
Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 10–14,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Context encoders as a simple but powerful extension of word2vec

Franziska Horn
Machine Learning Group

Technische Universität Berlin, Germany
franziska.horn@campus.tu-berlin.de

Abstract

With a strikingly simple architecture and
the ability to learn meaningful word em-
beddings efficiently from texts containing
billions of words, word2vec remains one
of the most popular neural language mod-
els used today. However, as only a single
embedding is learned for every word in
the vocabulary, the model fails to optimally
represent words with multiple meanings
and, additionally, it is not possible to create
embeddings for new (out-of-vocabulary)
words on the spot. Based on an intuitive in-
terpretation of the continuous bag-of-words
(CBOW) word2vec model’s negative sam-
pling training objective in terms of predict-
ing context based similarities, we motivate
an extension of the model we call context
encoders (ConEc). By multiplying the ma-
trix of trained word2vec embeddings with
a word’s average context vector, out-of-
vocabulary (OOV) embeddings and repre-
sentations for words with multiple mean-
ings can be created based on the words’
local contexts. The benefits of this ap-
proach are illustrated by using these word
embeddings as features in the CoNLL 2003
named entity recognition (NER) task.

1 Introduction

Representation learning is very prominent in the
field of natural language processing (NLP). For
example, word embeddings learned by neural lan-
guage models (NLM) were shown to improve
the performance when used as features for super-
vised learning tasks such as named entity recogni-
tion (NER) (Collobert et al., 2011; Turian et al.,
2010). The popular word2vec model (Mikolov
et al., 2013a,b) learns meaningful word embed-

dings by considering only the words’ local con-
texts and thanks to its shallow architecture it can
be trained very efficiently on large corpora. The
model, however, only learns a single representation
for words from a fixed vocabulary. This means, if
in a task we encounter a new word that was not
present in the texts used for training, we cannot
create an embedding for this word without repeat-
ing the time consuming training procedure of the
model.1 Additionally, a single embedding does not
optimally represent words with multiple meanings.
For example, “Washington” is both the name of a
US state as well as a former president and only by
taking into account the word’s local context one
can identify the proper sense.

Based on an intuitive interpretation of the con-
tinuous bag-of-words (CBOW) word2vec model’s
negative sampling training objective, we propose
an extension of the model we call context encoders
(ConEc). This allows for an easy creation of OOV
embeddings as well as a better representation of
words with multiple meanings simply by multi-
plying the trained word2vec embeddings with the
words’ average context vectors. As demonstrated
on the CoNLL 2003 NER challenge, using the
word embeddings created with ConEc instead of
word2vec as features improves the classification
performance significantly.

Related work In the past, NLM have addressed
the issue of polysemy in various ways. For exam-
ple, sense2vec is an extension of word2vec, where
in a preprocessing step all words in the training cor-
pus are annotated with their part-of-speech (POS)

1In practice the model is trained on such a large vocab-
ulary that it is rare to encounter a word that does not have
an embedding. Yet there are still scenarios where this is the
case, for example, it is unlikely that the term “W10281545”
is encountered in a regular training corpus, but we might still
want its embedding to represent a search query like “whirlpool
W10281545 ice maker part”.

10



tag and then the embeddings are learned for tokens
consisting of the words themselves and their POS
tags, thereby generating different representations
e.g. for words that are used both as a noun and verb
(Trask et al., 2015). Other methods first cluster the
contexts the words appear (Huang et al., 2012) or
use additional resources such as wordnet to identify
multiple meanings of words (Rothe and Schütze,
2015). One possibility to create OOV embeddings
is to learn representations for all character n-grams
in the texts and then compute the embedding of a
word by combining the embeddings of the n-grams
occurring in it (Bojanowski et al., 2016). However,
none of these NLM are designed to solve both the
OOV and polysemy problem at the same time and
compared to word2vec they require more parame-
ters, resources, or additional steps in the training
procedure. ConEc on the other hand can generate
OOV embeddings as well as better representations
for words with multiple meanings simply by multi-
plying the matrix of trained word2vec embeddings
with the words’ average context vectors.

