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Abstract

Clinical narratives in electronic health record systems are a rich resource of patient-based in-
formation. They constitute an ongoing challenge for natural language processing, due to their
high compactness and abundance of short forms. German medical texts exhibit numerous ad-hoc
abbreviations that terminate with a period character. The disambiguation of period characters
is therefore an important task for sentence and abbreviation detection. This task is addressed
by a combination of co-occurrence information of word types with trailing period characters, a
large domain dictionary, and a simple rule engine, thus merging statistical and dictionary-based
disambiguation strategies. An F-measure of 0.95 could be reached by using the unsupervised ap-
proach presented in this paper. The results are promising for a domain-independent abbreviation
detection strategy, because our approach avoids retraining of models or use case specific feature
engineering efforts required for supervised machine learning approaches.

1 Introduction

Free text narratives are a main carrier of unstructured patient-based information in clinical information
systems. Clinical texts differ significantly from, e.g., newspaper or scientific articles. The following
snippet demonstrates the high degree of compactness, which is typical for clinical narratives1:

3. St.p. TE eines exulz. sek.knot.SSM (C43.5) li Lab.
majus. Level IV, 2,42 mm Tumordurchm.

As much as such highly condensed text is understandable by specialists, it poses severe problems to
natural language processing (NLP) and subsequent semantic interpretation (Meystre et al., 2008), due to
idiosyncrasies of telegram style language like word and term-level ambiguities, acronyms, abbreviations,
single-word compounds, derivations, spelling variants and misspellings. In addition, the broad range of
clinical specialties with different vocabularies and recording traditions account for a high variation of
sub-language characteristics (Patterson et al., 2010).

This paper deals with the disambiguation of the period character (“.”) in clinical narratives. In many
Western languages like German, periods are used as abbreviation markers. Therefore, in a first tokeniza-
tion step it is not recommended to consider trailing period characters as token delimiters, in order to
identify tokens that end with a period. Three cases can be distinguished: (i) The period character marks
an abbreviation and does not act as sentence delimiter. (ii) The period character marks an abbreviation
and also delimits the sentence. (iii) The period does not belong to the token and therefore delimits the
sentence.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/

1English translation: “3. History of total excision of an exulcerated secondarily nodular superficially spreading melanoma
(C43.5) of the outer left labia. Level 4, tumor diameter 2.42mm”.
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Our approach is purely data-driven, which distinguishes it from recently published work (Wu et al.,
2016; Griffis et al., 2016; Vo et al., 2016), predominantly based on supervised machine learning. In
contrast, we avoid extensive manual annotations of training data as well as classification task triggered
feature engineering, even though good results were obtained in a previous study (Kreuzthaler and Schulz,
2015). Another requirement is that the method should be easily adaptable to other clinical sub-language
domains without model retraining or exhaustive dictionary or terminology management, and that classi-
fication results should be understandable in detail and traced back to core decision rules.

2 Materials and Methods

2.1 Data
Corpus: A sample of 1,696 de-identified German-language clinical in and outpatient discharge letters

was obtained from the dermatology department of an Austrian university hospital. The documents were
randomly assigned to a training and a test corpus, with 848 documents each.

Gold standard: From both corpora a list of word types followed by a period character was extracted
by applying the following two regular expression sequentially:
(i) \b\p{Graph}+\.(?=(\p{Punct}|\s|$)) matches any word type character sequence ending
with a period character, and (ii) ([a-z]+\.|[A-Z][a-z]*\.) filters the resulting types from step
one by word characters without digits. About 2,300 word types ending with a period finally constitute
the training and test set. Their content was manually annotated on whether the period character belongs
to the word type or not. The inter-annotator agreement was very high, with a Cohen’s kappa of 0.98
(Di Eugenio and Glass, 2004; Hripcsak and Heitjan, 2002).

Dictionary: An abbreviation-free medical dictionary (~1.45 million unique word types) was built
using (i) a free contemporary German dictionary2, (ii) a German medical dictionary (Pschyrembel, 1997),
and (iii) texts from a consumer health Web portal3. All tokens ending with a period character were
excluded from this resource, as a highly sensitive approach to keep it free of abbreviations. In addition,
German abbreviations harvested from Web resources4,5 (~5,800 acronym and abbreviation tokens) were
excluded from the overall dictionary to make the final resource as abbreviation-free as possible, also
accounting for potential punctuation errors in the three dictionaries such as missing abbreviation period
markers. The resulting resource was used in our abbreviation detection strategy, as described in the
following section.

