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Abstract

We propose a multi-task learning objective
for training joint structured prediction mod-
els when no jointly annotated data is avail-
able. We use conditional random fields as the
joint predictive model and train their parame-
ters by optimizing the marginal likelihood of
all available annotations, with additional pos-
terior constraints on the distributions of the
latent variables imposed to enforce agreement.
Experiments on named entity recognition and
part-of-speech tagging show that the proposed
model outperforms independent task estima-
tion, and the posterior constraints provide a
useful mechanism for incorporating domain-
specific knowledge.

1 Overview

Researchers working in applied sciences like natural
language processing, bioinformatics, meteorology,
etc. are often interested in modeling various facets of
naturally occurring data, which are often inter-related.
While a world in which data is annotated jointly and
consistently is pleasant to imagine, in practice differ-
ent annotation guidelines exist and different data is
annotated in service of different practical goals.
This paper proposes a new technique, based on poste-
rior regularization, to learn a joint model over several
tasks from disjoint annotations. Single task learn-
ing which involves independent optimization rou-
tines over these disparate datasets can be effective if
enough data is available, but in low data scenarios, it
helps to incorporate inductive bias about the data and
the task. Multi-task learning based approaches (Caru-
ana, 1997) often incorporate this bias by exploiting

the relatedness between various facets/tasks such
that several disjointly annotated datasets for different
tasks can be used for joint optimization over differ-
ent tasks. However, most of the existing work on
multi-task learning focuses on the case when the the
tasks share both the input space and output space
(Obozinski et al., 2010; Jebara, 2011), which makes
approaches based upon parameter tying, feature se-
lection, kernel selection etc. suitable for these sce-
narios. Some examples of ‘common output space’
formulation of multi-task learning are binary classi-
fication and regression over multiple datasets with
common output space: [0,1] and R respectively for
classification and regression. Importantly, in this
work we focus on the case in which the tasks share
the input space but their output spaces are disjoint.
We approach this scenario by guiding the multi task
learning according to some external world knowledge
about the relationship between the output spaces of
different tasks.
To illustrate, consider the scenario, in which we want
to train a named entity recognizer (NER) and a part
of speech (PoS) tagger for a low resource language
which offers very small amount of disjoint training
data for each of these tasks. Typically, both these
tasks are treated as sequence labeling problems (Rat-
naparkhi and others, 1996; Tjong Kim Sang and
De Meulder, 2003), which are modeled by undirected
Markov networks like linear chain conditional ran-
dom fields (CRFs) (Lafferty et al., 2001). We focus
on jointly modeling these tasks with features that
pertain to the relationships between the tasks. Fur-
ther, we wish to guide the learning of joint models
by incorporating external knowledge about relation-
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ship between the two tasks which is independent
of language and can be obtained by analyzing high
resource languages or from domain experts. For ex-
ample, we know that it is highly likely for a Part of
Speech to be Noun if the Named Entity is tagged
as Person, but it is highly unlikely for a word be-
ing tagged as a Named Entity if it is a Verb. In
this work, we propose to learn a joint CRF from
the disjoint datasets and influence the learning by
incorporating biases about the posterior distribution,
pertaining to the inter-relationship between the tasks.
Given multiple tasks modeled by CRFs with different
output/label space, which share structure and suffi-
cient statistics derivable from the observed data, we
perform multi-task learning by modelling the tasks by
a joint latent CRF, which is trained to maximize the
likelihood of the disjointly annotated heterogeneous
training data for different tasks. Then, we influence
the learning of the joint latent CRF by incorporating
constraints over the posterior distribution of the joint
CRF, which encode relationship between the tasks.
We present experimental results of our approach on
joint learning of PoS tagging and NER tagging in low
data scenario, and compare them with the single-task
approach and the unbiased/unregularized joint mod-
elling approaches. The encouraging results suggest
that our approach of biasing joint latent CRFs via
Posterior Regularization is a principled and effective
way of exploiting inter task relationships. In the de-
scription below, we describe our approach and experi-
ments with respect to linear-chain CRFs parametrized
by exponential families, but our approach is general
and can be applied to any set of tasks that are mod-
eled by arbitrary CRFs that share some structure.

