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Abstract

We describe experiments in Machine Translation using word sense disambiguation (WSD) in-
formation. This work focuses on WSD in verbs, based on two different approaches – verbal
patterns based on corpus pattern analysis and verbal word senses from valency frames. We eval-
uate several options of using verb senses in the source-language sentences as an additional factor
for the Moses statistical machine translation system. Our results show a statistically significant
translation quality improvement in terms of the BLEU metric for the valency frames approach,
but in manual evaluation, both WSD methods bring improvements.

1 Introduction

The possibility of using word sense disambiguation (WSD) systems in machine translation (MT) has
recently been investigated in several ways: Output of WSD systems has been incorporated into MT to
improve translation quality — at the decoding step of a phrase-based statistical machine translation (PB-
SMT) system (Chan et al., 2007) or as contextual features in maximum entropy (MaxEnt) models (Neale
et al., 2015) and (Neale et al., 2016). In addition, WSD has also been used in MT evaluation, for exam-
ple in METEOR (Apidianaki et al., 2015). These works indicate that WSD can be beneficial to different
MT tasks, in case of using senses as contextual features for MaxEnt models Neale et al. (2016) achieve
statistically significant improvement over the baseline for English-to-Portuguese translation. And Apid-
ianaki et al. (2015) report that usage of WSD can establish better sense correspondences and improve its
correlation with human judgments of translation quality.

In this research, we have investigated the possibilities of integrating two different approaches to verbal
WSD into a PB-SMT system – verb patterns based on corpus pattern analysis (CPA) and verbal word
senses in valency frames. The focus on verbs was motivated by the ideas that verbs carry a crucial part
of the meaning of the sentence (Healy and Miller, 1970) and thus accurate translation of the verb is
critical for the understanding of the translation. Therefore, improvement of the translation of verbs can
lead to overall increase of the translation quality. Therefore, improvement of the translation of verbs can
lead to an overall increase of translation quality. The outputs of automatic verb sense disambiguation
systems using both CPA and valency frames were integrated into Moses statistical machine translation
system(Koehn et al., 2007). Both kinds of verb senses were added as additional factors (Koehn and
Hoang, 2007). Section 4.1 shows that we obtain statistically significant improvement in terms of BLEU
scores (Papineni et al., 2002) and manual evaluation of translations validated that.

The novelty of this work lies not only in our focus only on verbs senses, but also in the fact that we
are comparing the impact of two WSD approaches on the statistical machine translation.

The following Section 2 describes the initial setup of our experiments. Section 3 and Section 4 depict
the idea behind corpus pattern analysis and verb valency frames representations and show evaluation
results of incorporation of these sense to phrase-based statistical machine translation. The next section
(Section 5) is devoted to the discussion of results obtained during the evaluation. And finally Section 6
describes our plan of the future work.
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2 Experiments setup

2.1 Dataset and MT system

For our experiments, we have used a subset of the Czech-English corpus CzEng 1.0 (Bojar et al., 2012);
the respective numbers of sentences and tokens in each of training, development and test sets are shown
in Table 1. For our experiments, 28 different English verbs were selected and automatically annotated
with corpus pattern analysis senses, and 3,306 verbs annotated using valency frames. The subset has
been selected to include verbs annotated with CPA, so the effect of WSD would be visible. All the
experiments were carried out in the Eman experiment management system (Bojar and Tamchyna, 2013)
using the Moses PB-SMT system (Koehn et al., 2007) as the core and minimum error rate training
(MERT, (Och, 2003)) to optimize the decoder feature weights on the development set. The evaluation
was performed using the BLEU score (Papineni et al., 2002), but the results of each setup were then
thoroughly examined and verified using the MT-ComparEval system (Aranberri et al., 2016)1.

Set Number of sentences Tokens CS Tokens EN
Training 649,605 10,759,546 12,073,130
Development 10,115 187,478 167,788
Test 2,707 59,446 67,336

Table 1: Data set composition

2.2 MT configurations

As we have mentioned in Section 1 the main goal of the experiments was to explore whether verb senses
as additional factors in the statistical MT system Moses can help in improving translation quality. The
following configurations were tested:

• Form→Form – “vanilla” Moses setup, translating from surface word forms to target surface forms,
including capitalization.