2 Background: CBOW word2vec trained
with negative sampling

Word2vec learns d -dimensional vector represen-
tations, referred to as word embeddings, for all
N words in the vocabulary. It is a shallow NLM
with parameter matrices W0, W1 ∈ RN×d, which
are tuned iteratively by scanning huge amounts of
texts sentence by sentence. Based on some con-
text words the algorithm tries to predict the target
word between them. Mathematically, this is real-
ized by first computing the sum of the embeddings
of the context words by selecting the appropriate
rows from W0. This vector is then multiplied by
several rows selected from W1: one of these rows
corresponds to the target word, while the others
correspond to k ‘noise’ words, selected at random
(negative sampling). After applying a non-linear
activation function, the backpropagation error is
computed by comparing this output to a label vec-
tor t ∈ Rk+1, which is 1 at the position of the
target word and 0 for all k noise words. After the
training of the model is complete, the word embed-
ding for a target word is the corresponding row of
W0.

3 Context Encoders

Similar words appear in similar contexts (Harris,
1954), for example, two words synonymous with

each other could be exchanged for one another in al-
most all contexts without a reader noticing. Based
on the context word co-occurrences, pairwise sim-
ilarities between all N words of the vocabulary
can be computed, resulting in a similarity matrix
S ∈ RN×N (or for a single word w the vector
sw ∈ RN ) with similarity scores between 0 and 1.
These similarities should be preserved in the word
embeddings, e.g. the cosine similarity between the
embedding vectors of two words used in similar
contexts should be close to 1, or, more generally,
the scalar product of the matrix with word em-
beddings Y ∈ RN×d should approximate S. Of
course, the most straightforward way of obtain-
ing word embeddings satisfying Y Y > ≈ S would
be to compute the singular value decomposition
(SVD) of the similarity matrix S and use the eigen-
vectors corresponding to the d largest eigenvalues
(Levy et al., 2014, 2015). As our vocabulary typ-
ically comprises several 10, 000 words, however,
performing an SVD of the corresponding similarity
matrix is computationally far too expensive. Yet,
while the similarity matrix would be huge, it would
also be quite sparse, as many words are of course
not synonymous with each other. If we picked a
small number k of random words, chances are their
similarities to a target word would be close to 0.
So, while the product of a single word’s embed-
ding yw ∈ Rd and the matrix of all embeddings Y
should result in a vector ŝw ∈ RN close to the true
similarities sw of this word, if we only consider a
small subset of ŝw corresponding to the word itself
and k random words, it is sufficient if this approxi-
mates the binary vector tw ∈ Rk+1, which is 1 for
the word itself and 0 elsewhere.

The CBOW word2vec model trained with neg-
ative sampling can therefore be interpreted as a
neural network (NN) that predicts a word’s similar-
ities to other words (Fig. 1). During training, for
each occurrence i of a word w in the texts, a binary
vector xwi ∈ RN , which is 1 at the positions of
the context words of w and 0 elsewhere, is used
as input to the network and multiplied by a set of
weights W0 to arrive at an embedding ywi ∈ Rd

(the summed rows of W0 corresponding to the con-
text words). This embedding is then multiplied by
another set of weights W1, which corresponds to
the full matrix of word embeddings Y , to produce
the output of the network, a vector ŝwi ∈ RN con-
taining the approximated similarities of the word
w to all other words. The training error is then

11



computed by comparing a subset of the output to a
binary target vector twi ∈ Rk+1, which serves as
an approximation of the true similarities sw when
considering only a small number of random words.
We refer to this interpretation of the model as con-
text encoders (ConEc), as it is closely related to
similarity encoders (SimEc), a dimensionality re-
duction method used for learning similarity pre-
serving representations of data points (Horn and
Müller, 2017).

Input Embedding Output Target

xwi
2 RN ywi

2 Rd sw ⇡ twi
2 Rk+1ŝwi

the

black

slept

on

cat

W0 W1

Figure 1: Context encoder (ConEc) NN architec-
ture corresponding to the CBOW word2vec model
trained with negative sampling.

While the training procedure of ConEc is iden-
tical to that of word2vec, there is a difference in
the computation of a word’s embedding after the
training is complete. In the case of word2vec, the
word embedding is simply the row of the tuned W0

matrix. When considering the idea behind the opti-
mization procedure, however, we instead propose
to create the representation of a target word w by
multiplying W0 with the word’s average context
vector xw, as this better resembles how the word
embeddings are computed during training.

