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Abstract

Linking spans of natural language text to
concepts in a structured source is an im-
portant task for many problems. It allows
intelligent systems to leverage rich knowl-
edge available in those sources (such as
concept properties and relations) to en-
hance the semantics of the mentions of
these concepts in text. In the medi-
cal domain, it is common to link text
spans to medical concepts in large, cu-
rated knowledge repositories such as the
Unified Medical Language System. Dif-
ferent approaches have different strengths:
some are precision-oriented, some recall-
oriented; some better at considering con-
text but more prone to hallucination. The
variety of techniques suggests that ensem-
bling could outperform component tech-
nologies at this task. In this paper, we de-
scribe our process for building a Stacking
ensemble using additional, auxiliary fea-
tures for Entity Linking in the medical do-
main. Our best model beats several base-
lines and produces state-of-the-art results
on several medical datasets.

1 Introduction

Entity Linking is the task of mapping phrases in
text (mention spans) to concepts in a structured
source, such as a knowledge base. The mention
span is usually a word or short phrase describing
a single, coherent concept. For example, “back
pain” may be a mention span for a Dorsalgia con-
cept in a knowledge base. The span context is a
window of text surrounding the mention span that
may be useful for disambiguating it. For example,
the sentence “The patient reports suffering from
back pain for several years prior to treatment” may

be useful for determining that “back pain” refers
to the concept Chronic Dorsalgia in this context.
In the medical domain, it is common to map men-
tion spans to concepts in the Unified Medical Lan-
guage System (UMLS)1. Concepts in UMLS have
unique identifiers called CUIs (Concept Unique
Identifiers). For example, the CUI for the concept
Dorsalgia is C0004604.

The concepts in UMLS come from merging
concepts from many disparate contributing vo-
cabularies. Since automatic merging is imper-
fect, UMLS often contains multiple distinct CUIs
for what amounts to the same semantic concept.
For example, the three distinct CUIs C0425687,
C1167958 and C3263244 are all Jugular Ve-
nous Distension. An Entity Linking system at-
tempting to link a span such as “engorgement of
the jugular vein” should be required to return all
three CUIs. A ground truth dataset should include
all the three mappings as well. UMLS also con-
tains multiple textual labels for each CUI (called
“variants”) and semantic relations between CUIs,
such as Acetaminophen may treat: Pain.

Ensembling multiple systems is a well known
standard approach to improving accuracy in ma-
chine learning (Dietterich, 2000). Ensembles have
been applied to a wide variety of problems in all
domains of artificial intelligence including natu-
ral language processing (NLP). However, these
techniques do not learn to discriminate adequately
across the component systems and thus are unable
to integrate them optimally. Combining systems
intelligently is crucial for improving the overall
performance. In this paper, we use an approach
called Stacking with Auxiliary Features (SWAF)
(Rajani and Mooney, 2017) for combining multi-
ple diverse models. Stacking (Wolpert, 1992) uses
supervised learning to train a meta-classifier to

1UMLS: http://www.nlm.nih.gov/research/
umls/
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combine multiple system outputs. SWAF enables
the stacker to fuse additional relevant knowledge
from multiple systems and thus leverage them to
improve prediction. The idea behind using auxil-
iary features is that an output is more reliable if
not just multiple systems produce it but also agree
on its provenance and there is sufficient support-
ing evidence. We are the first to use ensembling
for entity linking in the medical domain that lacks
labeled data. All the publicly available datasets are
very small and thus learning is a problem. Our ap-
proach is designed to overcome these challenges
in the medical domain by using auxiliary features
that are precision-focused and can be used to form
a classification boundary from small amounts of
data.

2 Component Entity Linking Systems

The entity linking ensemble we have built includes
eight component systems. Given a span of text,
each component links the entities in text to zero
or more matching concepts in UMLS. The ensem-
ble examines all concepts produced by each com-
ponent system for the given span and determines
the final entity linking outcome. All the compo-
nent systems use traditional rule-based methods
and thus only perform well on certain types of con-
cepts. The errors produced by these base systems
are de-correlated and our goal is to leverage the
systems to the fullest by using carefully designed
auxiliary features. We used the following compo-
nent systems in our ensemble.

