitive categories
Pr = {p

X̃
| X̃ is a non-terminal decorated with a

tilde }, and with the following axioms.

1. For each rule Z̃ → a, there is an axiom
p
Z̃

(a).

2. For each pair of rules Ỹ → aA and A →
X̃1 & . . .& X̃k, the axiom is

(
p
Ỹ
/(p

X̃1
∧

. . . ∧ p
X̃k

)
)

(a).

3. For each triple of rules X̃ → BaC, B →
Ỹ1 & . . .& Ỹk, and C → Z̃1 & . . .& Z̃m, the
axiom is

((
(p

Ỹ1
∧ . . .∧p

Ỹk
) \ p

X̃

)
/(p

Z̃1
∧ . . .∧p

Z̃m
)
)

(a).

The target category is p
S̃

.
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Claim. For every non-terminal X̃ decorated with
a tilde, the proposition p

X̃
(v) is derivable in the

newly constructed conjunctive categorial gram-
mar if and only if X̃(v) is derivable in the original
conjunctive grammar.

Proof. The “if” part. The proof proceeds by in-
duction on the derivation size. There are three pos-
sible cases.

Case 1. The proposition X̃(v) is actually of the
form Z̃(a) and is derived from a(a) using the rule
Z̃ → a. Then p

Z̃
(a) is an axiom in the conjunctive

categorial grammar.
Case 2. The proposition X̃(v) is of the form

Ỹ (av1) and is derived from a(a) and A(v1) us-
ing a rule of the form Ỹ → aA. Next, a rule
of the form A → X̃1 & . . .& X̃k should be ap-
plied for A. Therefore, the propositions X̃i(v1)
are derivable (for all i) in the original conjunctive
grammar. Then, by induction hypothesis, p

X̃i
(v1)

are derivable in the conjunctive categorial gram-
mar, and there is a derivation for p

Ỹ
(av1) shown

in Figure 3.
Case 3. The proposition X̃(v) is of the form

X̃(v1av2) and is derived from some propositions
of the form B(v1), a(a), and C(v2), following
the rule X̃ → BaC. Next, for B and C, some
rules for the form B → Ỹ1 & . . .& Ỹk and C →
Z̃1 & . . .& Z̃m should be applied. Therefore, the
propositions Ỹi(v1) and Z̃j(v2) are derivable (for
all i, j) in the original conjunctive grammar. Then,
by induction hypothesis, p

Ỹi
(v1) and p

Z̃j
(v2) are

derivable in the conjunctive categorial grammar,
and there is a derivation for p

X̃
(v1av2), as shown

in Figure 4.
The “only if” part. This time, it is assumed

that p
X̃

(v) is derivable in the newly constructed
conjunctive categorial grammar. The proof is by
induction on its derivation.

The axiom case is trivial: any axiom of the form
p
Z̃

(a) is associated with a rule Z̃ → a in the orig-
inal conjunctive grammar, and then Z̃(a) is deriv-
able from a(a).

In the left division case, v = v1w, and the last
step of the derivation is as follows.

C(v1) (C \ p
X̃

)(w)

p
X̃

(v1w)

By the ISF (see above), (C \ p
X̃

) is a subex-
pression of the category in one of the axioms.
The only possibility is that (C \ p

X̃
) is a subex-

pression ((p
Ỹ1
∧ . . . ∧ p

Ỹk
) \ p

X̃
) of an axiom

((p
Ỹ1
∧ . . .∧p

Ỹk
) \ p

X̃
) /(p

Z̃1
∧ . . .∧p

Z̃m
). More-

over, again by the ISF, the only way to derive
(C \ p

X̃
)(w) is to apply the right division rule to

the category used in the axiom. This analysis
shows that the derivation must end in the way de-
picted in the earlier Figure 4, where w = av2.