We distinguish between a word’s ‘global’ and
‘local’ average context vector (CV): The global CV
is computed as the average of all binary CVs xwi

corresponding to the Mw occurrences of w in the
whole training corpus:

xwglobal =
1

Mw

Mw∑
i=1

xwi ,

while the local CV xwlocal is computed likewise but
considering only the mw occurrences of w in a
single document. We can now compute the em-
bedding of a word w by multiplying W0 with the

weighted average between both CVs:
yw = (a · xwglobal + (1− a)xwlocal)

>W0 (1)

with a ∈ [0, 1]. The choice of a determines how
much emphasis is placed on the word’s local con-
text, which helps to distinguish between multiple
meanings of the word (Melamud et al., 2015).2 As
an out-of-vocabulary word does not have a global
CV (as it never occurred in the training corpus), its
embedding is computed solely based on the local
context, i.e. setting a = 0.

With this new perspective on the model and op-
timization procedure, another advancement is fea-
sible. Since the context words are merely a sparse
feature vector used as input to a NN, there is no
reason why this input vector should not contain
other features about the target word as well. For ex-
ample, the feature vector xw could be extended to
contain information about the word’s case, part-of-
speech (POS) tag, or other relevant details. While
this would increase the dimensionality of the first
weight matrix W0 to include the additional fea-
tures when mapping the input to the word’s em-
bedding, the training objective and therefore also
W1 would remain unchanged. These additional
features could be especially helpful if details about
the words would otherwise get lost in preprocess-
ing (e.g. by lowercasing) or to retain information
about a word’s position in the sentence, which is ig-
nored in a BOW approach. These extended ConEcs
are expected to create embeddings that distinguish
even better between the words’ different senses by
taking into account, for example, if the word is
used as a noun or verb in the current context, simi-
lar to the sense2vec algorithm (Trask et al., 2015).
But instead of learning multiple embeddings per
term explicitly, like sense2vec, only the dimension-
ality of the input vector is increased to include the
POS tag of the current word as a feature, which is
expected to improve generalization if few training
examples are available.

4 Experiments

The word embeddings learned by word2vec and
context encoders are evaluated on the CoNLL 2003
NER benchmark task (Tjong et al., 2003). We use
a CBOW word2vec model trained with negative
sampling as described above where k = 13, the
embedding dimensionality d is 200 and we use a
context window of 5 words. The word embeddings

2This implicitly assumes a word is only used in a single
sense in one document.

12



A
B

C

Figure 2: Results of the NER task based on three random initializations of the word2vec model. Left panel:
Overall results, where the mean performance using word2vec embeddings (dashed lines) is considered as
our baseline, all other embeddings are computed with ConEcs using various combinations of the words’
global and local CVs. Right panel: Increased performance (mean and standard deviation) on the test
fold when using ConEc: Multiplying the word2vec embeddings with global CVs yields a performance
gain of 2.5 percentage points (A). By additionally using local CVs to create OOV word embeddings
we gain another 1.7 points (B). When using a combination of global and local CVs (with a = 0.6) to
distinguish between the different meanings of words, the F1-score increases by another 5.1 points (C),
yielding a F1-score of 39.92%, which marks a significant improvement compared to the 30.59% reached
with word2vec features.

created by ConEc are built directly on top of the
word2vec model by multiplying the original em-
beddings (W0) with the respective context vectors.
Code to replicate the experiments is available on-
line.3

Named Entity Recognition The main advan-
tage of context encoders is that they can use local
context to create OOV embeddings and distinguish
between the different senses of words. The effects
of this are most prominent in a task such as NER,
where the local context of a word can make all the
difference, e.g. to distinguish between the “Chicago
Bears” (an organization) and the city of Chicago
(a location). We tested this on the CoNLL 2003
NER task by using the word embeddings as fea-
tures together with a logistic regression classifier.
The reported F1-scores were computed using the
official evaluation script. The results achieved with
various word embeddings on the training, develop-
ment and test part of the CoNLL task are reported
in Fig. 2. Please note that we are using this task as
an extrinsic evaluation to illustrate the advantages
of ConEc embeddings over the regular word2vec
embeddings. To isolate the effects on the perfor-
mance, we are only using these word embeddings

3https://github.com/cod3licious/conec

as features, while of course the performance on
this NER challenge is typically much higher when
other features such as a word’s case or POS tag are
included as well.