Medical Concept Resolution: Three of the
components systems are variations of the Medical
Concept Resolution (MCR) approach introduced
in (Aggarwal et al., 2015). The MCR systems find
UMLS concepts that best capture the meaning of
the input span as expressed in the textual context
where the span appears. The algorithms consist
of two main steps: candidate overgeneration and
candidate ranking. Candidate overgeneration finds
all concepts having any variant containing any of
the tokens in the mention text. This step results
in a large number of candidate concepts, many
of them irrelevant. In the second step, the can-
didate concepts are ranked by measuring the simi-
larity between mention context and candidate con-
text. The mention context is a window of text sur-
rounding the span. The candidate context is gen-
erated differently by each of the three MCR sys-
tems. Both the span context and the candidate con-

text are treated as IDF-weighted bags-of-words for
computing their cosine similarity. The higher the
cosine similarity, the higher the rank of the candi-
date concept for the given span. The three varia-
tions of the MCR systems used are:

• Gloss-Based MCR (GBMCR): generates the
candidate context from the concept defini-
tions in UMLS. In GBMCR, candidates are
ranked according to the similarity between
the words in the span mention (and its con-
text) and the words in the UMLS definitions
of the candidate.

• Neighbor-Based MCR (NBMCR): generates
the candidate context from the set of vari-
ants of the candidate’s neighbors in UMLS.
Neighbors are CUIs related to the candiate
CUI by any of a select set of UMLS semantic
relations. In NBMCR, candidates are ranked
according to the similarity between the words
in the span+context and the words in the vari-
ants of the candidate’s neighbors.

• Variants-Based MCR (VBMCR): generates
the candidate context from the candidate’s
variants in UMLS. In VBMCR, candidates
are ranked according to the similarity be-
tween the words in the span+context and the
words in the candidate’s variants.

Concept Mapper: Apache Concept Mapper
matches text to dictionary entries. The dictionary
contains surface forms and the concept identifiers
those surface forms map to. The system included
in the ensemble is based on a dictionary derived
from the complete set of UMLS variants. Prepro-
cessing of UMLS variants removes some supreflu-
ous acronyms (e.g. “nos” = “not otherwise spec-
ified”; “nec” = “not elsewhere classified”). The
dictionary is also expanded beyond the UMLS
variants by including adjective-to-noun and plural-
to-singular transformations, as well as additional
spelling variants and synonymous phrases derived
from wikipedia redirect pages.

CUI Finder Verbatim (CFV): CFV (Aggar-
wal et al., 2015) is a dictionary-based system sim-
ilar to ConceptMapper with advanced matching
algorithms and synonym expansion. If no con-
cept is found when matching the dictionary us-
ing the entire span, CFV attempts to find concepts
for smaller windows by removing words from the
span iteratively. The algorithm considers both left-
to-right and right-to-left shrinking of the span. If
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no concepts are found, it reduces the window size
further. As soon as any concept is found, the algo-
rithm stops, returning all concepts found for sub-
spans of the given window size at any position
within the original span.

MetaMap: This system is provided by the Na-
tional Library of Medicine for detecting UMLS
concepts in medical text.2 It is NLP-based and
uses domain-specific knowledge to map text to
concepts. The ensemble includes MetaMap con-
figured with the default settings.

cTAKES: Apache cTAKES3 is an open source
entity recognition system, originally developed at
Mayo Clinic for identifying UMLS concepts in
electronic medical records. cTAKES implements
a terminology-agnostic dictionary lookup algo-
rithm. Through the dictionary lookup, each named
entity is mapped to a concept from the terminol-
ogy. The dictionary lookup includes permutation
of words in the spans, exact matches of the span
and canonical forms of the words.

Structured Term Recognizer (STR): This sys-
tem takes a span of text as input and produces
a list of possible UMLS concepts for that span,
as well as semantic types, if desired. Concept
recognition proceeds in two phases: UMLS candi-
date generation and scoring of the candidate con-
cepts. The candidate UMLS concepts are found
by an inverted index, mapping tokens in the con-
cepts to the concepts themselves. Once the can-
didate UMLS concepts are found, they are scored
for similarity with the input span based on shared
tokens and shared stems.

3 Stacking With Auxiliary Features

In this section we describe our algorithm and the
auxiliary features used for classification. Figure 1
shows an overview of our ensembling approach.

3.1 Stacking

Stacking uses a meta-classifier to combine the out-
puts of multiple underlying systems. The stacker
learns a classification boundary based on the con-
fidence scores provided by individual systems for
each possible output. Stacking has been shown to
improve performance on tasks such as slot filling
and tri-lingual entity linking (Viswanathan et al.,
2015; Rajani and Mooney, 2016).