2.2 Methods
Statistical approach: For the statistical classification approach we built a fourfold observed co-

occurrence table O(knm) for every word type ending with a period character:

Schema Example A Example B

Type ¬Type “Pat” ¬“Pat” “auf” ¬“auf”

• k11 k12 300 17,970 8 18,262
¬• k21 k22 78 66,718 1,322 65,474

Table 1: Two examples of observed corpus based frequency counts, viz. the two word types “Pat” and
“auf”, with and without a period as rightmost character (symbolized by •).

With the observed frequency counts O(knm) we calculate the log-likelihood ratio (LLR) (Dunning,
1993)6,7 of a word type and its ending period character by use of Shannon’s Entropy (Shannon, 1948):

2http://sourceforge.net/projects/germandict/
3http://www.netdoktor.at/
4http://de.wikipedia.org/wiki/Medizinische Abkuerzungen
5https://de.wiktionary.org/wiki/Kategorie:Abkuerzung (Deutsch)
6The Apache Mahout library was used for LLR calculation.
7http://tdunning.blogspot.co.at/2008/03/surprise-and-coincidence.html
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H = −
n∑

i=1

pi(logbpi) (1)

LLR = 2 ·N · (Hmatrix −Hrows −Hcols) (2)

For the cases mentioned in Table 1, LLR values amount to 579.11 for Example A and 571.56 for
Example B. This has the advantage that per co-occurrence their relevance can be asserted assuming a χ2

distribution (with one degree of freedom) for different significance levels. Example A and Example B
have a very highLLR, which allows the conclusion that the occurrence of the word type left of the ending
period character has a significant influence on the presence or absence of the final period character. In
order to determine whether there is significant evidence for the presence or for the absence of the final
period character we calculate, in a next step, the expected values E(knm) of the fourfold Table 1 via:

kExp
11 = (k11 + k12) · (k11 + k21)/(k11 + k12 + k21 + k22) (3)

kExp
12 = (k12 + k11) · (k12 + k22)/(k11 + k12 + k21 + k22) (4)

kExp
21 = (k21 + k11) · (k21 + k22)/(k11 + k12 + k21 + k22) (5)

kExp
22 = (k22 + k12) · (k22 + k21)/(k11 + k12 + k21 + k22) (6)

These equations lead to the following fourfold expected co-occurrence table E(knm):

Schema Example A Example B

Type ¬Type “Pat” ¬“Pat” “auf” ¬“auf”

• kExp
11 kExp

12 81 18,189 286 17,984
¬• kExp

21 kExp
22 297 66,499 1,044 65,752

Table 2: Two examples of expected corpus based frequency counts, again with the word types “Pat” and
“auf”, with and without a period as rightmost character (symbolized by •).

The final decision function is now straightforward, reconsidering the fact that the expected values
E(knm) can be interpreted as the distribution within the table if there were no divergence from random-
ness: If O(k11)− E(k11) > 0 the period character belongs to the word type and marks an abbreviation,
if O(k11) − E(k11) ≤ 0 the period marker does not belong to it and can be interpreted as sentence de-
limiter. We apply this decision function regardless of the LLR-level of the token-period co-occurrences,
but its influence is inspected in the Combined approach described below.

Dictionary approach
The dictionary-based approach for period character classification is done via a simple dictionary look-

up of the token under inspection8. If the token (without trailing period) is found in the dictionary,
we decide that it is not an abbreviation, otherwise the period character is considered as belonging to
the token, which is therefore classified as an abbreviation. This strategy requires an abbreviation-free
dictionary, as described in Section 2.1.

