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Abstract

In this paper we introduce the TTCSE , a
linguistic resource that relies on BabelNet,
NASARI and ConceptNet, that has now
been used to compute the conceptual sim-
ilarity between concept pairs. The con-
ceptual representation herein provides uni-
form access to concepts based on Babel-
Net synset IDs, and consists of a vector-
based semantic representation which is
compliant with the Conceptual Spaces, a
geometric framework for common-sense
knowledge representation and reasoning.
The TTCSE has been evaluated in a pre-
liminary experimentation on a conceptual
similarity task.

1 Introduction

The development of robust and wide-coverage re-
sources to use in different sorts of application
(such as text mining, categorization, etc.) has
known in the last few years a tremendous growth.
In this paper we focus on computing conceptual
similarity between pairs of concepts, based on a
resource that extends and generalizes an attempt
carried out in (Lieto et al., 2016a). In particular,
the TTCSE—so named after Text to Conceptual
Spaces-Extended— has been acquired by inte-
grating two different sorts of linguistic resources,
such as the encyclopedic knowledge available
in BabelNet (Navigli and Ponzetto, 2012) and
NASARI (Camacho-Collados et al., 2015), and
the common-sense grasped by ConceptNet (Speer
and Havasi, 2012). The resulting representation
enjoys the interesting property of being anchored
to both resources, thereby providing a uniform
conceptual access grounded on the sense identi-
fiers provided by BabelNet.

Conceptual Spaces (CSs) can be thought of as

a particular class of vector representations where
knowledge is represented as a set of limited though
cognitively relevant quality dimensions; in this
representation a geometrical structure is associ-
ated to each quality dimension, mostly based on
cognitive accounts. In this setting, concepts cor-
respond to convex regions, and regions with dif-
ferent geometrical properties correspond to dif-
ferent sorts of concepts (Gärdenfors, 2014). The
geometrical features of CSs have a direct appeal
for common-sense representation and common-
sense reasoning, since prototypes (the most rele-
vant representatives of a category from a cogni-
tive point of view, see (Rosch, 1975)) correspond
to the geometrical centre of a convex region, the
centroid. Also exemplars-based representations
can be mapped onto points in a multidimensional
space, and their similarity can be computed as
the distance intervening between each two points,
based on some suitable metrics such as Euclidean
or Manhattan distance. etc..

The CS framework has been recently used to
extend and complement the representational and
inferential power allowed by formal ontologies
—and in general symbolic representation—, that
are not suited for representing defeasible, proto-
typical knowledge, and for dealing with the cor-
responding typicality-based conceptual reasoning
(Lieto et al., 2017). Also, wide-coverage seman-
tic resources such as DBPedia and ConceptNet, in
fact, in different cases fail to represent the sort of
common-sense information based on prototypical
and default information which is usually required
to perform forms of plausible reasoning.1 In this

1Although DBPedia contains information on many sorts
of entities, due to its explicit encyclopedic commitment,
common-sense information is dispersed among textual de-
scriptions (e.g., in the abstracts) rather than being available in
a well-structured formal way. For instance, the fork entity can
be categorized as an object, whilst there is no structured infor-
mation about its typical usage. On the other hand, Concept-
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paper we explore whether and to what extent a
linguistic resource describing concepts by means
of qualitative and synthetic vectorial representa-
tion is suited to assess the conceptual similarity
between pairs of concepts.

2 Vector representations with the TTCSE

The TTCSE has been designed to build resources
encoded as general conceptual representations.
We presently illustrate how the resource is built,
deferring to Section 3 the description of the con-
trol strategy designed to use it in the computation
of conceptual similarity.

The TTCSE takes in input a concept c referred
through a BabelNet synset ID, and produces as
output a vector representation ~c where the in-
put concept is described along some semantic di-
mensions. In turn, filling each such dimension
amounts to finding a set of appropriate concepts:
features act like vector space dimensions, and they
are based on ConceptNet relationships.2 The di-
mensions are filled with BabelNet synset IDs, so
that finally each concept c residing in the linguis-
tic resource can be defined as

~c =
⋃
d∈D
{〈IDd, {c1, · · · , ck}〉} (1)

where IDd is the identifier of the d-th dimension,
and {c1, · · · , ck} is the set of values chosen for d.

The control strategy implemented by the TTCSE

includes two main steps, semantic extraction
(composed by the extraction and concept identi-
fication phases) and the vector injection.

Net is more suited to structurally represent common-sense
information related to typicality. However, in ConceptNet
the coverage of this type of knowledge component is some-
times not satisfactory. For similar remarks on such resources,
claiming for the need of new resources more suited to repre-
sent common-sense information, please also refer to (Basile
et al., 2016).