2MetaMap: http://metamap.nlm.nih.gov/
3cTAKES: https://ctakes.apache.org/

Figure 1: Ensemble Architecture using Stacking
with Auxiliary Features. Given an input span, the
ensemble judges every possible concept produced
by the component systems and determines the final
entity linking output.

3.2 Auxiliary Features

Stacking relies on systems producing a confidence
score for every output. However, many times
systems do not produce confidence scores or the
scores produced are not probabilities or well cali-
brated and cannot be meaningfully compared. In
such circumstances, it is beneficial to have other
reliable auxiliary features. Auxiliary features en-
able the stacker to learn to rely on systems that not
just agree on an output but also the provenance or
the source of the output and other supporting evi-
dence. We used four types of auxiliary features as
part of our ensembling approach, described below.

3.2.1 CUI type
Every CUI in UMLS is associated with one or
more semantic types (out of roughly 130 types).
For example, the types associated with the CUI
C0000970 (acetaminophen) are T109 (Organic
chemical) and T121 (Pharmacologic substance).

The CUI type is represented by a binary vector
of size 130. The CUI type vector has ones for each
associated semantic type of the CUI under consid-
eration and zeros elsewhere. This CUI type vector
is used as an auxiliary feature for ensembling. The
CUI type enables the stacker to learn to rely on
systems that perform better for certain CUI types.

3.2.2 Span-CUI document similarity
The second auxiliary feature is the cosine similar-
ity between the tf-idf vectors of the words in the
mention span and the words in the candidate CUI
documents. For each CUI in UMLS, we created
a pseudo document which we call the CUI docu-
ment. The CUI document is a concatenation of the
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following information from UMLS:

1. CUI ID and label; for example, C0000970
(acetaminophen)

2. Names of the types of the CUI; e.g., Organic
Chemical; Pharmacologic Substance

3. Definition text for the CUI; e.g., analgesic
antipyretic derivative of acetanilide; weak
antiinflammatory properties and is used as
a common analgesic, but may cause liver,
blood cell, and kidney damage.

4. All variants for the CUI; e.g., Ac-
etaminophen, Paracetamol

5. Select semantic relations between the CUI
under consideration and other CUIs; for ex-
ample, (may treat: fever), (may treat: pain).

The intuition behind using this feature is that the
span would have a greater lexical overlap with
a CUI document that it links to and thus have a
higher similarity score.

3.2.3 Context-CUI document similarity
This auxiliary feature is very much like the span-
CUI document similarity feature. For this feature
as well, we use the pseudo CUI documents cre-
ated using UMLS. However, instead of using the
span for calculating the similarity we use the entire
context surrounding the span. In the earlier exam-
ple, the entire sentence “The patient reports suffer-
ing from back pain for several years prior to treat-
ment” is the context. We note that for short docu-
ments, the context may be the entire document that
contains the span to be linked. This means that
some unique spans could have the same context.
The context-CUI document similarity is the cosine
similarity between the tf-idf vectors of words in the
context and words in the CUI document.

3.2.4 Word embeddings
The auxiliary features discussed so far only cap-
ture the superficial lexical aspects of the data
used for ensembling. The word embeddings fea-
tures capture the semantic dimension of the data.
We trained the continuous bag of words model
(Mikolov et al., 2013) on the entire UMLS knowl-
edge base with word vector dimension of 200 and
window-size of 10. Ling et al. (2015) show that
these parameters enable capturing long range de-
pendencies. In this way we obtain a vector repre-
sentation for every word in UMLS. We note that

we chose the UMLS corpus as opposed to medical
documents so as to have better CUI coverage.

We used these word vectors to create the CUI
document vector representation in the following
way. Recall that the CUI document is a pseudo
document made up of information about the CUI
in UMLS. In order to obtain the embedding for a
context, span or document, we use the technique
described in (Le and Mikolov, 2014). We add up
all the embedding vectors representing the words
in the CUI document and normalize the sum by
the number of words. The resultant vector repre-
sents the CUI document embedding. Similarly, we
also obtain the span and the context embeddings
by adding and normalizing the vectors represent-
ing the words in the span and context respectively.
Note that if a word in the span or context does
not have a vector representation then we just ig-
nore it. Finally, we measure the cosine similarity
between the span-CUI document and context-CUI
document embedding vectors and use it as a fea-
ture for our classifier. Representing the concepts
in vector space enables the stacker to learn deep
semantic patterns for cases where just lexical in-
formation is not sufficient.