2 Problem statement

We are given a collection of annotated datasets
D = D1, . . . ,DM for M tasks and each task
has its training set Dm of Tm input-output pairs
(xm,1,ym,1), . . . , (xm,Tm ,ym,Tm). Particularly, we
are interested in structured prediction tasks where
xj,k is a sequence and the output, yj,k is mod-
elled by a Conditional Random Field (Lafferty et
al., 2001) conditioned on global information deriv-
able from xj,k. Typically, the output space Ym of
each task for a sequence is very large and disjoint
i.e. Yj,i ∩ Yk,i = ∅ ∀j, k ∈ 1..M, k 6= j. For

example, the output space for a sequence x is a
set of all valid parse trees (Yparse,x) for the task
of parsing and for the task of NER based upon
a linear chain CRF, it is a chain of named entity
predictions(YNER,x). Also, our approach focuses on
the case when the datasets for the different tasks are
disjoint i.e. xj ∩ xk = ∅ ∀j, k ∈ 1..M, k 6= j. The
probability distribution characterized by a CRF for a
particular task can be expressed as:

p(ym,i|xm,i) =
1

Z(xm,i)

∏
c∈Cm,i

ψ(xm,i,ym,i,c)

with Cm,i = (xj,k,c,yj,k,c) set of cliques in a CRF,
ψ(xm,i,ym,i,c) is the potential for a clique c, and
Z in

∑
y∈Y

∏
c∈C ψ(x,yc) is the global normaliza-

tion factor. The potential is a function of the in-
put and the relevant output variables in the clique.
In our experiments, we work with the distribution
parametrized as an exponential family distribution:
ψ(xm,i,ym,i,c) = exp(θT f(xm,i,ym,i,c)), where
f(x,yc) is a vector of informative features that can
be derived from x, and θ is the parameter vector
characterizing the distribution, which is estimated
during the learning phase. Parameter estimation is
performed by maximizing the likelihood of the ob-
served labels given the training sequence. The deriva-
tive w.r.t. the parameter θk is:

Edata fk(xm,i, ym,i,c)− Emodel fk(xm,i, y′m,i,c)

Furthermore, we have a set of constraints S with
the individual constraints s(Yci,j ,Yci′,k), for tasks
j and k, defined over substructures(cliques) of the
structured output spaces for different tasks, which
exhibit some correlation between the tasks. For ex-
ample, in joint modelling of NER and parsing, there
can be constraints pertaining to correlations between
preterminals of the parses and the NE labels assigned
to the tokens in the sequence. In this work, we aim to
learn a joint probabilistic graphical model that repre-
sents p(y|x), where y ∈ ∏M

i=1 Yi over all the tasks
while respecting the constraint set, from the given
disjoint single task training data for each task.

max
θ

M∑
m=1

Tm∑
i=1

log pθ(ym,i|xm,i) s.t.

satisfy(s) = 1 ∀s ∈ S
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While not a required condition for our approach, in-
ference with our method becomes efficient if the
cliques over which the constraints are defined, share
structural similarities across the tasks.
Hence for NER and PoS, if x contains w words,
then the output space for NER and PoS tagging is
YNER,x = (TNER)w and YPoS,x = (TPoS)w. It is
important to note that TNER∩TPoS = ∅. Also, since
both the tasks are modeled as linear chain CRFs, for
a given sequence x, they share a similar clique struc-
ture, which makes the joint inference easier. The
constraint set S consists of several constraints that
exhibit the relationship between the two tasks. These
constraints can be formulated by domain experts or
can also be transferred from the large related do-
main corpora if the constraints are not sensitive to
the domains. For this pair of tasks, constraints can be
defined on all the cliques (node and edge based) with-
out requiring any changes in the inference algorithm.
However, even for two tasks with very different CRF
structures (For eg. constituency parsing and NER),
we can facilitate sharing of node based cliques at
preterminals of the parse trees and the nodes of linear
chain CRFs for NER. For simplicity of exposition,
further discussion will assume M = 2, and CRF for
each task is a first order linear chain CRF.

3 Unregularized Models

In this section, we’ll first consider a fully supervised
scenario, in which labels for both the tasks are avail-
able for each sequence x in the training data. After
that, we will discus latent joint CRF, which will be
used to model the actual scenario, in which we have
output labels from only one of the tasks for each
sequence x in the training data.