2The full list of the employed properties, which
were selected from the most salient properties in Con-
ceptNet, includes: INSTANCEOF, RELATEDTO, ISA,
ATLOCATION, DBPEDIA/GENRE, SYNONYM, DERIVED-
FROM, CAUSES, USEDFOR, MOTIVATEDBYGOAL, HAS-
SUBEVENT, ANTONYM, CAPABLEOF, DESIRES, CAUS-
ESDESIRE, PARTOF, HASPROPERTY, HASPREREQUI-
SITE, MADEOF, COMPOUNDDERIVEDFROM, HASFIRST-
SUBEVENT, DBPEDIA/FIELD, DBPEDIA/KNOWNFOR, DB-
PEDIA/INFLUENCEDBY, DEFINEDAS, HASA, MEMBEROF,
RECEIVESACTION, SIMILARTO, DBPEDIA/INFLUENCED,
SYMBOLOF, HASCONTEXT, NOTDESIRES, OBSTRUCT-
EDBY, HASLASTSUBEVENT, NOTUSEDFOR, NOTCA-
PABLEOF, DESIREOF, NOTHASPROPERTY, CREATEDBY,
ATTRIBUTE, ENTAILS, LOCATIONOFACTION, LOCATED-
NEAR.

Extraction The TTCSE takes in input c and
builds a bag-of-concepts C including the concepts
associated to c through one or more ConceptNet
relationships. All ConceptNet nodes related to
the input concept c are collected: namely, we
take the corresponding ConceptNet node for each
term in the WordNet (Miller, 1995) synset of c,
sc ∈ WN-sync. For each such term we extract
all terms t linked through d, one of the aforemen-
tioned ConceptNet relationships: that is, we col-
lect the terms sc d→ t and store them in the set T .
Each sc can be considered as a different lexical-
ization for the same concept c, so that all t can be
grouped in T , that finally contains all terms asso-
ciated in any way to c.

Since ConceptNet does not provide any direct
anchoring mechanism to associate its terms to
meaning identifiers, it is necessary to determine
which of the terms t ∈ T are relevant for the
concept c. In other words, when we access the
ConceptNet page for a certain term, we find not
only the association regarding that term with the
sense conveyed by c, but also all the associations
regarding it in any other meaning. To select only
(and possibly all) the associations that concern the
sense individuated through the previous phase, we
introduce the notion of relevance. To give an in-
tuition of this process, the terms found in Con-
ceptNet are considered as relevant (and thus re-
tained) either if they exhibit a heavy weight in the
NASARI vector corresponding to the considered
concept, or if they share at least some terms with
the NASARI vector (further details on a similar
approach can be found in (Lieto et al., 2016a)).

Concept identification Once the set of relevant
terms has been extracted, we need to lift them to
the corresponding concept(s), which will be used
as value for the features. We stress, in fact, that
dimension fillers are concepts rather than terms
(please refer to Eq. 1). In the concept identifica-
tion step, we exploit NASARI in order to provide
each term t ∈ T with a BabelNet synset ID, thus
finally converting it into the bag-of-concepts C.

Given a ti ∈ T , we distinguish two main cases.
If ti is contained in one or more synsets inside the
NASARI vector of c, we obtain ci (the concept un-
derlying ti) by directly assigning to ti the identi-
fier of the heaviest weighted synset that contains
it.3 Otherwise, if ti is not included in any of the

3NASARI unified vectors are composed by a head con-
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synsets in the NASARI vector associated to c, we
need to choose a vector among all possible ones:
we first select a list of candidate vectors (that is,
those containing ti in their vector head), and then
choose the best one by retaining the vector where
c’s ID has highest weight.

For example, given in input the concept bank
intended as a financial institution, we inspect the
edges of the ConceptNet node ‘bank’ and its syn-
onyms. Then, thanks to the relevance notion we
get rid of associations such as ‘bank ISA flight
maneuver’ since the term ‘flight maneuver’ is not
present in the vector associated to the concept
bank. Conversely, we accept sentences such as
‘bank HASA branch’ (i.e., ‘branch’ is added to T ).
Finally, ‘branch’ goes through the concept identi-
fication phase, resulting in a concept ci and then it
is added to C.

Vector injection The bag-of-concepts C is then
scanned, and each value is injected in the template
for ~c. Each value {c1, . . . , cn ∈ C} is still pro-
vided with the relationship that linked it to c in
ConceptNet, so this value is employed to fill the
corresponding feature in ~c. For example, if ck is
extracted from the ConceptNet relation USEDFOR

(i.e., c USEDFOR→ ck), the value ck will be added to
the set of entities that are used for c.