4 Experimental Results

4.1 Baselines

We compare our approach to several supervised
and unsupervised baselines. The first is Union
which accepts all predictions for all systems to
maximize recall. It classifies all span-CUI links
as correct and always includes them.

The second baseline is Voting. For this ap-
proach, we vary the threshold on the number of
systems that must agree on a span-CUI link from
one to all. This gradually changes the system be-
havior from union to intersection of the links. We
identify the threshold that results in the highest F1
score on the training dataset. We use this threshold
for the voting baseline on the test dataset.

The third baseline is an oracle threshold version
of Voting. Since the best threshold on the training
data may not necessarily be the best threshold for
the test data, we identify the best threshold for the
test data by plotting a precision-recall curve and
finding the best F1 score for the voting baseline.
Note that this gives an upper bound on the best
results that can be achieved with voting, assuming
an optimal threshold is chosen. Since the upper
bound can not be predicted without using the test
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dataset, this baseline has an unfair advantage.
In addition to the above common baselines, we

also compare our approach to a state-of-the-art en-
sembling system, Bipartite Graph based Consen-
sus Maximization (BGCM) (Gao et al. (2009)). In
addition to the output of supervised models, this
ensembling technique uses unsupervised models
to provide additional constraints and evidence to
the classification algorithm. The rationale behind
this approach is that objects that are in the same
cluster should be more likely to receive the same
class label compared to the objects in different
clusters. The objective is to predict the class la-
bel of an instance in a way that favors agreement
between supervised components and at the same
time satisfies the constraints enforced by the clus-
tering models. BGCM ensembles multiple mod-
els by performing an optimization over a bipartite
graph of systems and outputs.

4.2 Dataset Description

All systems and baselines were evaluated on three
datasets. Scores reflect the quality of concepts as-
signed to text spans, as decided by human judges.
Detecting span boundaries is not part of this eval-
uation – all systems are given the same span as
input. Annotations were performed by several hu-
man judges. For scoring, each text span was paired
with a list of concepts produced by all component
systems. Annotators marked each span-concept
pair correct or incorrect.

The MCR dataset (Aggarwal et al., 2015) re-
sulted from running a CRF-based entity recog-
nition system that extracted 1,570 clinical fac-
tors from 100 short descriptions (averaging 8 sen-
tences, 100 words) of patient scenarios. The an-
notated dataset contains a subset of 400 spans re-
sulting in 6,139 annotated span-CUI pairs. The
average of the pairwise kappa scores for annotator
agreement on the MCR dataset was 0.56.

The i2b2 dataset (Uzuner et al., 2011) is based
on the annotated patient discharge summaries re-
leased with the 2010 i2b2/VA challenge. The con-
cept extraction task was to identify and extract the
text span corresponding to patient medical prob-
lems, treatments and tests in unannotated patient
record text. We created an entity linking dataset
from a random subset of 100 annotated text spans.
We ran all available entity linking systems and
produced 2,224 annotated span-CUI pairs. The
average pairwise kappa score for annotator agree-

ment on the i2b2 dataset was 0.52.
The Electronic Medical Record dataset (EMR)

is a private dataset containing spans of medical
terms identified in doctors’ notes within patient
medical records. This dataset has 350 text spans
with 3,991 annotated span-CUI pairs. Annotators
for the EMR dataset reconciled their annotations
to build the ground truth.

4.3 Evaluation Metrics

As noted in section 1, UMLS often has multiple
distinct CUIs for the same semantic concept. So
for a given span from a dataset, there may be many
true positive concepts in the ground truth. This
leads to two possible scoring schemes: CUI level
and Span level. For CUI level scoring, every CUI
in the ground truth is a ground truth positive in-
stance. A CUI produced by the Entity Linking
system for a given span is a true positive if it is in
the ground truth for that span and a false positive
if it is not. CUIs in the ground truth for the span
that are not produced by the system are counted
as false negatives. Spans that have many CUIs in
the ground truth, therefore, will have more weight
in the precision and recall than spans with fewer
CUIs. But since the number of appropriate CUIs
for a span is often a side effect of the imperfect
automatic merging of concepts in building UMLS,
the bias is unnatural.