• Form+Sense→Form – two source factors (surface word form and verb sense ID, if applicable) are
translated to the target-side word forms. This is technically identical to appending the verb sense
ID to the source words.

• Form→Form+Tag – the source word form is translated to two factors on the target side: word
form and morphological tag (part-of-speech tag with morphological categories of Czech, such as
case, number, gender, or tense). This allows us to use an additional language model trained on
morphological tags only. This setup is known to perform well for morphologically rich languages
(Bojar, 2007) and thus was selected as a baseline for all comparisons.

• Form+Sense→Form+Tag – a combination of the two setups above: two source and two target-side
factors, for better handling of source verb meaning and target morphological coherence.

• Form→Form+Tag + Form+Sense→Form+Tag – a combination of previous two models as two sep-
arate phrase tables.

For all configurations, we trained a 4-gram language model on word forms of the sentences from the train-
ing set. This LM was pruned: we discarded all singleton n-grams (apart from unigrams). In addition, for
configurations which generated morphological tags, we used a 10-gram model LM over morphological
tags to help maintain morphological coherence of the translation outputs. Again, we pruned all singleton
n-grams with the exception of unigrams.

1http://wmt.ufal.cz/
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Verb No. Pattern / Implicature

gleam 1 [[Physical Object | Surface]] gleam [NO OBJ]
[[Surface]] of [[Physical Object]] reflects occasional flashes of light

gleam 2 [[Light | Light Source]] gleam [NO OBJ]
[[Light Source]] emits an occasional flash of [[Light]]

gleam 3 {eyes} gleam [NO OBJ] (with [[Emotion]])
{eyes} of [[Human]] shine, expressive of [[Emotion]]

wake 3 [no object] [Human] wake ({up}) AdvTime({from} {nightmare | dream | sleep | reverie}) ({to}
Eventuality)
the mind of [[Human]] returns at a particular [[Time]] to a state of full conscious awareness and alertness
after sleep

wake 4 pv [phrasal verb] [[Human 1] ˆ [Sound] ˆ [Event]] wake [[Human 2] ˆ [Animal]] ({up})
[[Human 1 — Sound — Event]] causes the mind of [[Human 2 — Animal]] to return to a state of full
conscious awareness and alertness after sleep

wake 7 [Anything] wake [Emotion] ({in} Human)
[[Anything]] causes [[Human]] to feel or become aware of [[Emotion]]

wake 9 waking * ({up})
[Human—Animal]’s returning to a state of full conscious awareness and alertness after sleep

Table 2: Example patterns defined for the verbs gleam and wake.

3 Verb patterns based on Corpus Pattern Analysis

Corpus Pattern Analysis (CPA) is a method of manual context-based lexical disambiguation of verbs
(Hanks, 1994; Hanks, 2013). Verbs are supposed to have no meanings on their own; instead, meanings
are triggered by the context. Hence, a CPA-based lexicon does not group the uses of a verb into senses
but into syntagmatic usage patterns derived from the corpus findings. Such a CPA-based lexicon is the
Pattern Lexicon of English Verbs (PDEV, (Hanks and Pustejovsky, 2005)). In contrast to the classical
WSD, here the verb patterns are used as verb meaning representations. An example of a few patterns is
given in Table 2.

Here we employ an automatic procedure for verb pattern recognition developed by Holub et al. (2012),
which deals with 30 selected English verbs. In fact, their method uses 30 separate classifiers, one for
each verb, trained on moderately sized manually annotated samples. They use the collection called
VPS-30-En (Verb Pattern Sample, 30 English verbs) published by Cinková et al. (2012) as training data.
VPS-30-En was designed as a small sample of PDEV, a pilot lexical resource of 30 English lexical
verb entries enriched with semantically annotated corpus samples. The data describes regular contextual
patterns of use of the selected verbs in the British National Corpus, version 3 (BNC, 2007).2 The number
of different patterns varies from 4 to 10 in most cases across the verbs, and the performance of Holub
et al. (2012)’s automatic pattern recognition also differs verb from verb, ranging between 50% and 90%
accuracy.

3.1 Experiments and evaluation
For the experiments with verb patterns based on CPA, we have explored all the configurations described
in Section 2.2.