3.1 Fully supervised joint CRF

Full supervision requires that each input sequence x
is annotated for all tasks. Our motivating assumption
is that this is an ideal scenario, but not always avail-
able. Additionally, this model lays the foundation of
the latent joint model we discus in the next section.
The joint CRF is a simple modification of the single
task CRF. For linear chain CRF models associated
with the tagging tasks, we simply consider the ex-
panded tag-space Tjoint = Ttask1 × Ttask2. Now,
for a sequence x of length w, the size of the output

space is Yjoint = T wjoint and the CRF distribution is
parametrized as:

p(y|x) =
1

Z(x; θ)
×

w∑
t

exp(θT f(x, yjoint,t, yjoint,t−1, t))

× exp(θT f(x, yjoint,t, t))

where yjoint,t = (ytask1,t, ytask2,t). It should
be noted that for the joint model we have new
kind of transition and label features based
upon the task identities: f(x, yjoint,t, yjoint,t−1),
f(x, ytask1,t, ytask1,t−1), f(x, ytask2,t, ytask2,t−1),
f(x, yjoint,t), f(x, ytask1,t), f(x, ytask2,t). Hence
this model is much larger than the single task model
both in terms of output-space(Y) and the feature
space.
Exact inference for parameter estimation and finding
the best sequence can be performed by algorithms
similar to the ones used for the single linear chain
CRFs.

3.2 Joint Latent CRF
This model is very much similar to the model de-
scribed in the previous section, but, in this case we
work with the original data scenario i.e. several small
single task datasets output labels for only one of the
tasks provided. During parameter estimation, the
joint CRF model observes only partial output, so
marginalization over the latent output variables is
required. The objective function in this case is to
maximize the likelihood of the partial output, given
the input sequence x:

max
θ

2∑
m=1

Tm∑
i=1

log pθ(ym,i|xm,i) =

max
θ

2∑
m=1

Tm∑
i=1

log
ym−,i∑
k=1

pθ(yk,i|xm,i).

For the latent model, the gradient w.r.t. θk is: The
derivative w.r.t. the parameter θk is:

2∑
m−1

Tm∑
j=1

|x|∑
i=1

Ep(ym−,i|ym,i,xm,i) fk(xm,i, yi, yi−1)−

Ep(y′|xm,i) fk(xm,i, y
′
i, y
′
i−1)
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From the above equation, we notice that as far as in-
ference is considered, the only change in this model,
when compared to the completely supervised joint
model, is that inference now involves marginaliza-
tion over all the latent output labels. The inference
for computing the expectation quantities and the
marginal probabilities can still be done modifying
the junction tree algorithm used in the supervised
joint CRF accordingly. However, the objective now
is non convex and parameter estimation is done via a
discriminative EM procedure.
The advantage of this model is that now it allows us
to train a joint model over both the datasets with in-
formative features pertaining to both the tasks, which
was not possible with single task CRF models. It is
expected that this method will learn to incorporate
certain correlations between the two tasks just by the
virtue of looking at different training datasets and
learning features pertaining to both the output labels.
Moreover, this model also lays the basis for the model
discussed in the next section which regularizes the
posterior distribution of this latent model.

4 Constraint based regularization for
Multi Task Learning

In this section, we describe our method to influence
the parameter learning of the latent joint CRF de-
scribed in the last section, according to the constraints
pertaining to the relationship between the tasks that
we are interested in. The motivation behind this ap-
proach is that often, varying sources of information
about the tasks and we would like to expose our mod-
els to information beyond what is provided by the
annotated training data.
The constraints could be in the form of biases based
upon world knowledge that are provided by the do-
main experts, or they could determined empirically
by analysis of related domains which expose rela-
tionships among the relevant tasks. For example,
compatibility of part of speech tags and named entity
tags is largely invariant across several languages. In
scenarios, where the multiple tasks have non inter-
secting output spaces, these constraints can convey
information about the relation between the output
spaces. Now we discus our method to bias the joint
latent CRF for multitask learning and we will also
discus about the kinds of constraints and information

our method easily allows to incorporate.