Since the rules for ∧ are invertible (see above),
the propositions p

Ỹ1
(v1), . . . , p

Ỹk
(v1), p

Z̃1
(v2),

. . . , p
Z̃m

(v2) are derivable. By induction hypoth-

esis, Ỹi(v1) and Z̃j(v2), for all i, j, are deriv-
able in the original conjunctive grammar. Then,
the derivation uses the rules X̃ → BaC, B →
Ỹ1 & . . .& Ỹk, and C → Z̃1 & . . .& Z̃m, and is of
the following form.

Ỹ1(v1) . . . Ỹk(v1)

B(v1) a(a)

Z̃1(v2) . . . Z̃m(v2)

C(v2)

X̃(v1av2)

The right division case is even easier. Here a
derivation ends as follows.

(p
Ỹ
/ C)(w) C(v1)
p
Ỹ

(wv1)

By the ISF, the left premise could be nothing but
an axiom of the form

(
p
Ỹ
/(p

X̃1
∧ . . . ∧ p

X̃k
)
)
(a)

(and w = a). Then, C(v1) is (p
X̃1
∧ . . . ∧

p
X̃k

)(v1), and by the invertibility of the ∧ rule, all
p
X̃i

(v1) are derivable. By the induction hypothe-

sis, X̃i(v1), for all i, are derivable in the original
conjunctive grammar, and there is the following
derivation for Ỹ (av1), using the rules Ỹ → aA
and A→ X̃1 & . . .& X̃k.

a(a)

X̃1(v1) . . . X̃k(vk)

A(v1)

Ỹ (av1)

This claim immediately yields the main result,
since S̃(w) is derivable in the original conjunctive
grammar if and only if p

S̃
(w) is derivable in the

constructed conjunctive categorial grammar.

5 Conjunctive Categorial Grammars and
Lambek Grammars with Additives

Lambek (1958) suggested a richer logic as a back-
ground for categorial grammars, called the Lam-
bek calculus. In the Lambek calculus, or L for
short, syntactic categories built from a set of Pr =
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(
p
Ỹ
/(p

X̃1
∧ . . . ∧ p

X̃k
)
)
(a)

p
X̃1

(v1) . . . p
X̃k

(v1)

(p
X̃1
∧ . . . ∧ p

X̃k
)(v1)

p
Ỹ

(av1)

Figure 3

(p
Ỹ1
∧ . . . ∧ p

Ỹk
)(v1)

(
((p

Ỹ1
∧ . . . ∧ p

Ỹk
) \ p

X̃
) /(p

Z̃1
∧ . . . ∧ p

Z̃m
)
)
(a) (p

Z̃1
∧ . . . ∧ p

Z̃m
)(v2)

((p
Ỹ1
∧ . . . ∧ p

Ỹk
) \ p

X̃
)(av2)

p
X̃

(v1av2)

Figure 4

{p1, p2, p3, . . .} of primitive categories using three
binary operations: product (·), which means con-
catenation, left division (\), and right division (/).
The formal recursive definition is as follows.

1. Every primitive category is a category.

2. If A and B are categories, then (A · B),
(A \B), and (B /A) are also categories.

The set of all Lambek categories is denoted by
Cat. As opposed to basic categories, deep nest-
ing of division operations is allowed here, that is
denominators are allowed to be non-primitive.

A Lambek categorial grammar consists of a tar-
get category s ∈ Cat (usually s is required to be
a primitive category) and a finite number of ax-
iomatic propositions of the form A(a), where A is
a category and a is a letter of the alphabet.

A string w = a1 . . . an is considered ac-
cepted by the grammar, if, for some categoriesA1,
. . . , An, the propositions Ai(ai) are included in
the grammar as axiomatic ones, and the sequent
A1, . . . , An → s is derivable in the Lambek cal-
culus, which consists of the axioms and inference
rules listed in Figure 5. In all rules, left-hand sides
of the sequents are required to be non-empty.

Note that in Lambek grammars, arrows tran-
ditionally point in an opposite direction than in
context-free grammars (. . .→ s vs. S → . . .).

The following cut rule is not officially included
in the system, but is admissible (Lambek, 1958).