Table 3 shows the results of the best MERT run for each configuration. Multiple MERT runs
evaluation was performed for Form→Form+Tag, Form+Sense→Form+Tag, and Form→Form+Tag
+ Form+Sense→Form+Tag using MultEval system (Clark et al., 2011) with Form→Form+Tag as
the baseline system, and the results are shown in Table 4. We see that the average results of
Form+Sense→Form+Tag are worse than the ones of Form→Form+Tag by 0.1% BLEU. MultEval aims
to determine whether an experimental result has a statistically reliable difference for a give evaluation
metric, using a stratified approximate randomization (AR) test. AR estimates the probability (p-value)
that a measured difference in metric scores arose by chance by randomly exchanging sentences between
the two systems. If there is no significant difference between the systems (i.e., the null hypothesis is true),
then this shuffling should not change the computed metric score (Clark et al., 2011). While comparing

2Details about both selected verbs and training contexts can be found at http://ufal.mff.cuni.cz/spr.
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Configuration BLEU
Form→Form 24.26
Form+Sense→Form 24.15
Form+Sense→Form+Tag 25.01
Form→Form+Tag 25.11
Form→Form+Tag + Form+Sense→Form+Tag 25.27

Table 3: Evaluation results for corpus pattern analysis annotation, best MERT run

Form→Form+Tag and Form→Form+Tag + Form+Sense→Form+Tag, we see that p-value is 0.16, thus
allowing us to claim, that these two systems don’t differ one from another. The same test performed
using METEOR and TER tests only confirms that (in case of TER having p-value=0.61).

Metric System Avg ssel sTest p-value

BLEU
Form→Form+Tag 25.0 0.9 0.1 -
Form+Sense→Form+Tag 24.9 0.9 0.1 0.00
Form→Form+Tag + Form+Sense→Form+Tag 25.0 0.9 0.1 0.16

METEOR
Form→Form+Tag 22.6 0.4 0.0 -
Form+Sense→Form+Tag 22.5 0.4 0.0 0.00
Form→Form+Tag + Form+Sense→Form+Tag 22.6 0.4 0.1 0.22

TER
Form→Form+Tag 62.2 0.7 0.2 -
Form+Sense→Form+Tag 62.4 0.7 0.1 0.00
Form→Form+Tag + Form+Sense→Form+Tag 62.2 0.7 0.2 0.61

Table 4: Multeval results for corpus pattern analysis, based on 36 MERT runs

We also performed a more detailed analysis with pairwise comparisons of the following configura-
tions:

• Form→Form vs. Form+Sense→Form

• Form→Form+Tag vs. Form+Sense→Form+Tag

• Form→Form+Tag vs. Form→Form+Tag + Form+Sense→Form+Tag

3.1.1 Form→Form vs. Form+Sense→Form
The comparison provided by MT-ComparEval based on paired bootstrap resampling (Koehn, 2004) of
best MERT runs for both configurations showed that Form→Form is significantly better (p-value=0.022)
than Form+Sense→Form. The sentence-by-sentence comparison explains this: On the positive side, 8
examples out of the top 10 sentences where Form+Sense→Form output was better than Form→Form
profited from using additional information about the verb sense. On the negative side, the model with
verb senses made a lot of errors due to badly extracted phrase tables, even leaving some verbs untrans-
lated.

3.1.2 Form→Form+Tag vs. Form+Sense→Form+Tag
In this case the same paired bootstrap resampling of the best MERT runs showed that the difference
between Form+Sense→Form+Tag and Form→Form+Tag outputs is not significant (p-value=0.062). In
the sentence by sentence comparison, we saw that while information about verb pattern helps to deal
with some translations, it still causes mistakes.