4.1 Posterior Regularization
Posterior Regularization(Ganchev et al., 2010; Zhu
et al., 2014) is an effective technique to perform con-
straint based learning when the original model’s pa-
rameters are learned via Expectation Maximization.
(1998) showed that both M and E steps are maxi-
mization problems over a function that is dependent
on the model parameters and the distribution over
the latent variables respectively, and is also a lower
bound for the log-likelihood of the observed data.

L(θ) = Edata(log
∑
y

p(x, y))

≥ Edata(
∑
y

q(y|x)log pθ(x, y)
q(y|x) ) = F (q, θ)

where x is the observed variable and y is the hidden
variable. The standard EM procedure amounts to:

E : qt+1(y|x) = arg max
q
F (q, θt) =

arg min
q
KL(q(y|x) || pθt(y|x)) = pθt(y|x)

M : θt+1 = arg max
θ
F (qt+1, θ) =

arg max
θ

Edata(
∑
y

qt+1(y|x)logpθ(x, y))

Posterior Regularization refers to modifying the E-
step such that the q(y|x) distribution that is estimated
in the E-step also respects certain linear Expectation
based constraints belonging to the constraint set S.
The M-step is typically left unchanged. This has an
effect of regularizing the expectations of the hidden
variables. In the context of the joint latent CRF, the
hidden task output variables are the latent variables
and rest of the variables are observed. Formally, the
E-step can be described as:

arg min
q

KL(q(y | x) || pθ(y | x))

subject to

Eq(φ(x,y))− b ≤ ξ,
||ξ||β < ε,∑

y

q(y | x) = 1
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where φ(x,y) are constraint features that can be com-
puted from the input and the output, and b are respec-
tive expected values of the constraint features over
a corpus. This framework can handle constraints
based on the expected values of certain quantities
over training data, under the model’s distribution. ξ
is the slack parameter, which relaxes the necessity for
exactly matching the expectation of constraint fea-
tures under model with b. Assuming that a feasible
q(y) exists, this E-step optimization problem can be
solved by solving by using Lagrangian duality and
solving the dual problem. The solution of the dual
problem results in the following form of the q(y)
distribution:

q∗(y | x) =
pθ(y|x) exp(−λ∗Tφ(x,y))

Z(λ∗, θ)
(1)

where λ∗ is the solution of the dual problem and
Z(λ∗, θ) =

∑
y pθ(y|x) exp(−λ∗T .φ(x,x)), is the

normalization constant for q(Y).
The associated dual problem with parameter vector
λ is:

λ∗ = arg max
λ≥0
−bλ− log(Z(λ, θ))− ε||λ||β∗ (2)

where ||.||β∗ is the conjugate of norm ||.||β . In our ex-
periments, we set β =∞ such that β∗ = 1. Hence,
the dual optimization can be carried out by proxi-
mal gradient ascent with the following update for λk
pertaining to the kth constraint:

λi+1
k = Stε(λik + t(−bk − d log Z(λ, θ)

dλ
)) =

Stε(λik + t(−bk + Eq(φk(x,y))))

where t is the step size and Stε() is the soft threshold-
ing operator.
An important observation to be made here is that if
pθ is modeled by a CRF parametrized by an expo-
nential family distribution and the computation of
φ(x,y) decomposes according to the cliques of the
CRF representing ptheta then the approximating q
distribution has the form:

q(y|x) =
1

Z(x; θ, λ)

∏
c∈C

exp(θT f(x,yc)− λTφ(x,yc))

(3)

This form enables us to perform inference with
q(y | x) efficiently by using exactly same inference

routine as the one used for carrying out inference
with p(y | x). Therefore, in our experiments with
first-order linear-chain CRFs, we work with the
constraint features that can be computed locally
along the nodes and edges of the CRF.
For example, ‘φ = proportion of the label
(Person,Noun)’ can be computed incrementally
by using marginal probability of the label at each
node of the CRF, which is an artefact of the inference
algorithm in linear chain CRFs.
Similarly, ‘φ = proportion of the edge
(Person,Noun) → (Not-NE,VERB)’, also
can be computed fairly easily by using the marginal
probability of the edges of the CRF.
However, a constraint feature like ‘φ = proportion of
NE=Person, given PoS=Noun’ does not decom-
pose along the graph of a first order linear chain CRF
and cannot be computed incrementally along the
structure of the CRF. Therefore, incorporating this
type of constraint will make inference harder and we
don’t address this problem in this work, and assume
that the computation of the constraint features is
decomposable according to the structure of the joint
CRF. The EM procedure for the latent joint CRF
becomes:
E-step: Compute the optimal dual parameters(λ∗)
for the constraint features by optimizing Eqn 2.
Then, use λ∗ to compute qi+1(y|x) using Eqn 3
M-step: Compute the optimal CRF feature pa-
rameters θ by maximizing the likelihood of the
training data consisting of partially observed output,
conditioned on the input sequence:

θi+1 = arg max Edata(Eq(y|x) logpθ(y|x))

The above EM procedure can be interpreted as
block co-ordinate descent over the parameters of a
linear chain CRF that characterizes the distribution
q(y | x). While this perspective leads us to view
λ and θ as similar parameters, both of them are
subtly different. θ is responsible for matching
model expectation (Emodel(f)) of features with the
empirical expectation of the features (Edata(f)), λ
on the other hand is responsible for matching model
expectation of constraint features (Emodel(φ)), with
the external bias (b).
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5 Related Work

Posterior Regularization was proposed by (2010). It
was also expressed in a more general form and ex-
tended to Bayesian non parametric models by (Zhu
et al., 2014), who also show that the real expres-
sive power of PR lies in modelling external con-
straints based upon corpus statistics in addition to
the model parameters, which differentiates it from
regular Bayesian treatment of external knowledge
as parameter based priors. It is very closely related
to the Bayesian Measurements framework (Liang et
al., 2009) which is more abstract than Posterior Reg-
ularization, in which the constraint features φ are
measured with noise as b.

b = φ(x,y) + noiseφ

The noise log(p(b|φ,X,Y)) = −hφ(b− φ(X,Y))
with convex h, is modeled as a log concave noise so
that over all MAP objective is convex. In particular,
it is modeled as box noise (b ≤ Iφ(X,Y)+/−ε). Ac-
cording to this framework, not only the constraint
features, but also, fully annotated training data ex-
amples themselves are considered Bayesian measure-
ments.Assuming a Bayesian setting with a prior on
θ, the model distribution is:

p(θ,y,b|x, φ) = p(θ) p(y|x; θ) p(b|x,y, φ) (4)

(2009) approximate to the posterior of
p(Y, θ|X, φ,b) by mean field factorization
and further relaxing the problem to be able to
leverage duality for the solution. With their approx-
imation, they arrive at the objective of Posterior
Regularization. The key to their model and optimiza-
tion lies in the noise used to model the measurements
and also the variational approximation procedure to
optimize an approximate objective. In particular, box
noise is responsible for the constraints in their model
to be linear expectation based constraints. Other
log concave noise distributions offer the potential to
model other non-linear constraints as well.
There is a lot of work pertaining to semi-supervised
learning using external biases in the form of
either hard or soft constraints. Like Posterior
Regularization, Generalized expectation(Druck et al.,
2008) is able to incorporate soft constraints defined
over a whole distribution of labels by adding the