An alternative scoring scheme awards only one
true positive, false positive or false negative for
each span, not each CUI. For this span level scor-
ing, we report two versions of the metrics. The
first version, which we call “Factor Level” in
the reported results, aggregates CUI scores using
MAX. The system scores a true positive if any of
the CUIs it produces are in the ground truth for the
span. It scores a false positive if none of its CUIs
are in the ground truth. It scores a false negative if
it produces no CUIs and there is at least one CUI
in the ground truth.

The second version of span level scoring ac-
counts for the fact that the system may produce
a mixture of correct and incorrect CUIs for the
same span. Each span still has a weight of one in
the overall precision and recall, but the system’s
score for “true positiveness” and “false positive-
ness” can be a real number between 0 and 1. We
call this scoring scheme “Quantum”. The quan-
tum true positive score for a span is the number
of CUIs produced by the system that are in the
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Approach CUI Level Factor Level Quantum

P R F1 P R F1 P R F1

GBMCR 0.349 0.242 0.286 0.395 0.437 0.415 0.357 0.268 0.306
NBMCR 0.414 0.179 0.250 0.463 0.511 0.486 0.423 0.163 0.236
VBMCR 0.496 0.215 0.300 0.548 0.605 0.575 0.513 0.198 0.285

CFV 0.587 0.405 0.479 0.903 0.461 0.611 0.716 0.188 0.298
CTakes 0.384 0.245 0.299 0.711 0.577 0.637 0.498 0.202 0.287

MetaMap 0.447 0.219 0.293 0.623 0.652 0.637 0.535 0.215 0.306
CMap 0.179 0.549 0.270 0.802 0.870 0.834 0.305 0.461 0.367
STR 0.623 0.217 0.322 0.623 0.688 0.654 0.623 0.217 0.322

Union 0.207 0.797 0.329 0.888 0.981 0.932 0.278 0.765 0.408
Majority Voting 0.746 0.182 0.293 0.768 0.522 0.622 0.745 0.169 0.275
Oracle Voting 0.626 0.290 0.396 0.723 0.707 0.715 0.629 0.251 0.359

BGCM 0.481 0.430 0.454 0.753 0.822 0.786 0.525 0.368 0.433

Stacking 0.481 0.508 0.494 0.785 0.848 0.815 0.501 0.412 0.452
+ CUI Type 0.474 0.573 0.519 0.816 0.889 0.851 0.484 0.502 0.493

+ Span & Context Similarity 0.472 0.575 0.519 0.811 0.886 0.847 0.485 0.508 0.496
+ CBOW embedding 0.567 0.500 0.532 0.824 0.892 0.857 0.491 0.507 0.499

Table 1: Results on the MCR dataset.

ground truth for the span divided by the total num-
ber of CUIs produced by the system (i.e., the span-
level Precision). Quantum false positive score is
the number of incorrect CUIs produced by the sys-
tem divided by the total number of CUIs produced.

4.4 Results

We present results for entity linking in the medical
domain on the three datasets described in section
4.2 using the evaluation metrics defined in section
4.3. The results include the performance of the
individual models, several baselines and various
ablations of the auxiliary features using stacking.
Tables 1, 2 and 3 show performance on the MCR,
i2b2 and EMR datasets respectively.

Although we observe similar trends across all
the datasets, no single individual model performs
better than others across all the evaluation met-
rics. This led us to conclude that each individual
model is optimized for a particular type of entity
or data. For example, a model that is good at link-
ing medical drugs might not perform as well on
linking medical diseases. In order to leverage the
strengths of each individual model, we ensemble
them into one powerful model that works across
all datasets as well as different evaluation metrics.

As expected, the Union baseline obtains the best
recall and Majority Voting has the highest preci-
sion across all datasets. Oracle Voting is optimized
for F1 and thus obtains an F1 higher than Majority
Voting. Vanilla stacking beats the best component
and baseline systems’ F1 scores for CUI level and
quantum metrics on all datasets. Adding each aux-

Figure 2: Ablation on the component systems in
the ensemble for the MCR dataset using the CUI
level metric. The systems are arranged in decreas-
ing order of F1 score.

iliary feature further boosts the performance and
we obtain the highest F1 for all datasets using all
the features combined. Stacking outperforms the
BGCM ensembling baseline on all datasets.