For example, in the sentence from Figure 1, the verb cool down is translated as vychladnout (‘let
the temperature sink’) instead of the correct uklidnit (‘calm down’). Here, MT-ComparEval shows
that Form→Form+Tag translated the verb correctly, meaning that the correct translation exists in the
training data. Therefore, we checked which of the translation model factors caused the wrong trans-
lation. In the source sentence, the verb cool has the CPA pattern “1”, but the only suitable phrase in
the Form+Sense→Form+Tag phrase table (with cool|1 down|- on the source side) has the verb vy-
chladnout on the target side. In the Form→Form+Tag table, we have the phrase cool down and let
translated using the verb uklidnit, but the corresponding phrase in the Form+Sense→Form+Tag table has
has a different CPA pattern “u” for the verb cool.
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Figure 1: An example MT-ComparEval output from the Form+Sense→Form+Tag sentence analysis

work1: ACT PAT DIR3
(put, implement)
Burger King works a sales pitch into its public-service message.
work2: ACT ?PAT ?BEN ?ACMP
(perform a job)
Mr. Cray has been working on the project for more than six years.
work3: ACT PAT
(cause, create)
[. . . ] greenhouse effect that will work important climatic changes [. . . ]
work4: ACT
(function)
US trade law is working.

Figure 2: Example entry from the EngVallex valency dictionary, with four different senses/valency
frames of the verb work (abridged, with minor adaptations for presentation).
The sense ID and the valency frame is shown on the 1st line of each sense, with the following semantic roles: ACT = actor,
PAT = patient, DIR3 = direction (to, into), BEN = benefactor, ACMP = accompanying person or object. Optional arguments
are prepended with a “?”. A short gloss is shown on the 2nd line, and an example on the 3rd line.

3.1.3 Form→Form+Tag vs. Form→Form+Tag + Form+Sense→Form+Tag
The MT-ComparEval’s paired bootstrap resampling showed that the difference between these two outputs
is significant (p-value=0.023), thus showing that output of Form→Form+Tag + Form+Sense→Form+Tag
is significantly better than Form→Form+Tag. In the sentence-by-sentence comparison, we saw that
the combined system benefited from the verb patterns where possible but resorted to the more general
translation of the baseline phrase-table when CPA-annotated translations were insufficient.

4 Verbal word senses in valency frames

Valency in verbs (and other parts of speech), i.e., the ability of a verb to require and shape its arguments,
is one of the core notions of the Functional Generative Description (FGD) theory (Sgall et al., 1986). The
valency of a verb is described in a valency frame, which lists the semantic roles and possible syntactic
shapes of all of its obligatory and optional arguments. Since different senses of the same verb require
different arguments and thus are described by different valency frames, this amounts to WSD in verbs
(an example is shown in Figure 2).

Valency frames for over 7,000 senses of more than 4,000 common English verbs are listed in the Eng-
Vallex valency lexicon (Cinková, 2006),3 and the Prague Czech-English Dependency Treebank (PCEDT)
2.0 (Hajič et al., 2012) provides manually annotated valency frame IDs for all of its verbs. Using this
annotation, Dušek et al. (2015) trained an automatic system for valency frame detection as a part of the
Treex natural language processing toolkit (Popel and Žabokrtský, 2010).4 We processed all the sentences
in our dataset with the tool and used the resulting valency frame IDs in our experiments.

4.1 Experiments and evaluation
Based on the results of the experiments shown in Section 3.1, we have decided to focus only
on the following configurations: Form→Form+Tag, Form+Sense→Form+Tag and their combination

3EngVallex is origially based on the PropBank frame files (Palmer et al., 2005), but it also contains a lot of manual changes.
4http://ufal.mff.cuni.cz/treex
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Configuration BLEU
Form+Sense→Form+Tag 24.97
Form→Form+Tag 25.08
Form→Form+Tag + Form+Sense→Form+Tag 25.26

Table 5: Evaluation results for valency frames annotation, best MERT for each configuration

Form→Form+Tag + Form+Sense→Form+Tag.
Table 5 shows the results for best MERT runs for each configuration. MultEval MERT evaluation

for the all configurations mentioned above, with Form→Form+Tag as a baseline, is shown in Ta-
ble 6. The table shows that the average Form+Sense→Form+Tag model results are still 0.1% BLEU
worse than the Form→Form+Tag model, but the average results of the combined Form→Form+Tag +
Form+Sense→Form+Tag model are 0.1% BLEU better than the average results of Form→Form+Tag.
The results of MultEval’s stratified approximate randomization test (Clark et al., 2011) allow us to claim
that the combination of these two models is statistically significantly better than the baseline. The same
is true for METEOR and TER tests results, shown in the same table. It also shows that the valency frames
approach to WSD has more impact on MT than CPA in our case.