expectation based constraints to the objective(MLE)
of the problem. Although this is an appealing
method, it can be very expensive to run because the
gradient calculations depend on the cross product
of model feature space and model constraint space.
In fact, Posterior Regularization can be seen as
a variational approximation to the objective of
GE criterion (Ganchev et al., 2010). PR and GE
have been shown to be useful in incorporating
soft constraints for various tasks like bilingual
NER (Che et al., 2013), cross lingual projection
of coreference(Martins, 2015) etc. There has been
plenty of work to bias predictions/ learning of
structured prediction models in presence of hard
constraints, which incorporate discrete penalty
associated with label combinations relevant to the
constraint features. A key difference of these models
from Posterior Regularization is that instead of
working with expected counts of output labels, they
work with hard count assignments. The constraint
driven learning approach of (2007) adds a penalty
term to the conditional log probability of the output
that can be seen as adding cost deterministically
for violating the constraints. Their approach is
usually intractable practically and approximations
like beam search are used. Also, (2010) show that
dual decomposition methods can be very effective
for different related tasks with hard constraints based
upon the relatedness of the tasks. This method solves
the joint objective of the different tasks and forces
and agreement between predictions of different tasks
according to the hard constraints that inter-relate
their output spaces. This is an effective approach if
the relationship between the output spaces of the
two tasks is perfectly deterministic.However, this
approach only improves joint inference and isn’t
very effective at learning parameters of the model
w.r.t. the constraints. Another popular approach
for constraint based inference is using Integer
Linear Programming (Roth and Yih, 2005), but
this too doesn’t focus on guiding learning of joint
models using the constraints. Both the hard count
based approaches are unsuitable for modelling the
problem described in this paper, which aims at using
non-deterministic soft-constraints pertaining to the
relationship between the tasks to bias the learning of
the models.
Multi Task learning refers to a very broad array
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of problem scenarios and techniques(Caruana,
1997; Thrun and Pratt, 2012) which are motivated
by a common hypothesis: Modelling multiple
inter-related tasks enables us to work with a larger
amount of data and has the potential to transfer
statistical information across various tasks, domains
and datasets, such that generalization performance
of the predictive models improves for all of the
tasks. Most of approaches (Obozinski et al., 2010;
Jebara, 2011) assume that the multiple tasks have
the same input space(x ∈ Rd) and also share the
output space; eg. R for regression and 0,1 for
classification based tasks. These multi-task learning
techniques include sparse feature selection via
group l1 regularization(Obozinski et al., 2010),
feature transformation to jointly train over all the
tasks(Evgeniou and Pontil, 2004), kernel selection
(Jebara, 2011) etc. Crucially, in our work, we work
with multiple tasks that have different output spaces.
In fact, in our approach and experiments, the output
label spaces are completely disjoint. Hence, we try
to bias our probabilistic models by soft constraints
encoding the relationship between the output spaces
of different tasks.

6 Experiments

We performed experiments on jointly modelling two
tasks: 1) Named Entity Recognition(NER) and 2)
Part of Speech (PoS) tagging. For NER, we follow
the standard convention of ‘B-I-O tagging’ (Tjong
Kim Sang and De Meulder, 2003; Sha and Pereira,
2003) where ‘B’ and ‘I’ help identify segments of
named entities and ‘O’ identifies the words that are
not named entities. For PoS, we used the ‘Universal’
PoS tagset, which is largely invariant across several
languages (Petrov et al., 2011). The tagset for the
two tasks was:

NER: [O, B-PER, I-PER, B-ORG,
I-ORG, B-LOC, I-LOC, B-MISC, I-MISC]

POS: [VERB, NOUN, PRON, ADJ, ADV,
ADP, CONJ, DET, NUM, PRT, X, .]

Since, we wish to study the effect of the size of train-
ing data, we used the standard English ConLL dataset
(Tjong Kim Sang and De Meulder, 2003) for both
NER and PoS tagging models and artificially impov-
erished the data by randomly sampling disjoint task

Table 1: Sizes of the different training datasets.

DATA SET #NER INSTANCES #POS INSTANCES

BASE (1X) 219 223
BASE×2 (2X) 442 444
BASE×4 (4X) 886 873

Table 2: Constraints used for the experiments. UB and LB refer

to the upper and lower bounds on the expectations

φ(proportion) b(UB) b(LB)
(O,NOUN) 0.21 0.18
(I-PER,NOUN) 0.055 0.053
(I-ORG,ADJ) 0.046 0.44
(I-LOC,NOUN) 0.041 0.039
(I-MISC,NOUN) 0.016 0.013
(I-PER,NOUN)→ (I-PER,NOUN) 0.028 0.023
(I-ORG,NOUN)→ (I-ORG,NOUN) 0.018 0.015
(I-LOC,NOUN)→ (O,.) 0.017 0.014
(I-PER,NOUN)→ (O,.) 0.018 0.015
(I-ORG,NOUN)→ (O,NUM) 0.015 0.011
(O,.)→ (I-LOC,NOUN) 0.013 0.010

specific datasets of varying sizes (Table 1). For train-
ing all of the CRF models (single, supervised joint,
latent joint, and posterior regularized joint), we used
a standard set of indicator features derivable from the
input sequence.
For obtaining informative constraints, we used the