Π→ A Γ, A,∆→ D

Γ,Π,∆→ D
(cut)

As one can easily see, all basic categories,
as defined in Section 2, are also Lambek cate-
gories: BCat ⊂ Cat. Moreover, as noticed

by Buszkowski (1985), if a basic categorial gram-
mar is regarded as a Lambek categorial grammar
with the same set of axiomatic propositions, then
it describes the same language.

Next, the Lambek calculus is extended with the
so-called “additive” conjunction and disjunction,
as defined by Kanazawa (1992). These new op-
erations correspond to the additive operations in
linear logic by Girard (1987). Inference rules for
these operations are depicted in Figure 6.

This calculus, denoted by MALC
(“multiplicative-additive Lambek calculus”),
also enjoys cut elimination and the subformula
property.

Lambek categories with ∧ and ∨ generalize
conjunctive categories (and conjuncts):

BCat∧ ∪Conj ⊂ Cat∧,∨,

and every conjunctive categorial grammar can be
translated into a Lambek grammar with ∧ and ∨.
However, one cannot simply take the axiomatic
propositions of a conjunctive categorial grammar
and use them as axiomatic propositions in the
sense of Lambek grammars: this would yield a
grammar that is not equivalent to the original one
(for instance, the Lambek grammar with the ax-
iomatic propositions from Example 4 does not ac-
cept any strings at all). The construction has to be
more subtle.
Theorem 2. Let Σ = {a1, . . . , an} and consider
a conjunctive categorial grammar with the follow-
ing axiomatic propositions.

A1,1(a1), A1,2(a1), . . . A1,k1(a1),
A2,1(a2), A2,2(a2), . . . A2,k2(a2),

...
An,1(an), An,2(an), . . . An,kn(an).
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A→ A

Π→ A Γ, B,∆→ D

Γ,Π, A \B,∆→ D
(\ →)

A,Π→ B

Π→ A \B (→ \) Γ, A,B,∆→ D

Γ, A ·B,∆→ D
(· →)

Π→ A Γ, B,∆→ D

Γ, B /A,Π,∆→ D
(/→)

Π, A→ B

Π→ B /A
(→ /) Γ→ A ∆→ B

Γ,∆→ A ·B (→ ·)

Figure 5: The Lambek Calculus

Γ, A1,∆→ D

Γ, A1 ∧A2,∆→ D
(∧ →)1

Γ, A2,∆→ D

Γ, A1 ∧A2,∆→ D
(∧ →)2

Π→ A1 Π→ A2

Π→ A1 ∧A2
(→ ∧)

Γ, A1,∆→ D Γ, A2,∆→ D

Γ, A1 ∨A2,∆→ D
(∨ →)

Π→ A1

Π→ A1 ∨A2
(→ ∨)1

Π→ A2

Π→ A1 ∨A2
(→ ∨)2

Figure 6: Rules for Conjunction and Disjunction

Then the Lambek grammar with atomic propo-
sitions (Ai,1 ∧ Ai,2 ∧ . . . ∧ Ai,ki)(ai) (for i =
1, . . . , n) describes the same language as the orig-
inal conjunctive categorial grammar. (If ki = 1,
we take just Ai,1(ai).)

Proof. LetBi = Ai,1∧Ai,2∧ . . .∧Ai,ki . The new
Lambek grammar uses axiomatic propositions of
the form Bi(ai), one for each symbol in Σ. It
is sufficient to prove the following: for the target
category s ∈ Pr and for a string ai1 . . . aim , the
proposition s(ai1 . . . aim) is derivable in the con-
junctive categorial grammar if and only if the se-
quent Bi1 , . . . , Bim → s is derivable in MALC.

The “only if” part. In order to use induc-
tion on the length of derivation in the conjunc-
tive categorial grammar, the statement is proved
not only for s, but for an arbitrary category D ∈
BCat∧ ∪Conj.

The proof in the base case is immediate: if
D(ai) is an axiom, then D is one of the Ai,j in
the conjunction Bi, and the sequent Bi → Ai,j

is derivable by several applications of the (∧ →)
rules.