Combined approach
Our decision function in the combined approach is motivated by the fact that the tokens ending with

a period have a distribution pattern as depicted in Figure 1. This has a fundamental influence on our
decision function: (i) For a certain proportion of the token-period co-occurrences the statistical approach
will have enough frequency information to give valid classification results, (ii) but there is a relevant long

8Due to the large number of about 1.45 million dictionary entries, we used an Apache Lucene index, cf.
https://lucene.apache.org/core/
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Figure 1: Ranked frequency count of tokens that end with a period.

tail of co-occurrences where the statistical method is not stable any more. We therefore addressed these
cases by the dictionary-based approach and to prioritize it in the decision function: wherever the left
context of the period is in the dictionary we decide in favor of a non-abbreviation, otherwise we take the
decision of the statistical approach taking into account different significance levels (LLR1 > 10.83, p <
0.001; LLR2 > 3.84, p < 0.05; LLR3 > 0, p-value not considered).

if token ∃ dictionary then
→ abbr=false;

else if LLR > significance level then
if O(k11)− E(k11) > 0 then
→ abbr=true;

else
→ abbr=false;

end
else
→abbr=true

end

Algorithm 1: Combined decision algorithm.

3 Results and Discussion

The evaluation results show that the Statistical approach on its own tends to find all abbreviations
but lacks precision. The Dictionary approach returns an F-measure of 0.94, and the top performance
result of F1 = 0.95 is obtained with the combined approach. The evaluation results of the Combined
approach also reflect the fact that the LLR information can be neglected in that case and the outcome of
O(k11)− E(k11) should always be used regardless of the impact of the significance of the token-period
co-occurrence. The investigation of false positives shows, e.g., a noticeable amount of token-period co-
occurrences like “Lymphknotenstatus.” (in English “lymph node status.”) which very commonly appear
at the end of a sentence, but which are not in our dictionary (search term: “Lymphknotenstatus”), and
have a O(k11) − E(k11) > 0. False negative results typically appear with abbreviated tokens, such as
“morph.” (abbreviation for ”morphologisch”, in English ”morphological”), which are erroneously found
in our dictionary (search term: “morph”) and are therefore classified as non-abbreviations.

Kiss and Strunk (2002a), tried to reduce the amount of false positives and false negatives by applying
different scaling factors to the resulting LLR. A final threshold was manually chosen, with F-measures
of 0.92 and higher on newspaper corpora. Kiss and Strunk (2002b) performed an intermediate evaluation
of their idea of re-scaling the LLR also for sentence boundary detection. Here, they obtained a minimum
F-measure of 0.91. Both preliminary approaches finally led to the Punkt system (Kiss and Strunk, 2006),
a multilingual unsupervised approach rigorously tested and evaluated. Kreuzthaler and Schulz (2014)
applied an extended version of the Kiss and Strunk (2002a) method in an initial experiment with clinical
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Training Test

Method Precision Recall F1 Precision Recall F1

Statistical
Token 0.47 1.00 0.64 0.44 1.00 0.61
Type 0.36 0.97 0.53 0.35 0.97 0.51

Dictionary
Token 0.90 0.98 0.94 0.88 0.97 0.93
Type 0.57 0.81 0.67 0.54 0.80 0.65

CombinedLLR1

Token 0.91 0.98 0.94 0.89 0.97 0.93
Type 0.57 0.81 0.67 0.56 0.80 0.66

CombinedLLR2

Token 0.92 0.97 0.94 0.90 0.97 0.94
Type 0.58 0.80 0.67 0.56 0.79 0.66

CombinedLLR3

Token 0.94 0.97 0.95 0.92 0.97 0.94
Type 0.61 0.78 0.69 0.59 0.78 0.67

Table 3: Evaluation results.

texts and achieved an accuracy of 0.93 for abbreviation and sentence detection based on the interpretation
of the period character. A supervised machine learning approach using a support vector machine with
a linear kernel and thorough feature engineering led to an F-measure of 0.95 for abbreviation detection
and an F-measure 0.94 for sentence delineation (Kreuzthaler and Schulz, 2015).

Studies have also focused on the detection, normalization, and context-dependent mapping of abbrevi-
ations/acronyms to long forms (Xu et al., 2012). This is also part of works such as CLEF 2013 (Suominen
et al., 2013), which included a task for acronym/abbreviation normalization, using the UMLS9 as target
terminology. An F-measure of 0.89 was reported by Patrick et al. (2013). Four different methods for
abbreviation detection were tested by Xu et al. (2007). A decision tree classifier, which additionally used
features from knowledge resources, performed best with a precision of 0.91 and a recall of 0.80. Wu et
al. (2011) compared machine learning methods for abbreviation detection. Word formation, vowel com-
binations, related content from knowledge bases, word frequency in the overall corpus, and local context
were used as features. A random forest classifier performed best with an F-measure of 0.95 and an en-
semble of classifiers achieved the highest F-measure of 0.96. Wu et al. (2012) compared different clinical
natural language processing systems for abbreviation handling in clinical narratives: MedLEE (Friedman
et al., 1995b; Friedman et al., 1995a) performed best with an F-Measure of 0.60. A prototypical system,
meeting real-time constraints, is described in Wu et al. (2013). Wu’s journey finally ended in the CARD
system (Wu et al., 2016) achieving an F-measure of 0.76 for finding and disambiguating abbreviations
in clinical narratives. Very recently Vo et al. (2016) got very high results with a minimum F-measure of
0.94 on abbreviation detection on clinical notes applying supervised machine learning methods which a
rich feature engineering process.