2.1 Building the TTCSE resource

In order to build the set of vectors in the TTCSE

resource, the system took in input 16, 782 con-
cepts. Such concepts have been preliminarily
computed (Lieto et al., 2016b) by starting from the
10K most frequent nouns present in the Corpus of
Contemporary American English (COCA).4 Then,
for each input concept the TTCSE scans some 3M
ConceptNet nodes to retrieve the terms that appear
into the WordNet synset of the input. This step
allows to browse over 11M associations avail-
able in ConceptNet, and to extract on average 155
ConceptNet nodes for each input concept. Sub-
sequently, the TTCSE exploits the 2.8M NASARI
vectors to decide whether each of the extracted
nodes is relevant or not w.r.t. the input concept,
and then it tries to associate a NASARI vector to
each of them (concept identification step). On av-

cept (represented by its ID in the first position) and a body,
that is a list of synsets related to the head concept. Each
synset ID is followed by a number that grasps the strength
of its correlation with the head concept.

4http://corpus.byu.edu/full-text/.

erage, 14.90 concepts are used to fill each vector.5

3 Computing Conceptual Similariy

One main assumption underlying our approach is
that two concepts are similar insofar as they share
some values on the same dimension, such as when
they are both used for the same ends, they share
components, etc.. Consequently, our metrics does
not employ WordNet taxonomy and distances be-
tween pairs of nodes, such as in (Wu and Palmer,
1994; Leacock et al., 1998; Schwartz and Gomez,
2008), nor it depends on information content ac-
counts either, such as in (Resnik, 1998a; Jiang and
Conrath, 1997).

The representation available to the TTCSE is en-
tirely filled with conceptual identifiers, so to assess
the similarity between two such values we check
whether both the concept vector ~ci and the vec-
tor ~cj share the same (concept) value for the same
dimension d ∈ D, and our similarity along each
dimension basically depends on this simple intu-
ition:

sim(~ci,~cj) =
1
|D| ·

∑
d∈D

|di ∩ dj |.

The score computed by the TTCSE system can
be justified based on the dimensions actually
filled: this explanation can be built automatically,
since the similarity between ~ci and ~cj is a func-
tion of the sum of the number of shared elements
in each dimension, so that one can argue that
a given score x is due to the fact that along a
given dimension d both concepts share some val-
ues (e.g., sim(table, chair) = x because each one
is a (ISA) ‘furniture’, both are USEDFOR ‘eating’,
‘studying’ and ‘working’; both can be found AT-
LOCATION ‘home’, ‘office’; and each one HASA
‘leg’).

Ultimately, the TTCSE collects information
along the 44 dimensions listed in footnote 2, so
that we are in principle able to assess in how far
similar they are along each and every dimension.
However, our approach is presently limited by
the actual average filling factor, and by the noise
that can be possibly collected by an automatic
procedure built on top of the BabelNet knowledge
base. Since we need to deal with noisy and incom-
plete information, some adjustments to the above
formula have been necessary in order to handle

5The final resource is available for download at the URL
http://ttcs.di.unito.it.
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—intra dimension— the possibly unbalanced
number of concepts that characterize the different
dimensions; and to prevent —inter dimensions—
the computation from being biased by more richly
defined concepts (i.e., those with more dimensions
filled). The computation of the conceptual simi-
larity score is thus based on the following formula:

sim(~ci,~cj) =
1
|D∗| ·

∑
d∈D

|di ∩ dj |
β (αa+ (1− α) b) + |di ∩ dj |

where |di ∩ dj | counts the number of concepts
that are used as fillers for the dimension d in
the concept ~ci and ~cj , respectively; and a and b
are computed as a = min(|di − dj |, |dj − di|),
b = max(|di − dj |, |dj − di|); and |D∗| counts the
dimensions filled with at least one concept in both
vectors.

This formula is known as the Symmetrical Tver-
sky’s Ratio Model (Jimenez et al., 2013), which
is a symmetrical reformulation for the Tversky’s
ratio model (Tversky, 1977). It enjoys the fol-
lowing properties: i) it allows grasping the num-
ber of common traits between the two vectors (at
the numerator); ii) it allows tuning the balance be-
tween cardinality differences (through the param-
eter α), and between |di∩dj | and |di−dj |, |dj−di|
(through the parameter β). Interestingly, by set-
ting α = .5 and β = 1 the formula equals the
popular Dice’s coefficient. The parameters α and
β were set to .8 and .2 for the experimentation.