For a deeper understanding of the results, we
performed ablation tests on the systems used in the
final ensemble. Figure 2 shows the performance
of the ensemble with each component ablated in
turn. This experiment shows that every component
system contributes to the ensemble in either preci-
sion, recall or both. While each component con-
tributes to the overall performance, the strength of
the ensemble is determined by the combination of
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Approach CUI Level Factor Level Quantum

P R F1 P R F1 P R F1

GBMCR 0.507 0.375 0.431 0.790 0.807 0.798 0.515 0.427 0.467
NBMCR 0.478 0.356 0.408 0.779 0.796 0.787 0.486 0.403 0.441
VBMCR 0.554 0.404 0.467 0.800 0.817 0.809 0.564 0.468 0.511

CFV 0.173 0.457 0.251 0.884 0.903 0.894 0.577 0.327 0.417
CTakes 0.564 0.213 0.309 0.861 0.731 0.791 0.677 0.195 0.303

MetaMap 0.565 0.154 0.242 0.750 0.742 0.746 0.647 0.153 0.248
CMap 0.216 0.360 0.270 0.894 0.903 0.898 0.410 0.260 0.318
STR 0.825 0.176 0.290 0.833 0.860 0.847 0.566 0.236 0.333

Union 0.191 0.855 0.312 0.969 1.000 0.984 0.352 0.849 0.498
Majority Voting 0.705 0.189 0.298 0.846 0.828 0.837 0.766 0.176 0.286
Oracle Voting 0.624 0.270 0.373 0.874 0.893 0.883 0.709 0.227 0.344

BGCM 0.469 0.406 0.435 0.938 0.968 0.952 0.509 0.386 0.439

Stacking 0.434 0.697 0.535 0.958 0.989 0.974 0.481 0.655 0.555
+ CUI Type 0.525 0.730 0.611 0.927 0.957 0.942 0.547 0.563 0.555

+ Span & Context Similarity 0.528 0.756 0.622 0.927 0.957 0.942 0.544 0.639 0.588
+ CBOW embedding 0.528 0.756 0.622 0.938 0.968 0.952 0.546 0.700 0.607

Table 2: Results on the i2b2 dataset.

Approach CUI Level Factor Level Quantum

P R F1 P R F1 P R F1

GBMCR 0.338 0.134 0.192 0.369 0.351 0.36 0.360 0.315 0.196
NBMCR 0.381 0.151 0.217 0.410 0.390 0.400 0.396 0.148 0.216
VBMCR 0.564 0.224 0.321 0.618 0.589 0.603 0.600 0.225 0.327

CFV 0.510 0.353 0.417 0.914 0.607 0.729 0.692 0.249 0.366
CTakes 0.403 0.321 0.357 0.706 0.628 0.665 0.527 0.268 0.355

MetaMap 0.460 0.220 0.298 0.575 0.568 0.571 0.527 0.223 0.313
CMap 0.205 0.597 0.305 0.761 0.766 0.763 0.334 0.597 0.428
STR 0.714 0.284 0.406 0.714 0.748 0.730 0.714 0.284 0.406

Union 0.187 0.739 0.299 0.857 0.852 0.854 0.272 0.676 0.388
Majority Voting 0.879 0.225 0.359 0.912 0.561 0.695 0.894 0.220 0.353
Oracle Voting 0.668 0.297 0.412 0.820 0.661 0.732 0.719 0.276 0.399

BGCM 0.453 0.419 0.435 0.801 0.809 0.805 0.482 0.409 0.442

Stacking 0.443 0.517 0.477 0.794 0.832 0.812 0.488 0.463 0.475
+ CUI Type 0.559 0.548 0.554 0.807 0.778 0.792 0.571 0.436 0.495

+ Span & Context Similarity 0.593 0.554 0.573 0.820 0.781 0.800 0.616 0.443 0.515
+ CBOW embedding 0.667 0.549 0.602 0.830 0.775 0.801 0.669 0.439 0.530

Table 3: Results on the EMR dataset.

the component systems. The ablation of the CMap
system has the highest impact on the ensemble, re-
ducing the F1 score by 5.2%. We obtained similar
plots for the factor level and quantum metrics and
we expect to see similar trends for the i2b2 and the
EMR datasets as well.

5 Discussion

The experimental results presented in section 4.4
confirm that the different component systems
show significantly different behavior on different
metrics for different datasets. No individual sys-
tem was universally the best. CMap had consis-
tently good Recall but low Precision. CFV scored
well in certain circumstances on precision, re-
call and F1 score, but this varied from dataset to

dataset and metric to metric. STR usually had rel-
atively high precision, but low recall, and VBMCR
had very good F1 scores on i2b2, but was less im-
pressive on the other datasets.