Metric System Avg ssel sTest p-value

BLEU
Form→Form+Tag 25.0 0.9 0.1 -
Form+Sense→Form+Tag 24.9 0.9 0.1 0.01
Form→Form+Tag + Form+Sense→Form+Tag 25.1 0.9 0.1 0.00

METEOR
Form→Form+Tag 22.5 0.4 0.0 -
Form+Sense→Form+Tag 22.5 0.4 0.0 0.01
Form→Form+Tag + Form+Sense→Form+Tag 22.6 0.4 0.0 0.00

TER
Form→Form+Tag 62.2 0.7 0.1 -
Form+Sense→Form+Tag 62.4 0.7 0.2 0.00
Form→Form+Tag + Form+Sense→Form+Tag 62.1 0.7 0.2 0.00

Table 6: MultEval results for valency frames, based on 8 MERT runs

A more thorough examination of the best MERT runs of following pairs of configurations in MT-
ComparEval output of paired bootstrap resampling showed that:

• Form+Sense→Form+Tag is insignificantly worse than Form→Form+Tag, with p-value=0.0161

• Form→Form+Tag + Form+Sense→Form+Tag is significantly better than Form→Form+Tag, with
p-value=0.002

An interesting observation was that Form+Sense→Form+Tag and Form→Form+Tag +
Form+Sense→Form+Tag models were more likely to translate verbs as verbs, while translation
errors in Form→Form+Tag often were caused by its efforts to translate verbs as nouns.

4.2 Comparsion of CPA and valency frames

Based on the MultEval results shown in Table 4 and Table 6, it can be claimed that using the valency
frames approach to WSD helped to achieve a statistically significant improvement in machine translation,
while CPA did not help to such an extent. Among the possible reasons are a lower number of verbs
covered (for the same number of sentences, we had CPA-based annotations only for 28 different verbs
and 3,306 different verbs with valency frames annotations) and the precision of automatic annotating
system itself. One of the future plans here is to compare the results of these approaches when exactly the
same verbs are annotated.

An example of the sentence where the valency frames approach was more successful than CPA is
“. . . forged steel components for the automotive industry”. Here, the word forged was annotated by
verbal valency frame and by verbal pattern, and while valency frame provided correct translation of
this word into Czech “kované oceli součástı́”, the CPA-based model generated “zfalšoval ocel součástı́”,
which is incorrect in both the meaning and the part of speech.
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5 Discussion and conclusion

Including verb senses – be it based on corpus pattern analysis or as valency frames – as an ad-
ditional factor to a PB-SMT English-to-Czech model did not help by itself, as our results for
Form+Sense→Form+Tag configurations have shown. Nevertheless, the combination of this model with
a better-performing model Form→Form+Tag resulted in a significant improvement for the case of us-
ing senses based on valency frames, as shown by paired boootstrap resampling tests given in Table 6,
while a manual evaluation of best MERT runs showed translation quality improvement for both WSD
approaches. All the results were achieved on a relatively small data sets, but it can be of use in cases
when one does not have enough parallel data, but WSD for the source language (which is often English)
is available, for example, in case of domain-specific translations.

We have tried to use sense information produced by two different approaches to verbal WSD dis-
ambiguation – corpus pattern analysis and valency frames, and while the former did not significantly
outperform the baseline system in terms of the BLEU metric, the later showed significant improvement.

Adding the automatic WSD system as additional preprocessing layer can influence the SMT system
due to the fact that WSD system cannot deliver 100% accurate senses, thus causing confusing situations,
when the system had a correct translation available, but did not select it because the verb sense of the
source sentence from test set was incorrect. Possible ways of reducing the impact of such things are
improvement of automatic WSD systems used and using WSD system combination.

6 Future work

In the future, we plan to continue our experiments on verbs senses using approached described in this
work as well as other approaches, e.g. WSD systems based on BabelNet synsets (Navigli and Ponzetto,
2012) and WordNet senses.5 In addition, we are going to experiment with the size of the corpus used for
training, because this research used only a part of available Czech-English parallel corpus.
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