statistics from a large Spanish NER dataset (Tjong
Kim Sang and De Meulder, 2003). We specifically
chose this setting to gauge the ease and efficacy of
language invariant relationships between NER and
PoS tagging tasks. Specifically, we focused on the
expected proportions of the joint labels and the joint
edges in the training corpus. We also used the perfor-
mance on our development set to identify a small pool
of constraintswhich are listed in Table 2. It should be
noted that depending upon the specific data and task
settings many other kinds of informative constraints,
that also condition on observed sequence x can be
easily incorporated as long as their computation de-
composes along the cliques of our joint models. For
numerical stability, the constraints in table 2 were
scaled to be in the same range by scaling φ.
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Table 3: Performance on NER and Part of Speech tagging. ‘P’, ‘R’, ‘F1’ stand for Precision, Recall and F1 score for Named Entity

Recognition task, ‘Acc’ refers to part of speech tagging accuracy. 1x, 2x, and 3x refer to the data sets for the two tasks as described

in table 1. ‘Single-task’ refers to independent training of CRFs for the two tasks, ‘Latent CRF’ refers to the joint CRF trained over

partially observed data via EM, ‘Posterior Reg.’ refers to out approach of regularizing the output distribution of ‘Latent CRF’,

‘Oracle’ refers to the unrealistic case when both the datasets are annotated with both task outputs.

SZ SINGLE-TASK LATENT-CRF POSTERIOR REG. ORACLE (2X SUPERVISED)
P R F1 ACC P R F1 ACC P R F1 ACC P R F1 ACC

1X 0.67 0.39 0.50 0.83 0.53 0.51 0.52 0.84 0.58 0.53 0.55 0.84 0.67 0.63 0.65 0.88
2X 0.69 0.55 0.62 0.87 0.63 0.62 0.63 0.87 0.66 0.62 0.64 0.87 0.73 0.71 0.72 0.90
4X 0.79 0.61 0.69 0.89 0.71 0.70 0.70 0.90 0.70 0.71 0.70 0.90 0.79 0.77 0.77 0.92

6.1 Results

Our experimental focus is on comparing our
approach of regularizing the output distribution of
a joint CRF with other approaches described in the
paper: i) training a single CRF for each task with its
respective data. ii) training a latent joint CRF over
both the datasets jointly via EM. We also present
results for the fully supervised joint CRF model,
which was trained assuming the unrealistic scenario,
in which we have annotations for both the tasks in
our training data. This effective doubles the training
data for the fully supervised joint CRF. This provides
an effective upper bound on the performance of
the joint CRF model. These results are reported
over the CoNLL test set which consists of 3250
sequences. We notice in table 3 that for all the
three data scenarios, the single task CRFs perform
the worst on both the tasks. The latent CRF based
approach consistently improves over the single task
performance. The posterior regularization models
further improve over the latent CRF performance.
The improvement with posterior regularization is
most pronounced for the smallest dataset. The part
of speech tagging accuracy improves slightly for
smallest data scenario with our approach, but it is
comparable for the larger data scenarios. This might
be because PoS tagging is a considerably easier
problem and relies less on the ‘structure’ in the
model than NER (Liang et al., 2008).
Another consistent pattern is that the ‘Oracle’ is
always significantly better at both the tasks in all the
data settings because it is trained on fully annotated
dataset of both the tasks for a give data scenario.
Interestingly, its performance is always slightly
better than the single model scenario with 2x data.
This suggests that joint CRF modelling is providing

some gains over independent task training and
empirically the effect on sample complexity due to
the bigger CRF model doesn’t seem to hurt at all.

7 Conclusion

We presented a multi task learning approach based
upon jointly modelling structured prediction tasks
when no jointly annotated data is available. We
presented a latent CRF model to jointly model
the two tasks, whose output posterior distribution
is influenced by constraints that encode some ex-
ternal knowledge about the tasks and their inter-
relationships. Specifically, we assume that the output
spaces of the different tasks do not necessarily inter-
sect, and instead we only know about the tendencies
of compatibility between the different output spaces.
We bias the learning of our models by using this
external knowledge about the tasks. We report exper-
imental results on two Natural Language Processing
tasks: i) Named Entity Recognition and ii) Part of
speech tagging. Our results show that our method
is very effective in low data scenarios and always is
significantly better that training individual models on
small datasets.
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