For the induction step, there are three cases.
Case 1: D = (p1 ∧ . . . ∧ pk). Then, by the in-

duction hypothesis, Bi1 , . . . , Bim → pj is deriv-
able in MALC for every j, and Bi1 , . . . , Bim →
p1 ∧ . . . ∧ pk is derived by the (→ ∧) rule.

Case 2: D(ai1 . . . aim) is derived from

C(ai1 . . . ai`) and (C \D)(ai`+1
. . . aim) for some

C ∈ Conj. Then, by the induction hy-
pothesis, the sequents Bi1 , . . . , Bi` → C and
Bi`+1

, . . . , Bim → C \D are derivable, and
then Bi1 , . . . , Bim → D can be derived in the
following way. First, Bi1 , . . . , Bi` , C \D →
D is derived from Bi1 , . . . , Bi` → C and
D → D, and then it is combined with
Bi`+1

, . . . , Bim → C \D using the cut rule, to get
Bi1 , . . . , Bi` , Bi`+1

, . . . , Bim → D.

Case 3: D(ai1 . . . aim) is derived from
(D/ C)(ai1 . . . ai`) and C(ai`+1

. . . aim). The
proof is symmetric.

The “if” part. The following more general
statement is claimed. For every j = 1, . . . ,m,
let B′ij be a conjunction of an arbitrary subset
of formulae Aij ,k used in the conjunction Bij ; in
other words, B′ij may coincide with Bij or lack
some of the conjuncts. Then, for any C ∈ Conj
(in particular, for C = s ∈ Pr ⊂ Conj), if
B′i1 , . . . , B

′
im
→ C is derivable in MALC, then

the proposition C(ai1 . . . aim) is derivable in the
original conjunctive categorial grammar.

The claim is proved by induction on the cut-free
derivation of the sequent B′i1 , . . . , B

′
im
→ C in

MALC.

Case 1. C = p1 ∧ . . .∧ pk, k > 2. Since the (→
∧) rule in MALC is invertible (this follows from
the cut elimination), it can be assumed that all k−1
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applications of this rule were applied immediately.

B′i1 , . . . , B
′
im
→ p1 . . . B′i1 , . . . , B

′
im
→ pk

B′i1 , . . . , B
′
im
→ p1 ∧ . . . ∧ pk

Then, by the induction hypothesis, all propositions
pj(a1 . . . am) are derivable in the conjunctive cat-
egorial grammar, and from them one can derive
(p1 ∧ . . . ∧ pk)(a1 . . . am).

In all other cases, C ∈ Pr.
Case 2: an axiom. Then, m = 1, B′i1 = C,

and, since all elements of B′i1 should be of the
form Ai1,k, the proposition C(a1) is an axiom of
the conjunctive categorial grammar, and therefore
derivable.

Case 3: the last rule of the derivation is (∧ →).
Then, B′i` = B′′i` ∧Ai`,k:

B′i1 , . . . , B
′′
i`
, . . . , B′im → C

B′i1 , . . . , B
′′
i`
∧Ai`,k, . . . , B

′
im
→ C

or

B′i1 , . . . , Ai`,k, . . . , B
′
im
→ C

B′i1 , . . . , B
′′
i`
∧Ai`,k, . . . , B

′
im
→ C

In both cases the induction hypothesis is applied:
since B′′i` or Ai`,k can act as B′i` , the proposition
C(ai1 . . . ai` . . . aim) is derivable in the conjunc-
tive categorial grammar.

Case 4: the last rule is (\ →). In this case,
B′ih = Aih,k = C′ \A′, for some h and for
C′ ∈ Conj and A′ ∈ BCat∧, and the sequent
B′i1 , . . . , B

′
i`−1

, B′i` , . . . , B
′
ih−1

, C′ \A′, B′ih+1
, . . . ,

B′am → C is derived from B′i` , . . . , B
′
ih−1

→ C′
and B′i1 , . . . , B

′
i`−1

, A′, B′ih+1
, . . . , B′im → C.