4 Evaluation

In the experimentation we addressed the concep-
tual similarity task at the sense level, that is the
TTCSE system has been fed with sense pairs. We
considered three datasets,6 namely the RG, MC
and WS-Sim datasets, first designed in (Ruben-
stein and Goodenough, 1965; Miller and Charles,
1991) and (Agirre et al., 2009), respectively. His-
torically, while the first two (RG and MC) datasets
were originally conceived for similarity measures,
the WS-Sim dataset was developed as a subset
of a former dataset built by (Finkelstein et al.,
2001) created to test similarity by including pairs
of words related through specific relationships,
such as synonymy, hyponymy, and unrelated. All
senses were mapped onto WordNet 3.0.

The similarity scores computed by the TTCSE

system have been assessed through Pearsons r

6Publicly available at the URL http://www.seas.
upenn.edu/˜hansens/conceptSim/.

ρ r

RG 0.78 0.85
MC 0.77 0.80
WS-Sim 0.64 0.54

Table 1: Spearman (ρ) and Pearson (r) correla-
tions obtained over the three datasets.

and Spearmans ρ correlations, that are largely
adopted for the conceptual similarity task (for a
recent compendium of the approaches please refer
to (Pilehvar and Navigli, 2015)). The former mea-
sure captures the linear correlation of two vari-
ables as their covariance divided by the product
of their standard deviations, thus basically allow-
ing to grasp differences in their values, whilst the
Spearman correlation is computed as the Pearson
correlation between the rank values of the consid-
ered variables, so it is reputed to be best suited to
assess results in a similarity ranking setting where
relative scores are relevant (Schwartz and Gomez,
2011; Pilehvar and Navigli, 2015).

Table 1 shows the results obtained by the system
in a preliminary experimentation.

Provided that the present task of sense-level
similarity is slightly different from word-level
similarity (about this distinction, please refer
to (Pilehvar and Navigli, 2015)), and our results
can be thus hardly compared to those in litera-
ture, the reported figures are still far from the
state of the art, where the Spearman correlation ρ
reaches 0.92 for the RG dataset (Pilehvar and Nav-
igli, 2015), 0.92 for the MC dataset (Agirre et al.,
2009), and 0.81 for the WS-Sim dataset (Halawi
et al., 2012; Tau Yih and Qazvinian, 2012).7

However, we remark that the TTCSE employs
vectors of a very limited size w.r.t. the standard
vector-based resources used in the current mod-
els of distributional semantics (as mentioned, each
vector is defined, on average, through 14.90 con-
cepts). Moreover, due to the explicit grounding
provided by connecting the NASARI feature val-
ues to the corresponding properties in ConceptNet,
the TTCSE can be used to provide the scores re-
turned as output with an explanation, based on the
shared concepts along some given dimension. At
the best of our knowledge, this is a unique fea-
ture, that cannot be easily reached by methods

7Rich references to state-of-the-art results and works ex-
perimenting on the mentioned datasets can be found on the
ACL Wiki, at the URL https://goo.gl/NQlb6g.
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based on Latent Semantic Analysis (such as those
pioneered by (Deerwester et al., 1990)) and can
be only partly approached by techniques exploit-
ing taxonomic structures (Resnik, 1998b; Baner-
jee and Pedersen, 2003). Conversely, few and rel-
evant traits are present in the final linguistic re-
source, which is thus synthetic and more cogni-
tively plausible (Gärdenfors, 2014).

In some cases —27 concept pairs out of the
overall 190 pairs— the system was not able to re-
trieve an ID for one of the concepts in the pair:
such pairs were excluded from the computation of
the final accuracy. Missing concepts may be lack-
ing in (at least one of) the resources upon which
the TTCSE is built: including further resources
may thus be helpful to overcome this limitation.
Also, difficulties stemmed from insufficient infor-
mation for the concepts at stake: this phenomenon
was observed, e.g., when both concepts have been
found, but no common dimension has been filled.
This sort of difficulty shows that the coverage of
the resource still needs to be enhanced by improv-
ing the extraction phase, so to add further concepts
per dimension, and to fill more dimensions.

5 Conclusions

In this paper we have introduced a novel resource,
the TTCSE , which is compatible with the Con-
ceptual Spaces framework and aims at putting to-
gether encyclopedic and common-sense knowl-
edge. The resource has been employed to compute
the conceptual similarity between concept pairs.
Thanks to its representational features it allows
implementing a simple though effective heuristics
to assess similarity: that is, concepts are similar
insofar as they share some values along the same
dimension. However, further heuristics will be in-
vestigated in the next future, as well.

A preliminary experimentation has been run,
employing three different datasets. Provided that
we consider the obtained results as encouraging,
the experimentation clearly points out that there is
room for improvement along two main axes: di-
mensions must be filled with further information,
and also the quality of the extracted information
should be improved. Both aspects will be the ob-
ject of our future efforts.
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