The word2vec embeddings were trained on the
documents used in the training part of the task and
OOV words in the development and test parts are
represented as zero vectors.4 With three parameter
settings we illustrate the advantages of ConEc:
A) Multiplying the word2vec embeddings by the
words’ average context vectors generally improves
the embeddings. To show this, ConEc word embed-
dings were computed using only global CVs (Eq. 1
with a = 1), which means OOV words again have
a zero representation. With these embeddings (la-
beled ‘global’ in Fig. 2) the performance improves
on the dev and test folds of the task.
B) Useful OOV embeddings can be created from
the local context of a new word. To show this, the
ConEc embeddings for words from the training vo-
cabulary (w ∈ N ) were computed as in A), but
now the embeddings for OOV words (w′ /∈ N )
were computed using local CVs (Eq. 1 with a =
1 ∀w ∈ N and a = 0 ∀w′ /∈ N ; referred to as
‘OOV’ in the figure). The training performance

4Since this is a very small corpus, we trained word2vec for
25 iterations on these documents.

13



stays the same, of course, as here all words have
an embedding based on their global contexts, but
there is a jump in the ConEc performance on the
dev and test folds, where OOV words now have a
representation based on their local contexts.
C) Better embeddings for a word with multiple
meanings can be created by using a combination
of the word’s average global and local CVs as in-
put to the ConEc. To show this, the OOV embed-
dings were computed as in B), but now for the
words occurring in the training vocabulary, the lo-
cal context was taken into account as well by set-
ting a < 1 (Eq. 1 with a ∈ [0, 1) ∀w ∈ N and
a = 0 ∀w′ /∈ N ). The best performances on all
folds are achieved when averaging the global and
local CVs with around a = 0.6 before multiplying
them with the word2vec embeddings, which clearly
shows that ConEc embeddings created by incorpo-
rating local context can help distinguish between
multiple meanings of words.

5 Conclusion

Context encoders are a simple but powerful exten-
sion of the CBOW word2vec model trained with
negative sampling. By multiplying the matrix of
trained word2vec embeddings with the words’ av-
erage context vectors, ConEcs are able to easily
create OOV embeddings on the spot as well as
distinguish between multiple meanings of words
based on their local contexts. The benefits of this
were demonstrated on the CoNLL NER challenge.

Acknowledgments

I would like to thank Antje Relitz, Ivana Balaže-
vić, Christoph Hartmann, Klaus-Robert Müller, and
other anonymous reviewers for their helpful com-
ments on earlier versions of this manuscript.
Franziska Horn acknowledges funding from the
Elsa-Neumann scholarship from the TU Berlin.

References
Piotr Bojanowski, Edouard Grave, Armand Joulin,

and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606 .

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. The Journal of Machine Learning Research
12:2493–2537.

Zellig S Harris. 1954. Distributional structure. Word
10(2-3):146–162.

Franziska Horn and Klaus-Robert Müller. 2017.
Learning similarity preserving representations
with neural similarity encoders. arXiv preprint
arXiv:1702.01824 .

Eric H Huang, Richard Socher, Christopher D Man-
ning, and Andrew Y Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguistics:
Long Papers-Volume 1. ACL, pages 873–882.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associ-
ation for Computational Linguistics 3:211–225.

Omer Levy, Yoav Goldberg, and Israel Ramat-Gan.
2014. Linguistic regularities in sparse and explicit
word representations. In CoNLL. pages 171–180.

Oren Melamud, Ido Dagan, and Jacob Goldberger.
2015. Modeling word meaning in context with sub-
stitute vectors. In Human Language Technologies:
The 2015 Annual Conference of the North American
Chapter of the ACL.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 .

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Sascha Rothe and Hinrich Schütze. 2015. Au-
toextend: Extending word embeddings to embed-
dings for synsets and lexemes. arXiv preprint
arXiv:1507.01127 .

EF Tjong, Kim Sang, and F De Meulder. 2003. Intro-
duction to the CoNLL-2003 Shared Task: Language-
Independent Named Entity Recognition. In Walter
Daelemans and Miles Osborne, editors, Proceedings
of CoNLL-2003. Edmonton, Canada, pages 142–
147.

Andrew Trask, Phil Michalak, and John Liu. 2015.
sense2vec-a fast and accurate method for word sense
disambiguation in neural word embeddings. arXiv
preprint arXiv:1511.06388 .

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method
for semi-supervised learning. In Proceedings of the
48th annual meeting of the association for compu-
tational linguistics. Association for Computational
Linguistics, pages 384–394.

14