The main difference between the work we presented and the unsupervised approach of Kiss and Strunk
is the fact that we refrained from re-scaling the LLR and avoided to set an experimental threshold for
the abbreviation classification task. The statistical decision function we employed proved to be solid
and robust even in cases where k21 > k11 (e.g. “Meta.” with k11 = 28, k21 = 82, but nevertheless
correctly classified as abbreviation), which had also been one type of motivation for introducing scaling
factors by Kiss and Strunk (2006). In contrast to much of the related work, our approach is unsupervised

9http://www.nlm.nih.gov/research/umls/
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and does not require the training of a machine learning model or a rich feature engineering effort (Vo
et al., 2016; Wu et al., 2016; Kreuzthaler and Schulz, 2015). Therefore we hypothesize that our ap-
proach is especially suited to be deployed to other clinical domains, which was a main driver of our
investigations. Table 3 shows that with the dictionary approach alone we got F-measure values greater
than 0.93, whereas the performance by word types was much lower. For the time being, we consider
this acceptable because we concentrate on high token-based evaluation measurements and do not want to
misclassify frequently occurring abbreviations. The statistical approach is not applicable in isolation, be-
cause we have found many cases where a word type followed by a period occurs only once or twice in the
corpus (see Figure 1). In such cases the statistical approach is not robust any longer, so we have to rely
on dictionaries. The combined approach was satisfactory as both training and test yielded token-based
F-measure values for period character disambiguation greater than 0.94.

4 Conclusion and Outlook

In this paper we presented an unsupervised approach for period character disambiguation in German
clinical narratives, which we evaluated for the task of abbreviation detection. We motivated and intro-
duced both a data-driven statistical approach and a dictionary-based method. Based on the analysis of
the frequency distribution of token-period character co-occurrences we also presented a hybrid method-
ology. This hybrid approach put emphasis on the dictionary-based method, which was then supported by
a statistical decision rule. A dermatology corpus was used for initial evaluation. For the training and test
set, we obtained F-measures of 0.95 and 0.94, respectively. This supports the hypothesis that unsuper-
vised approaches are well suited for abbreviation and sentence boundary detection in clinical narratives,
which are known to abound with ad-hoc abbreviations. Furthermore, the system presented here needs no
adjustment to the sublanguage, which makes it easy to reuse for other text genres and subject-matters.
This consideration together with the ability to trace back decision results to their core classification logic
and the avoidance of manual training data annotations were major drivers for this investigation.

We mention the following limitations: (i) Periods after digits are currently not considered despite
their importance as markers of ordinals in many languages, as well as their importance in many data
formats. Kreuzthaler and Schulz (2015) took this into account in a supervised rich feature engineering
approach using support vector machines; (ii) The methodology presented in this paper cannot resolve
cases where periods play a double role, viz. as both abbreviation markers and sentence delimiters. This
can be addressed by including in-depth context information regarding the period character under in-
vestigation; (iii) We applied this method to only one kind of text, viz. medical discharge summaries
of melanoma patients. Therefore, we plan to demonstrate domain independence by applying the same
approach to cardiology reports; (iv) We only used German texts, so that we can say little about the
generalizability to other languages. Although we have found that ad hoc abbreviation is a very common
phenomenon also in other languages and text genres, it cannot always be taken for granted that the period
character is used as a marker. Future investigations will address these problems. Our goal is to create
a specific UIMA component for abbreviation detection and resolution with an unsupervised core, which
could be integrated in a clinical NLP pipeline like cTAKES (Savova et al., 2010), The Leo framework -
The VINCI-developed NLP infrastructure (Meystre et al., 2008; Patterson et al., 2014) or MedKATp.
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