These observations imply good conditions for
ensembling to make a difference. Even so, the
best baseline ensemble only outperforms the best
component system on F1 in four of the nine ex-
periments (metric-dataset combinations). Stack-
ing outperforms the best component system in all
nine, and outperforms the best ensembling base-
line for six of the nine – all of the CUI level met-
rics and quantum, but never at the factor level. The
factor level scoring is much more generous, but it
is not immediately clear why this would benefit
naı̈ve ensembling over stacking.
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Auxiliary features almost always improve
stacking. Again the exception is with factor level
scoring. Interestingly, auxiliary features almost
universally improve precision significantly with-
out too damaging an effect on recall. This result
suggests that it would be worthwhile experiment-
ing with the precision-vs-recall bias of component
systems to see if Stacking with auxiliary features
could be used, for example, to recover precision
with recall-biased components.

6 Related Work

The problem of entity linking has received con-
siderable attention in the research community.
Several community tasks are focused specifically
on the medical domain and are addressing the
problem of linking disease/disorder entities to
SNOMED CT.4 SNOMED CT concepts are also
included in UMLS.

The ShARe/CLEF eHealth Evaluation Lab
2013 (Suominen et al., 2013) consists of a collec-
tion of tasks focused on facilitating patients’ un-
derstanding of their medical discharge summaries.
The assumption is that an improved understand-
ing of medical concepts in such documents can be
achieved by normalizing all health conditions to
standardized SNOMED CT concepts. Using these
concepts, the medical documents can further be
connected to other patient friendly sources.

The Open Biomedical Annotator (OBA) (Jon-
quet et al., 2009) is an ontology-based Web service
that annotates public datasets with biomedical on-
tology concepts, including concepts from UMLS.
The OBA is based on dictionary matching. The
dictionary is a list of strings that identify ontology
concepts. The dictionary is constructed by access-
ing biomedical ontologies and extracting all con-
cept names, their synonyms or labels. The web
service takes as input the user’s free text. The tool
recognizes concepts using string matching on the
dictionary and outputs the concept annotations.

There are several notable approaches to perform
entity linking in the open domain. These open
domain approaches often deal with named enti-
ties. The linking targets in this case are often sin-
gle, unambiguous, specific concepts. The problem
of finding domain-specific concepts, on the other
hand, can be more challenging as there may be
appropriate concepts at different levels of speci-
ficity, and concepts are more compositional and

4SNOMED CT: http://www.snomed.org/

contextual. Approaches such as DBPedia Spot-
light (Mendes et al., 2011) and AIDA (Hoffart
et al., 2011) use Wikipedia to find the links of rec-
ognized entity mentions.

To overcome challenges of obtaining labeled
medical datasets, Zheng et al. (2015) proposed an
unsupervised approach for entity linking. More
traditional sieve-based techniques have been used
for this task recently (D’Souza and Ng, 2015).

Using ensembling techniques for open domain
entity linking has shown good performance in
the past (Rajani and Mooney, 2017) on the Tri-
lingual Entity Discovery and Linking (TEDL)
task. TEDL is an entity linking task conducted by
NIST. The goal of this task is to discover entities
in the three included languages (English, Span-
ish and Chinese) from a supplied text corpus and
link these entities to an existing English knowl-
edge base (a reduced version of FreeBase).

Rajani and Mooney (2016) proposed an ap-
proach for combining multiple supervised and un-
supervised models for entity linking. Their tech-
nique improves the previous result on the TEDL
task. Another ensembling approach is Mixtures
of Experts (Jacobs et al., 1991) which employs
divide-and-conquer principle to soft switch be-
tween learners covering different sub-spaces of the
input using Expectation-Maximization (EM). Our
work is the first we know of to use ensembling for
entity linking in the medical domain.

7 Conclusion

We have identified an entity linking task in the
medical domain for which existing technologies
perform differently on different metrics for differ-
ent datasets. Such an environment presents an ob-
vious opportunity for ensembling techniques.

We have built a stacking ensembler using mul-
tiple diverse entity linking systems. The auxiliary
features further boost the stacker’s performance.
Experiments confirm that naı̈ve ensembling does
not always outperform component entity linking
systems, but that vanilla stacking does. Adding
auxiliary features to the stacker almost universally
improves its precision without harming recall, giv-
ing it generally the best F1 scores overall.

Our model is able to fuse additional relevant
knowledge from multiple systems and leverage
them to improve prediction.
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