By the induction hypothesis, the proposition
C′(ai` . . . aih−1

) can be derived in the conjunctive
categorial grammar, and, since (C′ \A′)(aih) is
an axiom, the proposition A′(ai` . . . aih−1

aih) is
also derivable.

Now, the conjunctive categorial grammar is ex-
tended by adding a new symbol an+1 to the orig-
inal alphabet Σ = {a1, . . . , an}, with a new ax-
iom, A′(an+1). For the new grammar, we have
the same Bj for j = 1, . . . , n, and Bn+1 = A′.
Since B′i1 , . . . , B

′
i`−1

, A′, B′ih+1
, . . . , B′im → C is

derivable in MALC, by the induction hypothesis,
the proposition C(ai1 . . . ai`−1

an+1aih+1
. . . aim)

is derivable in the extended conjunctive categorial
grammar.

By Lemma 1, the desired proposition
C(ai1 . . . ai`−1

ai` . . . aih−1
aihaih+1

. . . aim),

where the string u = ai` . . . aih−1
aih has been

substituted for a fresh symbol b = an+1, can
be derived in the original conjunctive categorial
grammar.

Case 5: the last rule is (/→). Symmetric.

This embedding immediately implies that every
language generated by a conjunctive grammar can
be generated by an MALC-grammar. This super-
sedes the result by Kuznetsov (2013).

In the classical case without the conjunction,
a converse result was shown by Pentus (1993):
every language generated by a Lambek gram-
mar is context-free. Whether an analogous prop-
erty holds for MALC (that is, whether every
MALC-language is generated by a conjunctive
grammar) remains an open problem. Establishing
any such upper bound on the power of the new
model would require proving a non-trivial variant
of the famous theorem by Pentus (1993), which
would likely be difficult.

However, there is some evidence that MALC
should be strictly more powerful than conjunc-
tive grammars. First, there is a result by Okhotin
(2011) that conjunctive grammars can describe a
certain P-complete language representing the Cir-
cuit Value Problem (CVP) under a suitable encod-
ing. On the other hand, the class of languages
generated by MALC-grammars is, by defini-
tion, closed under symbol-to-symbol homomor-
phisms. These two facts are sufficient to develop
a MALC represenation for an NP-complete lan-
guage, which is the last result of this paper.

Theorem 3. The family of languages generated
by MALC-grammars contains an NP-complete
language.

Sketch of proof. It is not difficult to transform the
grammar for the CVP given by Okhotin (2011), so
that each CVP instance is represented in the form
uk,Cv, where uk,C ∈ Σ∗ is a description of a cir-
cuit C with k inputs, while v ∈ {0, 1}k contains
the input values, and 0, 1 /∈ Σ. The grammar then
describes the set of all such strings, on which the
circuit evaluates to 1 on the given input values.

CVP = {uk,Cv | C(v) = 1}

Let h : Σ∪{0, 1} → Σ∪{?} be a homomorphism
that maps both digits to the question mark symbol,
leaving all other symbols intact: h(0) = h(1) =
?, h(a) = a for all a ∈ Σ. This transforms the
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Circuit Value Problem to the Circuit Satisfiability
Problem, which is NP-complete.

h(CVP) = {uk,C?k | ∃v ∈ {0, 1}k : C(v) = 1}

Since the language CVP is described by a
conjunctive grammar, by Theorem 1, it is also
described by a conjunctive categorial grammar,
and then, by Theorem 2, also by an MALC-
grammar. Next, as observed by Kanazawa
(1992), its symbol-to-symbol homomorphic im-
age h(CVP) must have an MALC-grammar as
well.

On the other hand, every language described
by a conjunctive grammar can be parsed in poly-
nomial time—to be exact, in time O(nω), where
ω < 3 is the exponent in the complexity of matrix
multiplication (Okhotin, 2014). This leads to the
following corollary.

Corollary 1. Under the assumption that P 6=
NP, conjunctive categorial grammars are strictly
weaker in power than MALC.

It would be interesting to establish an uncondi-
tional separation of these two classes.
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